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About This Handbook
Introduction The handbook you are holding (the Nios II Processor Reference Handbook) is 
the primary reference for the Nios® II family of embedded processors. 
This handbook answers the question “What is the Nios II processor?” 
from a high-level conceptual description to the low-level details of 
implementation. The chapters in this handbook define the Nios II 
processor architecture, the programming model, the instruction set, and 
more. 

This handbook is part of a larger collection of documents covering the 
Nios II processor and its usage. See “How to Find Further Information”. 

Assumptions about the Reader

This handbook assumes you have a basic familiarity with embedded 
processor concepts. You do not need to be familiar with any specific 
Altera® technology or with Altera development tools. This handbook was 
written intentionally to minimize discussion of hardware 
implementation details of the processor system. That said, the Nios II 
processor was designed for Altera field programmable gate array (FPGA) 
devices, and FPGA implementation concepts will inevitably arise from 
time to time. While familiarity with FPGA technology is not required, it 
may give you a deeper understanding of the engineering tradeoffs that 
went into the design and implementation of the Nios II processor. 
 xi
 



How to Find Further Information
How to Find 
Further 
Information

This handbook is one part of the complete Nios II processor 
documentation. The following references are also available.

■ The Nios II Processor Reference Handbook (this handbook) defines the 
basic processor architecture and features.

■ The Nios II Software Developer’s Handbook describes the software 
development environment, and discusses application programming 
for the Nios II processor. 

■ The Quartus II Handbook, Volume 5: Embedded Peripherals discusses 
Altera-provided peripherals and Nios II drivers which are included 
with the Quartus® II software. 

■ The Nios II integrated development environment (IDE) provides 
tutorials and complete reference for using the features of the 
graphical user interface. The help system is available after launching 
the Nios II IDE. 

■ Altera’s on-line solutions database is an internet resource that offers 
solutions to frequently asked questions via an easy-to-use search 
engine. Go to the support center on www.altera.com and click on the 
Find Answers link.

■ Altera application notes and tutorials offer step-by-step instructions 
on using the Nios II processor for a specific application or purpose. 
These documents are often installed with Altera development kits, or 
can be obtained online from www.altera.com.

How to Contact 
Altera

For the most up-to-date information about Altera products, go to the 
Altera world-wide web site at www.altera.com. For technical support on 
this product, go to www.altera.com/mysupport. For additional 
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ www.altera.com/mysupport/ 

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

+1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00) 
Pacific Time

Product literature www.altera.com www.altera.com 

Altera literature services literature@altera.com literature@altera.com 

Non-technical customer 
service

(800) 767-3753 + 1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00) 
Pacific Time

FTP site ftp.altera.com ftp.altera.com 
xii Altera Corporation
Nios II Processor Reference Handbook

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com


About This Handbook
Typographical 
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

Bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. 
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, 
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files (e.g., the AHDL 
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in 
Courier. 

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ ● • Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury 
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic. 
Altera Corporation xiii
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Section I. Nios II
Processor
This section provides information about the Nios® II processor. 

This section includes the following chapters:

■ Chapter 1, Introduction

■ Chapter 2, Processor Architecture

■ Chapter 3, Programming Model

■ Chapter 4, Implementing the Nios II Processor in SOPC Builder
 Section I–1
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1. Introduction
Introduction This chapter is an introduction to the Nios® II embedded processor 
family. This chapter will help both hardware and software engineers 
understand the similarities and differences between the Nios II processor 
and traditional embedded processors.

Nios II Processor System Basics

The Nios II processor is a general-purpose RISC processor core, 
providing:

■ Full 32-bit instruction set, data path, and address space
■ 32 general-purpose registers
■ 32 external interrupt sources
■ Single-instruction 32 × 32 multiply and divide producing a 32-bit 

result 
■ Dedicated instructions for computing 64-bit and 128-bit products of 

multiplication
■ Floating-point instructions for single-precision floating-point 

operations
■ Single-instruction barrel shifter
■ Access to a variety of on-chip peripherals, and interfaces to off-chip 

memories and peripherals
■ Hardware-assisted debug module enabling processor start, stop, 

step and trace under integrated development environment (IDE) 
control

■ Software development environment based on the GNU C/C++ tool 
chain and Eclipse IDE 

■ Integration with Altera's SignalTap(r) II logic analyzer, enabling 
real-time analysis of instructions and data along with other signals in 
the FPGA design

■ Instruction set architecture (ISA) compatible across all Nios II 
processor systems

■ Performance up to 250 DMIPS

A Nios II processor system is equivalent to a microcontroller or 
“computer on a chip” that includes a CPU and a combination of 
peripherals and memory on a single chip. The term “Nios II processor 
system” refers to a Nios II processor core, a set of on-chip peripherals, on-
chip memory, and interfaces to off-chip memory, all implemented on a 
single Altera® chip. Like a microcontroller family, all Nios II processor 
systems use a consistent instruction set and programming model. 
  1–1
 



Introduction
Getting Started with the Nios II Processor

Getting started with the Nios II processor is similar to any other 
microcontroller family. The easiest way to start designing effectively is to 
purchase a development kit from Altera that includes a ready-made 
evaluation board and all the software development tools necessary to 
write Nios II software.

The Nios II software development environment is called The Nios II 
integrated development environment (IDE). The Nios II IDE is based on 
the GNU C/C++ compiler and the Eclipse IDE, and provides a familiar 
and established environment for software development. Using the 
Nios II IDE, designers can immediately begin developing and simulating 
Nios II software applications. Using the Nios II hardware reference 
designs included in an Altera development kit, designers can prototype 
their application running on a board before building a custom hardware 
platform. Figure 1–1 shows an example of a Nios II processor reference 
design available in an Altera Nios II development kit.

Figure 1–1. Example of a Nios II Processor System
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Introduction
If the prototype system adequately meets design requirements using an 
Altera-provided reference design, the reference design can be copied and 
used as-is in the final hardware platform. Otherwise, the designer can 
customize the Nios II processor system until it meets cost or performance 
requirements.

Customizing Nios II Processor Designs

Altera FPGAs provide flexibility to add features and enhance 
performance of the processor system. Conversely, unnecessary processor 
features and peripherals can be eliminated to fit the design in a smaller, 
lower-cost device.

Because the pins and logic resources in Altera devices are programmable, 
many customizations are possible:

■ The pins on the chip can be rearranged to make board design easier. 
For example, address and data pins for external SDRAM memory 
can be moved to any side of the chip to shorten board traces. 

■ Extra pins and logic resources on the chip can be used for functions 
unrelated to the processor. Extra resources can provide a few extra 
gates and registers as “glue logic” for the board design; or extra 
resources can implement entire systems. For example, a Nios II 
processor system consumes only 5% of a large Altera FPGA, leaving 
the rest of the chip’s resources available to implement other 
functions.

■ Extra pins and logic on the chip can be used to implement additional 
peripherals for the Nios II processor system. Altera offers a growing 
library of peripherals that can be easily connected to Nios II 
processor systems.

In practice, most FPGA designs do implement some extra logic in 
addition to the Nios II processor system. Additional logic has no affect on 
the programmer’s view of the Nios II processor. 

Configurable 
Soft-Core 
Processor 
Concepts

This section introduces Nios II concepts that are unique or different from 
discrete microcontrollers. The concepts described below are mentioned 
here because they provide the background upon which other features are 
documented.
Altera Corporation  1–3
November 2006 Nios II Processor Reference Handbook



Configurable Soft-Core Processor Concepts
For the most part, these concepts relate to the flexibility for hardware 
designers to fine-tune system implementation. Software programmers 
generally are not affected by the hardware implementation details, and 
can write programs without awareness of the configurable nature of the 
Nios II processor core. 

Configurable Soft-Core Processor

The Nios II processor is a configurable soft-core processor, as opposed to 
a fixed, off-the-shelf microcontroller. In this context, “configurable” 
means that features can be added or removed on a system-by-system 
basis to meet performance or price goals. “Soft-core” means the CPU core 
is offered in “soft” design form (i.e., not fixed in silicon), and can be 
targeted to any Altera FPGA family. In other words, Altera does not sell 
“Nios II chips”; Altera sells blank FPGAs. It is the users that configure the 
Nios II processor and peripherals to meet their specifications, and then 
program the system into an Altera FPGA.

Configurability does not mean that designers must create a new Nios II 
processor configuration for every new design. Altera provides ready-
made Nios II system designs that system designers can use as-is. If these 
designs meet the system requirements, there is no need to configure the 
design further. In addition, software designers can use the Nios II 
instruction set simulator to begin writing and debugging Nios II 
applications before the final hardware configuration is determined.

Flexible Peripheral Set & Address Map

A flexible peripheral set is one of the most notable differences between 
Nios II processor systems and fixed microcontrollers. Because of the soft-
core nature of the Nios II processor, designers can easily build made-to-
order Nios II processor systems with the exact peripheral set required for 
the target applications. 

A corollary of flexible peripherals is a flexible address map. Software 
constructs are provided to access memory and peripherals generically, 
independently of address location. Therefore, the flexible peripheral set 
and address map does not affect application developers.

Peripherals can be categorized into two broad classes: Standard 
peripherals and custom peripherals.
1–4  Altera Corporation
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Standard Peripherals

Altera provides a set of peripherals commonly used in microcontrollers, 
such as timers, serial communication interfaces, general-purpose I/O, 
SDRAM controllers, and other memory interfaces. The list of available 
peripherals continues to grow as Altera and third-party vendors release 
new soft peripheral cores.

Custom Peripherals

Designers can also create their own custom peripherals and integrate 
them into Nios II processor systems. For performance-critical systems 
that spend most CPU cycles executing a specific section of code, it is a 
common technique to create a custom peripheral that implements the 
same function in hardware. This approach offers a double performance 
benefit: the hardware implementation is faster than software; and the 
processor is free to perform other functions in parallel while the custom 
peripheral operates on data.

Custom Instructions

Like custom peripherals, custom instructions are a method to increase 
system performance by augmenting the processor with custom 
hardware. The soft-core nature of the Nios II processor enables designers 
to integrate custom logic into the arithmetic logic unit (ALU). Similar to 
native Nios II instructions, custom instruction logic can take values from 
up to two source registers and optionally write back a result to a 
destination register. 

By using custom instructions, designers can fine tune the system 
hardware to meet performance goals. Because the processor is 
implemented on reprogrammable Altera FPGAs, software and hardware 
engineers can work together to iteratively optimize the hardware and test 
the results of software executing on real hardware.

From the software perspective, custom instructions appear as machine-
generated assembly macros or C functions, so programmers do not need 
to know assembly in order to use custom instructions.

Automated System Generation

Altera’s SOPC Builder design tool fully automates the process of 
configuring processor features and generating a hardware design that can 
be programmed into an FPGA. The SOPC Builder graphical user interface 
(GUI) enables hardware designers to configure Nios II processor systems 
with any number of peripherals and memory interfaces. Entire processor 
systems can be created without requiring the designer to perform any 
Altera Corporation  1–5
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Document Revision History
schematic or hardware description-language (HDL) design entry. SOPC 
Builder can also import a designer’s HDL design files, providing an easy 
mechanism to integrate custom logic into a Nios II processor system.

After system generation, the design can be programmed into a board, and 
software can be debugged executing on the board. Once the design is 
programmed into a board, the processor architecture is fixed. Software 
development proceeds in the same manner as for traditional, non-
configurable processors.

Document 
Revision History

Table 1–1 shows the revision history for this document.

Table 1–1. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

No change from previous release. 

May 2006, v6.0.0 ● Added single precision floating point and integration with 
SignalTap®II logic analyzer to features list. 

● Updated performance to 250 DMIPS.

October 2005, 
v5.1.0

No change from previous release.

May 2005, v5.0.0 No change from previous release.

September 2004, 
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication.
1–6  Altera Corporation
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2. Processor Architecture
Introduction This chapter describes the hardware structure of the Nios® II processor, 
including a discussion of all the functional units of the Nios II architecture 
and the fundamentals of the Nios II processor hardware implementation. 

The Nios II architecture describes an instruction set architecture (ISA). The 
ISA in turn necessitates a set of functional units that implement the 
instructions. A Nios II processor core is a hardware design that implements 
the Nios II instruction set and supports the functional units described in 
this document. The processor core does not include peripherals or the 
connection logic to the outside world. It includes only the circuits 
required to implement the Nios II architecture.

Figure 2–1 shows a block diagram of the Nios II processor core.

Figure 2–1. Nios II Processor Core Block Diagram
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The Nios II architecture defines the following user-visible functional 
units:

■ Register file
■ Arithmetic logic unit
■ Interface to custom instruction logic
■ Exception controller
■ Interrupt controller
■ Instruction bus 
■ Data bus 
■ Instruction and data cache memories
■ Tightly coupled memory interfaces for instructions and data
■ JTAG debug module

The following sections discuss hardware implementation details related 
to each functional unit.

Processor 
Implementation

The functional units of the Nios II architecture form the foundation for 
the Nios II instruction set. However, this does not indicate that any unit 
is implemented in hardware. The Nios II architecture describes an 
instruction set, not a particular hardware implementation. A functional 
unit can be implemented in hardware, emulated in software, or omitted 
entirely. 

A Nios II implementation is a set of design choices embodied by a 
particular Nios II processor core. All implementations support the 
instruction set defined in the Nios II Processor Reference Handbook. Each 
implementation achieves specific objectives, such as smaller core size or 
higher performance. This allows the Nios II architecture to adapt to the 
needs of different target applications. 

Implementation variables generally fit one of three trade-off patterns: 
more-or-less of a feature; inclusion-or-exclusion of a feature; hardware 
implementation or software emulation of a feature. An example of each 
trade-off follows: 

■ More or less of a feature—For example, to fine-tune performance, you 
can increase or decrease the amount of instruction cache memory. A 
larger cache increases execution speed of large programs, while a 
smaller cache conserves on-chip memory resources.

■ Inclusion or exclusion of a feature—For example, to reduce cost, you can 
choose to omit the JTAG debug module. This decision conserves on-
chip logic and memory resources, but it eliminates the ability to use 
a software debugger to debug applications.
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■ Hardware implementation or software emulation—For example, in 
control applications that rarely perform complex arithmetic, you can 
choose for the division instruction to be emulated in software. 
Removing the divide hardware conserves on-chip resources but 
increases the execution time of division operations. 

f For details of which Nios II cores supports what features, refer to the 
Nios II Core Implementation Details chapter of the Nios II Processor 
Reference Handbook. For complete details of user-selectable parameters for 
the Nios II processor, refer to the Implementing the Nios II Processor in 
SOPC Builder chapter of the Nios II Processor Reference Handbook.

Register File The Nios II architecture supports a flat register file, consisting of thirty 
two 32-bit general-purpose integer registers, and six 32-bit control 
registers. The architecture supports supervisor and user modes that allow 
system code to protect the control registers from errant applications.

The Nios II architecture allows for the future addition of floating point 
registers. 

Arithmetic Logic 
Unit

The Nios II arithmetic logic unit (ALU) operates on data stored in 
general-purpose registers. ALU operations take one or two inputs from 
registers, and store a result back in a register. The ALU supports the data 
operations shown in Table 2–1:

To implement any other operation, software computes the result by 
performing a combination of the fundamental operations in Table 2–1. 

Table 2–1. Operations Supported by the Nios II ALU

Category Details

Arithmetic The ALU supports addition, subtraction, multiplication, and division on signed and unsigned 
operands.

Relational The ALU supports the equal, not-equal, greater-than-or-equal, and less-than relational 
operations ( ==, != >=, < ) on signed and unsigned operands.

Logical The ALU supports AND, OR, NOR, and XOR logical operations.

Shift and Rotate The ALU supports shift and rotate operations, and can shift/rotate data by 0 to 31 bit-positions 
per instruction. The ALU supports arithmetic shift right and logical shift right/left. The ALU 
supports rotate left/right. 
Altera Corporation  2–3
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Unimplemented Instructions

Some Nios II processor core implementations do not provide hardware to 
perform multiplication or division operations. The following instructions 
are not present in all Nios II core implementations: mul, muli, mulxss, 
mulxsu, mulxuu, div, divu. In such a core, these are known as 
unimplemented instructions. All other instructions are implemented in 
hardware. 

The processor generates an exception whenever it issues an 
unimplemented instruction, and the exception handler calls a routine that 
emulates the operation in software. Therefore, unimplemented 
instructions do not affect the programmer’s view of the processor. 

Custom Instructions

The Nios II architecture supports user-defined custom instructions. The 
Nios II ALU connects directly to custom instruction logic, enabling you to 
implement in hardware operations that are accessed and used exactly like 
native instructions. 

f For further information see the Nios II Custom Instruction User Guide. 

Floating Point Instructions

The Nios II architecture supports single precision floating point 
instructions as specified by the IEEE Std 754-1985. These floating point 
instructions are implemented as custom instructions. Table 2–2 provides 
a detailed description of the conformance to IEEE 754-1985.

Table 2–2. Hardware Conformance with IEEE 754-1985 Floating Point

Feature Implementation

Operations(1) Addition Implemented

Subtraction Implemented

Multiplication Implemented

Division Optional

Precision Single Implemented

Double Not implemented. Double precision operations are 
implemented in software.
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1 The floating point custom instructions can be added to any 
Nios II processor core. The Nios II software development tools 
recognize C code that can take advantage of the floating point 
instructions when they are present in the processor core. 

Reset Signals The Nios II CPU core supports two reset signals.

■ reset - This a global hardware reset signal that forces the processor 
core to reset immediately. 

■ cpu_resetrequest - This is an local reset signal that causes the 
CPU to reset without affecting other components in the Nios II 
system. The processor finishes executing any instructions in the 
pipeline, and then enters the reset state. This process can take several 
clock cycles. The processor core asserts the cpu_resettaken signal 

Exception conditions Invalid operation Result is Not a Number (NaN)

Division by zero Result is ±infinity

Overflow Result is ±infinity

Inexact Result is a normal number

Underflow Result is ±0(2)

Rounding Modes Round to nearest Implemented

Round toward zero Not implemented

Round toward +infinity Not implemented

Round toward -infinity Not implemented

NaN Quiet Implemented

Signaling Not implemented

Subnormal 
(denormalized) 
numbers

Subnormal operands are treated as zero. The floating point 

custom instructions do not generate subnormal numbers.(2)

Software exceptions Not implemented. IEEE 754-1985 exception conditions are 
detected and handled as shown elsewhere in this table.

Status flags Not implemented. IEEE 754-1985 exception conditions are 
detected and handled as shown elsewhere in this table.

Notes to: Table 2–2
(1) The Nios II IDE generates a software implementation of primitive floating point operations other than addition, 

subtraction, multiplication, and division. This includes operations such as floating point conversions and 
comparisons. The software implementations of these primitives are 100% compliant with IEEE 754-1985.

(2) Some implementations of the floating point custom instructions might generate subnormals in the underflow 
condition.

Table 2–2. Hardware Conformance with IEEE 754-1985 Floating Point

Feature Implementation
Altera Corporation  2–5
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for 1 cycle when the reset is complete and then periodically if 
cpu_resetrequest remains asserted. The CPU remains in reset for as 
long as cpu_resetrequest is asserted. 

While the CPU is in reset, it periodically reads from the reset address. 
It discards the result of the read, and remains in reset.

The CPU does not respond to cpu_resetrequest when the 
processor is under the control of the JTAG debug module. The 
processor responds to the cpu_resetrequest signal only if it is 
still asserted after the JTAG Debug Module relinquishes control.

Exception & 
Interrupt 
Controller

Exception Controller

The Nios II architecture provides a simple, non-vectored exception 
controller to handle all exception types. All exceptions, including 
hardware interrupts, cause the processor to transfer execution to a single 
exception address. The exception handler at this address determines the 
cause of the exception and dispatches an appropriate exception routine.

The exception address is specified at system generation time.

Integral Interrupt Controller

The Nios II architecture supports 32 external hardware interrupts. The 
processor core has 32 level-sensitive interrupt request (IRQ) inputs, irq0 
through irq31, providing a unique input for each interrupt source. IRQ 
priority is determined by software. The architecture supports nested 
interrupts. 

The software can enable and disable any interrupt source individually 
through the ienable control register, which contains an interrupt-enable 
bit for each of the IRQ inputs. Software can enable and disable interrupts 
globally using the PIE bit of the status control register. A hardware 
interrupt is generated if and only if all three of these conditions are true: 

■ The PIE bit of the status register is 1
■ An interrupt-request input, irq<n>, is asserted
■ The corresponding bit n of the ienable register is 1

Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction 
which accelerates interrupt vector dispatch. Include this custom 
instruction to reduce your program’s interrupt latency. 
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The interrupt vector custom instruction is based on a priority encoder 
with one input for each interrupt connected to the Nios II processor. The 
cost of the interrupt vector custom instruction depends on the number of 
interrupts connected to the Nios II processor. The worse case is a system 
with 32 interrupts. In this case, the interrupt vector custom instruction 
consumes about 50 logic elements (LEs).

If you have a large number of interrupts connected, adding the interrupt 
vector custom instruction to your system might lower fMAX.

f For guidance in adding the interrupt vector custom instruction to the 
Nios II processor, refer to the Implementing the Nios II Processor in SOPC 
Builder chapter of the Nios II Software Developer’s Handbook.

Table 2–3 details the implementation of the interrupt vector custom 
instruction. 

f For an explanation of the instruction reference format, see the Instruction 
Set Reference chapter in the Nios II Processor Reference Handbook.

Table 2–3. Interrupt Vector Custom Instruction

ALT_CI_EXCEPTION_VECTOR_N
Operation: if (ipending == 0) | (estatus.PIE == 0)

then rC ← negative value
else rC ← 8 × bit # of the least-significant 1 bit of the ipending register (ctl4)

Assembler Syntax: custom ALT_CI_EXCEPTION_VECTOR_N, rC, r0, r0

Example: custom ALT_CI_EXCEPTION_VECTOR_N, et, r0, r0
blt et, r0, not_irq

Description: The interrupt vector custom instruction accelerates interrupt vector dispatch. This 
custom instruction identifies the highest priority interrupt, generates the vector table 
offset, and stores this offset to rC. The instruction generates a negative offset if there 
is no hardware interrupt (that is, the exception is caused by a software condition, such 
as a trap).

Usage: The interrupt vector custom instruction is used exclusively by the exception handler.

Instruction Type: R

Instruction Fields: C = Register index of operand rC
N = Value of ALT_CI_EXCEPTION_VECTOR_N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0 0 1 N 0x32
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Memory & I/O 
Organization

This section explains hardware implementation details of the Nios II 
memory and I/O organization. The discussion covers both general 
concepts true of all Nios II processor systems, as well as features that 
might change from system to system. 

The flexible nature of the Nios II memory and I/O organization are the 
most notable difference between Nios II processor systems and 
traditional microcontrollers. Because Nios II processor systems are 
configurable, the memories and peripherals vary from system to system. 
As a result, the memory and I/O organization varies from system to 
system.

A Nios II core uses one or more of the following to provide memory and 
I/O access:

■ Instruction master port - An Avalon master port that connects to 
instruction memory via Avalon switch fabric

■ Instruction cache - Fast cache memory internal to the Nios II core
■ Data master port - An Avalon master port that connects to data 

memory and peripherals via Avalon switch fabric
■ Data cache - Fast cache memory internal to the Nios II core
■ Tightly coupled instruction or data memory port - Interface to fast 

memory outside the Nios II core

The Nios II architecture hides the hardware details from the programmer, 
so programmers can develop Nios II applications without awareness of 
the hardware implementation.

f For details that affect programming issues, see the Programming Model 
chapter of the Nios II Processor Reference Handbook.

Figure 2–2 shows a diagram of the memory and I/O organization for a 
Nios II processor core.
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Figure 2–2. Nios II Memory & I/O Organization
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The Nios II architecture does not specify anything about the existence of 
memory and peripherals; the quantity, type, and connection of memory 
and peripherals are system-dependent. Typically, Nios II processor 
systems contain a mix of fast on-chip memory and slower off-chip 
memory. Peripherals typically reside on-chip, although interfaces to off-
chip peripherals also exist.

Instruction Master Port

The Nios II instruction bus is implemented as a 32-bit Avalon master port. 
The instruction master port performs a single function: it fetches 
instructions to be executed by the processor. The instruction master port 
does not perform any write operations. 

The instruction master port is a pipelined Avalon master port. Support for 
pipelined Avalon transfers minimizes the impact of synchronous 
memory with pipeline latency and increases the overall fMAX of the 
system. The instruction master port can issue successive read requests 
before data has returned from prior requests. The Nios II processor can 
prefetch sequential instructions and perform branch prediction to keep 
the instruction pipe as active as possible.

The instruction master port always retrieves 32 bits of data. The 
instruction master port relies on dynamic bus-sizing logic contained in 
the Avalon switch fabric. By virtue of dynamic bus sizing, every 
instruction fetch returns a full instruction word, regardless of the width 
of the target memory. Consequently, programs do not need to be aware of 
the widths of memory in the Nios II processor system.

The Nios II architecture supports on-chip cache memory for improving 
average instruction fetch performance when accessing slower memory. 
See “Cache Memory” on page 2–11 for details. The Nios II architecture 
supports tightly coupled memory, which provides guaranteed low-
latency access to on-chip memory. See “Tightly Coupled Memory” on 
page 2–13 for details.

Data Master Port

The Nios II data bus is implemented as a 32-bit Avalon master port. The 
data master port performs two functions:

■ Read data from memory or a peripheral when the processor executes 
a load instruction

■ Write data to memory or a peripheral when the processor executes a 
store instruction
2–10  Altera Corporation
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Byte-enable signals on the master port specify which of the four byte-
lane(s) to write during store operations. The data master port does not 
support pipelined Avalon transfers, because it is not meaningful to 
predict data addresses or to continue execution before data is retrieved. 
Consequently, any memory pipeline latency is perceived by the data 
master port as wait states. Load and store operations can complete in a 
single clock-cycle when the data master port is connected to zero-wait-
state memory.

The Nios II architecture supports on-chip cache memory for improving 
average data transfer performance when accessing slower memory. See 
“Cache Memory” for details. The Nios II architecture supports tightly 
coupled memory, which provides guaranteed low-latency access to on-
chip memory. Refer to “Tightly Coupled Memory” on page 2–13 for 
details.

Shared Memory for Instructions & Data 

Usually the instruction and data master ports share a single memory that 
contains both instructions and data. While the processor core has separate 
instruction and data buses, the overall Nios II processor system might 
present a single, shared instruction/data bus to the outside world. The 
outside view of the Nios II processor system depends on the memory and 
peripherals in the system and the structure of the Avalon switch fabric.

The data and instruction master ports never cause a gridlock condition in 
which one port starves the other. For highest performance, assign the data 
master port higher arbitration priority on any memory that is shared by 
both instruction and data master ports.

Cache Memory

The Nios II architecture supports cache memories on both the instruction 
master port (instruction cache) and the data master port (data cache). 
Cache memory resides on-chip as an integral part of the Nios II processor 
core. The cache memories can improve the average memory access time 
for Nios II processor systems that use slow off-chip memory such as 
SDRAM for program and data storage.

The instruction and data caches are enabled perpetually at run-time, but 
methods are provided for software to bypass the data cache so that 
peripheral accesses do not return cached data. Cache management and 
cache coherency are handled by software. The Nios II instruction set 
provides instructions for cache management. 
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Configurable Cache Memory Options

The cache memories are optional. The need for higher memory 
performance (and by association, the need for cache memory) is 
application dependent. Many applications require the smallest possible 
processor core, and can trade-off performance for size. 

A Nios II processor core might include one, both, or neither of the cache 
memories. Furthermore, for cores that provide data and/or instruction 
cache, the sizes of the cache memories are user-configurable. The 
inclusion of cache memory does not affect the functionality of programs, 
but it does affect the speed at which the processor fetches instructions and 
reads/writes data. 

Effective Use of Cache Memory

The effectiveness of cache memory to improve performance is based on 
the following premises:

■ Regular memory is located off-chip, and access time is long 
compared to on-chip memory

■ The largest, performance-critical instruction loop is smaller than the 
instruction cache

■ The largest block of performance-critical data is smaller than the data 
cache

Optimal cache configuration is application specific, although you can 
make decisions that are effective across a range of applications. For 
example, if a Nios II processor system includes only fast, on-chip memory 
(i.e., it never accesses slow, off-chip memory), an instruction or data cache 
is unlikely to offer any performance gain. As another example, if the 
critical loop of a program is 2 Kbytes, but the size of the instruction cache 
is 1 Kbyte, an instruction cache does not improve execution speed. In fact, 
an instruction cache may degrade performance in this situation.

If an application always requires certain data or sections of code to be 
located in cache memory for performance reasons, the tightly coupled 
memory feature might provide a more appropriate solution. Refer to 
“Tightly Coupled Memory” on page 2–13 for details. 

Cache Bypass Method

The Nios II architecture provides load and store I/O instructions such as 
ldio and stio that bypass the data cache and force an Avalon data 
transfer to a specified address. Additional cache bypass methods might 
be provided, depending on the processor core implementation. 
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Some Nios II processor cores support a mechanism called bit-31 cache 
bypass to bypass the cache depending on the value of the most-significant 
bit of the address.

f Refer to the Implementing the Nios II Core Implementation Details chapter of 
the Nios II Processor Reference Handbook for details. 

Tightly Coupled Memory

Tightly coupled memory provides guaranteed low-latency memory 
access for performance-critical applications. Compared to cache memory, 
tightly coupled memory provides the following benefits:

■ Performance similar to cache memory
■ Software can guarantee that performance-critical code or data is 

located in tightly coupled memory
■ No real-time caching overhead, such as loading, invalidating, or 

flushing memory

Physically, a tightly coupled memory port is a separate master port on the 
Nios II processor core, similar to the instruction or data master port. A 
Nios II core can have zero, one, or multiple tightly coupled memories. 
The Nios II architecture supports tightly coupled memories for both 
instruction and data access. Each tightly coupled memory port connects 
directly to exactly one memory with guaranteed low, fixed latency. The 
memory is external to the Nios II core and is usually located on chip.

Accessing Tightly Coupled Memory

Tightly coupled memories occupy normal address space, the same as 
other memory devices connected via Avalon switch fabric. The address 
ranges for tightly coupled memories (if any) are determined at system 
generation time. 

Software accesses tightly coupled memory using regular load and store 
instructions. From the software’s perspective, there is no difference 
accessing tightly coupled memory compared to other memory.

Effective Use of Tightly Coupled Memory

A system can use tightly coupled memory to achieve maximum 
performance for accessing a specific section of code or data. For example, 
interrupt-intensive applications can partition exception handler code into 
a tightly coupled memory to minimize interrupt latency. Similarly, 
compute-intensive digital signal processing (DSP) applications can 
partition data buffers into tightly coupled memory for the fastest possible 
data access. 
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If the application’s memory requirements are small enough to fit entirely 
on chip, it is possible to use tightly coupled memory exclusively for code 
and data. Larger applications must selectively choose what to include in 
tightly coupled memory to maximize the cost-performance trade-off. 

Address Map

The address map for memories and peripherals in a Nios II processor 
system is design dependent. You specify the address map at system 
generation time.

There are three addresses that are part of the CPU and deserve special 
mention:

■ reset address
■ exception address
■ break handler address

Programmers access memories and peripherals by using macros and 
drivers. Therefore, the flexible address map does not affect application 
developers.

JTAG Debug 
Module

The Nios II architecture supports a JTAG debug module that provides on-
chip emulation features to control the processor remotely from a host PC. 
PC-based software debugging tools communicate with the JTAG debug 
module and provide facilities, such as:

■ Downloading programs to memory
■ Starting and stopping execution
■ Setting breakpoints and watchpoints
■ Analyzing registers and memory
■ Collecting real-time execution trace data

The debug module connects to the JTAG circuitry in an Altera® FPGA. 
External debugging probes can then access the processor via the standard 
JTAG interface on the FPGA. On the processor side, the debug module 
connects to signals inside the processor core. The debug module has non-
maskable control over the processor, and does not require a software stub 
linked into the application under test. All system resources visible to the 
processor in supervisor mode are available to the debug module. For 
trace data collection, the debug module stores trace data in memory 
either on-chip or in the debug probe.
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The debug module gains control of the processor either by asserting a 
hardware break signal, or by writing a break instruction into program 
memory to be executed. In both cases, the processor transfers control to a 
routine located at the break address. The break address is specified at 
system generation time.

Soft-core processors such as the Nios II processor offer unique debug 
capabilities beyond the features of traditional, fixed processors. The soft-
core nature of the Nios II processor allows you to debug a system in 
development using a full-featured debug core, and later remove the 
debug features to conserve logic resources. For the release version of a 
product, the JTAG debug module functionality can be reduced, or 
removed altogether. 

The following sections describe the capabilities of the Nios II JTAG debug 
module hardware. The usage of all hardware features is dependent on 
host software, such as the Nios II IDE, which manages the connection to 
the target processor and controls the debug process. 

JTAG Target Connection

The JTAG target connection refers to the ability to connect to the CPU 
through the standard JTAG pins on the Altera FPGA. This provides the 
basic capabilities to start and stop the processor, and examine/edit 
registers and memory. The JTAG target connection is also the minimum 
requirement for the Nios II IDE flash programmer.

Download & Execute Software

Downloading software refers to the ability to download executable code 
and data to the processor’s memory via the JTAG connection. After 
downloading software to memory, the JTAG debug module can then exit 
debug mode and transfer execution to the start of executable code.

Software Breakpoints

Software breakpoints provide the ability to set a breakpoint on 
instructions residing in RAM. The software breakpoint mechanism writes 
a break instruction into executable code stored in RAM. When the 
processor executes the break instruction, control is transferred to the 
JTAG debug module. 
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Hardware Breakpoints

Hardware breakpoints provide the ability to set a breakpoint on 
instructions residing in nonvolatile memory, such as flash memory. The 
hardware breakpoint mechanism continuously monitors the processor’s 
current instruction address. If the instruction address matches the 
hardware breakpoint address, the JTAG debug module takes control of 
the processor.

Hardware breakpoints are implemented using the JTAG debug module’s 
hardware trigger feature.

Hardware Triggers

Hardware triggers activate a debug action based on conditions on the 
instruction or data bus during real-time program execution. Triggers can 
do more than halt processor execution. For example, a trigger can be used 
to enable trace data collection during real-time processor execution. 

Table 2–4 lists all the conditions that can cause a trigger. Hardware trigger 
conditions are based on either the instruction or data bus. Trigger 
conditions on the same bus can be logically ANDed, enabling the JTAG 
debug module to trigger, for example, only on write cycles to a specific 
address. 

When a trigger condition occurs during processor execution, the JTAG 
debug module triggers an action, such as halting execution, or starting 
trace capture. Table 2–5 lists the trigger actions supported by the Nios II 
JTAG debug module. 

Table 2–4. Trigger Conditions

Condition Bus (1) Description

Specific address D, I Trigger when the bus accesses a specific address.

Specific data value D Trigger when a specific data value appears on the bus.

Read cycle D Trigger on a read bus cycle.

Write cycle D Trigger on a write bus cycle.

Armed D, I Trigger only after an armed trigger event. See “Armed Triggers” on page 2–17. 

Range D Trigger on a range of address values, data values, or both. See “Triggering on 
Ranges of Values” on page 2–17.

Notes:
(1) “I” indicates instruction bus, “D” indicates data bus.
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Armed Triggers 

The JTAG debug module provides a two-level trigger capability, called 
armed triggers. Armed triggers enable the JTAG debug module to trigger 
on event B, only after event A. In this example, event A causes a trigger 
action that enables the trigger for event B.

Triggering on Ranges of Values 

The JTAG debug module can trigger on ranges of data or address values 
on the data bus. This mechanism uses two hardware triggers together to 
create a trigger condition that activates on a range of values within a 
specified range.

Trace Capture

Trace capture refers to ability to record the instruction-by-instruction 
execution of the processor as it executes code in real-time. The JTAG 
debug module offers the following trace features:

■ Capture execution trace (instruction bus cycles).
■ Capture data trace (data bus cycles).
■ For each data bus cycle, capture address, data, or both.
■ Start and stop capturing trace in real time, based on triggers.
■ Manually start and stop trace under host control.
■ Optionally stop capturing trace when trace buffer is full, leaving the 

processor executing.
■ Store trace data in on-chip memory buffer in the JTAG debug 

module. (This memory is accessible only through the JTAG 
connection.)

■ Store trace data to larger buffers in an off-chip debug probe.

Table 2–5. Trigger Actions

Action Description

Break Halt execution and transfer control to the JTAG debug module.

External trigger Assert a trigger signal output. This trigger output can be used, for example, to trigger 
an external logic analyzer. 

Trace on Turn on trace collection. 

Trace off Turn off trace collection.

Trace sample (1) Store one sample of the bus to trace buffer. 

Arm Enable an armed trigger. 

Notes:
(1) Only conditions on the data bus can trigger this action. 
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Certain trace features require additional licensing or debug tools from 
third-party debug providers. For example, an on-chip trace buffer is a 
standard feature of the Nios II processor, but using an off-chip trace 
buffer requires additional debug software and hardware provided by 
First Silicon Solutions (FS2). 

f For details, see www.fs2.com.

Execution vs. Data Trace 

The JTAG debug module supports tracing the instruction bus (execution 
trace), the data bus (data trace), or both simultaneously. Execution trace 
records only the addresses of the instructions executed, enabling you to 
analyze where in memory (i.e., in which functions) code executed. Data 
trace records the data associated with each load and store operation on 
the data bus. 

The JTAG debug module can filter the data bus trace in real time to 
capture the following:

■ Load addresses only
■ Store addresses only
■ Both load and store addresses
■ Load data only
■ Load address and data
■ Store address and data
■ Address and data for both loads and stores
■ Single sample of the data bus upon trigger event

Trace Frames

A “frame” is a unit of memory allocated for collecting trace data. 
However, a frame is not an absolute measure of the trace depth. 

To keep pace with the processor executing in real time, execution trace is 
optimized to store only selected addresses, such as branches, calls, traps, 
and interrupts. From these addresses, host-side debug software can later 
reconstruct an exact instruction-by-instruction execution trace. 
Furthermore, execution trace data is stored in a compressed format, such 
that one frame represents more than one instruction. As a result of these 
optimizations, the actual start and stop points for trace collection during 
execution might vary slightly from the user-specified start and stop 
points.
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Data trace stores 100% of requested loads and stores to the trace buffer in 
real time. When storing to the trace buffer, data trace frames have lower 
priority than execution trace frames. Therefore, while data frames are 
always stored in chronological order, execution and data trace are not 
guaranteed to be exactly synchronized with each other.

Document 
Revision History

Table 2–6 shows the revision history for this document.

Table 2–6. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

Describe interrupt vector custom instruction. Interrupt vector custom 
instruction added.

May 2006, v6.0.0 ● Added description of optional cpu_resetrequest and 
cpu_resettaken.

● Added section on single precision floating point.

October 2005, 
v5.1.0

No change from previous release.

May 2005, v5.0.0 Added tightly coupled memory.

December 2004, 
v1.2

Added new control register ctl5.

September 2004, 
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication.
Altera Corporation  2–19
November 2006 Nios II Processor Reference Handbook



Document Revision History
2–20  Altera Corporation
Nios II Processor Reference Handbook November 2006



Altera Corporation 
November 2006

NII51003-6.1.0
3. Programming Model
Introduction This chapter describes the Nios® II programming model, covering 
processor features at the assembly language level. The programmer’s 
view of the following features are discussed in detail:

■ General-purpose registers, page 3–1
■ Control registers, page 3–2
■ Hardware-assisted debug processing, page 3–11
■ Exception processing, page 3–5
■ Hardware interrupts, page 3–6
■ Unimplemented instructions, page 3–8
■ Memory and peripheral organization, page 3–12
■ Cache memory, page 3–12
■ Processor reset state, page 3–13
■ Instruction set categories, page 3–14
■ Custom instructions, page 3–20

f High-level software development tools are not discussed here. See the 
Nios II Software Developer’s Handbook for information about developing 
software.

General-
Purpose 
Registers

The Nios II architecture provides thirty-two 32-bit general-purpose 
registers, r0 through r31. See Table 3–1 on page 2. Some registers have 
names recognized by the assembler. The zero register (r0) always 
returns the value 0, and writing to zero has no effect. The ra register 
(r31) holds the return address used by procedure calls and is implicitly 
accessed by call and ret instructions. C and C++ compilers use a 
common procedure-call convention, assigning specific meaning to 
registers r1 through r23 and r26 through r28.
  3–1
 



Control Registers
f For more information, refer to the Application Binary Interface chapter of 
the Nios II Processor Reference Handbook.

Control 
Registers

There are six 32-bit control registers, ctl0 through ctl5. All control 
registers have names recognized by the assembler. 

Control registers are accessed differently than the general-purpose 
registers. The special instructions rdctl and wrctl provide the only 
means to read and write to the control registers.

Table 3–1. The Nios II General Purpose Registers

Register Name Function Register Name Function

r0 zero 0x00000000 r16

r1 at Assembler Temporary r17

r2 Return Value r18

r3 Return Value r19

r4 Register Arguments r20

r5 Register Arguments r21

r6 Register Arguments r22

r7 Register Arguments r23

r8 Caller-Saved Register r24 et Exception Temporary 

r9 Caller-Saved Register r25 bt Breakpoint Temporary (1)

r10 Caller-Saved Register r26 gp Global Pointer

r11 Caller-Saved Register r27 sp Stack Pointer

r12 Caller-Saved Register r28 fp Frame Pointer

r13 Caller-Saved Register r29 ea Exception Return Address 

r14 Caller-Saved Register r30 ba Breakpoint Return Address (1)

r15 Caller-Saved Register r31 ra Return Address

Notes to Table 3–1:
(1) This register is used exclusively by the JTAG debug module.
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Details of the control registers are shown in Table 3–2. For details on the 
relationship between the control registers and exception processing, see 
Figure 3–1 on page 3–7. 

status (ctl0)

The value in the status register controls the state of the Nios II 
processor. All status bits are cleared after processor reset. See “Processor 
Reset State” on page 3–13. One bit is defined: PIE, as shown in Table 3–3.

estatus (ctl1)

The estatus register holds a saved copy of the status register during 
exception processing. One bit is defined: EPIE. This is the saved values of 
PIE, as defined in Table 3–3. 

The exception handler can examine estatus to determine the pre-
exception status of the processor. When returning from an interrupt, the 
eret instruction causes the processor to copy estatus back to status, 
restoring the pre-exception value of status. 

f See “Exception Processing” on page 3–5 for more information. 

Table 3–2. Control Register & Bits 

Register Name 31…1 0

ctl0 status Reserved PIE

ctl1 estatus Reserved EPIE

ctl2 bstatus Reserved BPIE

ctl3 ienable Interrupt-enable bits

ctl4 ipending Pending-interrupt bits

ctl5 cpuid Unique processor identifier

Table 3–3. Status Register Bits

Bit Description

PIE bit PIE is the processor interrupt-enable bit. When PIE is 0, external interrupts are ignored. When 
PIE is 1, external interrupts can be taken, depending on the value of the ienable register.
Altera Corporation  3–3
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bstatus (ctl2)

The bstatus register holds a saved copy of the status register during 
debug break processing. One bit is defined: BPIE. This is the saved value 
of PIE, as defined in Table 3–3 on page 3–3.

When a break occurs, the value of the status register is copied into 
bstatus. Using bstatus, the status register can be restored to the 
value it had prior to the break. 

f See “Debug Mode” on page 3–5 for more information.

ienable (ctl3)

The ienable register controls the handling of external hardware 
interrupts. Each bit of the ienable register corresponds to one of the 
interrupt inputs, irq0 through irq31. A bit value of 1 means that the 
corresponding interrupt is enabled; a bit value of 0 means that the 
corresponding interrupt is disabled.

f See “Exception Processing” on page 3–5 for more information.

ipending (ctl4)

The value of the ipending register indicates which interrupts are 
pending. A value of 1 in bit n means that the corresponding irqn input 
is asserted, and that the corresponding interrupt is enabled in the 
ienable register. The effect of writing a value to the ipending register 
is undefined. 

cpuid (ctl5)

The cpuid register holds a static value that uniquely identifies the 
processor in a multi-processor system. The cpuid value is determined at 
system generation time. Writing to the cpuid register has no effect.

f See “Exception Processing” on page 3–5 for more information.

Operating 
Modes

The Nios II processor has two operating modes: 

■ Normal mode
■ Debug mode
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The following sections define the modes and the transitions between 
modes. 

Normal Mode

In general, system and application code execute in normal mode. The 
processor is in normal mode immediately after processor reset. 

General-purpose registers bt (r25) and ba (r30) are not available in 
normal mode. Programs are not prevented from storing values in these 
registers, but if they do, the debug mode could overwrite the values. The 
bstatus register (ctl2) is also unavailable in normal mode.

Debug Mode

Software debugging tools use debug mode to implement features such as 
breakpoints and watch-points. System code and application code never 
execute in debug mode. The processor enters debug mode only after the 
break instruction or after the JTAG debug module forces a break via 
hardware. 

In debug mode all processor functions are available and unrestricted to 
the software debugging tool. Refer to “Break Processing” on page 3–11 for 
further information. 

Changing Modes

The processor starts in normal mode after reset.  It enters debug mode 
only as directed by software debugging tools. System code and 
application code have no control over when the processor enters debug 
mode. The processor always returns to its prior state when exiting from 
debug mode.

f For further details, refer to “Break Processing” on page 3–11.

Exception 
Processing

An exception is a transfer of control away from a program’s normal flow 
of execution, caused by an event, either internal or external to the 
processor, which requires immediate attention. Exception processing is 
the act of responding to an exception, and then returning to the pre-
exception execution state. 

An exception causes the processor to take the following steps:

1. Copies the contents of the status register (ctl0) to estatus 
(ctl1) saving the processor’s pre-exception status
Altera Corporation  3–5
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2. Clears the PIE bit of the status register, disabling external 
processor interrupts 

3. Writes the address of the instruction after the exception to the ea 
register (r29)

4. Transfers execution to the address of the exception handler that 
determines the cause of the interrupt 

The address of the exception handler is specified at system generation 
time. At run-time this address is fixed, and software cannot modify it. 
Programmers do not directly access the exception handler address, and 
can write programs without awareness of the address.

The exception handler is a routine that determines the cause of each 
exception, and then dispatches an appropriate exception routine to 
respond to the interrupt.

f For a detailed discussion of writing programs to take advantage of 
exception and interrupt handling, see the Exception Handling chapter in 
the Nios II Software Developer’s Handbook.

Exception Types

Nios II exceptions fall into the following categories: 

■ Hardware interrupt 
■ Software trap
■ Unimplemented instruction
■ Other 

The following sections describe each exception type in detail.

Hardware Interrupt

An external source such as a peripheral device can request a hardware 
interrupt by asserting one of the processor’s 32 interrupt-request inputs, 
irq0 through irq31. A hardware interrupt is generated if and only if all 
three of these conditions are true: 

■ The PIE bit of the status register (ctl0) is 1
■ An interrupt-request input, irqn, is asserted
■ The corresponding bit n of the ienable register (ctl3) is 1.

Upon hardware interrupt the PIE bit is set to 0, disabling further 
interrupts. The value of the ipending register (ctl4) shows which 
interrupt requests (IRQ) are pending. By peripheral design, an IRQ bit is 
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guaranteed to remain asserted until the processor explicitly responds to 
the peripheral. Figure 3–1 shows the relationship between ipending, 
ienable, PIE, and the generation of an interrupt.

Figure 3–1. Relationship Between ienable, ipending, PIE & Hardware 
Interrupts

A software exception routine determines which of the pending interrupts 
has the highest priority, and then transfers control to the appropriate 
interrupt service routine (ISR). The ISR must stop the interrupt from being 
visible (either by clearing it at the source or masking it using ienable) 
before returning and/or before re-enabling PIE. The ISR must also save 
estatus (ctl1) and ea (r29) before re-enabling PIE. 
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Interrupts can be re-enabled by writing 1 to the PIE bit, thereby allowing 
the current ISR to be interrupted. Typically, the exception routine adjusts 
ienable so that IRQs of equal or lower priority are disabled before re-
enabling interrupts. 

f See “Nested Exceptions” on page 3–10.

Software Trap

When a program issues the trap instruction, it generates a software trap 
exception. A program typically issues a software trap when the program 
requires servicing by the operating system. The exception handler for the 
operating system determines the reason for the trap and responds 
appropriately.

Unimplemented Instruction 

When the processor issues a valid instruction that is not implemented in 
hardware, an unimplemented instruction exception is generated. The 
exception handler determines which instruction generated the exception. 
If the instruction is not implemented in hardware, control is passed to an 
exception routine that emulates the operation in software.

f See “Potential Unimplemented Instructions” on page 3–21 for further 
details. 

1 “Unimplemented instruction” does not mean “invalid 
instruction.” Processor behavior for undefined, i.e., invalid, 
instruction words is dependent on the Nios II core. For most 
Nios II core implementations, executing an invalid instruction 
produces an undefined result. See the Nios II Core Implementation 
Details chapter of the Nios II Processor Reference Handbook for 
details. 

Other Exceptions

The previous sections describe all of the exception types defined by the 
Nios II architecture at the time of publishing. However, some processor 
implementations might generate exceptions that do not fall into the above 
categories. For example, a future implementation might provide a 
memory management unit (MMU) that generates access violation 
exceptions. Therefore, a robust exception handler should provide a safe 
response (such as issuing a warning) in the event that it cannot exactly 
identify the cause of an exception.
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Determining the Cause of Exceptions

The exception handler must determine the cause of each exception and 
then transfer control to an appropriate exception routine. Figure 3–2 
shows an example of the process used to determine the exception source. 

Figure 3–2. Process to Determine the Cause of an Exception

If the EPIE bit of the estatus register (ctl1) is 1 and the value of the 
ipending register (ctl4) is non-zero, the exception was caused by an 
external hardware interrupt. Otherwise, the exception might be caused 
by a software trap or an unimplemented instruction. To distinguish 
between software traps and unimplemented instructions, read the 
instruction at address ea–4 (the Nios II data master must have access to 
the code memory to read this address). If the instruction is trap, the 
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exception is a software trap. If the instruction at address ea-4 is one of 
the instructions that can be implemented in software, the exception was 
caused by an unimplemented instruction. See “Potential Unimplemented 
Instructions” on page 3–21 for details. If none of the above conditions 
apply, the exception type is unrecognized, and the exception handler 
should report the condition. 

Nested Exceptions

Exception routines must take special precautions before:

■ Issuing a trap instruction
■ Issuing an unimplemented instruction
■ Re-enabling hardware interrupts

Before allowing any of these actions, the exception routine must save 
estatus (ctl1) and ea (r29), so that they can be restored properly 
before returning. 

Returning from an Exception 

The eret instruction is used to resume execution from the pre-exception 
address. Except for the et register (r24), the exception routine must 
restore any registers modified during exception processing before 
returning. 

When executing the eret instruction, the processor:

1. Copies the contents of estatus (ctl1) to status (ctl0)

2. Transfers program execution to the address in the ea register (r29)

Return Address

The return address requires some consideration when returning from 
exception processing routines. After an exception occurs, ea contains the 
address of the instruction after the point where the exception was 
generated.

When returning from software trap and unimplemented instruction 
exceptions, execution must resume from the instruction following the 
software trap or unimplemented instruction. Therefore, ea contains the 
correct return address.

On the other hand, hardware interrupt exceptions must resume execution 
from the interrupted instruction itself. In this case, the exception handler 
must subtract 4 from ea to point to the interrupted instruction. 
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Break 
Processing

A break is a transfer of control away from a program’s normal flow of 
execution caused by a break instruction or the JTAG debug module. 
Software debugging tools can take control of the Nios II processor via the 
JTAG debug module. Only debugging tools control the processor when 
executing in debug mode; application and system code never execute in 
this mode. 

Break processing is the means by which software debugging tools 
implement debug and diagnostic features, such as breakpoints and 
watchpoints. Break processing is similar to exception processing, but the 
break mechanism is independent from exception processing. A break can 
occur during exception processing, enabling debug tools to debug 
exception handlers.

Processing a Break

The processor enters the break processing state under the following 
conditions:

■ The processor issues the break instruction
■ The JTAG debug module asserts a hardware break

A break causes the processor to take the following steps:

1. Stores the contents of the status register (ctl0) to bstatus 
(ctl2)

2. Clears the PIE bit of the status register, disabling external 
processor interrupts 

3. Writes the address of the instruction following the break to the ba 
register (r30).

4. Transfers execution to the address of the break handler. The address 
of the break handler is specified at system generation time.

Returning from a Break

After performing break processing, the debugging tool releases control of 
the processor by executing a bret instruction. The bret instruction 
restores status and returns program execution to the address in ba.

Register Usage

The break handler can use bt (r25) to help save additional registers. 
Aside from bt, all other registers are guaranteed to be returned to their 
pre-break state after returning from the break-processing routine. 
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Memory & 
Peripheral 
Access

Nios II addresses are 32 bits, allowing access up to a 4 gigabyte address 
space. However, many Nios II core implementations restrict addresses to 
31 bits or fewer.

f For details, refer to the Nios II Core Implementation Details chapter of the 
Nios II Processor Reference Handbook.

Peripherals, data memory, and program memory are mapped into the 
same address space. The locations of memory and peripherals within the 
address space are determined at system generation time. Reading or 
writing to an address that does not map to a memory or peripheral 
produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read 
and write byte, half-word (16-bit), or word (32-bit) data. 

The Nios II architecture is little endian. For data wider than 8-bits stored 
in memory, the more-significant bits are located in higher addresses.

Addressing Modes

The Nios II architecture supports the following addressing modes:

■ Register addressing
■ Displacement addressing
■ Immediate addressing
■ Register indirect addressing
■ Absolute addressing

In register addressing, all operands are registers, and results are stored 
back to a register. In displacement addressing, the address is calculated as 
the sum of a register and a signed, 16-bit immediate value. In immediate 
addressing, the operand is a constant within the instruction itself. 
Register indirect addressing uses displacement addressing, but the 
displacement is the constant 0. Limited-range absolute addressing is 
achieved by using displacement addressing with register r0, whose 
value is always 0x00. 

Cache Memory

The Nios II architecture and instruction set accommodate the presence of 
data cache and instruction cache memories. Cache management is 
implemented in software by using cache management instructions. 
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Instructions are provided to initialize the cache, flush the caches 
whenever necessary, and to bypass the data cache to properly access 
memory-mapped peripherals. 

Some Nios II processor cores support a mechanism called bit-31 cache 
bypass to bypass the cache depending on the value of the most-significant 
bit of the address. The address space of these processor implementations 
is 2 GBytes, and the high bit of the address controls the caching of data 
memory accesses.

f Refer to the Nios II Core Implementation Details chapter of the Nios II 
Processor Reference Handbook for complete details of which processor 
cores support bit-31 cache bypass.

Code written for a processor core with cache memory behaves correctly 
on a processor core without cache memory. The reverse is not true. 
Therefore, for a program to work properly on all Nios II processor core 
implementations, the program must behave as if the instruction and data 
caches exist. In systems without cache memory, the cache management 
instructions perform no operation, and their effects are benign. 

f For a complete discussion of cache management, see the Cache & Tightly 
Coupled Memory chapter of the Nios II Software Developer’s Handbook. 

Some consideration is necessary to ensure cache coherency after 
processor reset. See “Processor Reset State” on page 3–13 for details.

f For details on the cache architecture and the memory hierarchy see the 
Processor Architecture chapter of the Nios II Processor Reference Handbook.

Processor Reset 
State

After reset, the Nios II processor:

1. Clears the status register to 0x0. 

2. Invalidates the instruction-cache line associated with the reset 
address, the address of the reset routine. 

3. Begins executing from the reset address. 

Clearing status (ctl0) disables hardware interrupts. Invalidating the 
reset cache line guarantees that instruction fetches for reset code comes 
from uncached memory. The reset address is specified at system 
generation time.
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Aside from the instruction-cache line associated with the reset address, 
the contents of the cache memories are indeterminate after reset. To 
ensure cache coherency after reset, the reset routine must immediately 
initialize the instruction cache. Next, either the reset routine or a 
subsequent routine should proceed to initialize the data cache. 

The reset state is undefined for all other system components, including 
but not limited to:

■ General-purpose registers, except for zero (r0) which is 
permanently zero.

■ Control registers, except for status (ctl0) which is reset to 0x0.
■ Instruction and data memory.
■ Cache memory, except for the instruction-cache line associated with 

the reset address.
■ Peripherals. Refer to the appropriate peripheral data sheet or 

specification for reset conditions.
■ Custom instruction logic. Refer to the custom instruction 

specification for reset conditions.

Instruction Set 
Categories

This section introduces the Nios II instructions categorized by type of 
operation performed. 

Data Transfer Instructions

The Nios II architecture is a load-store architecture. Load and store 
instructions handle all data movement between registers, memory, and 
peripherals. Memories and peripherals share a common address space. 
Some Nios II processor cores use memory caching and/or write buffering 
to improve memory bandwidth. The architecture provides instructions 
for both cached and uncached accesses.
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Table 3–4 describes the wide (32-bit) load and store instructions.

The data transfer instructions in Table 3–5 support byte and half-word 
transfers. 

Table 3–4. Wide Data Transfer Instructions

Instruction Description

ldw
stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The effective 
address is the sum of a register's contents and a signed immediate value contained in the 
instruction. Memory transfers can be cached or buffered to improve program performance. This 
caching and buffering might cause memory cycles to occur out of order, and caching might 
suppress some cycles entirely. 

Data transfers for I/O peripherals should use ldwio and stwio.

ldwio
stwio

ldwio and stwio instructions load and store 32-bit data words from/to peripherals without 
caching and buffering. Access cycles for ldwio and stwio instructions are guaranteed to occur 
in instruction order and are never suppressed.

Table 3–5. Narrow Data Transfer Instructions

Instruction Description

ldb
ldbu
stb 
ldh
ldhu
sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and ldh 
sign-extend the value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits. 
stb and sth store byte and half-word values, respectively.
Memory accesses can be cached or buffered to improve performance. To transfer data to I/O 
peripherals, use the “io” versions of the instructions, described below.

ldbio
ldbuio
stbio
ldhio
ldhuio
sthio 

These operations load/store byte and half-word data from/to peripherals without caching or 
buffering. 
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Arithmetic & Logical Instructions

Logical instructions support and, or, xor, and nor operations. 
Arithmetic instructions support addition, subtraction, multiplication, 
and division operations. See Table 3–6.

Table 3–6. Arithmetic & Logical Instructions

Instruction Description

and
or
xor
nor

These are the standard 32-bit logical operations. These operations take two register values and 
combine them bit-wise to form a result for a third register.

andi
ori
xori

These operations are immediate versions of the and, or, and xor instructions. The 16-bit 
immediate value is zero-extended to 32 bits, and then combined with a register value to form the 
result.

andhi
orhi
xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16 
bits to form a 32-bit operand. Zeroes are shifted in from the right.

add
sub
mul
div
divu

These are the standard 32-bit arithmetic operations. These operations take two registers as input 
and store the result in a third register. 

addi
subi
muli

These instructions are immediate versions of the add, sub, and mul instructions. The 
instruction word includes a 16-bit signed value.

mulxss
mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose 
the appropriate instruction depending on whether the operands should be treated as signed or 
unsigned values. It is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication. 
3–16  Altera Corporation
Nios II Processor Reference Handbook November 2006



Programming Model
Move Instructions

These instructions provide move operations to copy the value of a 
register or an immediate value to another register. See Table 3–7.

Comparison Instructions

The Nios II architecture supports a number of comparison instructions. 
All of these compare two registers or a register and an immediate value, 
and write either 1 (if true) or 0 to the result register. These instructions 
perform all the equality and relational operators of the C programming 
language. See Table 3–8.

Table 3–7. Move Instructions

Instruction Description

mov
movhi
movi
movui
movia

mov copies the value of one register to another register. movi moves a 16-bit signed immediate 
value to a register, and sign-extends the value to 32 bits. movui and movhi move an immediate 
16-bit value into the lower or upper 16-bits of a register, inserting zeros in the remaining bit 
positions. Use movia to load a register with an address.

Table 3–8. Comparison Instructions (Part 1 of 2)

Instruction Description

cmpeq == 

cmpne !=

cmpge signed >= 

cmpgeu unsigned >= 

cmpgt signed >

cmpgtu unsigned >

cmple unsigned <=

cmpleu unsigned <=

cmplt signed <
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Shift & Rotate Instructions

The following instructions provide shift and rotate operations. The 
number of bits to rotate or shift can be specified in a register or an 
immediate value. See Table 3–9.

cmpltu unsigned <

cmpeqi
cmpnei
cmpgei
cmpgeui
cmpgti
cmpgtui
cmplei
cmpleui
cmplti
cmpltui

These instructions are immediate versions of the comparison 
operations. They compare the value of a register and a 16-bit 
immediate value. Signed operations sign-extend the 
immediate value to 32-bits. Unsigned operations fill the upper 
bits with zero.

Table 3–8. Comparison Instructions (Part 2 of 2)

Instruction Description

Table 3–9. Shift & Rotate Instructions

Instruction Description

rol
ror
roli

The rol and roli instructions provide left bit-rotation. roli uses an immediate value to 
specify the number of bits to rotate. The ror instructions provides right bit-rotation. 
There is no immediate version of ror, because roli can be used to implement the equivalent 
operation.

sll
slli
sra
srl
srai
srli

These shift instructions implement the << and >> operators of the C programming language. The 
sll, slli, srl, srli instructions provide left and right logical bit-shifting operations, inserting 
zeros. The sra and srai instructions provide arithmetic right bit-shifting, duplicating the sign bit 
in the most significant bit. slli, srli and srai use an immediate value to specify the number 
of bits to shift.
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Program Control Instructions

The Nios II architecture supports the unconditional jump and call 
instructions listed in Table 3–10. These instructions do not have delay 
slots.

The conditional-branch instructions compare register values directly, and 
branch if the expression is true. See Table 3–11. The conditional branches 
support the equality and relational comparisons of the C programming 
language:

■ == and !=
■ < and <= (signed and unsigned)
■ > and >= (signed and unsigned)

The conditional-branch instructions do not have delay slots.

Table 3–10. Unconditional Jump & Call Instructions

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute address, 
and stores the return address in register ra.

callr This instruction calls a subroutine at the absolute address contained in a register, and stores the 
return address in register ra. This instruction serves the roll of dereferencing a C function pointer. 

ret The ret instruction is used to return from subroutines called by call or callr. ret loads and 
executes the instruction specified by the address in register ra.

jmp The jmp instruction jumps to an absolute address contained in a register. jmp is used to 
implement switch statements of the C programming language.

br Branch relative to the current instruction. A signed immediate value gives the offset of the next 
instruction to execute.

Table 3–11. Conditional-Branch Instructions

Instruction Description

bge
bgeu
bgt
bgtu
ble
bleu
blt
bltu
beq
bne

These instructions provide relative branches that compare 
two register values and branch if the expression is true. 
See “Comparison Instructions” on page 3–17 for a 
description of the relational operations implemented.
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Other Control Instructions

Table 3–12 shows other control instructions.

Custom Instructions

The custom instruction provides low-level access to custom instruction 
logic. The inclusion of custom instructions is specified at system 
generation time, and the function implemented by custom instruction 
logic is design dependent.

f For further details, see the “Custom Instructions” section of the Processor 
Architecture chapter of the Nios II Processor Reference Handbook and the 
Nios II Custom Instruction User Guide.

Machine-generated C functions and assembly macros provide access to 
custom instructions, and hide implementation details from the user. 
Therefore, most software developers never use the custom assembly 
instruction directly. 

No-Operation Instruction

The Nios II assembler provides a no-operation instruction, nop.

Table 3–12. Other Control Instructions

Instruction Description

trap
eret

The trap and eret instructions generate and return from exceptions. These instructions are 
similar to the call/ret pair, but are used for exceptions. trap saves the status register in 
the estatus register, saves the return address in the ea register, and then transfers execution 
to the exception handler. eret returns from exception processing by restoring status from 
estatus, and executing the instruction specified by the address in ea. 

break
bret

The break and bret instructions generate and return from breaks. break and bret are 
used exclusively by software debugging tools. Programmers never use these instructions in 
application code. 

rdctl
wrctl

These instructions read and write control registers, such as the status register. The value is 
read from or stored to a general-purpose register.

flushd
flushi
initd
initi

These instructions are used to manage the data and instruction cache memories. 

flushp This instruction flushes all pre-fetched instructions from the pipeline. This is necessary before 
jumping to recently-modified instruction memory.

sync This instruction ensures that all previously-issued operations have completed before allowing 
execution of subsequent load and store operations.
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Potential Unimplemented Instructions

Some Nios II processor cores do not support all instructions in hardware. 
In this case, the processor generates an exception after issuing an 
unimplemented instruction. Only the following instructions can generate 
an unimplemented-instruction exception:

■ mul
■ muli
■ mulxss
■ mulxsu
■ mulxuu
■ div
■ divu

All other instructions are guaranteed not to generate an unimplemented-
instruction exception. 

An exception routine must exercise caution if it uses these instructions, 
because they could generate another exception before the previous 
exception is properly handled. See “Unimplemented Instruction ” on 
page 3–8 for details regarding unimplemented instruction processing. 

Document 
Revision History

Table 3–13 shows the revision history for this document.

Table 3–13. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

No change from previous release. 

May 2006, v6.0.0 No change from previous release.

October 2005, 
v5.1.0

No change from previous release.

May 2005, v5.0.0 No change from previous release.

September 2004, 
v1.1

● Added details for new control register ctl5. 
● Updated details of debug mode and break processing to 

reflect new behavior of the break instruction.

May 2004, v1.0 First publication.
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4. Implementing the Nios II
Processor in SOPC Builder
Introduction This chapter describes the Nios® II configuration wizard in SOPC Builder. 
The Nios II configuration wizard allows you to specify the processor 
features for a particular Nios II hardware system. This chapter covers 
only the features of the Nios II processor that you can configure with the 
Nios II configuration wizard. It is not a user guide for creating complete 
Nios II processor systems. 

f To get started using SOPC Builder to design custom Nios II systems, 
refer to the Nios II Hardware Development Tutorial. Nios II development 
kits also provide a number of ready-made example hardware designs 
that demonstrate several different configurations of the Nios II 
processor.

The Nios II processor configuration wizard has several tabs. The 
following sections describe the settings available on each tab. 

1 Due to evolution and improvement of the Nios II configuration 
wizard, the figures in this chapter might not match the exact 
screens that appear in SOPC Builder.
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Nios II Core Tab
Nios II Core Tab The Nios II Core tab presents the main settings for configuring the 
Nios II processor core. Figure 4–1 shows an example of the Nios II Core 
tab.

Figure 4–1. Nios II Core Tab in the Nios II Configuration Wizard

Core Setting

The main purpose of the Nios II Core tab is to select the processor core. 
The core you select on this tab affects other options available on this and 
other tabs. 

Currently, Altera® offers three Nios II cores:

■ Nios II/f—The Nios II/f “fast” core is designed for fast performance. 
As a result, this core presents the most configuration options 
allowing you to fine-tune the processor for performance.

■ Nios II/s—The Nios II/s “standard” core is designed for small size 
while maintaining performance. 

■ Nios II/e—The Nios II/e “economy” core is designed to achieve the 
smallest possible core size. As a result, this core has a limited feature 
set, and many settings are not available when the Nios II/e core is 
selected. 

As shown in Figure 4–1, the Nios II Core tab displays a “selector guide” 
table that lists the basic properties of each core.
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f For complete details of each core, see the Nios II Core Implementation 
Details chapter of the Nios II Processor Reference Handbook. 

Multiply & Divide Settings

The Nios II/s and Nios II/f cores offer different hardware multiply and 
divide options. You can choose the best option to balance embedded 
multiplier usage, logic element (LE) usage, and performance. 

The Hardware Multiply setting provides the following options:

■ Include embedded multipliers (e.g., the DSP blocks in Stratix® 
devices) in the arithmetic logic unit (ALU). This is the default when 
targeting devices that have embedded multipliers. 

■ Include LE-based multipliers in the ALU. This option achieves high 
multiply performance without consuming embedded multiplier 
resources. 

■ Omit hardware multiply. This option conserves logic resources by 
eliminating multiply hardware. Multiply operations are 
implemented in software.

Turning on the Hardware Divide setting includes LE-based divide 
hardware in the ALU. The Hardware Divide option achieves much 
greater performance than software emulation of divide operations.

f For details on the effects of the Hardware Multiply and Hardware 
Divide options on performance, see the Nios II Core Implementation 
Details chapter of the Nios II Processor Reference Handbook.
Altera Corporation  4–3
November 2006 Nios II Processor Reference Handbook



Caches & Tightly Coupled Memories Tab
Caches & Tightly 
Coupled 
Memories Tab

The Caches & Tightly Coupled Memories tab allows you to configure 
the cache and tightly coupled memory usage for the instruction and data 
buses. Figure 4–2 shows an example of the Caches & Tightly Coupled 
Memories tab.

Figure 4–2. Caches & Tightly Coupled Memories Tab in the Nios II Configuration Wizard

Instruction Settings

The Instruction settings provide the following options for the Nios II/f 
and Nios II/s cores:

■ Instruction Cache - Specifies the size of the instruction cache. Valid 
sizes are from 512 bytes to 64 Kbytes, or None. 

Choosing None disables the instruction cache, which also removes 
the Avalon instruction master port from the Nios II core. In this case, 
you must include a tightly coupled instruction memory.

■ Include tightly coupled instruction master port(s) - When turned 
on, the Nios II core includes tightly coupled memory ports. You can 
specify one to four ports with the Number of ports setting. Tightly 
coupled memory ports appear on the connection panel of the Nios II 
core in the SOPC Builder System Contents tab. You must connect 
each port to exactly one memory component in the system.
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Data Settings

The Data settings provide the following options for the Nios II/f core:

■ Data Cache - Specifies the size of the data cache. Valid sizes are from 
512 bytes to 64 Kbytes, or None. Depending on the value specified 
for Data Cache, the following options are available: 

● Data Cache Line Size - Valid sizes are 4, 16, or 32 bytes.
● Omit data master port - If you set Data Cache to None, you can 

optionally turn on Omit data master port to remove the Avalon 
data master port from the Nios II core. In this case, you must 
include a tightly coupled data memory.

■ Include tightly coupled data master port(s) - When turned on, the 
Nios II core includes tightly coupled memory ports. You can specify 
one to four ports with the Number of ports setting. Tightly coupled 
memory ports appear on the connection panel of the Nios II core in 
the SOPC Builder System Contents tab. You must connect each port 
to exactly one memory component in the system.

Advanced 
Features Tab

The Advanced Features tab allows you to enable specialized features of 
the Nios II processor. It contains one option: Include cpu_resetrequest 
and cpu_resettaken signals. This option adds processor-only reset 
request signals to the Nios II processor. These signals let another device 
individually reset the Nios II processor without resetting the entire SOPC 
Builder system. The signals are exported to the top level of your SOPC 
Builder system. 

Figure 4–3 on page 4–6 shows the Advanced Features tab.
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JTAG Debug Module Tab
Figure 4–3. Advanced Features Tab in the Nios II Configuration Wizard

f For further details on the processor-only reset request signals, refer to the 
Processor Architecture chapter in the Nios II Processor Reference Handbook.

JTAG Debug 
Module Tab

The JTAG Debug Module tab presents settings for configuring the JTAG 
debug module on the Nios II core. You can select the debug features 
appropriate for your target application. 

Soft-core processors such as the Nios II processor offer unique debug 
capabilities beyond the features of traditional-fixed processors. The soft-
core nature of the Nios II processor allows you to debug a system in 
development using a full-featured debug core, and later remove the 
debug features to conserve logic resources. For the release version of a 
product, you might choose to reduce the JTAG debug module 
functionality, or remove it altogether.  
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Table 4–1 describes the debug features available to you for debugging 
your system. 

Table 4–1. Debug Configuration Features 

Feature Description

JTAG Target 
Connection

The ability to connect to the processor through the standard JTAG pins on the Altera 
FPGA. This provides the basic capabilities to start and stop the processor, and 
examine/edit registers and memory.

Download Software The ability to download executable code to the processor’s memory via the JTAG 
connection.

Software Breakpoints The ability to set a breakpoint on instructions residing in RAM

Hardware Breakpoints The ability to set a breakpoint on instructions residing in nonvolatile memory, such as 
flash memory.

Data Triggers The ability to trigger based on address value, data value, or read or write cycle. You can 
use a trigger to halt the processor on specific events or conditions, or to activate other 
events, such as starting execution trace, or sending a trigger signal to an external logic 
analyzer. Two data triggers can be combined to form a trigger that activates on a range 
of data or addresses.

Instruction Trace The ability to capture the sequence of instructions executing on the processor in real 
time.

Data Trace The ability to capture the addresses and data associated with read and write operations 
executed by the processor in real time.

On-Chip Trace The ability to store trace data in on-chip memory.

Off-Chip Trace The ability to store trace data in an external debug probe. Off-chip trace requires a 
debug probe from First Silicon Solutions (FS2). 
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Debug Level Settings

There are five debug levels in the JTAG Debug Module tab as shown in 
Figure 4–4.

Figure 4–4. JTAG Debug Module Tab in the Nios II Configuration Wizard

Table 4–2 on page 4–9 is a detailed list of the characteristics of each debug 
level. Different levels consume different amounts of on-chip resources. 
Certain Nios II cores have restricted debug options, and certain options 
require debug tools provided by First Silicon Solutions (FS2).
4–8  Altera Corporation
Nios II Processor Reference Handbook November 2006



Implementing the Nios II Processor in SOPC Builder
f For details on the Nios II debug features available from FS2, visit 
www.fs2.com.

On-Chip Trace Buffer Settings

Debug levels 3 and 4 support trace data collection into an on-chip 
memory buffer. The on-chip trace buffer size can be set to sizes from 128 
to 64K trace frames. 

Larger buffer sizes consume more on-chip M4K RAM blocks. Every M4K 
RAM block can store up to 128 trace frames. 

Table 4–2. JTAG Debug Module Levels

Debug Feature No 
Debug Level 1 Level 2 Level 3 Level 4 (1)

Logic Usage 0 300 - 400 LEs 800 - 900 LEs 2,400 - 2,700 LEs 3,100 - 3,700 LEs

On-Chip Memory Usage 0 Two M4Ks Two M4Ks Four M4Ks Four M4Ks

External I/O Pins Required 
(2)

0 0 0 0 20

JTAG Target Connection No Yes Yes Yes Yes

Download Software No Yes Yes Yes Yes

Software Breakpoints None Unlimited Unlimited Unlimited Unlimited

Hardware Execution 
Breakpoints

0 None 2 2 4

Data Triggers 0 None 2 2 4

On-Chip Trace 0 None None Up to 64K Frames 
(3)

Up to 64K Frames

Off-Chip Trace (4) 0 None None None 128K Frames

Notes to Table 4–2:
(1) Level 4 requires the purchase of a software upgrade from FS2.
(2) Not including the dedicated JTAG pins on the Altera FPGA.
(3) An additional license from FS2 is required to use more than 16 frames. 
(4) Off-chip trace requires the purchase of additional hardware from FS2.
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Custom 
Instructions Tab

The Custom Instructions tab allows you to connect custom instruction 
logic to the Nios II arithmetic logic unit (ALU). You can achieve 
significant performance improvements—often on the order of 10x to 
100x—by implementing performance-critical operations in hardware 
using custom-instruction logic. Figure 4–5 shows an example of the 
Custom Instructions tab. 

Figure 4–5. Custom Instructions Tab in the Nios II Configuration Wizard

To add a custom instruction to the Nios II processor, select the custom 
instruction from the Library list at the left side of the dialog box, and click 
Add.

f A complete discussion of the hardware and software design process for 
custom instructions is beyond the scope of this chapter. For full details 
on the topic of custom instructions, including working example designs, 
see the Nios II Custom Instruction User Guide. 

Floating-Point Custom Instructions

The Nios II core offers a set of optional predefined custom instructions 
that implement floating-point arithmetic operations. You can choose to 
include these custom instructions to support computation-intensive 
floating-point applications. 
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The basic set of floating-point custom instructions includes single 
precision (32-bit) floating-point addition, subtraction, and multiplication. 
Floating-point division is available as an extension to the basic instruction 
set. The best choice for your hardware design depends on a balance 
among floating-point usage, hardware resource usage, and performance. 

To add the floating-point custom instructions to the Nios II processor, 
select Floating Point Hardware from the Library list, and click Add. 

Figure 4–6. Nios II Floating Point Hardware Dialog Box

The Nios II Floating Point Hardware dialog box, shown in Figure 4–6, 
provides one option: Use floating point division hardware. If you leave 
this check box off, SOPC Builder omits floating-point division from the 
Nios II processor, while including addition, subtraction, and 
multiplication. The floating-point division hardware requires more 
resources than the other instructions, so you might wish to omit it if your 
application does not make heavy use of floating-point division. 

Click Finish to add the floating point custom instructions to the Nios II 
processor.

If the target device includes on-chip multiplier blocks, the floating-point 
custom instructions incorporates them as needed. If there are no on-chip 
multiplier blocks, the floating-point custom instructions are entirely 
based on general-purpose logic elements.

1 The opcode extensions for the floating-point custom 
instructions are 252 through 255 (0xFC through 0xFF). These 
opcode extensions cannot be modified.
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f For details on floating-point instruction usage in the Nios II Embedded 
Design Suite (EDS), see the tutorial Using Nios II Floating-Point Custom 
Instructions.

Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction 
which reduces average and worst case interrupt latency. 

To add the interrupt vector custom instruction to the Nios II processor, 
select Nios II Interrupt Vector Instruction from the Library list, and click 
Add. 

There can only be one interrupt vector custom instruction component in 
a Nios II processor. If the interrupt vector custom instruction is present in 
the Nios II processor, the hardware abstraction layer (HAL) source 
detects it at compile time and generates code using the custom 
instruction.

The interrupt vector custom instruction improves both average and 
worst-case interrupt latency by up to 20%. To achieve the lowest possible 
interrupt latency, consider using tightly-coupled memories so that 
interrupt handlers can run without cache misses.

f For details of the interrupt vector custom instruction implementation, 
see the Exception & Interrupt Controller section in the Processor Architecture 
chapter of the Nios II Processor Reference Handbook. For guidance with 
tightly-coupled memories, see the Tightly Coupled Memory section in the 
Processor Architecture chapter of the Nios II Processor Reference Handbook.

System-
Dependent 
Nios II 
Processor 
Settings

The Nios II processor core has settings which cannot be configured until 
other system components are in place. These settings include:

■ Reset Address
■ Exception Address
■ Break Location

These settings are not in the Nios II processor configuration wizard. They 
are grouped in the More “Nios II module name” Settings tab in SOPC 
Builder, as shown in Figure 4–7 on page 4–13.
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Figure 4–7. More “Nios II module name” Settings Tab

The following sections describe each system-dependent setting.

Reset Address

You can select the memory module where the reset code (boot loader) 
resides, and the location of the reset vector (reset address).

Memory Module

You can select the reset memory module from a drop-down list, which 
includes all memory modules mastered by the Nios II processor. In a 
typical system, you select a nonvolatile memory module for the reset 
code.

Offset

You can edit the offset field to specify the location of the reset vector 
relative to the memory module’s base address.
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Address

SOPC Builder calculates the physical address of the reset vector when 
you modify the memory module, the offset, or the memory module’s base 
address. You cannot edit the Address field.

Exception Address

You can select the memory module where the exception vector (exception 
address) resides, and the location of the exception vector.

Memory Module

You can select the exception vector memory module from a drop-down 
list, which includes all memory modules mastered by the Nios II 
processor. In a typical system, you select a low-latency memory module 
for the exception code.

Offset

You can edit the offset field to specify the location of the exception vector 
relative to the memory module’s base address.

Address

SOPC Builder calculates the physical address of the exception vector 
when you modify the memory module, the offset, or the memory 
module’s base address. You cannot edit the Address field.

Break Location

If the Nios II processor core contains a JTAG debug module, SOPC 
Builder displays the break vector (break location). Memory Module is 
always the JTAG debug module. Offset is fixed at 0x20, and Address is 
determined by the base address of the JTAG debug module. You cannot 
modify any of the Break Location fields.
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Document 
Revision History

Table 4–3 shows the revision history for this document.

Table 4–3. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

● Add section on interrupt vector custom instruction.
● Add section on system-dependent Nios II processor settings.

May 2006, v6.0.0 ● Added details on floating point custom instructions.
● Added section on Advanced Features tab.

October 2005, 
v5.1.0

No change from previous release.

May 2005, v5.0.0 ● Updates to reflect new GUI options in Nios II processor 
version 5.0. 

● New details in “Caches and Tightly Coupled Memory” section.

September 2004, 
v1.1

● Updates to reflect new GUI options in Nios II processor 
version 1.1. 

● New details in section “Multiply and Divide Settings.”

May 2004, v1.0 First publication.
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Section II. Appendixes
This section provides additional information about the Nios® II processor.

This section includes the following chapters:

■ Chapter 5, Nios II Core Implementation Details

■ Chapter 6, Nios II Processor Revision History

■ Chapter 7, Application Binary Interface

■ Chapter 8, Instruction Set Reference
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5. Nios II Core
Implementation Details
Introduction This document describes all of the Nios® II processor core 
implementations available at the time of publishing. This document 
describes only implementation-specific features of each processor core. 
All cores support the Nios II instruction set architecture.

f For more information regarding the Nios II instruction set architecture, 
refer to the Instruction Set Reference chapter of the Nios II Processor 
Reference Handbook.

For details on a specific core, see the appropriate section for that core:

■ “Nios II/f Core” on page 5–3
■ “Nios II/s Core” on page 5–12
■ “Nios II/e Core” on page 5–18

Table 5–1 compares the objectives and features of each Nios II processor 
core. The table is designed to help system designers choose the core that 
best suits their target application.

Table 5–1. Nios II Processor Cores (Part 1 of 2)

Feature Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance DMIPS/MHz (1) 0.15 0.74 1.16 

Max. DMIPS (2) 31 127 218

Max. fM A X  (2) 200 MHz 165 MHz 185 MHz

Area < 700 LEs;
< 350 ALMs

< 1400 LEs;
< 700 ALMs

< 1800 LEs;
< 900 ALMs

Pipeline 1 Stage 5 Stages 6 Stages

External Address Space 2 Gbytes 2 GBytes 2 GBytes

Instruction 
Bus

Cache – 512 bytes to 64 
kbytes

512 bytes to 64 kbytes

Pipelined Memory Access – Yes Yes

Branch Prediction – Static Dynamic

Tightly Coupled Memory – Optional Optional
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Device Family Support
Device Family 
Support

All Nios II cores provide the same support for target Altera device 
families. Nios II cores provide either full or preliminary device family 
support, as described below:

■ Full support means the Nios II cores meet all functional and timing 
requirements for the device family and may be used in production 
designs

Data Bus Cache – – 512 bytes to 64 Kbytes

Pipelined Memory Access – – –

Cache Bypass Methods – – I/O instructions; bit-31 
cache bypass

Tightly Coupled Memory – – Optional

Arithmetic 
Logic Unit

Hardware Multiply – 3-Cycle (3) 1-Cycle (3)

Hardware Divide – Optional Optional 

Shifter 1 Cycle-per-bit 3-Cycle Shift (3) 1-Cycle Barrel 
Shifter (3)

JTAG Debug 
Module

JTAG interface, run 
control, software 
breakpoints 

Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Exception 
Handling

Exception Types Software trap, 
unimplemented 

instruction, 
hardware interrupt

Software trap, 
unimplemented 

instruction, 
hardware interrupt

Software trap, 
unimplemented 

instruction, 
hardware interrupt

Integrated Interrupt 
Controller

Yes Yes Yes

User Mode Support No; Permanently 
in supervisor 

mode

No; Permanently in 
supervisor mode

No; Permanently in 
supervisor mode

Custom Instruction Support Yes Yes Yes

Notes to Table 5–1:
(1) DMIPS performance for the Nios II/s and Nios II/f cores depends on the hardware multiply option. 
(2) Using the fastest hardware multiply option, and targeting a Stratix II FPGA in the fastest speed grade.
(3) Multiply and shift performance depends on which hardware multiply option is used. If no hardware multiply 

option is used, multiply operations are emulated in software, and shift operations require one cycle per bit. For 
details, see the arithmetic logic unit description for each core.

Table 5–1. Nios II Processor Cores (Part 2 of 2)

Feature Core

Nios II/e Nios II/s Nios II/f
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■ Preliminary support means the Nios II cores meet all functional 
requirements, but may still be undergoing timing analysis for the 
device family; they may be used in production designs with caution.

Table 5–2 shows the level of support offered to each of the Altera device 
families by the Nios II cores.

Nios II/f Core The Nios II/f “fast” core is designed for high execution performance. 
Performance is gained at the expense of core size, making the Nios II/f 
core approximately 25% larger than the Nios II/s core. Altera designed 
the Nios II/f core with the following design goals in mind: 

■ Maximize the instructions-per-cycle execution efficiency
■ Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well 
as for applications with large amounts of code and/or data, such as 
systems running a full-featured operating system.

Overview

The Nios II/f core:

■ Has separate instruction and data caches
■ Can access up to 2 GBytes of external address space
■ Supports optional tightly coupled memory for instructions and data 
■ Employs a 6-stage pipeline to achieve maximum DMIPS/MHz
■ Performs dynamic branch prediction

Table 5–2. Device Family Support 

Device Family Support 

Stratix® III Preliminary

Stratix II Full

Stratix II GX Full

Stratix GX Full

Stratix Full

Hardcopy® II Full

HardCopy Full

Cyclone™ II Full

Cyclone Full

Other device families No support
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■ Provides hardware multiply, divide, and shift options to improve 
arithmetic performance

■ Supports the addition of custom instructions
■ Supports the JTAG debug module
■ Supports optional JTAG debug module enhancements, including 

hardware breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/f 
core implementation. This document does not discuss low-level design 
issues or implementation details that do not affect Nios II hardware or 
software designers.

Register File

At system generation time, the cpuid control register (clt5) is assigned 
a value that is guaranteed to be unique for each processor in the system. 

Arithmetic Logic Unit

The Nios II/f core provides several arithmetic logic unit (ALU) options to 
improve the performance of multiply, divide, and shift operations.

Multiply & Divide Performance

The Nios II/f core provides the following hardware multiplier options:

■ No hardware multiply — Does not include multiply hardware. In this 
case, multiply operations are emulated in software.

■ Use embedded multipliers — Includes dedicated embedded multipliers 
available on the target device. This option is available only on Altera 
FPGAs that have embedded multipliers, such as the DSP blocks in 
Stratix II FPGAs.

■ Use LE-based multipliers — Includes hardware multipliers built from 
logic element (LE) resources.

The Nios II/f core also provides a hardware divide option that includes 
LE-based divide circuitry in the ALU. 

Including an ALU option improves the performance of one or more 
arithmetic instructions. 

1 The performance of the embedded multipliers differ, depending 
on the target FPGA family. 
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Table 5–3 lists the details of the hardware multiply and divide options.

The cycles per instruction value determines the maximum rate at which 
the ALU can dispatch instructions and produce each result. The latency 
value determines when the result becomes available. If there is no data 
dependency between the results and operands for back-to-back 
instructions, then the latency does not affect throughput. However, if an 
instruction depends on the result of an earlier instruction, then the 
processor stalls through any result latency cycles until the result is ready. 

In the following code example, a multiply operation (with 1 instruction 
cycle and 2 result latency cycles) is followed immediately by an add 
operation that uses the result of the multiply. On the Nios II/f core, the 
addi instruction, like most ALU instructions, executes in a single cycle. 
However, in this code example, execution of the addi instruction is 
delayed by two additional cycles until the multiply operation completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Table 5–3. Hardware Multiply & Divide Details for the Nios II/f Core

ALU Option Hardware Details Cycles per 
Instruction

Result Latency 
Cycles

Supported 
Instructions

No hardware multiply 
or divide

Multiply & divide 
instructions generate an 
exception

– – None

LE-based multiplier ALU includes 32 x 4-bit 
multiplier

11 +2 mul, muli

Embedded multiplier 
on Stratix and Stratix II 
families

ALU includes 32 x 32-bit 
multiplier

1 +2 mul, muli, 
mulxss, mulxsu, 

mulxuu

Embedded multiplier 
on Cyclone II family

ALU includes 32 x 16-bit 
multiplier

5 +2 mul, muli

Hardware divide ALU includes multicycle 
divide circuit

4 – 66 +2 div, divu
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Shift & Rotate Performance

The performance of shift operations depends on the hardware multiply 
option. When a hardware multiplier is present, the ALU achieves shift 
and rotate operations in one or two clock cycles. Otherwise, the ALU 
includes dedicated shift circuitry that achieves one-bit-per-cycle shift and 
rotate performance. Refer to Table 5–5 on page 5–11 for details.

Memory Access

The Nios II/f core provides both instruction and data caches. The cache 
size for each is user-definable, between 512 bytes and 64 Kbytes. The 
Nios II/f core supports the bit-31 cache bypass method for accessing I/O 
on the data master port. Addresses are 31 bits wide to accommodate the 
bit-31 cache bypass method.

Instruction and Data Master Ports

The instruction and data master ports on the Nios II/f core are optional. 
A master port can be excluded, as long as the core includes at least one 
tightly coupled memory to take the place of the missing master port. 

The instruction master port is a pipelined Avalon® master port. If the core 
includes data cache with a line size greater than four bytes, then the data 
master port is a pipelined Avalon master port. Otherwise, the data master 
port is not pipelined. 

Support for pipelined Avalon transfers minimizes the impact of 
synchronous memory with pipeline latency. The pipelined instruction 
and data master ports can issue successive read requests before prior 
requests complete. 

Instruction Cache

The instruction cache memory has the following characteristics:

■ Direct-mapped cache implementation
■ 32 bytes (8 words) per cache line
■ The instruction master port reads an entire cache line at a time from 

memory, and issues one read per clock cycle.
■ Critical word first

The instruction byte address is divided into the following fields:

. . . 5 4 3 2 1 0

tag line offset 0 0
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The sizes of the line and tag fields depend on the size of the cache 
memory, but the offset field is always three bits (i.e., an 8-word line). The 
maximum instruction byte address size is 31 bits. 

The instruction cache is optional. However, excluding instruction cache 
from the Nios II/f core requires that the core include at least one tightly 
coupled instruction memory. 

Data Cache

The data cache memory has the following characteristics:

■ Direct-mapped cache implementation
■ Configurable line size of 4, 16, or 32 bytes
■ The data master port reads an entire cache line at a time from 

memory, and issues one read per clock cycle.
■ Write-back
■ Write-allocate (i.e., store instructions that miss allocate the line for 

that address)

The data byte address is divided into the following fields:

The size of the line and tag fields depend on the size of the cache memory. 
The size of the offset field depends on the line size. The maximum data 
byte address size is 31 bits. 

The data cache is optional. If the data cache is excluded from the core, the 
data master port can also be excluded. 

Cache Bypass
The normal method for bypassing the data cache is to use I/O load and 
store instructions that bypass the cache. In addition, the Nios II/f core 
also implements the bit-31 cache bypass method on the data master port. 
This method uses bit 31 of the address as a tag that indicates whether the 
processor should transfer data to/from cache, or bypass it. This is a 
convenience for software, which might need to cache certain addresses 
and bypass others. Software can pass addresses as parameters between 
functions, without having to specify any further information about 
whether the addressed data is cached or not. 

. . . 2 1 0

tag line offset 0 0
Altera Corporation  5–7
November 2006 Nios II Processor Reference Handbook



Nios II/f Core
Mixing Cached and Noncached Accesses
Mixing cached and noncached accesses to the same cache line can result 
in invalid data reads. For example, the following sequence of events 
causes cache incoherency. 

1. The Nios II core writes data to cache, creating a dirty data cache line.

2. The Nios II core reads data from the same address, but bypasses the 
cache.

Software should not mix both cached and uncached accesses to the same 
cache line. If it is necessary to mix cached and uncached data accesses, 
flush the corresponding line of the data cache after completing the cached 
accesses and before performing the uncached accesses.

Tightly Coupled Memory

The Nios II/f core provides optional tightly-coupled memory interfaces 
for both instructions and data. A Nios II/f core can use up to four each of 
instruction and data tightly coupled memories. When a tightly-coupled 
memory interface is enabled, the Nios II core includes an additional 
memory interface master port. Each tightly-coupled memory interface 
must connect directly to exactly one memory slave port. 

When tightly coupled memory is present, the Nios II core decodes 
addresses internally to determine if requested instructions or data reside 
in tightly coupled memory. If the address resides in tightly coupled 
memory, the Nios II core fetches the instruction or data through the 
tightly-coupled memory interface. Software accesses tightly coupled 
memory with the usual load and store instructions, such as ldw or 
ldwio. 

Accessing tightly coupled memory bypasses cache memory. The 
processor core functions as if cache were not present for the address span 
of the tightly coupled memory. Instructions for managing cache, such as 
initd and flushd, do not affect the tightly coupled memory, even if the 
instruction specifies an address in tightly coupled memory. 

Execution Pipeline

This section provides an overview of the pipeline behavior for the benefit 
of performance-critical applications. Designers can use this information 
to minimize unnecessary processor stalling. Most application 
programmers never need to analyze the performance of individual 
instructions.
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The Nios II/f core employs a 6-stage pipeline. The pipeline stages are 
listed in Table 5–4. 

Up to one instruction is dispatched and/or retired per cycle. Instructions 
are dispatched and retired in-order. Dynamic branch prediction is 
implemented using a 2-bit branch history table. The pipeline stalls for the 
following conditions:

■ Multi-cycle instructions
■ Avalon instruction master port read accesses
■ Avalon data master port read/write accesses
■ Data dependencies on long latency instructions (e.g., load, multiply, 

shift).

Pipeline Stalls

The pipeline is set up so that if a stage stalls, no new values enter that 
stage or any earlier stages. No “catching up” of pipeline stages is allowed, 
even if a pipeline stage is empty. 

Only the A-stage and D-stage are allowed to create stalls.

The A-stage stall occurs if any of the following conditions occurs:

■ An A-stage memory instruction is waiting for Avalon data master 
requests to complete. Typically this happens when a load or store 
misses in the data cache, or a flushd instruction needs to write back 
a dirty line.

■ An A-stage shift/rotate instruction is still performing its operation. 
This only occurs with the multi-cycle shift circuitry (i.e., when the 
hardware multiplier is not available). 

■ An A-stage divide instruction is still performing its operation. This 
only occurs when the optional divide circuitry is available.

Table 5–4. Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

A Align

W Writeback
Altera Corporation  5–9
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■ An A-stage multi-cycle custom instruction is asserting its stall signal. 
This only occurs if the design includes multi-cycle custom 
instructions.

The D-stage stall occurs if the following condition occurs and no M-stage 
pipeline flush is active:

An instruction is trying to use the result of a late result instruction too 
early. The late result instructions are loads, shifts, rotates, rdctl, multiplies 
(if hardware multiply is supported), divides (if hardware divide is 
supported), and multi-cycle custom instructions (if present).

Branch Prediction

The Nios II/f core performs dynamic branch prediction to minimize the 
cycle penalty associated with taken branches.

Instruction Performance

All instructions take one or more cycles to execute. Some instructions 
have other penalties associated with their execution. Late result 
instructions have a two cycle bubble placed between them and an 
instruction that uses their result. Instructions that flush the pipeline cause 
up to three instructions after them to be cancelled. This creates a three-
cycle penalty and an execution time of four cycles. Instructions that 
require Avalon transfers are stalled until any required Avalon transfers 
(up to one write and one read) are completed. 
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Execution performance for all instructions is shown in Table 5–5. 

Exception Handling

The Nios II/f core supports the following exception types:

■ Hardware interrupt
■ Software trap
■ Unimplemented instruction

Table 5–5. Instruction Execution Performance for Nios II/f Core 

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multi-cycle custom instructions 1 Late result

Branch (correctly predicted, taken) 2

Branch (correctly predicted, not taken) 1

Branch (mis-predicted) 4 Pipeline flush

trap, break, eret, bret, flushp, wrctl, and unimplemented instructions 4 Pipeline flush

call 2

jmp, ret, callr 3

rdctl 1 Late result

load (without Avalon transfer) 1 Late result

load (with Avalon transfer) > 1 Late result

store, flushd (without Avalon transfer) 1

store, flushd (with Avalon transfer) > 1

initd 1

flushi, initi 4

Multiply (1) Late result

Divide (1) Late result

Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result

Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result

Shift/rotate (without hardware multiply present) 1 - 32 Late result 

All other instructions 1

Note to Table 5–5:
(1) Depends on the hardware multiply or divide option. See Table 5–3 on page 5 for details.
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JTAG Debug Module

The Nios II/f core supports the JTAG debug module to provide a JTAG 
interface to software debugging tools. The Nios II/f core supports an 
optional enhanced interface that allows real-time trace data to be routed 
out of the processor and stored in an external debug probe.

Unsupported Features

The Nios II/f core does not handle the execution of instructions with 
undefined opcodes. If the processor issues an instruction word with an 
undefined opcode, the resulting behavior is undefined.

Nios II/s Core The Nios II/s “standard” core is designed for small core size. On-chip 
logic and memory resources are conserved at the expense of execution 
performance. The Nios II/s core uses approximately 20% less logic than 
the Nios II/f core, but execution performance also drops by roughly 40%. 
Altera designed the Nios II/s core with the following design goals in 
mind:

■ Do not cripple performance for the sake of size.
■ Remove hardware features that have the highest ratio of resource 

usage to performance impact.

The resulting core is optimal for cost-sensitive, medium-performance 
applications. This includes applications with large amounts of code 
and/or data, such as systems running an operating system where 
performance is not the highest priority.

Overview

The Nios II/s core:

■ Has instruction cache, but no data cache
■ Can access up to 2 Gbytes of external address space
■ Supports optional tightly coupled memory for instructions
■ Employs a 5-stage pipeline
■ Performs static branch prediction
■ Provides hardware multiply, divide, and shift options to improve 

arithmetic performance
■ Supports the addition of custom instructions
■ Supports the JTAG debug module
■ Supports optional JTAG debug module enhancements, including 

hardware breakpoints and real-time trace
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The following sections discuss the noteworthy details of the Nios II/s 
core implementation. This document does not discuss low-level design 
issues, or implementation details that do not affect Nios II hardware or 
software designers.

Register File

At system generation time, the cpuid control register (clt5) is assigned 
a value that is guaranteed to be unique for each processor in the system. 

Arithmetic Logic Unit

The Nios II/s core provides several ALU options to improve the 
performance of multiply, divide, and shift operations.

Multiply & Divide Performance

The Nios II/s core provides the following hardware multiplier options:

■ No hardware multiply – Does not include multiply hardware. In this 
case, multiply operations are emulated in software.

■ Use embedded multipliers – Includes dedicated embedded multipliers 
available on the target device. This option is available only on Altera 
FPGAs that have embedded multipliers, such as the DSP blocks in 
Stratix II FPGAs.

■ Use LE-based multipliers – Includes hardware multipliers built from 
logic element (LE) resources.

The Nios II/s core also provides a hardware divide option that includes 
LE-based divide circuitry in the ALU. 

Including an ALU option improves the performance of one or more 
arithmetic instructions. 

1 The performance of the embedded multipliers differ, depending 
on the target FPGA family.
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Table 5–6 lists the details of the hardware multiply and divide options.

Shift & Rotate Performance 

The performance of shift operations depends on the hardware multiply 
option. When a hardware multiplier is present, the ALU achieves shift 
and rotate operations in three or four clock cycles. Otherwise, the ALU 
includes dedicated shift circuitry that achieves one-bit-per-cycle shift and 
rotate performance. Refer to Table 5–8 on page 5–17 for details.

Memory Access

The Nios II/s core provides instruction cache, but no data cache. The 
instruction cache size is user-definable, between 512 bytes and 64 Kbytes. 
The Nios II/s core can address up to 2 Gbyte of external memory. The 
Nios II/s core does not support bit-31 data cache bypass. The most-
significant bit of addresses is ignored.

Instruction and Data Master Ports

The instruction port on the Nios II/s core is optional. The instruction 
master port can be excluded, as long as the core includes at least one 
tightly-coupled instruction memory. The instruction master port is a 
pipelined Avalon master port. 

Support for pipelined Avalon transfers minimizes the impact of 
synchronous memory with pipeline latency. The pipelined instruction 
master port can issue successive read requests before prior requests 
complete. 

Table 5–6. Hardware Multiply & Divide Details for the Nios II/s Core

ALU Option Hardware Details Cycles per 
instruction Supported Instructions

No hardware multiply or 
divide

Multiply & divide instructions 
generate an exception

– None

LE-based multiplier ALU includes 32 x 4-bit 
multiplier

11 mul, muli

Embedded multiplier on 
Stratix and Stratix II families

ALU includes 32 x 32-bit 
multiplier

3 mul, muli, mulxss, 
mulxsu, mulxuu

Embedded multiplier on 
Cyclone II family

ALU includes 32 x 16-bit 
multiplier

5 mul, muli

Hardware divide ALU includes multicycle 
divide circuit

4 – 66 div, divu
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The data master port on the Nios II/s core is always present.

Instruction Cache

The instruction cache for the Nios II/s core is nearly identical to the 
instruction cache in the Nios II/f core. The instruction cache memory has 
the following characteristics:

■ Direct-mapped cache implementation
■ The instruction master port reads an entire cache line at a time from 

memory, and issues one read per clock cycle.
■ Critical word first

The instruction byte address is divided into the following fields:

The size of the line and tag fields depend on the size of the cache memory, 
but the offset field is always three bits (i.e., an 8-word line). The maximum 
instruction byte address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache 
from the Nios II/s core requires that the core include at least one tightly 
coupled instruction memory. 

Tightly Coupled Memory

The Nios II/s core provides optional tightly-coupled memory interfaces 
for instructions. A Nios II/s core can use up to four tightly coupled 
instruction memories. When a tightly-coupled memory interface is 
enabled, the Nios II core includes an additional memory interface master 
port. Each tightly-coupled memory interface must connect directly to 
exactly one memory slave port. 

When tightly coupled memory is present, the Nios II core decodes 
addresses internally to determine if requested instructions reside in 
tightly coupled memory. If the address resides in tightly coupled 
memory, the Nios II core fetches the instruction through the tightly-
coupled memory interface. Software does not require awareness of 
whether code resides in tightly coupled memory or not.

. . . 5 4 3 2 1 0

tag line offset 0 0
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Accessing tightly coupled memory bypasses cache memory. The 
processor core functions as if cache were not present for the address span 
of the tightly coupled memory. Instructions for managing cache, such as 
initi and flushi, do not affect the tightly coupled memory, even if the 
instruction specifies an address in tightly coupled memory. 

Execution Pipeline

This section provides an overview of the pipeline behavior for the benefit 
of performance-critical applications. Designers can use this information 
to minimize unnecessary processor stalling. Most application 
programmers never need to analyze the performance of individual 
instructions, and live happy lives without ever studying Table 5–7.

The Nios II/s core employs a 5-stage pipeline. The pipeline stages are 
listed in Table 5–7. 

Up to one instruction is dispatched and/or retired per cycle. Instructions 
are dispatched and retired in-order. Static branch prediction is 
implemented using the branch offset direction; a negative offset is 
predicted as taken, and a positive offset is predicted as not-taken. The 
pipeline stalls for the following conditions:

■ Multi-cycle instructions (e.g., shift/rotate without hardware 
multiply)

■ Avalon instruction master port read accesses
■ Avalon data master port read/write accesses
■ Data dependencies on long latency instructions (e.g., load, multiply, 

shift operations)

Pipeline Stalls

The pipeline is set up so that if a stage stalls, no new values enter that 
stage or any earlier stages. No “catching up” of pipeline stages is allowed, 
even if a pipeline stage is empty.

Table 5–7. Implementation Pipeline Stages for Nios II/s Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

W Writeback
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Only the M-stage is allowed to create stalls.

The M-stage stall occurs if any of the following conditions occurs:

■ An M-stage load/store instruction is waiting for Avalon data master 
transfer to complete.

■ An M-stage shift/rotate instruction is still performing its operation 
when using the multi-cycle shift circuitry (i.e., when the hardware 
multiplier is not available).

■ An M-stage shift/rotate/multiply instruction is still performing its 
operation when using the hardware multiplier (which takes three 
cycles).

■ An M-stage multi-cycle custom instruction is asserting its stall signal. 
This only occurs if the design includes multi-cycle custom 
instructions.

Branch Prediction

The Nios II/s core performs static branch prediction to minimize the 
cycle penalty associated with taken branches.

Instruction Performance

All instructions take one or more cycles to execute. Some instructions 
have other penalties associated with their execution. Instructions that 
flush the pipeline cause up to three instructions after them to be 
cancelled. This creates a three-cycle penalty and an execution time of four 
cycles. Instructions that require an Avalon transfer are stalled until the 
transfer completes.

Execution performance for all instructions is shown in Table 5–8. 

Table 5–8. Instruction Execution Performance for Nios II/s Core (Part 1 of 2)

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multi-cycle custom instructions 1

Branch (correctly predicted taken) 2

Branch (correctly predicted not taken) 1

Branch (mispredicted) 4 Pipeline flush

trap, break, eret, bret, 
flushp, wrctl, unimplemented

4 Pipeline flush

jmp, ret, call, callr 4 Pipeline flush
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Exception Handling

The Nios II/s core supports the following exception types:

■ Hardware interrupt
■ Software trap
■ Unimplemented instruction

JTAG Debug Module

The Nios II/s core supports the JTAG debug module to provide a JTAG 
interface to software debugging tools. The Nios II/s core supports an 
optional enhanced interface that allows real-time trace data to be routed 
out of the processor and stored in an external debug probe.

Unsupported Features

The Nios II/s core does not handle the execution of instructions with 
undefined opcodes. If the processor issues an instruction word with an 
undefined opcode, the resulting behavior is undefined.

Nios II/e Core The Nios II/e “economy” core is designed to achieve the smallest 
possible core size. Altera designed the Nios II/e core with a singular 
design goal: Reduce resource utilization any way possible, while still 
maintaining compatibility with the Nios II instruction set architecture. 

rdctl 1

load, store > 1

flushi, initi 4

Multiply (1)

Divide (1)

Shift/rotate (with hardware multiply using embedded multipliers) 3

Shift/rotate (with hardware multiply using LE-based multipliers) 4

Shift/rotate (without hardware multiply present) 1 to 32

All other instructions 1

Note to Table 5–8:
(1) Depends on the hardware multiply or divide option. See Table 5–6 on page 14 for details.

Table 5–8. Instruction Execution Performance for Nios II/s Core (Part 2 of 2)

Instruction Cycles Penalties
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Hardware resources are conserved at the expense of execution 
performance. The Nios II/e core is roughly half the size of the Nios II/s 
core, but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications, as well as 
applications that require simple control logic. 

Overview

The Nios II/e core:

■ Executes at most one instruction per six clock cycles
■ Can access up to 2 Gbytes of external address space
■ Supports the addition of custom instructions
■ Supports the JTAG debug module
■ Does not provide hardware support for potential unimplemented 

instructions 
■ Has no instruction cache or data cache
■ Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e 
core implementation. This document does not discuss low-level design 
issues, or implementation details that do not affect Nios II hardware or 
software designers.

Register File

At system generation time, the cpuid control register (clt5) is assigned 
a value that is guaranteed to be unique for each processor in the system. 

Arithmetic Logic Unit

The Nios II/e core does not provide hardware support for any of the 
potential unimplemented instructions. All unimplemented instructions 
are emulated in software.

The Nios II/e core employs dedicated shift circuitry to perform shift and 
rotate operations. The dedicated shift circuitry achieves one-bit-per-cycle 
shift and rotate operations.

Memory Access

The Nios II/e core does not provide instruction cache or data cache. All 
memory and peripheral accesses generate an Avalon transfer. The 
Nios II/e core can address up to 2 Gbytes of external memory. The core 
Altera Corporation  5–19
November 2006 Nios II Processor Reference Handbook



Nios II/e Core
does not support bit-31 data cache bypass. However, the most-significant 
bit of addresses is ignored to maintain consistency with Nios II core 
implementations that do support bit-31 cache bypass method.

Instruction Execution Stages

This section provides an overview of the pipeline behavior as a means of 
estimating assembly execution time. Most application programmers 
never need to analyze the performance of individual instructions. 

Instruction Performance

The Nios II/e core dispatches a single instruction at a time, and the 
processor waits for an instruction to complete before fetching and 
dispatching the next instruction. Because each instruction completes 
before the next instruction is dispatched, branch prediction is not 
necessary. This greatly simplifies the consideration of processor stalls. 
Maximum performance is one instruction per six clock cycles. To achieve 
six cycles, the Avalon instruction master port must fetch an instruction in 
one clock cycle. A stall on the Avalon instruction master port directly 
extends the execution time of the instruction.

Execution performance for all instructions is shown in Table 5–9. 

Table 5–9. Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add, 
cmplt)

6

branch, jmp, ret, call, callr 6

trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

load word 6 + Duration of Avalon read transfer

load halfword 9 + Duration of Avalon read transfer

load byte 10 + Duration of Avalon read transfer

store 6 + Duration of Avalon write transfer

Shift, rotate 7 to 38

All other instructions 6

Combinatorial custom instructions 6

Multi-cycle custom instructions ≥6
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Exception Handling

The Nios II/e core supports the following exception types:

■ Hardware interrupt
■ Software traps
■ Unimplemented instruction

JTAG Debug Module

The Nios II/e core supports the JTAG debug module to provide a JTAG 
interface to software debugging tools. The JTAG debug module on the 
Nios II/e core does not support hardware breakpoints or trace. 

Unsupported Features

The Nios II/e core does not handle the execution of instructions with 
undefined opcodes. If the processor issues an instruction word with an 
undefined opcode, the resulting behavior is undefined.

Document 
Revision History

Table 5–10 shows the revision history for this document.

Table 5–10. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

Add preliminary Stratix III device family support Stratix III device family

May 2006, v6.0.0 Performance for flushi and initi instructions changes from 
1 to 4 cycles for Nios II/s and Nios II/f cores.

October 2005, 
v5.1.0

No change from previous release. 

May 2005, v5.0.0 Updates to Nios II/f and Nios II/s cores. Added tightly coupled 
memory and new data cache options. Corrected cycle counts for 
shift/rotate operations.

December 2004, 
v1.2

Updates to Multiple & Divide Performance section for Nios II/f & 
Nios II/s cores.

September 2004, 
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication. 
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6. Nios II Processor Revision
History
Introduction Each release of the Nios® II Embedded Design Suite (EDS) introduces 
improvements to the Nios II processor, the software development tools, 
or both. This document catalogs the history of revisions to the Nios II 
processor; it does not track revisions to development tools, such as the 
Nios II IDE. 

Improvements to the Nios II processor may affect:

■ Features of the Nios II architecture – An example of an architecture 
revision is adding instructions to support floating-point arithmetic.

■ Implementation of a specific Nios II core – An example of a core revision 
is increasing the maximum possible size of the data cache memory 
for the Nios II/f core.

■ Features of the JTAG debug module – An example of a JTAG debug 
module revision is adding an additional trigger input to the JTAG 
debug module, allowing it to halt processor execution on a new type 
of trigger event.

Altera implements Nios II revisions such that code written for an existing 
Nios II core also works on future revisions of the same core. 

Nios II Versions The number for any version of the Nios II processor is determined by the 
version of the Nios II EDS. For example, in the Nios II EDS version 6.0, all 
Nios II cores are also version 6.0. 
  6–1
 



Architecture Revisions
Table 6–1 lists the version numbers of all releases of the Nios II processor.

Architecture 
Revisions

Architecture revisions augment the fundamental capabilities of the 
Nios II architecture, and affect all Nios II cores. A change in the 
architecture mandates a revision to all Nios II cores to accommodate the 
new architectural enhancement. For example, when Altera adds a new 

Table 6–1. Nios II Processor Revision History

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 The name Nios II Development Kit describing the software 
development tools changed to Nios II Embedded Design Suite.

5.1 SP1 January 2006 Bug fix for Nios II/f core.

5.1 October 2005 No changes.

5.0 May 2005 ● Changed version nomenclature. Altera® now aligns the Nios II 
processor version with Altera's Quartus II® software version.

● Memory structure enhancements: 
(1) Added tightly coupled memory.
(2) Made data cache line size configurable.
(3) Made cache optional in Nios II/f and Nios II/s cores.

● Verified Cyclone™ II device support in hardware.
● Support for HardCopy® devices.

1.1 December 2004 ● Minor enhancements to the architecture: Added cpuid control 
register, and updated the break instruction. 

● Increased user control of multiply and shift hardware in the 
arithmetic logic unit (ALU) for Nios II/s & Nios II/f cores.

● Minor bug fixes.

1.01 September 2004 ● Verified Stratix™ II device support in hardware.
● Minor bug fixes.

1.0 May2004 Initial release of the Nios processor.
6–2  Altera Corporation
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Nios II Processor Revision History
instruction to the instruction set, Altera consequently must update all 
Nios II cores to recognize the new instruction. Table 6–2 lists revisions to 
the Nios II architecture.

Core Revisions Core revisions introduce changes to an existing Nios II core. Core 
revisions most commonly fix identified bugs, or add support for an 
architecture revision. Not every Nios II core is revised with every release 
of the Nios II architecture. 

Nios II/f Core

Table 6–3 lists revisions to the Nios II/f core.

Table 6–2. Nios II Architecture Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 Added optional cpu_resetrequest and and cpu_resettaken 
signals to all processor cores.

5.1 October 2005 No changes.

5.0 May 2005 Added the flushda instruction.

1.1 December 2004 ● Added cpuid control register.
● Updated break instruction specification to accept an immediate 

argument for use by debugging tools.

1.01 September 2004 No changes.

1.0 May 2004 Initial release of the Nios II processor architecture.

Table 6–3. Nios II/f Core Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4 
cycles. (SPR 201456)

5.1 SP1 January 2006 Bug Fix:
Back-to-back store instructions can cause memory corruption to the 
stored data. If the first store is not to the last word of a cache line and the 
second store is to the last word of the line, memory corruption occurs. 
(SPR 201895)

5.1 October 2005 No changes.
Altera Corporation  6–3
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Core Revisions
5.0 May 2005 ● Added optional tightly coupled memory ports. Designers can add zero 
to four tightly coupled instruction master ports, and zero to four tightly 
coupled data master ports.

● Made the data cache line size configurable. Designers can configure 
the data cache with the following line sizes: 4, 16, or 32 bytes. 
Previously, the data cache line size was fixed at 4 bytes. 

● Made instruction and data caches optional (previously, cache 
memories were always present). If the instruction cache is not present, 
the Nios II core does not have an instruction master port, and must use 
a tightly coupled instruction memory.

● Verified Cyclone II device support in hardware.
● Full support for HardCopy devices (previous versions required a work 

around to support HardCopy devices).

1.1 December 2004 ● Added user-configurable options affecting multiply and shift 
operations. Now designers can choose one of three options:
(1) Use embedded multiplier resources available in the target device 
family (previously available).
(2) Use logic elements to implement multiply and shift hardware (new 
option). 
(3) Omit multiply hardware. Shift operations take one cycle per bit 
shifted; multiply operations are emulated in software (new option).

● Added cpuid control register.
● Bug Fix:

Interrupts that were disabled by wrctl ienable remained enabled 
for one clock cycle following the wrctl instruction. Now the 
instruction following such a wrctl cannot be interrupted. (SPR 
164828)

1.01 September 2004 ● Verified Stratix II device support in hardware. 
● Bug Fixes:

(1) When a store to memory is followed immediately in the pipeline by 
a load from the same memory location, and the memory location is 
held in d-cache, the load may return invalid data.This situation can 
occur in C code compiled with optimization off (-O0). (SPR 158904) 
(2) The SOPC Builder top-level system module included an extra, 
unnecessary output port for systems with very small address spaces. 
(SPR 155871) 

1.0 May 2004 Initial release of the Nios II/f core.

Table 6–3. Nios II/f Core Revisions

Version Release Date Notes
6–4  Altera Corporation
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Nios II/s Core

Table 6–4 lists revisions to the Nios II/s core.

Table 6–4. Nios II/s Core Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 ● Cycle count for flushi and initi instructions changes from 1 to 4 
cycles. (SPR 201456)

5.1 October 2005 No changes.

5.0 May 2005 ● Added optional tightly coupled memory ports. Designers can add zero 
to four tightly coupled instruction master ports.

● Made instruction cache optional (previously instruction cache was 
always present). If the instruction cache is not present, the Nios II core 
does not have an instruction master port, and must use a tightly coupled 
instruction memory.

● Verified Cyclone II device support in hardware.
● Full support for HardCopy devices (previous versions required a work 

around to support HardCopy devices).

1.1 December 2004 ● Added user-configurable options affecting multiply and shift operations. 
Now designers can choose one of three options:
(1) Use embedded multiplier resources available in the target device 
family (previously available).
(2) Use logic elements to implement multiply and shift hardware (new 
option). 
(3) Omit multiply hardware. Shift operations take one cycle per bit 
shifted; multiply operations are emulated in software (new option).

● Added user-configurable option to include divide hardware in the ALU. 
Previously this option was available for only the Nios II/f core.

● Added cpuid control register.

1.01 September 2004 ● Verified Stratix II device support in hardware. 
● Bug Fix:

The SOPC Builder top-level system module included an extra, 
unnecessary output port for systems with very small address spaces. 
(SPR 155871) 

1.0 May 2004 Initial release of the Nios II/s core.
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Nios II/e Core

Table 6–5 lists revisions to the Nios II/e core.

JTAG Debug 
Module 
Revisions

JTAG debug module revisions augment the debug capabilities of the 
Nios II processor, or fix bugs isolated within the JTAG debug module 
logic. 

Table 6–5. Nios II/e Core Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 ● Verified Cyclone II device support in hardware.
● Full support for HardCopy devices (previous versions required a work 

around to support HardCopy devices).

1.1 December 2004 Added cpuid control register. 

1.01 September 2004 ● Verified Stratix II device support in hardware. 
● Bug Fix:

The SOPC Builder top-level system module included an extra, 
unnecessary output port for systems with very small address spaces. 
(SPR 155871) 

1.0 May 2004 Initial release of the Nios II/e core.
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Table 6–6 lists revisions to the JTAG debug module.

Table 6–6. JTAG Debug Module Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Full support for HardCopy devices (previous versions of the JTAG debug 
module did not support HardCopy devices).

1.1 December 2004 Bug fix:
When using the Nios II/s and Nios II/f cores, hardware breakpoints may 
have falsely triggered when placed on the instruction sequentially following 
a jmp, trap, or any branch instruction. (SPR 158805)

1.01 September 2004 ● Feature enhancements: 
(1) Added the ability to trigger based on the instruction address. Uses 
include triggering trace control (trace on/off), sequential triggers (see 
below), and trigger in/out signal generation.
(2) Enhanced trace collection such that collection can be stopped when 
the trace buffer is full without halting the Nios II processor.
(3) Armed triggers – Enhanced trigger logic to support two levels of 
triggers, or "armed triggers"; enabling the use of "Event A then event B" 
trigger definitions.

● Bug fixes:
(1) On the Nios II/s core, trace data sometimes recorded incorrect 
addresses during interrupt processing. (SPR 158033)
(2) Under certain circumstances, captured trace data appeared to start 
earlier or later than the desired trigger location. (SPR 154467)
(3) During debug, the processor would hang if a hardware breakpoint 
and an interrupt occurred simultaneously. (SPR 154097) 

1.0 May 2004 Initial release of the JTAG debug module.
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Document 
Revision History

Table 6–7 shows the revision history for this document.

Table 6–7. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

No change from previous release. 

May 2006, v6.0.0 Updates for Nios II cores version 6.0.

October 2005, 
v5.1.0

Updates for Nios II cores version 5.1.

May 2005, v5.0.0 Updates for Nios II cores version 5.0.

December 2004, 
v1.1

Updates for Nios II cores version 1.1. 

September 2004 
,v1.0

First publication.
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7. Application Binary
Interface
This section describes the Application Binary Interface (ABI) for the 
Nios® II processor. The ABI describes:

■ How data is arranged in memory
■ Behavior and structure of the stack
■ Function calling conventions

Data Types Table 7–1 shows the size and representation of the C/C++ data types for 
the Nios II processor.

Memory 
Alignment

Contents in memory are aligned as follows:

■ A function must be aligned to a minimum of 32-bit boundary. 
■ The minimum alignment of a data element is its natural size. A data 

element larger than 32-bits need only be aligned to a 32-bit boundary. 

Table 7–1. Representation of Data Types

Type Size (Bytes) Representation

char, signed char 1 2s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 2s complement

unsigned short 2 binary

int, signed int 4 2s complement

unsigned int 4 binary

long, signed long 4 2s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 2s complement

unsigned long long 8 binary
  6.0 7–1
 



Register Usage
■ Structures, unions, and strings must be aligned to a minimum of 
32 bits. 

■ Bit-fields inside structures are always 32-bit aligned. 

Register Usage The ABI adds additional usage conventions to the Nios II register file 
defined in the Programming Model chapter of the Nios II Processor Reference 
Handbook. The ABI uses the registers as shown in Table 7–2. 

Table 7–2. Nios II ABI Register Usage (Part 1 of 2)

Register Name Used by 
Compiler

Callee Saved 
(1) Normal Usage

r0 zero v 0x00000000

r1 at Assembler Temporary

r2 v Return Value (Least-significant 32 bits)

r3 v Return Value (Most-significant 32 bits)

r4 v Register Arguments (First 32 bits)

r5 v Register Arguments (Second 32 bits)

r6 v Register Arguments (Third 32 bits)

r7 v Register Arguments (Fourth 32 bits)

r8 v Caller-Saved General-Purpose Registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v
r16 v v Callee-Saved General-Purpose Registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v v
r23 v v
r24 et Exception Temporary
7–2   6.0 Altera Corporation
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The endianess of values greater than 8-bits is little endian. The upper 
8 bits of a value are stored at the higher byte address. 

Stacks The stack grows downward (i.e. towards lower addresses). The Stack 
Pointer points to the last used slot. The frame grows upwards, which 
means that the Frame Pointer points to the bottom of the frame. 

Figure 7–1 shows an example of the structure of a current frame. In this 
case, function a() calls function b(), and the stack is shown before the 
call and after the prolog in the called function has completed.

r25 bt Break Temporary

r26 gp v Global Pointer

r27 sp v Stack Pointer

r28 fp v Frame Pointer (2)

r29 ea Exception Return Address

r30 ba Break Return Address

r31 ra v Return Address

Notes to Table 7–2:
(1) A function may use one of these registers if it saves it first. The function must restore the register's original value 

before exiting. 
(2) If the frame pointer is not used, the register is available as a temporary. See “Frame Pointer Elimination” on 

page 7–4. 

Table 7–2. Nios II ABI Register Usage (Part 2 of 2)

Register Name Used by 
Compiler

Callee Saved 
(1) Normal Usage
Altera Corporation   6.0 7–3
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Stacks
Figure 7–1. Stack Pointer, Frame Pointer & the Current Frame

Each section of the current frame is aligned to a 32-bit boundary. The ABI 
requires the stack pointer be 32-bit aligned at all times. 

Frame Pointer Elimination

Because, in the normal case, the frame pointer is the same as the stack 
pointer, the information in the frame pointer is redundant. Therefore, to 
achieve most optimal code, eliminating the frame pointer is desirable. 
However, when the frame pointer is eliminated, because debuggers have 
issues locating the stack properly, debugging without a frame pointer is 
difficult to do. When the frame pointer is eliminated, register fp becomes 
available as a temporary.

Call Saved Registers

Implementation note: the compiler is responsible for saving registers that 
need to be saved in a function. If there are any such registers, they are 
saved on the stack in this order from high addresses: ra, fp, r2, r3, r4, 
r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, 
r20, r21, r22, r23, r24, r25, gp, and sp. Stack space is not allocated for 
registers that are not saved.

p g () g p g

incoming
stack

arguments

saved
registers
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outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
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stack
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space for 
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Further Examples of Stacks

There are a number of special cases for stack layout, which are described 
in this section.

Stack Frame for a Function With alloca()

Figure 7–2 depicts what the frame looks like after alloca() is called. 
The space allocated by alloca() replaces the outgoing arguments and the 
outgoing arguments get new space allocated at the bottom of the frame. 

Implementation note: the Nios II C/C++ compiler maintains a frame 
pointer for any function that calls alloca(), even if –fomit-frame-
pointer is specifed.

Figure 7–2. Stack Frame after Calling alloca()

Stack Frame for a Function with Variable Arguments

Functions that take variable arguments still have their first 16-bytes of 
arguments arriving in registers r4 through r7, just like other functions.

Implementation note: In order for varargs to work, functions that take 
variable arguments will allocate 16 extra bytes of storage on the stack. 
They will copy to the stack the first 16-bytes of their arguments from 
registers r4 through r7 as shown in Figure 7–3. 

higher addresses

lower addresses

space for
outgoing 

stack
 arguments

sp

sp

space for
outgoing 

stack
 arguments

memory
allocated

by
alloca()

Before After calling alloca()
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Stacks
Figure 7–3. Stack Frame Using Variable Arguments

Stack Frame for a Function with Structures Passed By Value

Functions that take struct value arguments still have their first 16-bytes of 
arguments arriving in registers r4 through r7, just like other functions.

Implementation note: if part of a structure is passed via registers, the 
function may need to copy the register contents back to the stack. This is 
similar to the variable arguments case as shown in Figure 7–3. 

Function Prologs

The Nios II C/C++ compiler generates function prologs that allocate the 
stack frame of a function for storage of stack temporaries and outgoing 
arguments. In addition, each prolog is responsible for saving any state of 
its calling function for variables marked callee-saved by the ABI. The 
callee-saved register are listed in Table 7–2 on page 7–2. A function prolog 
is required to save a callee saved register only if the function will be using 
the register.

In Function a()
Just Prior to Calling b()

In Function b()
Just after Executing Prolog

incoming
stack

arguments

saved
registers
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stack
arguments

Allocated and freed by a()
(i.e. the calling function)
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(i.e. the current function)

outgoing
stack
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Lower addresses fp and sp

fp and sp

copy of r7
copy of r6
copy of r5
copy of r4
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Debuggers can use the knowledge of how the function prologs work to 
disassemble the instructions to reconstruct state when doing a back trace. 
Preferably, debuggers can use information stored in the DWARF2 
debugging information to find out what a prolog has done.

The instructions found in a Nios II function prolog perform the following 
tasks:

■ Adjust the SP (to allocate the frame)
■ Store registers to the frame.
■ Assign the SP to the FP

Example 7–1 shows an example of a function prolog.

Example 7–1. A function prolog

/* Adjust the stack pointer */
addisp, sp, -120/* make a 120 byte frame */

/* Store registers to the frame */
stw ra, 116(sp)/* store the return address */
stw fp, 112(sp)/* store the frame pointer*/
stw r16, 108(sp)/* store callee-saved register */
stw r17, 104(sp) /* store callee-saved register */

/* Set the new frame pointer */
mov fp, sp

Prolog Variations

The following variations can occur in a prolog:

■ If the function’s frame size is greater than 32,767 bytes, extra 
temporary registers will be used in the calculation of the new SP as 
well as for the offsets of where to store callee-saved registers. This is 
due to the maximum size of immediate values allowed by the Nios II 
processor.

■ If the frame pointer is not in use, the move of the SP to FP will not 
happen.

■ If variable arguments are used, there will be extra instructions to 
store the argument registers to the stack.

■ If the function is a leaf function, the return address will not be saved.
■ If optimizations are on, especially instruction scheduling, the order 

of the instructions may change and may become interlaced with 
instructions located after the prolog.
Altera Corporation   6.0 7–7
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Arguments & 
Return Values

This section discusses the details of passing arguments to functions and 
returning values from functions.

Arguments

The first 16-bytes to a function are passed in registers r4 through r7. The 
arguments are passed as if a structure containing the types of the 
arguments was constructed, and the first 16-bytes of the structure are 
located in r4 through r7. 

A simple example: 

int function (int a, int b);

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16-bytes of the struct are assigned to r4 through r7. Therefore 
r4 is assigned the value of a and r5 the value of b.

The first 16-bytes to a function taking variable arguments are passed the 
same way as a function not taking variable arguments. The called 
function must clean-up the stack as necessary to support the variable 
arguments. See “Stack Frame for a Function with Variable Arguments” on 
page 7–5.

Return Values

Return values of types up to 8-bytes are returned in r2 and r3. For return 
values greater than 8-bytes, the caller must allocate memory for the result 
and must pass the address of the result memory as a hidden zero 
argument. 

The hidden zero argument is best explained through an example.
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Example 7–2. Example: function a() calls function b(), which returns a struct.
/* b() computes a structure-type result and returns it 
*/
STRUCT b(int i, int j)
{

...
return result;

}

void a(...)
{

...
value = b(i, j);

}

In this example, as long as the result type is no larger than 8 bytes, b() 
will return its result in r2 and r3. 

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats 
this program as if a() had passed a pointer to b(). The example below 
shows how the Nios II C/C++ compiler sees the code above.

Example 7–3. void b(STRUCT *p_result, int i, int j)
{

...
*p_result = result;

}

void a(...)
{

STRUCT value;
...
b(*value, i, j);

}

Altera Corporation   6.0 7–9
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Document 
Revision History

Table 7–3 shows the revision history for this document.

Table 7–3. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

No change from previous release. 

May 2006, v6.0.0 No change from previous release. 

October 2005, 
v5.1.0

No change from previous release. 

May 2005, v5.0.0 No change from previous release. 

May 2004, v1.0 First publication. 
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8. Instruction Set Reference
Introduction This section introduces the Nios® II instruction-word format and 
provides a detailed reference of the Nios II instruction set. 

Word Formats There are three types of Nios II instruction word format: I-type, R-type, 
and J-type.

I-Type

The defining characteristic of the I-type instruction-word format is that it 
contains an immediate value embedded within the instruction word. I-
type instructions words contain:

■ A 6-bit opcode field OP
■ Two 5-bit register fields A and B
■ A 16 bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field 
B specifies the destination register. IMM16 is considered signed except for 
logical operations and unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi 
and andi; branch operations; load and store operations; and cache-
management operations. 

The I-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP
  8–1
 



Word Formats
R-Type

The defining characteristic of the R-type instruction-word format is that 
all arguments and results are specified as registers. R-type instructions 
contain:

■ A 6-bit opcode field OP
■ Three 5-bit register fields A, B, and C
■ An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C 
specifies the destination register. Some R-Type instructions embed a small 
immediate value in the low-order bits of OPX. 

R-type instructions include arithmetic and logical operations such as add 
and nor; comparison operations such as cmpeq and cmplt; the custom 
instruction; and other operations that need only register operands. 

The R-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP
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J-Type

J-type instructions contain:

■ A 6-bit opcode field 
■ A 26-bit immediate data field

The only J-type instruction is call.

The J-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMMED26 OP
Altera Corporation  8–3
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Instruction 
Opcodes

The OP field in the Nios II instruction word specifies the major class of an 
opcode as shown in Table 8–1 and Table 8–2. Most values of OP are 
encodings for I-type instructions. One encoding, OP = 0x00, is the J-type 
instruction call. Another encoding, OP = 0x3a, is used for all R-type 
instructions, in which case, the OPX field differentiates the instructions. 
All unused encodings of OP and OPX are reserved.  

Table 8–1. OP Encodings 

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

0x01 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38

0x09 0x19 0x29 0x39

0x0A 0x1A 0x2A 0x3A R-Type

0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F
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Table 8–2. OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D 

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F
Altera Corporation  8–5
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Assembler Pseudo-instructions
Assembler 
Pseudo-
instructions

Table 8–3 lists pseudoinstructions available in Nios II assembly language. 
Pseudoinstructions are used in assembly source code like regular 
assembly instructions. Each pseudoinstruction is implemented at the 
machine level using an equivalent instruction. The movia 
pseudoinstruction is the only exception, being implemented with two 
instructions. Most pseudoinstructions do not appear in disassembly 
views of machine code.

Table 8–3. Assembler Pseudoinstructions

Pseudoinstruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label orhi rB, r0, %hiadj(label)
addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi, rB, rA, IMMED addi rB, rA, IMMED
8–6  Altera Corporation
Nios II Processor Reference Handbook November 2006



Instruction Set Reference
Assembler 
Macros

The Nios II assembler provides macros to extract halfwords from labels 
and from 32-bit immediate values. Table 8–4 lists the available macros. 
These macros return 16-bit signed values or 16-bit unsigned values 
depending on where they are used. When used with an instruction that 
requires a 16-bit signed immediate value, these macros return a value 
ranging from –32768 to 32767. When used with an instruction that 
requires a 16-bit unsigned immediate value, these macros return a value 
ranging from 0 to 65535.

Table 8–4. Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xffff

%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xffff

%hiadj(immed32) Extract bits [31..16] and adds bit 15 of immed32 ((immed32 >> 16) & 0xffff) + 
((immed32 >> 15) & 0x1)

%gprel(immed32) Replace the immed32 address with an offset 

from the global pointer (1) 

immed32 –_gp

Note to Table 8–4:
(1) See the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more 

information about global pointers.
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Instruction Set Reference
Instruction Set 
Reference

The following pages list all Nios II instruction mnemonics in alphabetical 
order. Table 8–5 shows the notation conventions used to describe 
instruction operation.

Table 8–5. Notation Conventions 

Notation Meaning

X ← Y X is written with Y

PC ← X The program counter (PC) is written with address X; the 
instruction at X will be the next instruction to execute

PC The address of the assembly instruction in question 

rA, rB, rC One of the 32-bit general-purpose registers

IMMn An n-bit immediate value, embedded in the instruction word

IMMED An immediate value

Xn The nth bit of X, where n = 0 is the LSB

Xn..m Consecutive bits n through m of X

0xNNMM Hexadecimal notation 

X : Y Bitwise concatenation 
For example, (0x12 : 0x34) = 0x1234

σ(X) The value of X after being sign-extended into a full register-
sized signed integer

X >> n The value X after being right-shifted n bit positions

X << n The value X after being left-shifted n bit positions

X & Y Bitwise logical AND

X | Y Bitwise logical OR

X ^ Y Bitwise logical XOR

~X Bitwise logical NOT (one’s complement)

Mem8[X] The byte located in data memory at byte-address X

Mem16[X] The halfword located in data memory at byte-address X

Mem32[X] The word located in data memory at byte-address X

label An address label specified in the assembly file

(signed) rX The value of rX treated as a signed number

(unsigned) rX The value of rX, treated as an unsigned number
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add
add
Operation: rC ←  rA + rB

Assembler Syntax: add rC, rA, rB

Example: add r6, r7, r8

Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and 
unsigned addition.

Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking 
whether the unsigned sum is less than one of the unsigned operands. The carry bit 
can be written to a register, or a conditional branch can be taken based on the carry 
condition. Both cases are shown below.

add rC, rA, rB
cmpltu rD, rC, rA

add rC, rA, rB
bltu rC, rA, label

; The original add operation
; rD is written with the carry bit

; The original add operation
; Branch if carry was generated

Overflow Detection (signed operands): 

An overflow is detected when two positives are added and the sum is negative, or 
when two negatives are added and the sum is positive. The overflow condition can 
control a conditional branch, as shown below.

add rC, rA, rB 
xor rD, rC, rA 
xor rE, rC, rB 
and rD, rD, rE 
blt rD, r0,label

; The original add operation
; Compare signs of sum and rA
; Compare signs of sum and rB
; Combine comparisons
; Branch if overflow occurred

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x31 0 0x3a
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addi
addi
add immediate

Operation: rB ←  rA + σ (IMM16)

Assembler Syntax: addi rB, rA, IMM16

Example: addi r6, r7, -100

Description: Sign-extends the 16-bit immediate value and adds it to the value of rA. Stores the sum 
in rB.

Usage: Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking 
whether the unsigned sum is less than one of the unsigned operands. The carry bit 
can be written to a register, or a conditional branch can be taken based on the carry 
condition. Both cases are shown below.

addi rB, rA, IMM16
cmpltu rD, rB, rA

addi rB, rA, IMM16
bltu rB, rA, label

; The original add operation
; rD is written with the carry bit

; The original add operation
; Branch if carry was generated

Overflow Detection (signed operands): 

An overflow is detected when two positives are added and the sum is negative, or 
when two negatives are added and the sum is positive. The overflow condition can 
control a conditional branch, as shown below.

addi rB, rA, IMM16 
xor rC, rB, rA 
xorhi rD, rB, IMM16 
and rC, rC, rD 
blt rC, r0,label

; The original add operation
; Compare signs of sum and rA
; Compare signs of sum and IMM16
; Combine comparisons
; Branch if overflow occurred

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x04
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and
and
bitwise logical and

Operation: rC ← rA & rB

Assembler Syntax: and rC, rA, rB

Example: and r6, r7, r8

Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0e 0 0x3a
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andhi
andhi
bitwise logical and immediate into high halfword

Operation: rB ← rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, IMM16

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in 
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2c
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andi
andi
bitwise logical and immediate

Operation: rB ← rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA, IMM16

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in 
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB 
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0c
Altera Corporation  8–13
November 2006 Nios II Processor Reference Handbook



beq
beq
branch if equal 

Operation: if (rA == rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: beq rA, rB, label

Example: beq r6, r7, label

Description: If rA == rB, then beq transfers program control to the instruction at label. In the 
instruction encoding, the offset given by IMM16 is treated as a signed number of bytes 
relative to the instruction immediately following beq. The two least-significant bits of 
IMM16 are always zero, because instruction addresses must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x26
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bge
bge
branch if greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bge rA, rB, label

Example: bge r6, r7, top_of_loop

Description: If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at 
label. In the instruction encoding, the offset given by IMM16 is treated as a signed 
number of bytes relative to the instruction immediately following bge. The two least-
significant bits of IMM16 are always zero, because instruction addresses must be 
word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0e
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bgeu
bgeu
branch if greater than or equal unsigned 

Operation: if ((unsigned) rA >= (unsigned) rB)
then PC ← PC + 4 + σ (IMM16) 
else PC ← PC + 4

Assembler Syntax: bgeu rA, rB, label

Example: bgeu r6, r7, top_of_loop

Description: If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the 
instruction at label. In the instruction encoding, the offset given by IMM16 is treated as 
a signed number of bytes relative to the instruction immediately following bgeu. The 
two least-significant bits of IMM16 are always zero, because instruction addresses 
must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2e
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bgt
bgt
branch if greater than signed 

Operation: if ((signed) rA > (signed) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: bgt rA, rB, label

Example: bgt r6, r7, top_of_loop

Description: If (signed) rA > (signed) rB, then bgt transfers program control to the instruction at 
label. 

Pseudoinstruction: bgt is implemented with the blt instruction by swapping the register operands.
Altera Corporation  8–17
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bgtu
bgtu
branch if greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: bgtu rA, rB, label

Example: bgtu r6, r7, top_of_loop

Description: If (unsigned) rA > (unsigned) rB, then bgtu transfers program control to the 
instruction at label. 

Pseudoinstruction: bgtu is implemented with the bltu instruction by swapping the register operands.
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ble
ble
branch if less than or equal signed

Operation: if ((signed) rA <= (signed) rB)
then PC ← label 
else PC ← PC + 4

Assembler Syntax: ble rA, rB, label

Example: ble r6, r7, top_of_loop

Description: If (signed) rA <= (signed) rB, then ble transfers program control to the instruction at 
label. 

Pseudoinstruction: ble is implemented with the bge instruction by swapping the register operands.
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bleu
bleu
branch if less than or equal to unsigned

Operation: if ((unsigned) rA <= (unsigned) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: bleu rA, rB, label

Example: bleu r6, r7, top_of_loop

Description: If (unsigned) rA <= (unsigned) rB, then bleu transfers program counter to the 
instruction at label. 

Pseudoinstruction: bleu is implemented with the bgeu instruction by swapping the register operands.
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blt
blt
branch if less than signed

Operation: if ((signed) rA < (signed) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: blt rA, rB, label

Example: blt r6, r7, top_of_loop

Description: If (signed) rA < (signed) rB, then blt transfers program control to the instruction at 
label. In the instruction encoding, the offset given by IMM16 is treated as a signed 
number of bytes relative to the instruction immediately following blt. The two least-
significant bits of IMM16 are always zero, because instruction addresses must be 
word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x16
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bltu
bltu
branch if less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bltu rA, rB, label

Example: bltu r6, r7, top_of_loop

Description: If (unsigned) rA < (unsigned) rB, then bltu transfers program control to the 
instruction at label. In the instruction encoding, the offset given by IMM16 is treated as 
a signed number of bytes relative to the instruction immediately following bltu. The 
two least-significant bits of IMM16 are always zero, because instruction addresses 
must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
MM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x36
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bne
bne
branch if not equal

Operation: if (rA != rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bne rA, rB, label

Example: bne r6, r7, top_of_loop

Description: If rA != rB, then bne transfers program control to the instruction at label. In the 
instruction encoding, the offset given by IMM16 is treated as a signed number of bytes 
relative to the instruction immediately following bne.The two least-significant bits of 
IMM16 are always zero, because instruction addresses must be word-aligned. 

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1e
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br
br
unconditional branch

Operation: PC ← PC + 4 + σ (IMM16)

Assembler Syntax: br label

Example: br top_of_loop

Description: Transfers program control to the instruction at label. In the instruction encoding, the 
offset given by IMM16 is treated as a signed number of bytes relative to the instruction 
immediately following br. The two least-significant bits of IMM16 are always zero, 
because instruction addresses must be word-aligned.

Instruction Type: I

Instruction Fields: IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 IMM16 0x06
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break
break
debugging breakpoint

Operation: bstatus ← status
PIE ← 0
U ← 0
ba ← PC + 4 
PC ← break handler address

Assembler Syntax: break
break imm5

Example: break

Description: Breaks program execution and transfers control to the debugger break-processing 
routine. Saves the address of the next instruction in register ba and saves the contents 
of the status register in bstatus. Disables interrupts, then transfers execution to 
the break handler.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the 
debugger.

break with no argument is the same as break 0.

Usage: break is used by debuggers exclusively. Only debuggers should place break in a 
user program, operating system, or exception handler. The address of the break 
handler is specified at system generation time.

Some debuggers support break and break 0 instructions in source code. These 
debuggers treat the break instruction as a normal breakpoint.

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1e 0x34 IMM5 0x3a
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bret
bret
breakpoint return

Operation: status ← bstatus
PC ← ba

Assembler Syntax: bret

Example: bret

Description: Copies the value of bstatus into the status register, then transfers execution to 
the address in ba.

Usage: bret is used by debuggers exclusively and should not appear in user programs, 
operating systems, or exception handlers.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0 0x09 0 0x3a
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call
call
call subroutine

Operation: ra ← PC + 4

PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: call label

Example: call write_char

Description: Saves the address of the next instruction in register ra, and transfers execution to the 
instruction at address (PC31..28 : IMM26 × 4). 

Usage: call can transfer execution anywhere within the 256 MB range determined by 
PC31..28. The linker must handle cases in which the address is out of this range.

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0
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callr
callr
call subroutine in register

Operation: ra ← PC + 4
PC ← rA

Assembler Syntax: callr rA

Example: callr r6

Description: Saves the address of the next instruction in the return-address register, and transfers 
execution to the address contained in register rA. 

Usage: callr is used to dereference C-language function pointers. 

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0x1f 0x1d 0 0x3a
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cmpeq
cmpeq
compare equal

Operation: if (rA == rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpeq rC, rA, rB

Example: cmpeq r6, r7, r8

Description: If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC. 

Usage: cmpeq performs the == operation of the C programming language. Also, cmpeq can 
be used to implement the C logical-negation operator “!”.

cmpeq rC, rA, r0 ; Implements rC = !rA

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x20 0 0x3a
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cmpeqi
cmpeqi
compare equal immediate

Operation: if (rA σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpeqi rB, rA, IMM16

Example: cmpeqi r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value 
of rA. If rA == σ (IMM16), cmpeqi stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpeqi performs the == operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x20
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cmpge
cmpge
compare greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpge rC, rA, rB

Example: cmpge r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpge performs the signed >= operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x08 0 0x3a
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cmpgei
cmpgei
compare greater than or equal signed immediate

Operation: if ((signed) rA >= (signed) σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgei rB, rA, IMM16

Example: cmpgei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value 
of rA. If rA >= σ(IMM16), then cmpgei stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgei performs the signed >= operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x08
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cmpgeu
cmpgeu
compare greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpgeu rC, rA, rB

Example: cmpgeu r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpgeu performs the unsigned >= operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x28 0 0x3a
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cmpgeui
cmpgeui
compare greater than or equal unsigned immediate

Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgeui rB, rA, IMM16

Example: cmpgeui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value 
of rA. If rA >= (0x0000 : IMM16), then cmpgeui stores 1 to rB; otherwise stores 0 to 
rB. 

Usage: cmpgeui performs the unsigned >= operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x28
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cmpgt
cmpgt
compare greater than signed

Operation: if ((signed) rA > (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpgt rC, rA, rB

Example: cmpgt r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpgt performs the signed > operation of the C programming language. 

Pseudoinstruction: cmpgt is implemented with the cmplt instruction by swapping its rA and rB 
operands.
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cmpgti
cmpgti
compare greater than signed immediate

Operation: if ((signed) rA > (signed) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgti rB, rA, IMMED

Example: cmpgti r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. 
If rA > σ(IMMED), then cmpgti stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgti performs the signed > operation of the C programming language. The 
maximum allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudoinstruction: cmpgti is implemented using a cmpgei instruction with an immediate value 
IMMED + 1. 
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cmpgtu
cmpgtu
compare greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpgtu rC, rA, rB

Example: cmpgtu r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpgtu performs the unsigned > operation of the C programming language. 

Pseudoinstruction: cmpgtu is implemented with the cmpltu instruction by swapping its rA and rB 
operands.
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cmpgtui
cmpgtui
compare greater than unsigned immediate

Operation: if ((unsigned) rA > (unsigned) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgtui rB, rA, IMMED

Example: cmpgtui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of 
rA. If rA > IMMED, then cmpgtui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgtui performs the unsigned > operation of the C programming language. The 
maximum allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudoinstruction: cmpgtui is implemented using a cmpgeui instruction with an immediate value 
IMMED + 1. 
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cmple
cmple
compare less than or equal signed

Operation: if ((signed) rA <= (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmple rC, rA, rB

Example: cmple r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmple performs the signed <= operation of the C programming language. 

Pseudoinstruction: cmple is implemented with the cmpge instruction by swapping its rA and rB 
operands.
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cmplei
cmplei
compare less than or equal signed immediate

Operation: if ((signed) rA < (signed) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmplei rB, rA, IMMED

Example: cmplei r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of 
rA. If rA <= σ(IMMED), then cmplei stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmplei performs the signed <= operation of the C programming language. The 
maximum allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudoinstruction: cmplei is implemented using a cmplti instruction with an immediate value 
IMMED + 1. 
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cmpleu
cmpleu
compare less than or equal unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpleu rC, rA, rB

Example: cmpleu r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpleu performs the unsigned <= operation of the C programming language. 

Pseudoinstruction: cmpleu is implemented with the cmpgeu instruction by swapping its rA and rB 
operands.
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cmpleui
cmpleui
compare less than or equal unsigned immediate

Operation: if ((unsigned) rA <= (unsigned) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmpleui rB, rA, IMMED

Example: cmpleui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of 
rA. If rA <= IMMED, then cmpleui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpleui performs the unsigned <= operation of the C programming language. The 
maximum allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudoinstruction: cmpleui is implemented using a cmpltui instruction with an immediate value 
IMMED + 1. 
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cmplt
cmplt
compare less than signed

Operation: if ((signed) rA < (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmplt rC, rA, rB

Example: cmplt r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmplt performs the signed < operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x10 0 0x3a
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cmplti
cmplti
compare less than signed immediate

Operation: if ((signed) rA < (signed) σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmplti rB, rA, IMM16

Example: cmplti r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value 
of rA. If rA < σ (IMM16), then cmplti stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmplti performs the signed < operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x10
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cmpltu
cmpltu
compare less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpltu rC, rA, rB

Example: cmpltu r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpltu performs the unsigned < operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x30 0 0x3a
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cmpltui
cmpltui
compare less than unsigned immediate

Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpltui rB, rA, IMM16

Example: cmpltui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value 
of rA. If rA < (0x0000 : IMM16), then cmpltui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpltui performs the unsigned < operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x30
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cmpne
cmpne
compare not equal

Operation: if (rA != rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpne rC, rA, rB

Example: cmpne r6, r7, r8

Description: If rA != rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpne performs the != operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x18 0 0x3a
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cmpnei
cmpnei
compare not equal immediate

Operation: if (rA != σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpnei rB, rA, IMM16

Example: cmpnei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value 
of rA. If rA != σ (IMM16), then cmpnei stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpnei performs the != operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x18
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custom
custom
custom instruction

Operation: if c == 1
then rC ← fN(rA, rB, A, B, C)

else  Ø ← fN(rA, rB, A, B, C)

Assembler Syntax: custom N, xC, xA, xB
Where xA means either general purpose register rA, or custom register cA.

Example: custom 0, c6, r7, r8

Description: The custom opcode provides access to up to 256 custom instructions allowed by the 
Nios II architecture. The function implemented by a custom instruction is user-defined 
and is specified at system generation time. The 8-bit immediate N field specifies which 
custom instruction to use. Custom instructions can use up to two parameters, xA and 
xB, and can optionally write the result to a register xC.

Usage: To access a custom register inside the custom instruction logic, clear the bit readra, 
readrb, or writerc that corresponds to the register field. In assembler syntax, the 
notation cN refers to register N in the custom register file and causes the assembler 
to clear the c bit of the opcode. For example, custom 0, c3, r5, r0 performs 
custom instruction 0, operating on general-purpose registers r5 and r0, and stores the 
result in custom register 3.

Instruction Type: R

Instruction Fields: A = Register index of operand A
B = Register index of operand B
C = Register index of operand C
N = 8-bit number that selects instruction
readra = 1 if instruction uses rA, 0 otherwise
readrb = 1 if instruction uses rB, 0 otherwise
writerc = 1 if instruction provides result for rC, 0 otherwise

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C N 0x32

readra
readrb
writerc
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div
div
divide

Operation: rC ← rA ÷ rB

Assembler Syntax: div rC, rA, rB

Example: div r6, r7, r8

Description: Treating rA and rB as signed integers, this instruction divides rA by rB and then stores 
the integer portion of the resulting quotient to rC. After attempted division by zero, the 
value of rC is undefined. There is no divide-by-zero exception. After dividing 
–2147483648 by –1, the value of rC is undefined (the number +2147483648 is not 
representable in 32 bits). There is no overflow exception. 

Nios II processors that do not implement the div instruction cause an 
unimplemented-instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using 
the following instruction sequence:

div rC, rA, rB
mul rD, rC, rB
sub rD, rA, rD

;  The original div operation

;  rD = remainder

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x25 0 0x3a
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divu
divu
divide unsigned

Operation: rC ← rA ÷ rB

Assembler Syntax: divu rC, rA, rB

Example: divu r6, r7, r8

Description: Treating rA and rB as unsigned integers, this instruction divides rA by rB and then 
stores the integer portion of the resulting quotient to rC. After attempted division by 
zero, the value of rC is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction cause an 
unimplemented-instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using 
the following instruction sequence:

divu rC, rA, rB
mul rD, rC, rB
sub rD, rA, rD

;  The original divu operation

;  rD = remainder

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x24 0 0x3a
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eret
eret
exception return

Operation: status ← estatus
PC ← ea

Assembler Syntax: eret

Example: eret

Description: Copies the value of estatus into the status register, and transfers execution to the 
address in ea.

Usage: Use eret to return from traps, external interrupts, and other exception-handling 
routines. Note that before returning from hardware interrupt exceptions, the exception 
handler must adjust the ea register.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0 0 0x01 0 0x3a
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flushd
flushd
flush data cache line

Operation: Flushes the data-cache line associated with address rA + σ (IMM16).

Assembler Syntax: flushd IMM16(rA)

Example: flushd -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushd flushes the 
cache line that is mapped to the specified address, regardless whether the addressed 
data is currently cached. This entails the following steps:
● Computes the effective address specified by the sum of rA and the signed 16-bit 

immediate value
● Identifies the data-cache line associated with the computed effective address. 

flushd ignores the cache line tag, which means that it flushes the cache line 
regardless whether the specified data location is currently cached

● If the line is dirty, writes the line back to memory
● Clears the valid bit for the line

A cache line is dirty when one or more words of the cache line have been modified by 
the processor, but are not yet written to memory. 

If the Nios II processor core does not have a data cache, the flushd instruction 
performs no operation.

Usage: flushd flushes the cache line even if the addressed memory location is not in the 
cache. By contrast, the flushda instruction does nothing if the addressed memory 
location is not in the cache.

For more information on data cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x3b
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flushda
flushda
flush data-cache address

Operation: Flushes the data cache line currently cacheing address rA + σ (IMM16)

Assembler Syntax: flushda IMM16(rA)

Example: flushda -100(r6)

Description: If the addressed data is currently cached, flushda flushes the cache line mapped to 
that address. This entails the following steps:
● Computes the effective address specified by the sum of rA and the signed 16-bit 

immediate value
● Identifies the data-cache line associated with the computed effective address.
● Compares the cache line tag with the effective address. If they do not match, the 

effective address is not cached, and the instruction does nothing.
● If the tag matches, and the data cache contains dirty data, writes the dirty cache 

line back to memory.
● Clears the valid bit for the line 

A cache line is dirty when one or more words of the cache line have been modified by 
the processor, but are not yet written to memory. 

If the Nios II processor core does not have a data cache, the flushda instruction 
performs no operation.

Usage: flushda flushes the cache line only if the addressed memory location is currently 
cached. By contrast, the flushd instruction flushes the cache line even if the 
addressed memory location is not cached. 

For more information on the Nios II data cache, see the Cache & Tightly-Coupled 
Memory chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x1b
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flushi
flushi
flush instruction cache line

Operation: Flushes the instruction-cache line associated with address rA.

Assembler Syntax: flushi rA

Example: flushi r6

Description: Ignoring the tag, flushi identifies the instruction-cache line associated with the byte 
address in rA, and invalidates that line. 

If the Nios II processor core does not have an instruction cache, the flushi 
instruction performs no operation.

For more information on data cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0c 0 0x3a
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flushp
flushp
flush pipeline

Operation: Flushes the processor pipeline of any pre-fetched instructions.

Assembler Syntax: flushp

Example: flushp

Description: Ensures that any instructions pre-fetched after the flushp instruction are removed 
from the pipeline. 

Usage: Use flushp before transferring control to newly updated instruction memory.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x04 0 0x3a
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initd
initd
initialize data cache line

Operation: Initializes the data-cache line associated with address rA + σ (IMM16).

Assembler Syntax: initd IMM16(rA)

Example: initd 0(r6)

Description: initd computes the effective address specified by the sum of rA and the signed 16-
bit immediate value. Ignoring the tag, initd indentifies the data-cache line 
associated with the effective address, and then initd invalidates that line.

If the Nios II processor core does not have a data cache, the initd instruction 
performs no operation.

Usage: The instruction is used to initialize the processor’s data cache. After processor reset 
and before accessing data memory, use initd to invalidate each line of the data 
cache.

For more information on data cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x33
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initi
initi
initialize instruction cache line

Operation: Initializes the instruction-cache line associated with address rA.

Assembler Syntax: initi rA

Example: initi r6

Description: Ignoring the tag, initi identifies the instruction-cache line associated with the byte 
address in ra, and initi invalidates that line.

If the Nios II processor core does not have an instruction cache, the initi instruction 
performs no operation.

Usage: This instruction is used to initialize the processor’s instruction cache. Immediately after 
processor reset, use initi to invalidate each line of the instruction cache. 

For more information on instruction cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x29 0 0x3a
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jmp
jmp
computed jump

Operation: PC ← rA

Assembler Syntax: jmp rA

Example: jmp r12

Description: Transfers execution to the address contained in register rA. 

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines 
called by call or callr, use ret instead of jmp. 

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0d 0 0x3a
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ldb / ldbio
ldb / ldbio
load byte from memory or I/O peripheral

Operation: rB ← σ (Mem8[rA + σ (IMM16)])

Assembler Syntax: ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example: ldb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Loads register rB with the desired memory byte, sign 
extending the 8-bit value to 32 bits. In Nios II processor cores with a data cache, this 
instruction may retrieve the desired data from the cache instead of from memory.

Usage: Use the ldbio instruction for peripheral I/O. In processors with a data cache, ldbio 
bypasses the cache and is guaranteed to generate an Avalon data transfer. In 
processors without a data cache, ldbio acts like ldb. 

For more information on data cache, see the Cache & Tightly-Coupled Memory chapter 
in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x07

Instruction format for ldb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x27

Instruction format for ldbio
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ldbu / ldbuio
ldbu / ldbuio
load unsigned byte from memory or I/O peripheral 

Operation: rB ← 0x000000 : Mem8[rA + σ (IMM16)]

Assembler Syntax: ldbu rB, byte_offset(rA)
ldbuio rB, byte_offset(rA)

Example: ldbu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Loads register rB with the desired memory byte, zero 
extending the 8-bit value to 32 bits. 

Usage: In processors with a data cache, this instruction may retrieve the desired data from the 
cache instead of from memory. Use the ldbuio instruction for peripheral I/O. In 
processors with a data cache, ldbuio bypasses the cache and is guaranteed to 
generate an Avalon data transfer. In processors without a data cache, ldbuio acts 
like ldbu. 

For more information on data cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x03

Instruction format for ldbu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x23

Instruction format for ldbuio
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ldh / ldhio
ldh / ldhio
load halfword from memory or I/O peripheral

Operation: rB ← σ (Mem16[rA + σ (IMM16)])

Assembler Syntax: ldh rB, byte_offset(rA)
ldhio rB, byte_offset(rA)

Example: ldh r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Loads register rB with the memory halfword located at 
the effective byte address, sign extending the 16-bit value to 32 bits. The effective byte 
address must be halfword aligned. If the byte address is not a multiple of 2, the 
operation is undefined. 

Usage: In processors with a data cache, this instruction may retrieve the desired data from the 
cache instead of from memory. Use the ldhio instruction for peripheral I/O. In 
processors with a data cache, ldhio bypasses the cache and is guaranteed to 
generate an Avalon data transfer. In processors without a data cache, ldhio acts like 
ldh.

For more information on data cache, see the Cache & Tightly-Coupled Memory chapter 
in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0f

Instruction format for ldh

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2f

Instruction format for ldhio
8–62  Altera Corporation
Nios II Processor Reference Handbook November 2006



ldhu / ldhuio
ldhu / ldhuio
load unsigned halfword from memory or I/O peripheral

Operation: rB ← 0x0000 : Mem16[rA + σ (IMM16)]

Assembler Syntax: ldhu rB, byte_offset(rA)
ldhuio rB, byte_offset(rA)

Example: ldhu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Loads register rB with the memory halfword located at 
the effective byte address, zero extending the 16-bit value to 32 bits. The effective byte 
address must be halfword aligned. If the byte address is not a multiple of 2, the 
operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the 
cache instead of from memory. Use the ldhuio instruction for peripheral I/O. In 
processors with a data cache, ldhuio bypasses the cache and is guaranteed to 
generate an Avalon data transfer. In processors without a data cache, ldhuio acts 
like ldhu. 

For more information on data cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0b

Instruction format for ldhu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2b

Instruction format for ldhuio
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ldw / ldwio
ldw / ldwio
load 32-bit word from memory or I/O peripheral

Operation: rB ← Mem32[rA + σ (IMM14)]

Assembler Syntax: ldw rB, byte_offset(rA)
ldwio rB, byte_offset(rA)

Example: ldw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Loads register rB with the memory word located at the 
effective byte address. The effective byte address must be word aligned. If the byte 
address is not a multiple of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the 
cache instead of from memory. Use the ldwio instruction for peripheral I/O. In 
processors with a data cache, ldwio bypasses the cache and memory. Use the 
ldwio instruction for peripheral I/O. In processors with a data cache, ldwio 
bypasses the cache and is guaranteed to generate an Avalon data transfer. In 
processors without a data cache, ldwio acts like ldw.

For more information on data cache, see the Cache & Tightly-Coupled Memory 
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x17

Instruction format for ldw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x37

Instruction format for ldwio
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mov
mov
move register to register

Operation: rC ← rA

Assembler Syntax: mov rC, rA

Example: mov r6, r7

Description: Moves the contents of rA to rC. 

Pseudoinstruction: mov is implemented as add rC, rA, r0.
Altera Corporation  8–65
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movhi
movhi
move immediate into high halfword

Operation: rB ← (IMMED : 0x0000)

Assembler Syntax: movhi rB, IMMED

Example: movhi r6, 0x8000

Description: Writes the immediate value IMMED into the high halfword of rB, and clears the lower 
halfword of rB to 0x0000. 

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To 
load a 32-bit constant into a register, first load the upper 16 bits using a movhi 
pseudoinstruction. The %hi() macro can be used to extract the upper 16 bits of a 
constant or a label. Then, load the lower 16 bits with an ori instruction. The %lo() 
macro can be used to extract the lower 16 bits of a constant or label as shown below.

movhi rB, %hi(value)
ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro 
and the addi instruction as shown below.

movhi rB, %hiadj(value)
addi rB, rB, %lo(value)

Pseudoinstruction: movhi is implemented as orhi rB, r0, IMMED.
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movi
movi
move signed immediate into word

Operation: rB ← σ (IMMED)

Assembler Syntax: movi rB, IMMED

Example: movi r6, -30

Description: Sign-extends the immediate value IMMED to 32 bits and writes it to rB. 

Usage: The maximum allowed value of IMMED is 32767. The minimum allowed value is
–32768. To load a 32-bit constant into a register, see the movhi instruction.

Pseudoinstruction: movi is implemented as addi rB, r0, IMMED.
Altera Corporation  8–67
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movia
movia
move immediate address into word 

Operation: rB ←  label

Assembler Syntax: movia rB, label

Example: movia r6, function_address

Description: Writes the address of label to rB. 

Pseudoinstruction: movia is implemented as:
orhi rB, r0, %hiadj(label)
addi rB, rB, %lo(label)
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movui
movui
move unsigned immediate into word

Operation: rB ← (0x0000 : IMMED)

Assembler Syntax: movui rB, IMMED

Example: movui r6, 100

Description: Zero-extends the immediate value IMMED to 32 bits and writes it to rB. 

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To 
load a 32-bit constant into a register, see the movhi instruction.

Pseudoinstruction: movui is implemented as ori rB, r0, IMMED.
Altera Corporation  8–69
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mul
mul
multiply 

Operation: rC ← (rA × rB) 31..0

Assembler Syntax: mul rC, rA, rB

Example: mul r6, r7, r8

Description: Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result 
is the same whether the operands are treated as signed or unsigned integers. 

Nios II processors that do not implement the mul instruction cause an 
unimplemented-instruction exception.

Usage: Carry Detection (unsigned operands): 

Before or after the multiply operation, the carry out of the MSB of rC can be detected 
using the following instruction sequence:

mul rC, rA, rB
mulxuu rD, rA, rB
cmpne rD, rD, r0

; The mul operation (optional)
; rD is non-zero if carry occurred
; rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a non-zero value into rD if the multiplication of unsigned 
numbers will generate a carry (unsigned overflow). If a 0/1 result is desired, follow the 
mulxuu with the cmpne instruction. 

Overflow Detection (signed operands): 

After the multiply operation, overflow can be detected using the following instruction 
sequence:

mul rC, rA, rB
cmplt rD, rC, r0
mulxss rE, rA, rB
add rD, rD, rE
cmpne rD, rD, r0

; The original mul operation

; rD is non-zero if overflow
; rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a non-zero value into rD if the 
product in rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is 
desired, follow the instruction sequence with the cmpne instruction.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x27 0 0x3a
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muli
muli
multiply immediate

Operation: rB ← (rA × σ(IMM16)) 31..0

Assembler Syntax: muli rB, rA, IMM16

Example: muli r6, r7, -100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and multiplies it by the value 
of rA. Stores the 32 low-order bits of the product to rB. The result is independent of 
whether rA is treated as a signed or unsigned number. 

Nios II processors that do not implement the muli instruction cause an 
unimplemented-instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, see the mul instruction.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x24
Altera Corporation  8–71
November 2006 Nios II Processor Reference Handbook



mulxss
mulxss
multiply extended signed/signed

Operation: rC ← ((signed) rA) × ((signed) rB)) 63..32

Assembler Syntax: mulxss rC, rA, rB

Example: mulxss r6, r7, r8

Description: Treating rA and rB as signed integers, mulxss multiplies rA times rB, and stores the 
32 high-order bits of the product to rC. 

Nios II processors that do not implement the mulxss instruction cause an 
unimplemented-instruction exception.

Usage: Use mulxss and mul to compute the full 64-bit product of two 32-bit signed integers. 
Furthermore, mulxss can be used as part of the calculation of a 128-bit product of 
two 64-bit signed integers. Given two 64-bit integers, each contained in a pair of 32-
bit registers, (S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) 
<< 32) + ((U1 × S2) << 32) + ((S1 × S2) << 64). The mulxss and mul instructions 
are used to calculate the 64-bit product S1 × S2.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1f 0 0x3a
8–72  Altera Corporation
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mulxsu
mulxsu
multiply extended signed/unsigned

Operation: rC ← ((signed) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxsu rC, rA, rB

Example: mulxsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mulxsu multiplies rA 
times rB, and stores the 32 high-order bits of the product to rC. 

Nios II processors that do not implement the mulxsu instruction cause an 
unimplemented-instruction exception.

Usage: mulxsu can be used as part of the calculation of a 128-bit product of two 64-bit signed 
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 : 
U1) and (S2 : U2), their 128-bit product is: (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) 
<< 32) + ((S1 × S2) << 64). The mulxsu and mul instructions are used to calculate 
the two 64-bit products S1 × U2 and U1 × S2.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x17 0 0x3a
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mulxuu
mulxuu
multiply extended unsigned/unsigned

Operation: rC ← ((unsigned) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxuu rC, rA, rB

Example: mulxuu r6, r7, r8

Description: Treating rA and rB as unsigned integers, mulxuu multiplies rA times rB and 
stores the 32 high-order bits of the product to rC. 

Nios II processors that do not implement the mulxss instruction cause an 
unimplemented-instruction exception.

Usage: Use mulxuu and mul to compute the 64-bit product of two 32-bit unsigned 
integers. Furthermore, mulxuu can be used as part of the calculation of a 128-
bit product of two 64-bit signed integers. Given two 64-bit signed integers, each 
contained in a pair of 32-bit registers, (S1 : U1) and (S2 : U2), their 128-bit 
product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32) + ((S1 × S2) << 64). 
The mulxuu and mul instructions are used to calculate the 64-bit product 
U1 × U2.

mulxuu also can be used as part of the calculation of a 128-bit product of two 
64-bit unsigned integers. Given two 64-bit unsigned integers, each contained in 
a pair of 32-bit registers, (T1 : U1) and (T2 : U2), their 128-bit product is (U1 × U2) 
+ ((U1 × T2) << 32) + ((T1 × U2) << 32) + ((T1 × T2) << 64). The mulxuu and 
mul instructions are used to calculate the four 64-bit products U1 × U2, U1 × T2, 
T1 × U2, and T1 × T2.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x07 0 0x3a
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nextpc
nextpc
get address of following instruction

Operation: rC ← PC + 4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC. 

Usage: A relocatable code fragment can use nextpc to calculate the address of its data 
segment. nextpc is the only way to access the PC directly.

Instruction Type: R

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x1c 0 0x3a
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nop
nop
no operation

Operation: None 

Assembler Syntax: nop

Example: nop

Description: nop does nothing. 

Pseudoinstruction: nop is implemented as add r0, r0, r0.
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nor
nor
bitwise logical nor

Operation: rC ← ~(rA | rB)

Assembler Syntax: nor rC, rA, rB

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a
Altera Corporation  8–77
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or
or
bitwise logical or

Operation: rC ← rA | rB

Assembler Syntax: or rC, rA, rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x16 0 0x3a
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orhi
orhi
bitwise logical or immediate into high halfword

Operation: rB ← rA | (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA, IMM16

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in 
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x34
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ori
ori
bitwise logical or immediate

Operation: rB ← rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA, IMM16

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in 
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x14
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rdctl
rdctl
read from control register

Operation: rC ← ctlN

Assembler Syntax: rdctl rC, ctlN

Example: rdctl r3, ctl31

Description: Reads the value contained in control register ctlN and writes it to register rC.

Instruction Type: R

Instruction Fields: C = Register index of operand rC
N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x26 N 0x3a
Altera Corporation  8–81
November 2006 Nios II Processor Reference Handbook



ret
ret
return from subroutine

Operation: PC ← ra

Assembler Syntax: ret

Example: ret

Description: Transfers execution to the address in ra. 

Usage: Any subroutine called by call or callr must use ret to return. 

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0 0x05 0 0x3a
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rol
rol
rotate left

Operation: rC ← rA rotated left rB4..0 bit positions

Assembler Syntax: rol rC, rA, rB

Example: rol r6, r7, r8

Description: Rotates rA left by the number of bits specified in rB4..0 and stores the result in rC. The 
bits that shift out of the register rotate into the least-significant bit positions. Bits 31–5 
of rB are ignored.

Instruction Type: R

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x03 0 0x3a
Altera Corporation  8–83
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roli
roli
rotate left immediate

Operation: rC ← rA rotated left IMM5 bit positions

Assembler Syntax: roli rC, rA, IMM5

Example: roli r6, r7, 3

Description: Rotates rA left by the number of bits specified in IMM5 and stores the result in rC. The 
bits that shift out of the register rotate into the least-significant bit positions.

Usage: In addition to the rotate-left operation, roli can be used to implement a rotate-right 
operation. Rotating left by (32 – IMM5) bits is the equivalent of rotating right by IMM5 
bits. 

Instruction Type: R

Instruction Fields: A = Register index of operand rA 
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x02 IMM5 0x3a
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ror
ror
rotate right

Operation: rC  ← rA rotated right rB4..0 bit positions

Assembler Syntax: ror rC, rA, rB

Example: ror r6, r7, r8

Description: Rotates rA right by the number of bits specified in rB4..0 and stores the result in rC. The 
bits that shift out of the register rotate into the most-significant bit positions. Bits 31– 5 
of rB are ignored.

Instruction Type: R

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0b 0 0x3a
Altera Corporation  8–85
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sll
sll
shift left logical

Operation: rC ← rA << (rB4..0)

Assembler Syntax: sll rC, rA, rB

Example: sll r6, r7, r8

Description: Shifts rA left by the number of bits specified in rB4..0 (inserting zeroes), and then stores 
the result in rC. sll performs the << operation of the C programming language. 

Instruction Type: R

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x13 0 0x3a
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slli
slli
shift left logical immediate

Operation: rC ← rA << IMM5

Assembler Syntax: slli rC, rA, IMM5

Example: slli r6, r7, 3

Description: Shifts rA left by the number of bits specified in IMM5 (inserting zeroes), and then stores 
the result in rC.

Usage: slli performs the << operation of the C programming language. 

 

Instruction Type: R 

Instruction Fields: A = Register index of operand rA 
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x12 IMM5 0x3a
Altera Corporation  8–87
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sra
sra
shift right arithmetic

Operation: rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax: sra rC, rA, rB

Example: sra r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (duplicating the sign bit), and then 
stores the result in rC. Bits 31–5 are ignored.

Usage: sra performs the signed >> operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x3b 0 0x3a
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srai
srai
shift right arithmetic immediate

Operation: rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax: srai rC, rA, IMM5

Example: srai r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and 
then stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language. 

Instruction Type: R 

Instruction Fields: A = Register index of operand rA
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x3a IMM5 0x3a
Altera Corporation  8–89
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srl
srl
shift right logical

Operation: rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax: srl rC, rA, rB

Example: srl r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (inserting zeroes), and then 
stores the result in rC. Bits 31–5 are ignored.

Usage: srl performs the unsigned >> operation of the C programming language. 

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1b 0 0x3a
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srli
srli
shift right logical immediate

Operation: rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax: srli rC, rA, IMM5

Example: srli r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then 
stores the result in rC.

Usage: srli performs the unsigned >> operation of the C programming language. 

Instruction Type: R 

Instruction Fields: A = Register index of operand rA 
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x1a IMM5 0x3a
Altera Corporation  8–91
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stb / stbio
stb / stbio
store byte to memory or I/O peripheral

Operation: Mem8[rA + σ (IMM16)] ← rB7..0

Assembler Syntax: stb rB, byte_offset(rA)
stbio rB, byte_offset(rA)

Example: stb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Stores the low byte of rB to the memory byte specified 
by the effective address. 

Usage: In processors with a data cache, this instruction may not generate an Avalon bus cycle 
to non-cache data memory immediately. Use the stbio instruction for peripheral I/O. 
In processors with a data cache, stbio bypasses the cache and is guaranteed to 
generate an Avalon data transfer. In processors without a data cache, stbio acts like 
stb.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x05

Instruction format for stb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x25

Instruction format for stbio
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sth / sthio
sth / sthio
store halfword to memory or I/O peripheral 

Operation: Mem16[rA + σ (IMM16)] ← rB15..0

Assembler Syntax: sth rB, byte_offset(rA)
sthio rB, byte_offset(rA)

Example: sth r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Stores the low halfword of rB to the memory location 
specified by the effective byte address. The effective byte address must be halfword 
aligned. If the byte address is not a multiple of 2, the operation is undefined. 

Usage: In processors with a data cache, this instruction may not generate an Avalon data 
transfer immediately. Use the sthio instruction for peripheral I/O. In processors with a 
data cache, sthio bypasses the cache and is guaranteed to generate an Avalon data 
transfer. In processors without a data cache, sthio acts like sth. 

 

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0d

Instruction format for sth

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2d

Instruction format for sthio
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stw / stwio
stw / stwio
store word to memory or I/O peripheral

Operation: Mem32[rA + σ (IMM16)] ← rB

Assembler Syntax: stw rB, byte_offset(rA)
stwio rB, byte_offset(rA)

Example: stw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's 
signed 16-bit immediate value. Stores rB to the memory location specified by the 
effective byte address. The effective byte address must be word aligned. If the byte 
address is not a multiple of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon data 
transfer immediately. Use the stwio instruction for peripheral I/O. In processors with 
a data cache, stwio bypasses the cache and is guaranteed to generate an Avalon 
bus cycle. In processors without a data cache, stwio acts like stw.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit signed immediate value 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x15

Instruction format for stw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x35

Instruction format for stwio
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sub
sub
subtract

Operation: rC ← rA – rB

Assembler Syntax: sub rC, rA, rB

Example: sub r6, r7, r8

Description: Subtract rB from rA and store the result in rC.

Usage: Carry Detection (unsigned operands): 

The carry bit indicates an unsigned overflow. Before or after a sub operation, a carry 
out of the MSB can be detected by checking whether the first operand is less than 
the second operand. The carry bit can be written to a register, or a conditional branch 
can be taken based on the carry condition. Both cases are shown below.

sub rC, rA, rB
cmpltu rD, rA, rB

sub rC, rA, rB
bltu rA, rB, label

; The original sub operation (optional)
; rD is written with the carry bit

; The original sub operation (optional) 
; Branch if carry was generated

Overflow Detection (signed operands): 

Detect overflow of signed subtraction by comparing the sign of the difference that is 
written to rC with the signs of the operands. If rA and rB have different signs, and the 
sign of rC is different than the sign of rA, an overflow occurred. The overflow condition 
can control a conditional branch, as shown below. 

sub rC, rA, rB 
xor rD, rA, rB 
xor rE, rA, rC 
and rD, rD, rE 
blt rD, r0, label

; The original sub operation
; Compare signs of rA and rB
; Compare signs of rA and rC
; Combine comparisons
; Branch if overflow occurred

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x39 0 0x3a
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subi
subi
subtract immediate

Operation: rB ← rA – σ (IMMED)

Assembler Syntax: subi rB, rA, IMMED 

Example: subi r8, r8, 4

Description: Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA 
and then stores the result in rB.

Usage: The maximum allowed value of IMMED is 32768. The minimum allowed value is 
–32767. 

Pseudoinstruction: subi is implemented as addi rB, rA, -IMMED
8–96  Altera Corporation
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sync
sync
memory synchronization

Operation: None

Assembler Syntax: sync

Example: sync

Description: Forces all pending memory accesses to complete before allowing execution of 
subsequent instructions. In processor cores that support in-order memory accesses 
only, this instruction performs no operation.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x36 0 0x3a
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trap
trap
Operation: estatus ← status

PIE ← 0
U ← 0
ea ← PC + 4
PC ← exception handler address

Assembler Syntax: trap

Example: trap

Description: Saves the address of the next instruction in register ea, saves the contents of the 
status register in estatus, disables interrupts, and transfers execution to the 
exception handler. The address of the exception handler is specified at system 
generation time.

Usage: To return from the exception handler, execute an eret instruction.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1d 0x2d 0 0x3a
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wrctl
wrctl
write to control register

Operation: ctlN ← rA

Assembler Syntax: wrctl ctlN, rA

Example: wrctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctlN.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x2e N 0x3a
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xor
xor
bitwise logical exclusive or

Operation: rC ← rA ^ rB

Assembler Syntax: xor rC, rA, rB

Example: xor r6, r7, r8

Description: Calculates the bitwise logical exclusive XOR of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1e 0 0x3a
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xorhi
xorhi
bitwise logical exclusive or immediate into high halfword

Operation: rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, IMM16

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores 
the result in rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x3c
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xori
xori
bitwise logical exclusive or immediate

Operation: rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax: xori rB, rA, IMM16

Example: xori r6, r7, 100

Description: Calculates the bitwise logical exclusive or of rA and (0x0000 : IMM16) and stores the 
result in rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA 
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1c
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xorhi
Document 
Revision History

Table 8–6 shows the revision history for this document.

Table 8–6. Document Revision History

Date & Document 
Version Changes Made Summary of Changes

November 2006, 
v6.1.0

No change from previous release. 

May 2006, v6.0.0 No change from previous release.

October 2005, 
v5.1.0

● Correction to the blt instruction.
● Added U bit operation for break and trap instructions.

July 2005, v5.0.1 ● new flushda instruction.
● flushd instruction updated.
● Instruction Opcode table updated with flushda instruction.

May 2005, v5.0.0 No change from previous release. 

December 2004, 
v1.2

● break instruction update. 
● srli instruction correction. 

September 2004, 
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication. 
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