

HPS/FPGA Based MD5 Decryption SoC

COE838: Systems-on-Chip Design

Final Project

1. Objectives

The purpose of this project is to design a SoC for MD5 Decryption1 using a HPS/FPGA system. Students
will:

• Analyze the provided IP core and its associated VHDL test-benches to obtain hardware
characteristics

• Create Avalon MM slaves for interfacing the IP core to a HPS/FPGA SoC.
• Code an HPS application to perform hashing and statistics gathering for 32 MD5 engines

executing concurrently (running on a Yocto Linux OS).

Further details are provided below.

2. MD5 Algorithm Overview
MD5 is a cryptographic algorithm most commonly used to verify data integrity, especially during data
transmissions. An MD5 decryption engine accepts a variable-length message, applies a series of hashing
functions, and outputs a 128-bit digest (i.e. hashed value message). For the purpose of this lab, we will
input a fixed message length consisting of 16 32-bit values (i.e. 512-bit message) to avoid the need for
implementing a "padding" algorithm in the software application. The general MD5 algorithm2 is
presented in Fig 1.

As observed in Fig. 1, the MD5 decryption algorithm includes two constant arrays, K and s, and a 512-bit
input message represented by the matrix M. Four variables (a0, b0, c0, and d0) are initialized and used to
track final digest outputs during computation. The main loop found in Fig. 1 represents the hashing
function applied to the input message which employs various arithmetic and logical operations using the
two constant arrays and four variables. Once computation has finished, the four 32-bit variables are
concatenated and output as the MD5 decrypted digest message.

The VHDL core that invokes this MD5 algorithm has been provided to you in the course directory
/coe838/project/md5/rtl. This core consists of 32 MD5 engines that compute hashes concurrently.
However, these engines may run serially depending on how the software application is coded. Therefore
it is the student's responsibility to understand the MD5 VHDL design hierarchy, the RTL provided, and
how it corresponds directly to the algorithm of Fig. 1.

The next sections provide details pertaining to the architecture and design specifications for implementing
the MD5 Decryption SoC's hardware and software.

1 RTL adapted from Howard Mao's Verilog MD5 Cracker core
2 [online] Slight variation from the algorithm presented in MD5 Article: http://en.wikipedia.org/wiki/MD5

2

//Note: All variables are unsigned 32 bit and wrap modulo 2^32 when calculating
var int[64] s, K
//s specifies the per-round shift amounts
s[0..15] := { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22 }
s[16..31] := { 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20 }
s[32..47] := { 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23 }
s[48..63] := { 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 }

//K constants
K[0.. 3] := { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee }
K[4.. 7] := { 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 }
K[8..11] := { 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be }
K[12..15] := { 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 }
K[16..19] := { 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa }
K[20..23] := { 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 }
K[24..27] := { 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed }
K[28..31] := { 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a }
K[32..35] := { 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c }
K[36..39] := { 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 }
K[40..43] := { 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 }
K[44..47] := { 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 }
K[48..51] := { 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 }
K[52..55] := { 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 }
K[56..59] := { 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 }
K[60..63] := { 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }

//Initialize variables:
var int a0 := 0x67452301 //A
var int b0 := 0xefcdab89 //B
var int c0 := 0x98badcfe //C
var int d0 := 0x10325476 //D

//Process the message in successive 512-bit chunks:
for each 512-bit chunk of message
 break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15

//Initialize hash value for this chunk:
 var int A := a0 var int B := b0
 var int C := c0 var int D := d0

//Main loop:
 for i from 0 to 63
 if 0 ≤ i ≤ 15 then
 F := (B and C) or ((not B) and D)
 g := i
 else if 16 ≤ i ≤ 31
 F := (D and B) or ((not D) and C)
 g := (5×i + 1) mod 16
 else if 32 ≤ i ≤ 47
 F := B xor C xor D
 g := (3×i + 5) mod 16
 else if 48 ≤ i ≤ 63
 F := C xor (B or (not D))
 g := (7×i) mod 16
 dTemp := D
 D := C
 C := B
 B := B + leftrotate((A + F + K[i] + M[g]), s[i])
 A := dTemp
 end for
//Add this chunk's hash to result so far:
 a0 := a0 + A
 b0 := b0 + B
 c0 := c0 + C
 d0 := d0 + D
end for

var char digest[16] := a0 append b0 append c0 append d0 //(Output is in little-endian)

//leftrotate function definition
leftrotate (x, c)
 return (x << c) binary or (x >> (32-c));

Fig. 1: MD5 Hashing Algorithm (assuming Little Endian)

3

3. MD5 SoC Architecture Overview
The overall HPS/FPGA SoC MD5 architecture for this project is presented in Fig. 2. The MD5 SoC
consists of a HPS running an MD5 hash controller application. The HPS software communicates with a
series of Avalon Memory Mapped (MM) Slave interfaces to provide input data, obtain output digests, and
send/receive control signals to configure, monitor, and initiate calculations in all 32 engines of the MD5
core. The HPS software must also record the total number of hashes computed, total execution time, and
overall hash rate for all 32 MD5 engines.

The Avalon MM Slave Interface provides the hardware needed to support hardware/software
communication between the HPS and MD5 core. However, it is important that all slaves be correctly
configured with the MD5 core to function correctly. Therefore students must develop a SoC containing
these slaves, a HPS and a clock source, and map the MD5 core accordingly.

Fig. 2: HPS/FPGA MD5 SoC Architecture

4. Design Specifications

The Hardware

4.1 MD5 Core Logic
The VHDL for the MD5 core may be found in the course directory /coe838/project/md5/rtl. The top-level
entity for the MD5 core is the file md5_group.vhdl. You will need to go through each individual VHDL
file to determine the design hierarchy and component functionality with respect to the overall design. In
particular, you will need to understand how:

• an engine is configured for hashing
• a 512-bit message (M) is sent to an engine
• hashing is initiated in an engine
• an engine's completion signal is received
• an engine's 128-bit output digest message is read (once complete)

4

A VHDL testbench file is included in the /rtl folder called md5_group_tb.vhdl simulating 32 engines
running concurrently. The testbench md5_unit_tb.vhdl is provided as well to visualize the simulation of a
single engine in the MD5 core. These testbenches may be run using ModelSim to obtain an in-depth
understanding of how engines input messages, compute hashes, and receive output digests. A tutorial on
running ModelSim with the md5_unit_tb.vhdl testbench is provided in the Appendix of this document. A
sample functional waveform is presented in Fig. 3.

When browsing through the /rtl folder, you may notice that several .mif files are included in the design.
Mif files provide an easy way to implement memory in Altera-based design. Since there are several
"constant" values in the MD5 algorithm (i.e. the K and S arrays), ROM's with predefined values were
included in the design as krom.mif and srom.mif respectively. Similarly, since an engine's input message
(M) is 512-bits and must be computed in 16 steps, 16 32-bit numbers are written to each engine's
dedicated RAM (mram.mif) prior to execution, and are read one at a time during computation of the main
loop (see algorithm of Fig. 1). Be sure to include all mif based .qip files in your project before compiling.

Fig. 3: Example Functional Waveform for one MD5 Engine (md5_group.vhd)

4.2 Avalon Memory Mapped (MM) Slaves & SoC Design
The lightweight HPS-to-FPGA bridge and AXI bus must be used in your design. This bridge and bus
supports a maximum datawidth of 32-bits. Therefore, given that there are 32 engines within an MD5 core,
the control signals on a 32-bit bus must be shared and monitored concurrently.

Depending on the architecture of your data I/O Avalon MM slave(s), data may only write or read from
one engine at a time (at 32-bit datawidths). Thus a minimum of two Avalon MM slaves are required – one
for control and one for data I/O. Since the output digest of an MD5 engine is 128-bits and must be sent to
the HPS on a 32-bit bus, the digest must be written back to the HPS in 4 segments. Similarly, the 512-bit
input message must be sent in 16 32-bit segments to an MD5 engine's MRAM.

Software
4.3 MD5 Controller Application
The MD5 application will be coded in C, compiled, and executed on the HPS running a Yocto Linux OS.
The application must abide by the MD5 core's control signal requirements as presented in Fig. 3 and
VHDL testbenches. Messages sent or received from the core must be 32-bit numbers to maintain
compatibility with the lwh2f bridge. Note that all MD5 core data complies with the alt_write_word(),
alt_read_word() etc API's of type unsigned 32bit integers (uint32_t).

The 512-bit messages sent to the core may be randomly generated or determined statically in advance.
The digests received by the HPS from the MD5 core should be compared to the correct expected digest to
ensure correct functionality.

5

The application must also keep track of the total hashes computed by the MD5 core, the total execution
time, and the overall hash rate once complete. The program should also keep track of the correct hashes
received, ensuring that it is 100% correct.

Students are to also develop a serial and parallel version of this code (i.e. serial - compute one engine at a
time for a given specified time, parallel – allow the 32 engines to compute concurrently and monitor all
computations for a given specified time). One .c application should only be coded for both versions.
Therefore students are encouraged to use preprocessor flags in their code.

5. What to Hand In
This project is due in week 12/13 during your lab session. You are expected to deliver the
 following:

• You are to write a report based on your MD5 SoC design using the IEEE paper format. The final
report should be 10-15 pages, not including code and appendices. The following specifications
should also be followed:

o Avoid the cutting and pasting of Figures. Only use pictures and diagrams of your own,
and label accordingly.

o Ensure that you reference as necessary using the IEEE format.
o Use a suitable font, preferably Times New Roman size 11 or 12 and single line spacing.

Single or double column is optional.
o The pages must be letter size, with 1.0” top, bottom, left and right margins.

• The report must include the following sections:

o Abstract
o Introduction
o Past Work/ Review – include relevant information on your prior work, along with

previous and relevant work on the subject you are implementing (other academic or
industry works etc).

o Methodology – describe the method you used to design your project from a general
perspective. Describe the MD5 algorithm invoked in VHDL. What functionality does your
SoC provide? What are the main components? etc. Be sure to use diagrams.

o Design – give details based on your methodology for the various components, modules,
functions etc you implemented in your project. Again, diagrams are useful.

o Experimental Results – describe your results in words, diagrams, discuss serial vs
parallel version, logic utilization, performance (frequency, hash rates etc).

o Conclusion
o References
o Appendix – include all your .h/.c and VHDL files here, including any screenshots

necessary of your QSys system, terminal execution etc

• Ensure that the University title page is included, dated and signed with your report attaced.

• Students are to present a working demo of the MD5 SoC, displaying software execution on the
HPS/FPGA system prototype. You may also be quizzed during the demo to test your knowledge
of the topics covered and your implementation methods for the project.

6

Bonus – create a *.c application which performs all the steps of MD5 decryption. Create a pure HPS
system (using Quartus II and QSys) to run the *.c application on. Compare performance, logic utilization
and frequency to the HPS/FPGA SoC implemented (both serial and parallel approaches). Explain and
contrast these results in your report stating its significance.

7

A. Appendix

A.1. Running ModelSim
Once your design is synthesized and has finished compiling in Quartus, you may run the provided
testbenches in ModelSim. By using a testbench, stimulus may be input to your Device Under Test (DUT,
i.e your system) so that you may observe the outputs and determine if the system is functioning correctly.
We will use the md5_unit_tb.vhdl testbench in this example, which is provided for the md5_unit.vhdl
DUT. Use the testbench to analyze the control signals and verify that the correct output hash has been
generated by the DUT. Similarly, you may also use this message input and 128-bit digest output to verify
the correctness of your HPS software during hash generation and retrieval.

1. To run the testbench, in Quartus go to “Tools” – “Run Simulation Tool” – “RTL Simulation”.
Wait for ModelSim to launch. Next, we must compile the design again in ModelSim.

2. In ModelSim, go to “Compile” – “Compile”. A window will pop up. Browse (using the folder up
button) to your folder which contains the VHDL design files. Highlight the project’s VHDL files
and select compile. Assuming your design is correct, the files will compile. Also make sure you
have compiled the actual testbench file. Select “Done” once complete.

3. In ModelSim, select “Simulate” – “Start Simulation”. Expand the “work” folder and highlight
md5_unit_tb.vhdl. This VHDL should show up as work.md5unit_tb in the “Design Unit(s)” field.
Press OK.

4. Next you will see various messages appear in your “Transcript” window with new windows
appearing for the simulation. Highlight the “UUT” field in the “sim-Default” window. Right-click
the field and select “Add to” – “Wave” – “All Items in Region”. This will open a waveform
window.

• To add more details to the waveform (i.e. test a specific module), you may expand the UUT
module and sort through the component hierarchy, highlighting the component of interest
and selecting “Add to” – “Wave” – “All Items in Region”.

5. Press the (run –all) icon. Press stop after one second. Press Black magnifying glass to
view the entire simulation. Use the Zoom icon to zoom into a section. It is recommended to
start from a "reset" signal assertion, and follow the logic until a "done" signal is reached. This
trace represents one digest input, its MD5 algorithmic computation, and its 128-bit digest output
when complete. Continue to view and explore the simulate data using the waveform editor
toolbar.

• To end the simulation, go to the main window and select "Simulate" - "End Simulation".

6. Each time you have finished simulating or re-adjust your VHDL files, you must compile (in
ModelSim) and simulate again, repeating the steps presented in this section.

Fig. A.1: ModelSim Simulation Example

8

A.2. Analyzing a System Using Quartus II
A.2.1 Performance Analysis
To view Quartus II's performance analysis, you must first compile the design by setting the appropriate
top-level entity. In this case, you may choose to include or not include the HPS-based design, i.e. the
speed of the processor will dictate overall speed in the HPS/FPGA SoC, whereas not including the HPS
will reflect the maximum frequency of the hardware prototyped (on the FPGA, i.e md5_group.vhdl). This
will also apply to the other analysis parameters found in the next section (A.2.2).

A compilation report will generate when your design is compiled. If you cannot find this report, press
CTRL-R. In the Compilation Report's “Table of Contents” window select “TimeQuest Timing Analyzer”
– “Slow 1100mV 85°C Model” and select FMax Summary. A report will show. The frequency value
represents the maximum frequency that may be achieved by the top-level entity design at 85°C. Now
select “Slow 1100mV 0°C Model” and select FMax Summary. The slowest of these two frequencies
represents the overall maximum achievable system frequency that the device may obtain (on the FPGA).

*Note that performance for your system will also include the total hashes generated, execution time, and
overall hash rate. As you vary execution time, does your hash rate change? Why or why not?

A.2.2 Logic Utilization Analysis
Select the top-level entity and compile the design to generate a Compilation Report. In the left pane under
“Table of Contents”, expand the folders “Fitter” – “Resource Section” and double click “Resource Usage
Summary”. This will give you an outline of how many resources were used from the total available
FPGA resource count. In particular, look at the rows pertaining to total ALMs needed, Total LABs,
Combinational LUTs, Dedicated Logic Registers, and I/O pins. These FPGA components are usually of
interest when assessing hardware area and logic utilization.

