
0272-1732/97/$10.00 © 1997 IEEE July/August 1997 9

Although the articles in this issue of
IEEE Micro share a common theme,
you will find the collection diverse.

The technology surrounding ARM’s proces-
sor line led to articles spanning topics from
detailed microprocessor design to end prod-
ucts powered by the processor.

ARM designs microprocessors and relat-
ed technology and licenses them as intel-
lectual property. It does not manufacture
silicon, relying instead on semiconductor
partners to manufacture, market, and sell
solutions based on ARM products. The clear
role distinction between ARM and its busi-
ness partners allows true partnership; we do
not compete with our licensees.

ARM licenses its processors to industry-
leading manufacturers including Alcatel,
Atmel, Asahi Kasei Microsystems, Cirrus
Logic, Digital, GEC Plessey, Hyundai,
Lucent, Lucky Goldstar, NEC, OKI, Philips,
Rockwell, Rohm, Samsung, Sharp, Sony,
Symbios, Texas Instruments, VLSI, Yamaha,
and others still to be announced. Some of
these companies use the processors for very
specialized applications. However, most use
them for products such as mobile tele-
phones, automotive engine management
systems, PostScript laser printers, or global
positioning systems. All these products
require high-performance, low-cost, low-
power-consumption computing.

Guest Editor’s Introduction

ARM ARCHITECTURE
AND SYSTEMS

Dave Jaggar

Advanced RISC Machines

.

Establishing a new microprocessor architecture in the
world marketplace is not an everyday occurrence. ARM’s
success comes largely from its ability to break industry rules
and find new, more efficient solutions to existing problems.
For example, when faced with the trade-off between meet-
ing customer demands for less program memory usage and
still delivering maximum performance for critical applica-
tions, ARM designers produced the Thumb processor. Thumb
processors have two instruction sets, one to deliver maxi-
mum performance, the other to provide minimal code size.

When faced with the need to execute DSP algorithms,
designers added more than a multiply-accumulate instruc-
tion. They added the Piccolo coprocessor, which transforms
ARM’s processor into a highly efficient DSP engine that per-
forms microprocessing and very high performance signal
processing. A single operating system controls both, and
Piccolo-based solutions were engineered under a single code
development and debugging environment.

A wide range of internal and third-party tools support
ARM’s processors, forming a large software and develop-
ment infrastructure. These include development tools such
as debuggers, C++ compilers, in-circuit emulators and devel-
opment cards, real-time operating systems, and low-level
driver software to high-level application software.
Accelerated Technology, Enea OSE Systems, ISI, JavaSoft,
JMI, Microtec, Microsoft, Perihelion, Psion, Wind River, and
others provide operating systems and their corresponding

development tool chains.
ARM currently provides three basic processor cores, with

two more in development, as described in the above box.
The six articles in this issue span the entire ARM line, from

insights into the heart of ARM’s low-power techniques to
presentations of complex single-chip, portable organizer
products.

The first article, on the ARM7TDMI, highlights many of the
ARM techniques for delivering very low power consump-
tion. The analysis of the processor core’s power consump-
tion is in respect to both silicon process and functional blocks
within the processor.

The AMBA article describes the ARM bus that connects
both high-speed devices such as caches and processors, and
lower speed, low-power devices such as peripherals. The
author offers a solution to the conflicting demands of high
performance and low power consumption and describes a
uniform test strategy with small die size.

Cross-development for embedded systems is the subject of
the next article. It discusses the problems of modeling a
processor core in both HDL and software development envi-
ronments, and presents ARM’s current and future solutions
to this problem.

An article on software modems describes the demands of
a V.34 modem upon various ARM processors. Designers nor-
mally use custom hardware to implement a high-speed
modem. However, the power of modern microprocessors

10 IEEE Micro

Guest Editor’s Introduction

The ARM7 is a small, 32-bit microprocessor with very
low power consumption. A three-stage pipeline occupies
minimal silicon area yet allows division of the execution
time of each instruction into three parts: instruction fetch
from memory, instruction decode, and instruction execu-
tion. The instruction execution stage is the most complex.
Register read, a shift applied to one operand, an ALU oper-
ation, and finally a register write all execute in one clock
cycle. This limits the processor’s maximum clock speed to
around 80 MHz on a 0.35-micron silicon process. However,
that speed is more than enough for the cost-sensitive appli-
cations using ARM7.

The combined shift and ALU execution stage is also an
important ARM feature. A single instruction can specify
one of its two source operands for shifting or rotation
before it is passed to the ALU. This allows very efficient bit
manipulation and scaling code, and virtually eliminates
single shift instructions from ARM code. (The ARM proces-
sor does not have explicit shift instructions; a move instruc-
tion applies a shift to its operand.)

ARM7 also uses a von Neumann memory architecture;
the instructions and data occupy a single address space
and are accessed with individual address and data buses.
Though this limits performance—instruction fetching (and
hence execution) must stop for instructions that access
memory—the reduced cost of a single memory outweighs
performance in many embedded applications. To reduce
the penalty of data accesses stalling the pipeline, ARM

implements load multiple and store multiple instructions.
These instructions can move any of the ARM registers to
and from memory, and update the memory address reg-
ister automatically after the transfer. This not only allows
one instruction to transfer many words of data (in a sin-
gle bus burst), it also reduces the amount of instructions
needed to transfer data. As a result, ARM code is smaller
than other 32-bit instruction sets.

Although the pipeline stalls during load and store oper-
ations, the ARM7 can continue useful work. These instruc-
tions can specify an update of the base address register
with a new address after (or even before) the transfer. RISC
architectures would normally use a second instruction (add
or subtract) to form the next address in a sequence. ARM
does it automatically with a single bit in the instruction,
again a useful saving in code size.

The ARM instruction set has one further useful feature.
Most architectures have conditional branch instructions.
These follow a test or compare instruction to control the
flow of execution through the program. Some architec-
tures also have a conditional move instruction, allowing
data to be conditionally transferred between registers. The
ARM instruction set takes this functionality to its logical
extreme, allowing all instructions to be conditionally exe-
cuted. Loads, stores, procedure calls and returns, and all
other operations may execute conditionally after some
prior instruction to set the condition code flags. (Any ALU
instruction may set the flags.) This eliminates short for-

The ARM processor cores

..

allows implementation purely in software, using only a small
proportion of the total processor horsepower.

Two authors from Palmchip Corporation describe the
process of using the ARM processor in a complex ASIC. They
explain the designers’ choice of the processor as well as
detailing other design issues.

Finally, the ARM7100 article discusses using a sophisticat-
ed single chip, designed by ARM, as a solution to many hand-
held, low-power-consumption devices. The authors disclose
two new handheld products, describing the different appli-
cations for the processor.

WHAT DOES THE FUTURE of the ARM microproces-
sor look like? Expect to see more industry-leading perfor-
mance, low power consumption, and small die size, as well
as new extremes in code density, specific application per-
formance, and ultra large scale integration. ARM’s ability to
deliver maximum efficiency will encompass an even broad-
er range of applications at the crossroads of portable, con-
sumer, and embedded control applications.

Dave Jaggar is director of ARM’s Austin
Design Center, where he leads future
ARM processor design. He is the architect
of the Thumb instruction set and co-
architect of Piccolo. His interests lie in
next-generation computer architectures,
and their implementations, compilers,

and new languages.
Jaggar holds an MSc degree in computer science from

Canterbury University, New Zealand.

Direct comments about this issue to Dave Jaggar,
Advanced RISC Machines Ltd., Austin Design Center,
Building 3, Suite 560, 1250 Capital of Texas Highway, Austin,
TX 78746; djaggar@arm.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 150 Medium 151 High 152

July/August 1997 11

ward branches in ARM code. Once again, this improves
code density and avoids flushing the pipeline for branch-
es, increasing execution performance.

ARM8 is the next core in the ARM line. It extends the
ARM7 implementation in two fundamental ways: two addi-
tional pipeline stages and a new cache interface. ARM7’s
execute stage splits into three separate stages on ARM8,
and register read moves back into the decode stage. The
two additional pipeline stages perform memory accesses
and register writes. Because each instruction executes over
multiple cycles, register-forwarding paths must pass data
between successive instructions. This is necessary because
one instruction will not have written its result to the reg-
ister file before the next two instructions have read their
source register values.

ARM8 incorporates a single cache interface that allows
instruction fetches in parallel with data accesses. It retains
ARM7’s von Neumann cache interface, but doubles the
bandwidth of the interface to provide 64 bits every cycle.
ARM8 also uses a sophisticated prefetch buffer and branch
prediction unit to fetch instructions ahead of the execu-
tion unit. On every cycle, one instruction is fed to the
processor from the prefetch buffer. When the cache is not
in use for a data access, two instructions are loaded into
the prefetch buffer. This allows the single cache to satisfy
both data and instruction accesses.

ARM8 behaves similarly in performance to a Harvard
machine with separate instruction and data caches, yet
retains the simplicity of a single cache machine. Static

branch prediction predicts the target of branch instruc-
tions; backward branches are assumed taken (loops) and
forward branches untaken (conditional code). Correctly
predicted branches do not enter the main execution engine
and thus effectively execute in zero cycles. Mispredicted
branches take three cycles to correct. ARM8 delivers 100-
MHz operation in a typical 0.35-micron process, and low-
ers the average number of clock ticks per instruction to
around 1.5. This increases overall performance by about
70% over ARM7.

Digital Equipment Corporation codesigned the
StrongARM1, the fastest of our current processors.
Adoption of a Harvard architecture to deliver maximum
cache throughput and a five-stage instruction pipeline to
allow maximum clock rate produced an embedded proces-
sor that is faster than some workstation processors.
StrongARM110 incorporates two 16-Kbyte caches main-
tained even when the processor is coupled to a relatively
low-speed memory system. When coupled with Digital’s
very fast 0.35-micron process, which operates with a 2-
volt supply, StrongARM1 machines deliver 233 MHz. With
less than 1 Watt of power consumption, this makes the
StrongARM power consumption/performance ratio the
best in the industry.

Designers are also working on ARM9 and StrongARM2
designs. These products will extend the performance to
new levels and application domains at embedded-class
cost. ARM plans to launch these products late in 1997.

.

