Chapter 4 The Processor 4.16 Exercises

Exercise 4.11

In this exercise we examine in detail how an instruction is executed in a single-cycle
datapath. Problems in this exercise refer to a clock cycle in which the processor
fetches the following instruction word:

Exercise 4.10

In this exercise we examine how the clock cycle time of the processor affects the
design of the control unit, and vice versa. Problems in this exercise assume that the
logic blocks used to implement the datapath have the following latencies:

_Livem] aa | an [Auy [vegs [o-ttom [signortona] shirtiert2
a.

400ps | 100ps | 30ps 120ps | 200ps | 350ps 20ps Ops 50ps

. Instruction word

a. 10001100010000110000000000010000

b. | 500ps | 150ps | 100ps 180ps | 220ps | 1000ps 90ps 20ps 55ps

b. 00010000001000110000000000001100

4.10.1 [10] <4.2, 4.4> To avoid lengthening the critical path of the datapath
shown in Figure 4.24, how much time can the control unit take to generate the
MemWrite signal.

4.11.1 [5] <4.4>Whatarethe outputs of the sign-extend and the jump “Shift left 2”
unit (in the upper left of Figure 4.24) for this instruction word?

, 4.11.2 [10] <4.4> What are the values of ALU control unit’s inputs for this instruction?
4.10.2 [20] <4.2, 4.4> Which control signal in Figure 4.24 has the most slack and

how much time does the control unit have to generate it if it wants to avoid being

4.11.3 [10] <4.4> What is the new PC address after this instruction is executed?
on the critical path?

Highlight the path through which this value is determined.

4.10.3 [20] <4.2, 4.4> Which control signal in Figure 4.24 is the most critical to
generate quickly and how much time does the control unit have to generate it if it
wants to avoid being on the critical path?

The remaining problems in this exercise assume that data memory mm all-zeros and
that the processor’s registers have the following values at the beginning of the cycle
in which the above instruction word is fetched:

W | so [s1 | s2 | s3 | s | ss | se | s | si2 | sau |
- (o] o 1 2 3 -4 5 6 8 i

= |b.| O -16 -2 -3 4 -10 -8 -1 8 -4

The remaining problems in this exercise assume that the time needed by the control
unit to generate individual control signals is as follows:

a.

720ps | 730ps | 600ps 400ps 700ps 200ps 710ps wooumA 800ps
b. [1600ps |1600ps | 1400ps 500ps 1400ps 400ps | 1500ps | 400ps 1700ps

4.11.4 [10] <4.4> For each Mux, show the values of its data output during the
execution of this instruction and these register values.

4.10.4 [20] <4.4> What is the clock cycle time of the processor? 4.11.5 [10] <4.4> For the ALU and the two add units, what are their data input values?
4.10.5 [20] <4.4> If you can speed up the generation of control signals, but
the cost of the entire processor increases by $1 for each 5ps improvement of a
single control signal, which control signals would you speed up and by how much
to maximize performance? What is the cost (per processor) of this performance
improvement?

4.11.6 [10] <4.4> What are the values of all inputs for the “Registers” unit?

Exercise 4.12

In this exercise, we examine how pipelining affects the clock cycle time of the
Processor. Problems in this exercise assume that individual stages of the datapath

have the following latencies:

4.10.6 [30] <4.4> If the processor is already too expensive, instead of paying to
speed it up as we did in 4.10.5, we want to minimize its cost without further slowing
it down. If you can use slower logic to implement control signals, saving $1 of the

processor cost for each 5ps you add to the latency of a single control signal, which 300ps 400ps 350ps 500ps 100ps
nosﬁo._ signals S@E&. you slow down and by how much to reduce the processor’s b. 200ps 150ps 120ps 190ps 140ps
cost without slowing it down?

Chapter 4 The Processor

4.12.1 [5] <4.5> What i ime i ipeli
o at is the clock cycle time in a pipelined and nonpipelined

h.u.».n:o_A».mviﬁm:mﬁrﬁoE: . .. ipeli
nompipclined s e mmsQOmmEE&Enno=Em pipelined and

4.12.3 [10] <4.5> If we can spli ipeli

<4. plit one stage of the pipelined datapath into tw
mﬁm%amv mmn.r with half the latency of the original stage, which mﬂmmwm would %o% m: a_w,h
and what is the new clock cycle time of the processor? b

The remaining problems in thi i ,
s in this exercise assume that instructi
ctions
processor are broken down as follows: e Py the

a. 50% 25% 15% 10%

b. 30% 25% 30% 15%

4.12.4 [10] <4.5> Assuming th
. g there are no stall i ilizati
poprsl il of the datemner s or hazards, what is the utilization

4.12.5 [10] <4.5> Assumin
[. g there are no stalls or hazards, i ilizati
of the write-register port of the “Registers” unit? »whatis the udlization

4.12.6 [30] <4.5> Instead of a sin izati
0] <4. gle-cycle organization, we can us ulti-
NMM Oamwnmumcou eMWQm each instruction takes multiple cycles but one meMMMmob
€s betore another is fetched. In this organization, an instructi

: , uction only goes
W&Mﬁ% stages it actually needs (e.g., ST only takes four cycles because it mow.mmzoﬁ
eed the <<w stage). Compare clock cycle times and execution times with single-

cycle, multi-cycle, and pipelined organization. ’

Exercise 4.13

Mﬂmﬁm exercise, we mxém .Toi &M.:m dependences affect execution in the basic
; stage pipeline amm.nncma in Section 4.5. Problems in this exercise refer to the
ollowing sequence of instructions:

. Instruction sequence

Tw $1,40($6)
add $6,%$2,$2
sw $6,50($1)

b. | Tw $5,-16($5)
sw $5,-16($5)
add $5,$5,%5 ;

4.16 Exercises

4.13.1 [10] <4.5> Indicate dependences and their type.

4.13.2 [10] <4.5> Assume there is no forwarding in this pipelined processor.
Indicate hazards and add nop instructions to eliminate them.

4.13.3 [10] <4.5> Assume there is full forwarding. Indicate hazards and add nop
instructions to eliminate them. The remaining problems in this exercise assume the

following clock cycle times:

. Without forwarding With full forwarding With ALU-ALU forwarding only
a.

300ps 400ps 360ps

b. 200ps 250ps 220ps

4.13.4 [10] <4.5> What is the total execution time of this instruction mma.smbnn
without forwarding and with full forwarding? What is the speed-up achieved by
adding full forwarding to a pipeline that had no forwarding?

4.13.5 [10] <4.5> Add nop instructions to this code to eliminate hazards if there
is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage)?

4.13.6 [10] <4.5> What is the total execution time of this instruction sequence
with only ALU-ALU forwarding? What is the speed-up over a no-forwarding

pipeline?

Exercise 4.14

In this exercise, we examine how resource hazards, control hazards, and ISA design
can affect pipelined execution. Problems in this exercise refer to the following

fragment of MIPS code:

. Instruction sequence

a. 1w $1,40($6)
beq $2,$0,Label ; Assume $2 == $0

sw $6,50(%2)

Label: add $2,$3,%4

’ sw $3,50(%4)

b. Tw $5,-16($5)
sw $4,-16($4)
Tw $3,-20($4)
beq $2,$0,Label ; Assume $2 != $0
add $5,%1,%4

4.14.1 [10] <4.5> For this problem, assume that all branches are perfectly
predicted (this eliminates all control hazards) and that no delay slots are used. If

Chapter 4 The Processor

we only have one memory (for both instructions and data), there is a structural
hazard every time we need to fetch an instruction in the same cycle in which
another instruction accesses data. To guarantee forward progress, this hazard must
always be resolved in favor of the instruction that accesses data. What is the total
execution time of this instruction sequence in the five-stage pipeline that only has
one memory? We have seen that data hazards can be eliminated by adding nops to
the code. Can you do the same with this structural hazard? Why?

4.14.2 [20] <4.5> For this problem, assume that all branches are perfectly
predicted (this eliminates all control hazards) and that no delay slots are used.
If we change load/store instructions to use a register (without an offset) as the
address, these instructions no longer need to use the ALU. As a result, MEM and EX
stages can be overlapped and the pipeline has only four stages. Change this code to
accommodate this changed ISA. Assuming this change does not affect clock cycle
time, what speed-up is achieved this instruction sequence?

4.14.3 [10] <4.5> Assuming stall-on-branch and no delay slots, what speed-up is
achieved on this code if branch outcomes are determined in the ID stage, relative to
the execution where branch outcomes are determined in the EX stage?

The remaining problems in this exercise assume that individual m&um:b,o stages
have the following latencies:

100ps 120ps 90ps 130ps 60ps
b. 180ps 100ps 170ps 220ps 60ps

4.14.4 [10] <4.5> Given these pipeline stage latencies, repeat the speed-up
calculation from 4.14.2, but take into account the (possible) change in clock cycle
time. When EX and MEM are done in a single stage, most of their work can be
done in parallel. As a result, the resulting EX/MEM stage has a latency that is

the larger of the original two, plus 20ps needed for the work that could not be done
in parallel. :

4.14.5 [10] <4.5> Given these E@mﬁ:m stage latencies, repeat the speed-up
calculation from Exercise 4.14.3, faking into account the (possible) change in clock
cycle time. Assume that the latency ID stage increases by 50% and the latency of

the EX stage decreases by 10ps when branch outcome resolution is moved from
EX to ID.

4.14.6 [10] <4.5> Assuming stall-on-branch and no delay slots, what is the new
clock cycle time and execution time of this instruction sequence if beq address

4.16 Exercises

ion i i d-up from this change?

tation is moved to the MEM stage? What is the speed-up
meusﬂnmﬁrmﬁ the latency of the EX stage is reduced by 20ps p.nm the latency of
the MEM stage is unchanged when branch outcome resolution is moved from EX

to MEM.

Exercise 4.15

In this exercise, we examine how the ISA affects pipeline design. Problems in this
exercise refer to the following new instruction:

a bezi (Rs),Label if Mem[Rs] = O then PC=PC+0ffs

b. swi Rd,Rs(Rt) Mem[Rs+Rt}=Rd

4.15.1 [20] <4.5> What must be changed in the pipelined datapath to add this
instruction to the MIPS ISA?

4.15.2 [10] <4.5> Which new control signals must be added to your pipeline
from Exercise 4.15.12

4.15.3 [20] <4.5, 4.13> Does support for this instruction introduce any new
hazards? Are stalls due to existing hazards made worse?

4.15.4 .:S <4.5,4.13> Give an example of where this instruction u.a.mrn be _._.mm?_
and a sequence of existing MIPS instruction that are replaced by this instruction.

7 4.15.5 [10] <4.5, 4.11, 4.13> If this instruction already exists in a legacy ISA,

explain how it would be executed in a modern processor like AMD Barcelona.

The last problem in this exercise assumes that each cmw of %n ba% EMMMMMMH
i f original instructions, that the replace ‘ ‘
replaces the given number o pstruct 1 replacement on
i i instructions, and that eac
be made once in the given number of origin :
the new instruction is executed the given number of extra stall cycles is added to

the program’s execution time:

. Replaces Once in every

a, 2 20 1

Extra Stall Cycles

b. 3 60

i - i dding this new instruction?
4.15.6 [10] <4.5> What is the speed-up »n?né..w _.u< a .
In your nw_n_w_mmou. assume that the CPI of the original program (without the new

instruction) is 1. -

Chapter 4 The Processor

Exercise 4.16

The first three problems in this exercise refer to the following MIPS instruction:

a. | Tw $1,40(%6)
b. | add $5,$5,$5

4.16.1 [5] <4.6> As this instruction executes, what is kept in each register located
" between two pipeline stages?

4.16.2 [5] <4.6> Which registers need to be read, and which registers are actually
read?

4.16.3 [5] <4.6> What does this instruction do in EX and MEM stages?

The remaining three problems in this exercise refer to the following loop. Assume
that perfect branch prediction is used (no stalls due to control hazards), that there
are no delay slots, and that the pipeline has full forwarding support. Also assume
that many iterations of this loop are executed before the loop exits.

a. | Loop: Tw $1,40($6)
add $5,%5,$8
add $6,$6,$8
sw $1,20($5)
beq $1,$0,Loop

b. | Loop: add $1,$2,$3
sw $0,0($1)

sw $0,4($1)
add $2,$2,%4
beq $2,%$0,Loop

4.16.4 [10] <4.6> Show a pipeline execution diagram for the third iteration of
this loop, from the cycle in which we fetch the first instruction of that iteration up
to (but not including) the cycle in which we can fetch the first instruction of the
next iteration. Show all instructions that are in the pipeline during these cycles (not
just those from the third iteration).

4.16.5 [10] <4.6> How often (as a percentage of all cycles) do we have a cycle in
which all five pipeline stages are doing useful So%

4.16.6 [10] <4.6> At the start of the cycle in which we fetch the first instruction
of the third iteration of this loop, what is stored in the IF/ID register?

4.16 Exercises

Exercise 4.17

Problems in this exercise assume that instructions executed by a pipelined processor
are broken down as follows:

a. 50% 25% 15% 10%

b. 30% 15% 35% 20%

4.17.1 [5] <4.6> ?mgm there are no stalls and that 60% of all conditional
branches are taken, in what percentage of clock cycles does the branch adder in the
EX stage generate a value that is actually used?

4.17.2 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles)
do we actually need to use all three register ports (two reads and a write) in the
same cycle?

4.17.3 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles)
do we use the data memory?

Each pipeline stage in Figure 4.33 has some latency. Additionally, pipelining
introduces registers between stages (Figure 4.35), and each of these adds an
additional latency. The remaining problems in this exercise assume the following
latencies for logic within each pipeline stage and for each register between two
stages:

100ps 120ps 90ps 130ps 60ps 10ps
b. 180ps 100ps 170ps 220ps 60ps 10ps

4.17.4 [5] <4.6> Assuming there are no stalls, what is the speed-up achieved by
pipelining a single-cycle datapath?

4.17.5 [10] <4.6> We can convert all load/store instructions into register-based
(no offset) and put the memory access in parallel with the ALU. What is the clock
cycle time if this is done in the single-cycle and in the pipelined datapath? Assume
that the latency of the new EX/MEM stage is equal to the longer of their latencies.

4.17.6 [10] <4.6> The change in Exercise 4.17.5 requires many existing 1w/sw
Instructions to be converted into two-instruction sequences. If this is needed for 50%
of these instructions, what is the overall speed-up achieved by changing from the five-
Stage pipeline to the four-stage pipeline where EX and MEM are done in parallel?

Chapter 4 The Processor

Exercise 4.18

..H.ro first three problems in this exercise refer to the execution of the following
instruction in the pipelined datapath from Figure 4.51, and assume the following
clock cycle time, ALU latency, and Mux latency:

.E Clock cycle time ALU Latency Mux Latency
a.

add $1,$2,$3 100ps 80ps 10ps
b. s1t $2,$1,$3 80ps 50ps 20ps

4.18.1 [10] <4.6> For each stage of the pipeline, what are the values of control
signals asserted by this instruction in that pipeline stage?

4.18.2 [10] <4.6,4.7> How much time does the control unit have to generate the
ALUSrc control signal? Compare this to a single-cycle organization.

4.18.3 What is the value of the PCSrc signal for this instruction? This signal
is generated early in the MEM stage (only a single AND gate). What would be a
reason in favor of doing this in the EX stage? What is the reason against doing it in
the EX stage?

The remaining problems in this exercise refer to the following signals from
Figure 4.48:

a. RegDst RegWrite

b. MemRead RegWrite

4.18.4 [5] <4.6> For each of these signals, identify the pipeline stage in which it
is generated and the stage in which it is used.

4.18.5 [5] <4.6> For which MIPS instruction(s) are both of these signals set to 12

4.18.6 [10] <4.6> One of these signals goes back through the pipeline. Which
signal is it? Is this a time-travel paradox? Explain.

Exercise 4.19

This exercise is intended to help you understand the cost/complexity/perfor-
mance tradeoffs of forwarding in a pipelined processor. Problems in this exercise
refer to pipelined datapaths from Figure 4.45. These problems assume that, of all
instructions executed in a processor, the following fraction of these instructions

4.16 Exercises

has a particular type of RAW data dependence. The type of RAW data dependence
is identified by the stage that produces the result (EX or MEM) and the instruction
that consumes the result (1** instruction that follows the one that produces the
result, 2°¢ instruction that follows, or both). We assume that the register write is
done in the first half of the clock cycle and that register reads are done in the second
half of the cycle, so “EX to 3*%” and “MEM to 2°%” dependences are not counted
because they can not result in data hazards. Also, assume that the CPI of the pro-
cessor is 1 if there are no data hazards.

- EX to 15 only EX to 15t and 2™ EX to 2" only MEM to 15t
a. 10% 5% : 25%

10%
b. 15% 5% 10% 20%

4.19.1 [10] <4.7> If we use no forwarding, what fraction of cycles are we stalling
due to data hazards?

4.19.2 [5] <4.7> If we use full forwarding (forward all results that can be
forwarded), what fraction of cycles are we stalling due to data hazards?

4.19.3 [10] <4.7> Let us assume that we can not afford to have three-input Muxes
that are needed for full forwarding. We have to decide if it is better to forward
only from the EX/MEM pipeline register (next-cycle forwarding) or only from
the MEM/WB pipeline register (two-cycle forwarding). Which of the two options
results in fewer data stall cycles?

The remaining three problems in this exercise refer to the following latencies for
individual pipeline stages. For the EX stage, latencies are given separately for
a processor without forwarding and for a processor with different kinds of
forwarding.

EX EX (full FW) EX (FW from EX (FW from
(no FW) EX/MEM only) | MEM/WB only)
a.

100ps | 50ps | 75ps 110ps 100ps 100ps 100ps | 60ps
b. | 250ps | 300ps | 200ps 350ps 320ps 310ps 300ps | 200ps

4.19.4 [10] <4.7> For the given hazard probabilities and pipeline stage latencies,
what is the speed-up achieved by adding full forwarding to a pipeline that had no
forwarding?

4.19.5 [10] <4.7>What would be the additional speed-up (relative to a processor
with forwarding) if we added time-travel forwarding that eliminates all data

Chapter 4 The Processor

4.16 Exercises

hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100ps to
the latency of the full-forwarding EX stage.

4.19.6 [20] <4.7> Repeat Exercise 4.19.3 but this time determine which of the
two options results in shorter time per instruction.

Exercise 4.20

Problems in this exercise refer to the following instruction sequences:

. Instruction sequence

a | 1w $1,40($2)
add $2,%$3,$3
add $1,%1,%2
sw $1,20(%$2)

b. | add $1,$2,$3
sw $2,0(%$1)
Tw $1,4($2)

add $2,%$2,%1

4.20.1 (5] <4.7> Find all data dependences in this instruction sequence.

4.20.2 [10] <4.7> Find all hazards in this instruction sequence for a five-stage
pipeline with and then without forwarding.

4.20.3 [10] <4.7> To reduce clock cycle time, we are considering a split of the
MEM stage into two stages. Repeat Exercise 4.20.2 for this six-stage pipeline.

The remaining three problems in this exercise assume that, before any of the above
is executed, all values in data memory are Os and that registers $0 through $3 have
the following initial values:

I S NN
a. 0 1 31 1000
b. 0 -2 63 2500

4.20.4 [5] <4.7> Which value is the first one to be forwarded and what is the
value it overrides?

4.20.5 [10] <4.7> If we assume forwarding will be implemented when we design
the hazard detection unit, but then we forget to actually implement forwarding,
what are the final register values after this instruction sequence?

4.20.6 [10] <4.7> For the design described in Exercise 4.20.5, add nops to this
instruction sequence to ensure correct execution in spite of missing support for
forwarding.

Exercise 4.21

This exercise is intended to help you understand the relationship between
forwarding, hazard detection, and ISA design. Problems in this exercise refer to the
following sequences of instructions, and assume that it is executed on a five-stage
pipelined datapath:

Instruction sequence

a. | Tw $1,40(%6)
add $2,$3,$1
add $1,%$6,%4
sw $2,20(%4)
and $1,$1,%4

b. | add $1,$5,%$3
sw $1,0($2)
Tw $1,4(%2)
add $5,%$5,%1
sw $1,0(%$2)

4.21.1 [5] <4.7> If there is no forwarding or hazard detection, insert nops to
ensure correct execution.

4.21.2 [10] <4.7> Repeat Exercise 4.21.1 but now use nops only when a hazard
cannot be avoided by changing or rearranging these instructions. You can assume
register R7 can be used to hold temporary values in your modified code.

4.21.3 [10] <4.7> If the processor has forwarding, but we forgot to implement
the hazard detection unit, what happens when this code executes?

4.21.4 [20] <4.7> If there is forwarding, for the first five cycles during the
execution of this code, specify which signals are asserted in each cycle by hazard
detection and forwarding units in Figure 4.60.

4.21.5 [10] <4.7> If there is no forwarding, what new inputs and output signals
do we need for the hazard detection unit in Figure 4.60? Using this instruction
sequence as an example, explain why each signal is needed.

4.21.6 [20] <4.7> For the new hazard detection unit from Exercise 4.21.5, specify
which output signals it asserts in each of the first five cycles during the execution
of this code.

Chapter 4 The Processor

Exercise 4.22

This exercise is intended to help you understand the relationship between delay
slots, control hazards, and branch execution in a pipelined processor. In this exer-
cise, we assume that the following MIPS code is executed on a pipelined processor
with a five-stage pipeline, full forwarding, and a predict-taken branch predictor:

a. | Labell: 1w $1,40($6)
beq $2,$3,Label2 ; Taken
add $1,$6,%4
Label2: beq $1,$2,Labell ; Not taken
sw $2,20(%4)
and $1,$1,%4

b. add $1,$5,$3
Labell: sw $1,0($2)
add $2,$2,$3
beq $2,$4,Labell ; Not taken
add $5,$5,%1
sw $1,0(%$2)

4.22.1 [10] <4.8> Draw the pipeline execution diagram for this code, assuming
there are no delay slots and that branches execute in the EX stage.

4.22.2 [10] <4.8> Repeat Exercise 4.22.1, but assume that delay slots are used. In
the given code, the instruction that follows the branch is now the delay slot instruc-
tion for that branch.

4.22.3 [20] <4.8> One way to move the branch resolution one stage earlier is
to not need an ALU operation in conditional branches. The branch instructions
would be “bez Rd,Label” and “bnez Rd,Label” and it would branch if the
register has and does not have a 0 value, respectively. Change this code to use these
branch instruction instead of beq. You can assume that register $8 is available for
you to use as a temporary register, and that a seq (set if equal) R-type instruction
can be used.

Section 4.8 describes how the severity of control hazards can be reduced by moving
branch execution into the ID stage. This approach involves a dedicated comparator
in the ID stage, as shown in Figure 4.62. However, this approach potentially adds
to the latency of the ID stage, and requires additional forwarding logic and hazard
detection.

4.22.4 [10] <4.8> Using the first branch instruction in the given code as an
example, describe the hazard detection logic needed to support branch execution
in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed
to detect?

4.16 Exercises

4.22.5 [10] <4.8> For the given code, what is the speed-up achieved by moving
branch execution into the ID stage? Explain your answer. In your speed-up
calculation, assume that the additional comparison in the ID stage does not affect
clock cycle time.

4.22.6 [10] <4.8> Using the first branch instruction in the given code as an
example, describe the forwarding support that must be added to support branch
execution in the ID stage. Compare the complexity of this new forwarding unit to
the complexity of the existing forwarding unit in Figure 4.62.

Exercise 4.23

The importance of having a good branch predictor depends on how often
conditional branches are executed. Together with branch predictor accuracy, this
will determine how much time is spent stalling due to mispredicted branches. In
this exercise, assume that the breakdown of dynamic instructions into various
instruction categories is as follows:

| | Roee | bew | m | W [e
a. 50% ° 15% 10% 15% 10%

b. 30% 10% 5% 35% 20%

Also, assume the following branch predictor accuracies:

a. 40% 60% 80%
b. 60% 40% 95%

Always not-taken

4.23.1 [10] <4.8> Stall cycles due to mispredicted branches increase the CPL
What is the extra CPI due to mispredicted branches with the always-taken predictor?
Assume that branch outcomes are determined in the EX stage, that there are no
data hazards, and that no delay slots are used.

4.23.2 [10] <4.8> Repeat Exercise 4.23.1 for the “always not-taken” predictor.
4.23.3 [10] <4.8> Repeat Exercise 4.23.1 for the 2-bit predictor.

4.23.4 [10] <4.8> With the 2-bit predictor, what speed-up would be achieved if
we could convert half of the branch instructions in a way that replaces a branch

instruction with an ALU instruction? Assume that correctly and incorrectly
predicted instructions have the same chance of being replaced.

