
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Nios II Processor Reference Handbook

NII5V1-6.1

http://www.altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation

Altera Corporation
Contents
Chapter Revision Dates ... ix

About This Handbook .. xi
Introduction ... xi

Assumptions about the Reader ... 1–xi
How to Find Further Information .. xii
How to Contact Altera ... xii
Typographical Conventions ... xiii

Section I. Nios II Processor

Chapter 1. Introduction
Introduction .. 1–1

Nios II Processor System Basics ... 1–1
Getting Started with the Nios II Processor ... 1–2
Customizing Nios II Processor Designs .. 1–3

Configurable Soft-Core Processor Concepts .. 1–3
Configurable Soft-Core Processor .. 1–4
Flexible Peripheral Set & Address Map .. 1–4
Custom Instructions ... 1–5
Automated System Generation .. 1–5

Document Revision History ... 1–6

Chapter 2. Processor Architecture
Introduction .. 2–1
Processor Implementation .. 2–2
Register File .. 2–3
Arithmetic Logic Unit ... 2–3

Unimplemented Instructions .. 2–4
Custom Instructions ... 2–4
Floating Point Instructions .. 2–4

Reset Signals ... 2–5
Exception & Interrupt Controller .. 2–6

Exception Controller .. 2–6
Integral Interrupt Controller ... 2–6
Interrupt Vector Custom Instruction ... 2–6

Memory & I/O Organization .. 2–8
Instruction & Data Buses ... 2–9
 iii

Contents
Cache Memory .. 2–11
Tightly Coupled Memory ... 2–13
Address Map ... 2–14

JTAG Debug Module .. 2–14
JTAG Target Connection ... 2–15
Download & Execute Software .. 2–15
Software Breakpoints ... 2–15
Hardware Breakpoints .. 2–16
Hardware Triggers ... 2–16
Trace Capture .. 2–17

Document Revision History ... 2–19

Chapter 3. Programming Model
Introduction .. 3–1
General-Purpose Registers ... 3–1
Control Registers ... 3–2
Operating Modes ... 3–4

Normal Mode .. 3–5
Debug Mode .. 3–5
Changing Modes .. 3–5

Exception Processing ... 3–5
Exception Types .. 3–6
Determining the Cause of Exceptions ... 3–9
Nested Exceptions .. 3–10
Returning from an Exception .. 3–10

Break Processing .. 3–11
Processing a Break .. 3–11
Returning from a Break ... 3–11
Register Usage .. 3–11

Memory & Peripheral Access .. 3–12
Addressing Modes ... 3–12
Cache Memory .. 3–12

Processor Reset State ... 3–13
Instruction Set Categories ... 3–14

Data Transfer Instructions .. 3–14
Arithmetic & Logical Instructions ... 3–16
Move Instructions ... 3–17
Comparison Instructions ... 3–17
Shift & Rotate Instructions .. 3–18
Program Control Instructions ... 3–19
Other Control Instructions .. 3–20
Custom Instructions ... 3–20
No-Operation Instruction ... 3–20
Potential Unimplemented Instructions ... 3–21

Document Revision History ... 3–21
iv Altera Corporation
Nios II Processor Reference Handbook

Contents
Chapter 4. Implementing the Nios II Processor in SOPC Builder
Introduction .. 4–1
Nios II Core Tab ... 4–2

Core Setting ... 4–2
Multiply & Divide Settings ... 4–3

Caches & Tightly Coupled Memories Tab ... 4–4
Instruction Settings .. 4–4
Data Settings ... 4–5

Advanced Features Tab .. 4–5
JTAG Debug Module Tab ... 4–6

Debug Level Settings ... 4–8
On-Chip Trace Buffer Settings ... 4–9

Custom Instructions Tab .. 4–10
Floating-Point Custom Instructions .. 4–10
Interrupt Vector Custom Instruction ... 4–12

System-Dependent Nios II Processor Settings .. 4–12
Reset Address ... 4–13
Exception Address ... 4–14
Break Location .. 4–14

Document Revision History ... 4–15

Section II. Appendixes

Chapter 5. Nios II Core Implementation Details
Introduction .. 5–1
Device Family Support ... 5–2
Nios II/f Core ... 5–3

Overview ... 5–3
Register File ... 5–4
Arithmetic Logic Unit .. 5–4
Memory Access ... 5–6
Tightly Coupled Memory ... 5–8
Execution Pipeline .. 5–8
Instruction Performance .. 5–10
Exception Handling ... 5–11
JTAG Debug Module ... 5–12
Unsupported Features ... 5–12

Nios II/s Core .. 5–12
Overview ... 5–12
Register File ... 5–13
Arithmetic Logic Unit .. 5–13
Memory Access ... 5–14
Tightly Coupled Memory ... 5–15
Execution Pipeline .. 5–16
Instruction Performance .. 5–17
Altera Corporation v
Nios II Processor Reference Handbook

Contents
Exception Handling ... 5–18
JTAG Debug Module ... 5–18
Unsupported Features ... 5–18

Nios II/e Core .. 5–18
Overview ... 5–19
Register File ... 5–19
Arithmetic Logic Unit .. 5–19
Memory Access ... 5–19
Instruction Execution Stages ... 5–20
Instruction Performance .. 5–20
Exception Handling ... 5–21
JTAG Debug Module ... 5–21
Unsupported Features ... 5–21

Document Revision History ... 5–21

Chapter 6. Nios II Processor Revision History
Introduction .. 6–1
Nios II Versions .. 6–1
Architecture Revisions .. 6–2
Core Revisions .. 6–3

Nios II/f Core ... 6–3
Nios II/s Core ... 6–5
Nios II/e Core ... 6–6

JTAG Debug Module Revisions .. 6–6
Document Revision History ... 6–8

Chapter 7. Application Binary Interface
Data Types .. 7–1
Memory Alignment ... 7–1
Register Usage .. 7–2
Stacks ... 7–3

Frame Pointer Elimination .. 7–4
Call Saved Registers ... 7–4
Further Examples of Stacks ... 7–5
Function Prologs ... 7–6

Arguments & Return Values .. 7–8
Arguments ... 7–8
Return Values ... 7–8

Document Revision History ... 7–10

Chapter 8. Instruction Set Reference
Introduction .. 8–1
Word Formats .. 8–1

I-Type ... 8–1
R-Type .. 8–2
J-Type ... 8–3

Instruction Opcodes .. 8–4
vi Altera Corporation
Nios II Processor Reference Handbook

Contents
Assembler Pseudo-instructions ... 8–6
Assembler Macros ... 8–7
Instruction Set Reference .. 8–8
Document Revision History ... 8–103
Altera Corporation vii
Nios II Processor Reference Handbook

Contents
viii Altera Corporation
Nios II Processor Reference Handbook

Altera Corporation
Chapter Revision Dates
The chapters in this book, Nios II Processor Reference Handbook, were revised on the following dates.
Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Introduction
Revised: November 2006
Part number: NII51001-6.1.0

Chapter 2. Processor Architecture
Revised: November 2006
Part number: NII51002-6.1.0

Chapter 3. Programming Model
Revised: November 2006
Part number: NII51003-6.1.0

Chapter 4. Implementing the Nios II Processor in SOPC Builder
Revised: November 2006
Part number: NII51004-6.1.0

Chapter 5. Nios II Core Implementation Details
Revised: November 2006
Part number: NII51015-6.1.0

Chapter 6. Nios II Processor Revision History
Revised: November 2006
Part number: NII51018-6.1.0

Chapter 7. Application Binary Interface
Revised: November 2006
Part number: NII51016-6.1.0

Chapter 8. Instruction Set Reference
Revised: November 2006
Part number: NII51017-6.1.0
 ix

Chapter Revision Dates Nios II Processor Reference Handbook
x Altera Corporation

Altera Corporation
About This Handbook
Introduction The handbook you are holding (the Nios II Processor Reference Handbook) is
the primary reference for the Nios® II family of embedded processors.
This handbook answers the question “What is the Nios II processor?”
from a high-level conceptual description to the low-level details of
implementation. The chapters in this handbook define the Nios II
processor architecture, the programming model, the instruction set, and
more.

This handbook is part of a larger collection of documents covering the
Nios II processor and its usage. See “How to Find Further Information”.

Assumptions about the Reader

This handbook assumes you have a basic familiarity with embedded
processor concepts. You do not need to be familiar with any specific
Altera® technology or with Altera development tools. This handbook was
written intentionally to minimize discussion of hardware
implementation details of the processor system. That said, the Nios II
processor was designed for Altera field programmable gate array (FPGA)
devices, and FPGA implementation concepts will inevitably arise from
time to time. While familiarity with FPGA technology is not required, it
may give you a deeper understanding of the engineering tradeoffs that
went into the design and implementation of the Nios II processor.
 xi

How to Find Further Information
How to Find
Further
Information

This handbook is one part of the complete Nios II processor
documentation. The following references are also available.

■ The Nios II Processor Reference Handbook (this handbook) defines the
basic processor architecture and features.

■ The Nios II Software Developer’s Handbook describes the software
development environment, and discusses application programming
for the Nios II processor.

■ The Quartus II Handbook, Volume 5: Embedded Peripherals discusses
Altera-provided peripherals and Nios II drivers which are included
with the Quartus® II software.

■ The Nios II integrated development environment (IDE) provides
tutorials and complete reference for using the features of the
graphical user interface. The help system is available after launching
the Nios II IDE.

■ Altera’s on-line solutions database is an internet resource that offers
solutions to frequently asked questions via an easy-to-use search
engine. Go to the support center on www.altera.com and click on the
Find Answers link.

■ Altera application notes and tutorials offer step-by-step instructions
on using the Nios II processor for a specific application or purpose.
These documents are often installed with Altera development kits, or
can be obtained online from www.altera.com.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

+1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com literature@altera.com

Non-technical customer
service

(800) 767-3753 + 1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

FTP site ftp.altera.com ftp.altera.com
xii Altera Corporation
Nios II Processor Reference Handbook

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com

About This Handbook
Typographical
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

Bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation xiii
Nios II Processor Reference Handbook

Typographical Conventions
xiv Altera Corporation
Nios II Processor Reference Handbook

Altera Corporation
Section I. Nios II
Processor
This section provides information about the Nios® II processor.

This section includes the following chapters:

■ Chapter 1, Introduction

■ Chapter 2, Processor Architecture

■ Chapter 3, Programming Model

■ Chapter 4, Implementing the Nios II Processor in SOPC Builder
 Section I–1

Nios II Processor Nios II Processor Reference Handbook
Section I–2 Altera Corporation

Altera Corporation
November 2006

NII51001-6.1.0
1. Introduction
Introduction This chapter is an introduction to the Nios® II embedded processor
family. This chapter will help both hardware and software engineers
understand the similarities and differences between the Nios II processor
and traditional embedded processors.

Nios II Processor System Basics

The Nios II processor is a general-purpose RISC processor core,
providing:

■ Full 32-bit instruction set, data path, and address space
■ 32 general-purpose registers
■ 32 external interrupt sources
■ Single-instruction 32 × 32 multiply and divide producing a 32-bit

result
■ Dedicated instructions for computing 64-bit and 128-bit products of

multiplication
■ Floating-point instructions for single-precision floating-point

operations
■ Single-instruction barrel shifter
■ Access to a variety of on-chip peripherals, and interfaces to off-chip

memories and peripherals
■ Hardware-assisted debug module enabling processor start, stop,

step and trace under integrated development environment (IDE)
control

■ Software development environment based on the GNU C/C++ tool
chain and Eclipse IDE

■ Integration with Altera's SignalTap(r) II logic analyzer, enabling
real-time analysis of instructions and data along with other signals in
the FPGA design

■ Instruction set architecture (ISA) compatible across all Nios II
processor systems

■ Performance up to 250 DMIPS

A Nios II processor system is equivalent to a microcontroller or
“computer on a chip” that includes a CPU and a combination of
peripherals and memory on a single chip. The term “Nios II processor
system” refers to a Nios II processor core, a set of on-chip peripherals, on-
chip memory, and interfaces to off-chip memory, all implemented on a
single Altera® chip. Like a microcontroller family, all Nios II processor
systems use a consistent instruction set and programming model.
 1–1

Introduction
Getting Started with the Nios II Processor

Getting started with the Nios II processor is similar to any other
microcontroller family. The easiest way to start designing effectively is to
purchase a development kit from Altera that includes a ready-made
evaluation board and all the software development tools necessary to
write Nios II software.

The Nios II software development environment is called The Nios II
integrated development environment (IDE). The Nios II IDE is based on
the GNU C/C++ compiler and the Eclipse IDE, and provides a familiar
and established environment for software development. Using the
Nios II IDE, designers can immediately begin developing and simulating
Nios II software applications. Using the Nios II hardware reference
designs included in an Altera development kit, designers can prototype
their application running on a board before building a custom hardware
platform. Figure 1–1 shows an example of a Nios II processor reference
design available in an Altera Nios II development kit.

Figure 1–1. Example of a Nios II Processor System

 Nios II
Processor Core

 SDRAM
Controller

On-Chip ROM

Tristate bridge to
off-chip memory

A
va

lo
n

S
w

itc
h

Fa
br

ic

 JTAG
 Debug Module

SDRAM
Memory

 Flash
Memory

 SRAM
Memory

UART

Timer1

Timer2

LCD Display Driver

General-Purpose I/O

Ethernet Interface

CompactFlash
 Interface

 LCD
Screen

 Ethernet
MAC/PHY

Compact
 Flash

 Buttons,
LEDs, etc.

TXD
RXD

 JTAG connection
to software debugger

C
lo

ck

R
es

et

Data

Inst.
1–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Introduction
If the prototype system adequately meets design requirements using an
Altera-provided reference design, the reference design can be copied and
used as-is in the final hardware platform. Otherwise, the designer can
customize the Nios II processor system until it meets cost or performance
requirements.

Customizing Nios II Processor Designs

Altera FPGAs provide flexibility to add features and enhance
performance of the processor system. Conversely, unnecessary processor
features and peripherals can be eliminated to fit the design in a smaller,
lower-cost device.

Because the pins and logic resources in Altera devices are programmable,
many customizations are possible:

■ The pins on the chip can be rearranged to make board design easier.
For example, address and data pins for external SDRAM memory
can be moved to any side of the chip to shorten board traces.

■ Extra pins and logic resources on the chip can be used for functions
unrelated to the processor. Extra resources can provide a few extra
gates and registers as “glue logic” for the board design; or extra
resources can implement entire systems. For example, a Nios II
processor system consumes only 5% of a large Altera FPGA, leaving
the rest of the chip’s resources available to implement other
functions.

■ Extra pins and logic on the chip can be used to implement additional
peripherals for the Nios II processor system. Altera offers a growing
library of peripherals that can be easily connected to Nios II
processor systems.

In practice, most FPGA designs do implement some extra logic in
addition to the Nios II processor system. Additional logic has no affect on
the programmer’s view of the Nios II processor.

Configurable
Soft-Core
Processor
Concepts

This section introduces Nios II concepts that are unique or different from
discrete microcontrollers. The concepts described below are mentioned
here because they provide the background upon which other features are
documented.
Altera Corporation 1–3
November 2006 Nios II Processor Reference Handbook

Configurable Soft-Core Processor Concepts
For the most part, these concepts relate to the flexibility for hardware
designers to fine-tune system implementation. Software programmers
generally are not affected by the hardware implementation details, and
can write programs without awareness of the configurable nature of the
Nios II processor core.

Configurable Soft-Core Processor

The Nios II processor is a configurable soft-core processor, as opposed to
a fixed, off-the-shelf microcontroller. In this context, “configurable”
means that features can be added or removed on a system-by-system
basis to meet performance or price goals. “Soft-core” means the CPU core
is offered in “soft” design form (i.e., not fixed in silicon), and can be
targeted to any Altera FPGA family. In other words, Altera does not sell
“Nios II chips”; Altera sells blank FPGAs. It is the users that configure the
Nios II processor and peripherals to meet their specifications, and then
program the system into an Altera FPGA.

Configurability does not mean that designers must create a new Nios II
processor configuration for every new design. Altera provides ready-
made Nios II system designs that system designers can use as-is. If these
designs meet the system requirements, there is no need to configure the
design further. In addition, software designers can use the Nios II
instruction set simulator to begin writing and debugging Nios II
applications before the final hardware configuration is determined.

Flexible Peripheral Set & Address Map

A flexible peripheral set is one of the most notable differences between
Nios II processor systems and fixed microcontrollers. Because of the soft-
core nature of the Nios II processor, designers can easily build made-to-
order Nios II processor systems with the exact peripheral set required for
the target applications.

A corollary of flexible peripherals is a flexible address map. Software
constructs are provided to access memory and peripherals generically,
independently of address location. Therefore, the flexible peripheral set
and address map does not affect application developers.

Peripherals can be categorized into two broad classes: Standard
peripherals and custom peripherals.
1–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Introduction
Standard Peripherals

Altera provides a set of peripherals commonly used in microcontrollers,
such as timers, serial communication interfaces, general-purpose I/O,
SDRAM controllers, and other memory interfaces. The list of available
peripherals continues to grow as Altera and third-party vendors release
new soft peripheral cores.

Custom Peripherals

Designers can also create their own custom peripherals and integrate
them into Nios II processor systems. For performance-critical systems
that spend most CPU cycles executing a specific section of code, it is a
common technique to create a custom peripheral that implements the
same function in hardware. This approach offers a double performance
benefit: the hardware implementation is faster than software; and the
processor is free to perform other functions in parallel while the custom
peripheral operates on data.

Custom Instructions

Like custom peripherals, custom instructions are a method to increase
system performance by augmenting the processor with custom
hardware. The soft-core nature of the Nios II processor enables designers
to integrate custom logic into the arithmetic logic unit (ALU). Similar to
native Nios II instructions, custom instruction logic can take values from
up to two source registers and optionally write back a result to a
destination register.

By using custom instructions, designers can fine tune the system
hardware to meet performance goals. Because the processor is
implemented on reprogrammable Altera FPGAs, software and hardware
engineers can work together to iteratively optimize the hardware and test
the results of software executing on real hardware.

From the software perspective, custom instructions appear as machine-
generated assembly macros or C functions, so programmers do not need
to know assembly in order to use custom instructions.

Automated System Generation

Altera’s SOPC Builder design tool fully automates the process of
configuring processor features and generating a hardware design that can
be programmed into an FPGA. The SOPC Builder graphical user interface
(GUI) enables hardware designers to configure Nios II processor systems
with any number of peripherals and memory interfaces. Entire processor
systems can be created without requiring the designer to perform any
Altera Corporation 1–5
November 2006 Nios II Processor Reference Handbook

Document Revision History
schematic or hardware description-language (HDL) design entry. SOPC
Builder can also import a designer’s HDL design files, providing an easy
mechanism to integrate custom logic into a Nios II processor system.

After system generation, the design can be programmed into a board, and
software can be debugged executing on the board. Once the design is
programmed into a board, the processor architecture is fixed. Software
development proceeds in the same manner as for traditional, non-
configurable processors.

Document
Revision History

Table 1–1 shows the revision history for this document.

Table 1–1. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

No change from previous release.

May 2006, v6.0.0 ● Added single precision floating point and integration with
SignalTap®II logic analyzer to features list.

● Updated performance to 250 DMIPS.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 No change from previous release.

September 2004,
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication.
1–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Altera Corporation
November 2006

NII51002-6.1.0
2. Processor Architecture
Introduction This chapter describes the hardware structure of the Nios® II processor,
including a discussion of all the functional units of the Nios II architecture
and the fundamentals of the Nios II processor hardware implementation.

The Nios II architecture describes an instruction set architecture (ISA). The
ISA in turn necessitates a set of functional units that implement the
instructions. A Nios II processor core is a hardware design that implements
the Nios II instruction set and supports the functional units described in
this document. The processor core does not include peripherals or the
connection logic to the outside world. It includes only the circuits
required to implement the Nios II architecture.

Figure 2–1 shows a block diagram of the Nios II processor core.

Figure 2–1. Nios II Processor Core Block Diagram

Exception
Controller

 Interrupt
Controller

Arithmetic
Logic Unit

General
Purpose
Registers
r0 to r31

 Control
Registers
ctl0 to ctl5

Nios II Processor Core

reset
clock

JTAG
interface

to software
debugger

 Custom
I/O

Signals

irq[31..0]

JTAG
Debug Module

Program
Controller

&
Address

Generation

Custom
Instruction

Logic

Data Bus

Tightly Coupled
Data Memory

Tightly Coupled
Data Memory

Data
Cache

Instruction
Cache

Instruction Bus

Tightly Coupled
Instruction Memory

Tightly Coupled
Instruction Memory

cpu_resetrequest
cpu_resettaken
 2–1

Processor Implementation
The Nios II architecture defines the following user-visible functional
units:

■ Register file
■ Arithmetic logic unit
■ Interface to custom instruction logic
■ Exception controller
■ Interrupt controller
■ Instruction bus
■ Data bus
■ Instruction and data cache memories
■ Tightly coupled memory interfaces for instructions and data
■ JTAG debug module

The following sections discuss hardware implementation details related
to each functional unit.

Processor
Implementation

The functional units of the Nios II architecture form the foundation for
the Nios II instruction set. However, this does not indicate that any unit
is implemented in hardware. The Nios II architecture describes an
instruction set, not a particular hardware implementation. A functional
unit can be implemented in hardware, emulated in software, or omitted
entirely.

A Nios II implementation is a set of design choices embodied by a
particular Nios II processor core. All implementations support the
instruction set defined in the Nios II Processor Reference Handbook. Each
implementation achieves specific objectives, such as smaller core size or
higher performance. This allows the Nios II architecture to adapt to the
needs of different target applications.

Implementation variables generally fit one of three trade-off patterns:
more-or-less of a feature; inclusion-or-exclusion of a feature; hardware
implementation or software emulation of a feature. An example of each
trade-off follows:

■ More or less of a feature—For example, to fine-tune performance, you
can increase or decrease the amount of instruction cache memory. A
larger cache increases execution speed of large programs, while a
smaller cache conserves on-chip memory resources.

■ Inclusion or exclusion of a feature—For example, to reduce cost, you can
choose to omit the JTAG debug module. This decision conserves on-
chip logic and memory resources, but it eliminates the ability to use
a software debugger to debug applications.
2–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
■ Hardware implementation or software emulation—For example, in
control applications that rarely perform complex arithmetic, you can
choose for the division instruction to be emulated in software.
Removing the divide hardware conserves on-chip resources but
increases the execution time of division operations.

f For details of which Nios II cores supports what features, refer to the
Nios II Core Implementation Details chapter of the Nios II Processor
Reference Handbook. For complete details of user-selectable parameters for
the Nios II processor, refer to the Implementing the Nios II Processor in
SOPC Builder chapter of the Nios II Processor Reference Handbook.

Register File The Nios II architecture supports a flat register file, consisting of thirty
two 32-bit general-purpose integer registers, and six 32-bit control
registers. The architecture supports supervisor and user modes that allow
system code to protect the control registers from errant applications.

The Nios II architecture allows for the future addition of floating point
registers.

Arithmetic Logic
Unit

The Nios II arithmetic logic unit (ALU) operates on data stored in
general-purpose registers. ALU operations take one or two inputs from
registers, and store a result back in a register. The ALU supports the data
operations shown in Table 2–1:

To implement any other operation, software computes the result by
performing a combination of the fundamental operations in Table 2–1.

Table 2–1. Operations Supported by the Nios II ALU

Category Details

Arithmetic The ALU supports addition, subtraction, multiplication, and division on signed and unsigned
operands.

Relational The ALU supports the equal, not-equal, greater-than-or-equal, and less-than relational
operations (==, != >=, <) on signed and unsigned operands.

Logical The ALU supports AND, OR, NOR, and XOR logical operations.

Shift and Rotate The ALU supports shift and rotate operations, and can shift/rotate data by 0 to 31 bit-positions
per instruction. The ALU supports arithmetic shift right and logical shift right/left. The ALU
supports rotate left/right.
Altera Corporation 2–3
November 2006 Nios II Processor Reference Handbook

Arithmetic Logic Unit
Unimplemented Instructions

Some Nios II processor core implementations do not provide hardware to
perform multiplication or division operations. The following instructions
are not present in all Nios II core implementations: mul, muli, mulxss,
mulxsu, mulxuu, div, divu. In such a core, these are known as
unimplemented instructions. All other instructions are implemented in
hardware.

The processor generates an exception whenever it issues an
unimplemented instruction, and the exception handler calls a routine that
emulates the operation in software. Therefore, unimplemented
instructions do not affect the programmer’s view of the processor.

Custom Instructions

The Nios II architecture supports user-defined custom instructions. The
Nios II ALU connects directly to custom instruction logic, enabling you to
implement in hardware operations that are accessed and used exactly like
native instructions.

f For further information see the Nios II Custom Instruction User Guide.

Floating Point Instructions

The Nios II architecture supports single precision floating point
instructions as specified by the IEEE Std 754-1985. These floating point
instructions are implemented as custom instructions. Table 2–2 provides
a detailed description of the conformance to IEEE 754-1985.

Table 2–2. Hardware Conformance with IEEE 754-1985 Floating Point

Feature Implementation

Operations(1) Addition Implemented

Subtraction Implemented

Multiplication Implemented

Division Optional

Precision Single Implemented

Double Not implemented. Double precision operations are
implemented in software.
2–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
1 The floating point custom instructions can be added to any
Nios II processor core. The Nios II software development tools
recognize C code that can take advantage of the floating point
instructions when they are present in the processor core.

Reset Signals The Nios II CPU core supports two reset signals.

■ reset - This a global hardware reset signal that forces the processor
core to reset immediately.

■ cpu_resetrequest - This is an local reset signal that causes the
CPU to reset without affecting other components in the Nios II
system. The processor finishes executing any instructions in the
pipeline, and then enters the reset state. This process can take several
clock cycles. The processor core asserts the cpu_resettaken signal

Exception conditions Invalid operation Result is Not a Number (NaN)

Division by zero Result is ±infinity

Overflow Result is ±infinity

Inexact Result is a normal number

Underflow Result is ±0(2)

Rounding Modes Round to nearest Implemented

Round toward zero Not implemented

Round toward +infinity Not implemented

Round toward -infinity Not implemented

NaN Quiet Implemented

Signaling Not implemented

Subnormal
(denormalized)
numbers

Subnormal operands are treated as zero. The floating point

custom instructions do not generate subnormal numbers.(2)

Software exceptions Not implemented. IEEE 754-1985 exception conditions are
detected and handled as shown elsewhere in this table.

Status flags Not implemented. IEEE 754-1985 exception conditions are
detected and handled as shown elsewhere in this table.

Notes to: Table 2–2
(1) The Nios II IDE generates a software implementation of primitive floating point operations other than addition,

subtraction, multiplication, and division. This includes operations such as floating point conversions and
comparisons. The software implementations of these primitives are 100% compliant with IEEE 754-1985.

(2) Some implementations of the floating point custom instructions might generate subnormals in the underflow
condition.

Table 2–2. Hardware Conformance with IEEE 754-1985 Floating Point

Feature Implementation
Altera Corporation 2–5
November 2006 Nios II Processor Reference Handbook

Exception & Interrupt Controller
for 1 cycle when the reset is complete and then periodically if
cpu_resetrequest remains asserted. The CPU remains in reset for as
long as cpu_resetrequest is asserted.

While the CPU is in reset, it periodically reads from the reset address.
It discards the result of the read, and remains in reset.

The CPU does not respond to cpu_resetrequest when the
processor is under the control of the JTAG debug module. The
processor responds to the cpu_resetrequest signal only if it is
still asserted after the JTAG Debug Module relinquishes control.

Exception &
Interrupt
Controller

Exception Controller

The Nios II architecture provides a simple, non-vectored exception
controller to handle all exception types. All exceptions, including
hardware interrupts, cause the processor to transfer execution to a single
exception address. The exception handler at this address determines the
cause of the exception and dispatches an appropriate exception routine.

The exception address is specified at system generation time.

Integral Interrupt Controller

The Nios II architecture supports 32 external hardware interrupts. The
processor core has 32 level-sensitive interrupt request (IRQ) inputs, irq0
through irq31, providing a unique input for each interrupt source. IRQ
priority is determined by software. The architecture supports nested
interrupts.

The software can enable and disable any interrupt source individually
through the ienable control register, which contains an interrupt-enable
bit for each of the IRQ inputs. Software can enable and disable interrupts
globally using the PIE bit of the status control register. A hardware
interrupt is generated if and only if all three of these conditions are true:

■ The PIE bit of the status register is 1
■ An interrupt-request input, irq<n>, is asserted
■ The corresponding bit n of the ienable register is 1

Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction
which accelerates interrupt vector dispatch. Include this custom
instruction to reduce your program’s interrupt latency.
2–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
The interrupt vector custom instruction is based on a priority encoder
with one input for each interrupt connected to the Nios II processor. The
cost of the interrupt vector custom instruction depends on the number of
interrupts connected to the Nios II processor. The worse case is a system
with 32 interrupts. In this case, the interrupt vector custom instruction
consumes about 50 logic elements (LEs).

If you have a large number of interrupts connected, adding the interrupt
vector custom instruction to your system might lower fMAX.

f For guidance in adding the interrupt vector custom instruction to the
Nios II processor, refer to the Implementing the Nios II Processor in SOPC
Builder chapter of the Nios II Software Developer’s Handbook.

Table 2–3 details the implementation of the interrupt vector custom
instruction.

f For an explanation of the instruction reference format, see the Instruction
Set Reference chapter in the Nios II Processor Reference Handbook.

Table 2–3. Interrupt Vector Custom Instruction

ALT_CI_EXCEPTION_VECTOR_N
Operation: if (ipending == 0) | (estatus.PIE == 0)

then rC ← negative value
else rC ← 8 × bit # of the least-significant 1 bit of the ipending register (ctl4)

Assembler Syntax: custom ALT_CI_EXCEPTION_VECTOR_N, rC, r0, r0

Example: custom ALT_CI_EXCEPTION_VECTOR_N, et, r0, r0
blt et, r0, not_irq

Description: The interrupt vector custom instruction accelerates interrupt vector dispatch. This
custom instruction identifies the highest priority interrupt, generates the vector table
offset, and stores this offset to rC. The instruction generates a negative offset if there
is no hardware interrupt (that is, the exception is caused by a software condition, such
as a trap).

Usage: The interrupt vector custom instruction is used exclusively by the exception handler.

Instruction Type: R

Instruction Fields: C = Register index of operand rC
N = Value of ALT_CI_EXCEPTION_VECTOR_N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0 0 1 N 0x32
Altera Corporation 2–7
November 2006 Nios II Processor Reference Handbook

Memory & I/O Organization
Memory & I/O
Organization

This section explains hardware implementation details of the Nios II
memory and I/O organization. The discussion covers both general
concepts true of all Nios II processor systems, as well as features that
might change from system to system.

The flexible nature of the Nios II memory and I/O organization are the
most notable difference between Nios II processor systems and
traditional microcontrollers. Because Nios II processor systems are
configurable, the memories and peripherals vary from system to system.
As a result, the memory and I/O organization varies from system to
system.

A Nios II core uses one or more of the following to provide memory and
I/O access:

■ Instruction master port - An Avalon master port that connects to
instruction memory via Avalon switch fabric

■ Instruction cache - Fast cache memory internal to the Nios II core
■ Data master port - An Avalon master port that connects to data

memory and peripherals via Avalon switch fabric
■ Data cache - Fast cache memory internal to the Nios II core
■ Tightly coupled instruction or data memory port - Interface to fast

memory outside the Nios II core

The Nios II architecture hides the hardware details from the programmer,
so programmers can develop Nios II applications without awareness of
the hardware implementation.

f For details that affect programming issues, see the Programming Model
chapter of the Nios II Processor Reference Handbook.

Figure 2–2 shows a diagram of the memory and I/O organization for a
Nios II processor core.
2–8 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
Figure 2–2. Nios II Memory & I/O Organization

Instruction & Data Buses

The Nios II architecture supports separate instruction and data buses,
classifying it as a Harvard architecture. Both the instruction and data
buses are implemented as Avalon master ports that adhere to the
Avalon™ interface specification. The data master port connects to both
memory and peripheral components, while the instruction master port
connects only to memory components.

f Refer to the Avalon Interface Specification for details of the Avalon
interface.

Memory & Peripheral Access

The Nios II architecture provides memory-mapped I/O access. Both data
memory and peripherals are mapped into the address space of the data
master port. The Nios II architecture is little endian. Words and halfwords
are stored in memory with the more-significant bytes at higher addresses.

S

MemoryS

Slave
Peripheral

Avalon Master Port

Avalon Slave Port

M

S

M

M

Tightly Coupled
Instruction
Memory N

Tightly Coupled
Data

Memory 1

Instruction
Cache

Data
Cache

Nios II Processor Core

Avalon Switch
Fabric

Program
Counter

General
Purpose
Register

File

Instruction
Bus

Selector
Logic

Tightly Coupled
Data

Memory N

Tightly Coupled
Instruction
Memory 1

Data
Bus

Selector
Logic
Altera Corporation 2–9
November 2006 Nios II Processor Reference Handbook

Memory & I/O Organization
The Nios II architecture does not specify anything about the existence of
memory and peripherals; the quantity, type, and connection of memory
and peripherals are system-dependent. Typically, Nios II processor
systems contain a mix of fast on-chip memory and slower off-chip
memory. Peripherals typically reside on-chip, although interfaces to off-
chip peripherals also exist.

Instruction Master Port

The Nios II instruction bus is implemented as a 32-bit Avalon master port.
The instruction master port performs a single function: it fetches
instructions to be executed by the processor. The instruction master port
does not perform any write operations.

The instruction master port is a pipelined Avalon master port. Support for
pipelined Avalon transfers minimizes the impact of synchronous
memory with pipeline latency and increases the overall fMAX of the
system. The instruction master port can issue successive read requests
before data has returned from prior requests. The Nios II processor can
prefetch sequential instructions and perform branch prediction to keep
the instruction pipe as active as possible.

The instruction master port always retrieves 32 bits of data. The
instruction master port relies on dynamic bus-sizing logic contained in
the Avalon switch fabric. By virtue of dynamic bus sizing, every
instruction fetch returns a full instruction word, regardless of the width
of the target memory. Consequently, programs do not need to be aware of
the widths of memory in the Nios II processor system.

The Nios II architecture supports on-chip cache memory for improving
average instruction fetch performance when accessing slower memory.
See “Cache Memory” on page 2–11 for details. The Nios II architecture
supports tightly coupled memory, which provides guaranteed low-
latency access to on-chip memory. See “Tightly Coupled Memory” on
page 2–13 for details.

Data Master Port

The Nios II data bus is implemented as a 32-bit Avalon master port. The
data master port performs two functions:

■ Read data from memory or a peripheral when the processor executes
a load instruction

■ Write data to memory or a peripheral when the processor executes a
store instruction
2–10 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
Byte-enable signals on the master port specify which of the four byte-
lane(s) to write during store operations. The data master port does not
support pipelined Avalon transfers, because it is not meaningful to
predict data addresses or to continue execution before data is retrieved.
Consequently, any memory pipeline latency is perceived by the data
master port as wait states. Load and store operations can complete in a
single clock-cycle when the data master port is connected to zero-wait-
state memory.

The Nios II architecture supports on-chip cache memory for improving
average data transfer performance when accessing slower memory. See
“Cache Memory” for details. The Nios II architecture supports tightly
coupled memory, which provides guaranteed low-latency access to on-
chip memory. Refer to “Tightly Coupled Memory” on page 2–13 for
details.

Shared Memory for Instructions & Data

Usually the instruction and data master ports share a single memory that
contains both instructions and data. While the processor core has separate
instruction and data buses, the overall Nios II processor system might
present a single, shared instruction/data bus to the outside world. The
outside view of the Nios II processor system depends on the memory and
peripherals in the system and the structure of the Avalon switch fabric.

The data and instruction master ports never cause a gridlock condition in
which one port starves the other. For highest performance, assign the data
master port higher arbitration priority on any memory that is shared by
both instruction and data master ports.

Cache Memory

The Nios II architecture supports cache memories on both the instruction
master port (instruction cache) and the data master port (data cache).
Cache memory resides on-chip as an integral part of the Nios II processor
core. The cache memories can improve the average memory access time
for Nios II processor systems that use slow off-chip memory such as
SDRAM for program and data storage.

The instruction and data caches are enabled perpetually at run-time, but
methods are provided for software to bypass the data cache so that
peripheral accesses do not return cached data. Cache management and
cache coherency are handled by software. The Nios II instruction set
provides instructions for cache management.
Altera Corporation 2–11
November 2006 Nios II Processor Reference Handbook

Memory & I/O Organization
Configurable Cache Memory Options

The cache memories are optional. The need for higher memory
performance (and by association, the need for cache memory) is
application dependent. Many applications require the smallest possible
processor core, and can trade-off performance for size.

A Nios II processor core might include one, both, or neither of the cache
memories. Furthermore, for cores that provide data and/or instruction
cache, the sizes of the cache memories are user-configurable. The
inclusion of cache memory does not affect the functionality of programs,
but it does affect the speed at which the processor fetches instructions and
reads/writes data.

Effective Use of Cache Memory

The effectiveness of cache memory to improve performance is based on
the following premises:

■ Regular memory is located off-chip, and access time is long
compared to on-chip memory

■ The largest, performance-critical instruction loop is smaller than the
instruction cache

■ The largest block of performance-critical data is smaller than the data
cache

Optimal cache configuration is application specific, although you can
make decisions that are effective across a range of applications. For
example, if a Nios II processor system includes only fast, on-chip memory
(i.e., it never accesses slow, off-chip memory), an instruction or data cache
is unlikely to offer any performance gain. As another example, if the
critical loop of a program is 2 Kbytes, but the size of the instruction cache
is 1 Kbyte, an instruction cache does not improve execution speed. In fact,
an instruction cache may degrade performance in this situation.

If an application always requires certain data or sections of code to be
located in cache memory for performance reasons, the tightly coupled
memory feature might provide a more appropriate solution. Refer to
“Tightly Coupled Memory” on page 2–13 for details.

Cache Bypass Method

The Nios II architecture provides load and store I/O instructions such as
ldio and stio that bypass the data cache and force an Avalon data
transfer to a specified address. Additional cache bypass methods might
be provided, depending on the processor core implementation.
2–12 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
Some Nios II processor cores support a mechanism called bit-31 cache
bypass to bypass the cache depending on the value of the most-significant
bit of the address.

f Refer to the Implementing the Nios II Core Implementation Details chapter of
the Nios II Processor Reference Handbook for details.

Tightly Coupled Memory

Tightly coupled memory provides guaranteed low-latency memory
access for performance-critical applications. Compared to cache memory,
tightly coupled memory provides the following benefits:

■ Performance similar to cache memory
■ Software can guarantee that performance-critical code or data is

located in tightly coupled memory
■ No real-time caching overhead, such as loading, invalidating, or

flushing memory

Physically, a tightly coupled memory port is a separate master port on the
Nios II processor core, similar to the instruction or data master port. A
Nios II core can have zero, one, or multiple tightly coupled memories.
The Nios II architecture supports tightly coupled memories for both
instruction and data access. Each tightly coupled memory port connects
directly to exactly one memory with guaranteed low, fixed latency. The
memory is external to the Nios II core and is usually located on chip.

Accessing Tightly Coupled Memory

Tightly coupled memories occupy normal address space, the same as
other memory devices connected via Avalon switch fabric. The address
ranges for tightly coupled memories (if any) are determined at system
generation time.

Software accesses tightly coupled memory using regular load and store
instructions. From the software’s perspective, there is no difference
accessing tightly coupled memory compared to other memory.

Effective Use of Tightly Coupled Memory

A system can use tightly coupled memory to achieve maximum
performance for accessing a specific section of code or data. For example,
interrupt-intensive applications can partition exception handler code into
a tightly coupled memory to minimize interrupt latency. Similarly,
compute-intensive digital signal processing (DSP) applications can
partition data buffers into tightly coupled memory for the fastest possible
data access.
Altera Corporation 2–13
November 2006 Nios II Processor Reference Handbook

JTAG Debug Module
If the application’s memory requirements are small enough to fit entirely
on chip, it is possible to use tightly coupled memory exclusively for code
and data. Larger applications must selectively choose what to include in
tightly coupled memory to maximize the cost-performance trade-off.

Address Map

The address map for memories and peripherals in a Nios II processor
system is design dependent. You specify the address map at system
generation time.

There are three addresses that are part of the CPU and deserve special
mention:

■ reset address
■ exception address
■ break handler address

Programmers access memories and peripherals by using macros and
drivers. Therefore, the flexible address map does not affect application
developers.

JTAG Debug
Module

The Nios II architecture supports a JTAG debug module that provides on-
chip emulation features to control the processor remotely from a host PC.
PC-based software debugging tools communicate with the JTAG debug
module and provide facilities, such as:

■ Downloading programs to memory
■ Starting and stopping execution
■ Setting breakpoints and watchpoints
■ Analyzing registers and memory
■ Collecting real-time execution trace data

The debug module connects to the JTAG circuitry in an Altera® FPGA.
External debugging probes can then access the processor via the standard
JTAG interface on the FPGA. On the processor side, the debug module
connects to signals inside the processor core. The debug module has non-
maskable control over the processor, and does not require a software stub
linked into the application under test. All system resources visible to the
processor in supervisor mode are available to the debug module. For
trace data collection, the debug module stores trace data in memory
either on-chip or in the debug probe.
2–14 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
The debug module gains control of the processor either by asserting a
hardware break signal, or by writing a break instruction into program
memory to be executed. In both cases, the processor transfers control to a
routine located at the break address. The break address is specified at
system generation time.

Soft-core processors such as the Nios II processor offer unique debug
capabilities beyond the features of traditional, fixed processors. The soft-
core nature of the Nios II processor allows you to debug a system in
development using a full-featured debug core, and later remove the
debug features to conserve logic resources. For the release version of a
product, the JTAG debug module functionality can be reduced, or
removed altogether.

The following sections describe the capabilities of the Nios II JTAG debug
module hardware. The usage of all hardware features is dependent on
host software, such as the Nios II IDE, which manages the connection to
the target processor and controls the debug process.

JTAG Target Connection

The JTAG target connection refers to the ability to connect to the CPU
through the standard JTAG pins on the Altera FPGA. This provides the
basic capabilities to start and stop the processor, and examine/edit
registers and memory. The JTAG target connection is also the minimum
requirement for the Nios II IDE flash programmer.

Download & Execute Software

Downloading software refers to the ability to download executable code
and data to the processor’s memory via the JTAG connection. After
downloading software to memory, the JTAG debug module can then exit
debug mode and transfer execution to the start of executable code.

Software Breakpoints

Software breakpoints provide the ability to set a breakpoint on
instructions residing in RAM. The software breakpoint mechanism writes
a break instruction into executable code stored in RAM. When the
processor executes the break instruction, control is transferred to the
JTAG debug module.
Altera Corporation 2–15
November 2006 Nios II Processor Reference Handbook

JTAG Debug Module
Hardware Breakpoints

Hardware breakpoints provide the ability to set a breakpoint on
instructions residing in nonvolatile memory, such as flash memory. The
hardware breakpoint mechanism continuously monitors the processor’s
current instruction address. If the instruction address matches the
hardware breakpoint address, the JTAG debug module takes control of
the processor.

Hardware breakpoints are implemented using the JTAG debug module’s
hardware trigger feature.

Hardware Triggers

Hardware triggers activate a debug action based on conditions on the
instruction or data bus during real-time program execution. Triggers can
do more than halt processor execution. For example, a trigger can be used
to enable trace data collection during real-time processor execution.

Table 2–4 lists all the conditions that can cause a trigger. Hardware trigger
conditions are based on either the instruction or data bus. Trigger
conditions on the same bus can be logically ANDed, enabling the JTAG
debug module to trigger, for example, only on write cycles to a specific
address.

When a trigger condition occurs during processor execution, the JTAG
debug module triggers an action, such as halting execution, or starting
trace capture. Table 2–5 lists the trigger actions supported by the Nios II
JTAG debug module.

Table 2–4. Trigger Conditions

Condition Bus (1) Description

Specific address D, I Trigger when the bus accesses a specific address.

Specific data value D Trigger when a specific data value appears on the bus.

Read cycle D Trigger on a read bus cycle.

Write cycle D Trigger on a write bus cycle.

Armed D, I Trigger only after an armed trigger event. See “Armed Triggers” on page 2–17.

Range D Trigger on a range of address values, data values, or both. See “Triggering on
Ranges of Values” on page 2–17.

Notes:
(1) “I” indicates instruction bus, “D” indicates data bus.
2–16 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
Armed Triggers

The JTAG debug module provides a two-level trigger capability, called
armed triggers. Armed triggers enable the JTAG debug module to trigger
on event B, only after event A. In this example, event A causes a trigger
action that enables the trigger for event B.

Triggering on Ranges of Values

The JTAG debug module can trigger on ranges of data or address values
on the data bus. This mechanism uses two hardware triggers together to
create a trigger condition that activates on a range of values within a
specified range.

Trace Capture

Trace capture refers to ability to record the instruction-by-instruction
execution of the processor as it executes code in real-time. The JTAG
debug module offers the following trace features:

■ Capture execution trace (instruction bus cycles).
■ Capture data trace (data bus cycles).
■ For each data bus cycle, capture address, data, or both.
■ Start and stop capturing trace in real time, based on triggers.
■ Manually start and stop trace under host control.
■ Optionally stop capturing trace when trace buffer is full, leaving the

processor executing.
■ Store trace data in on-chip memory buffer in the JTAG debug

module. (This memory is accessible only through the JTAG
connection.)

■ Store trace data to larger buffers in an off-chip debug probe.

Table 2–5. Trigger Actions

Action Description

Break Halt execution and transfer control to the JTAG debug module.

External trigger Assert a trigger signal output. This trigger output can be used, for example, to trigger
an external logic analyzer.

Trace on Turn on trace collection.

Trace off Turn off trace collection.

Trace sample (1) Store one sample of the bus to trace buffer.

Arm Enable an armed trigger.

Notes:
(1) Only conditions on the data bus can trigger this action.
Altera Corporation 2–17
November 2006 Nios II Processor Reference Handbook

JTAG Debug Module
Certain trace features require additional licensing or debug tools from
third-party debug providers. For example, an on-chip trace buffer is a
standard feature of the Nios II processor, but using an off-chip trace
buffer requires additional debug software and hardware provided by
First Silicon Solutions (FS2).

f For details, see www.fs2.com.

Execution vs. Data Trace

The JTAG debug module supports tracing the instruction bus (execution
trace), the data bus (data trace), or both simultaneously. Execution trace
records only the addresses of the instructions executed, enabling you to
analyze where in memory (i.e., in which functions) code executed. Data
trace records the data associated with each load and store operation on
the data bus.

The JTAG debug module can filter the data bus trace in real time to
capture the following:

■ Load addresses only
■ Store addresses only
■ Both load and store addresses
■ Load data only
■ Load address and data
■ Store address and data
■ Address and data for both loads and stores
■ Single sample of the data bus upon trigger event

Trace Frames

A “frame” is a unit of memory allocated for collecting trace data.
However, a frame is not an absolute measure of the trace depth.

To keep pace with the processor executing in real time, execution trace is
optimized to store only selected addresses, such as branches, calls, traps,
and interrupts. From these addresses, host-side debug software can later
reconstruct an exact instruction-by-instruction execution trace.
Furthermore, execution trace data is stored in a compressed format, such
that one frame represents more than one instruction. As a result of these
optimizations, the actual start and stop points for trace collection during
execution might vary slightly from the user-specified start and stop
points.
2–18 Altera Corporation
Nios II Processor Reference Handbook November 2006

Processor Architecture
Data trace stores 100% of requested loads and stores to the trace buffer in
real time. When storing to the trace buffer, data trace frames have lower
priority than execution trace frames. Therefore, while data frames are
always stored in chronological order, execution and data trace are not
guaranteed to be exactly synchronized with each other.

Document
Revision History

Table 2–6 shows the revision history for this document.

Table 2–6. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

Describe interrupt vector custom instruction. Interrupt vector custom
instruction added.

May 2006, v6.0.0 ● Added description of optional cpu_resetrequest and
cpu_resettaken.

● Added section on single precision floating point.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 Added tightly coupled memory.

December 2004,
v1.2

Added new control register ctl5.

September 2004,
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication.
Altera Corporation 2–19
November 2006 Nios II Processor Reference Handbook

Document Revision History
2–20 Altera Corporation
Nios II Processor Reference Handbook November 2006

Altera Corporation
November 2006

NII51003-6.1.0
3. Programming Model
Introduction This chapter describes the Nios® II programming model, covering
processor features at the assembly language level. The programmer’s
view of the following features are discussed in detail:

■ General-purpose registers, page 3–1
■ Control registers, page 3–2
■ Hardware-assisted debug processing, page 3–11
■ Exception processing, page 3–5
■ Hardware interrupts, page 3–6
■ Unimplemented instructions, page 3–8
■ Memory and peripheral organization, page 3–12
■ Cache memory, page 3–12
■ Processor reset state, page 3–13
■ Instruction set categories, page 3–14
■ Custom instructions, page 3–20

f High-level software development tools are not discussed here. See the
Nios II Software Developer’s Handbook for information about developing
software.

General-
Purpose
Registers

The Nios II architecture provides thirty-two 32-bit general-purpose
registers, r0 through r31. See Table 3–1 on page 2. Some registers have
names recognized by the assembler. The zero register (r0) always
returns the value 0, and writing to zero has no effect. The ra register
(r31) holds the return address used by procedure calls and is implicitly
accessed by call and ret instructions. C and C++ compilers use a
common procedure-call convention, assigning specific meaning to
registers r1 through r23 and r26 through r28.
 3–1

Control Registers
f For more information, refer to the Application Binary Interface chapter of
the Nios II Processor Reference Handbook.

Control
Registers

There are six 32-bit control registers, ctl0 through ctl5. All control
registers have names recognized by the assembler.

Control registers are accessed differently than the general-purpose
registers. The special instructions rdctl and wrctl provide the only
means to read and write to the control registers.

Table 3–1. The Nios II General Purpose Registers

Register Name Function Register Name Function

r0 zero 0x00000000 r16

r1 at Assembler Temporary r17

r2 Return Value r18

r3 Return Value r19

r4 Register Arguments r20

r5 Register Arguments r21

r6 Register Arguments r22

r7 Register Arguments r23

r8 Caller-Saved Register r24 et Exception Temporary

r9 Caller-Saved Register r25 bt Breakpoint Temporary (1)

r10 Caller-Saved Register r26 gp Global Pointer

r11 Caller-Saved Register r27 sp Stack Pointer

r12 Caller-Saved Register r28 fp Frame Pointer

r13 Caller-Saved Register r29 ea Exception Return Address

r14 Caller-Saved Register r30 ba Breakpoint Return Address (1)

r15 Caller-Saved Register r31 ra Return Address

Notes to Table 3–1:
(1) This register is used exclusively by the JTAG debug module.
3–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Details of the control registers are shown in Table 3–2. For details on the
relationship between the control registers and exception processing, see
Figure 3–1 on page 3–7.

status (ctl0)

The value in the status register controls the state of the Nios II
processor. All status bits are cleared after processor reset. See “Processor
Reset State” on page 3–13. One bit is defined: PIE, as shown in Table 3–3.

estatus (ctl1)

The estatus register holds a saved copy of the status register during
exception processing. One bit is defined: EPIE. This is the saved values of
PIE, as defined in Table 3–3.

The exception handler can examine estatus to determine the pre-
exception status of the processor. When returning from an interrupt, the
eret instruction causes the processor to copy estatus back to status,
restoring the pre-exception value of status.

f See “Exception Processing” on page 3–5 for more information.

Table 3–2. Control Register & Bits

Register Name 31…1 0

ctl0 status Reserved PIE

ctl1 estatus Reserved EPIE

ctl2 bstatus Reserved BPIE

ctl3 ienable Interrupt-enable bits

ctl4 ipending Pending-interrupt bits

ctl5 cpuid Unique processor identifier

Table 3–3. Status Register Bits

Bit Description

PIE bit PIE is the processor interrupt-enable bit. When PIE is 0, external interrupts are ignored. When
PIE is 1, external interrupts can be taken, depending on the value of the ienable register.
Altera Corporation 3–3
November 2006 Nios II Processor Reference Handbook

Operating Modes
bstatus (ctl2)

The bstatus register holds a saved copy of the status register during
debug break processing. One bit is defined: BPIE. This is the saved value
of PIE, as defined in Table 3–3 on page 3–3.

When a break occurs, the value of the status register is copied into
bstatus. Using bstatus, the status register can be restored to the
value it had prior to the break.

f See “Debug Mode” on page 3–5 for more information.

ienable (ctl3)

The ienable register controls the handling of external hardware
interrupts. Each bit of the ienable register corresponds to one of the
interrupt inputs, irq0 through irq31. A bit value of 1 means that the
corresponding interrupt is enabled; a bit value of 0 means that the
corresponding interrupt is disabled.

f See “Exception Processing” on page 3–5 for more information.

ipending (ctl4)

The value of the ipending register indicates which interrupts are
pending. A value of 1 in bit n means that the corresponding irqn input
is asserted, and that the corresponding interrupt is enabled in the
ienable register. The effect of writing a value to the ipending register
is undefined.

cpuid (ctl5)

The cpuid register holds a static value that uniquely identifies the
processor in a multi-processor system. The cpuid value is determined at
system generation time. Writing to the cpuid register has no effect.

f See “Exception Processing” on page 3–5 for more information.

Operating
Modes

The Nios II processor has two operating modes:

■ Normal mode
■ Debug mode
3–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
The following sections define the modes and the transitions between
modes.

Normal Mode

In general, system and application code execute in normal mode. The
processor is in normal mode immediately after processor reset.

General-purpose registers bt (r25) and ba (r30) are not available in
normal mode. Programs are not prevented from storing values in these
registers, but if they do, the debug mode could overwrite the values. The
bstatus register (ctl2) is also unavailable in normal mode.

Debug Mode

Software debugging tools use debug mode to implement features such as
breakpoints and watch-points. System code and application code never
execute in debug mode. The processor enters debug mode only after the
break instruction or after the JTAG debug module forces a break via
hardware.

In debug mode all processor functions are available and unrestricted to
the software debugging tool. Refer to “Break Processing” on page 3–11 for
further information.

Changing Modes

The processor starts in normal mode after reset. It enters debug mode
only as directed by software debugging tools. System code and
application code have no control over when the processor enters debug
mode. The processor always returns to its prior state when exiting from
debug mode.

f For further details, refer to “Break Processing” on page 3–11.

Exception
Processing

An exception is a transfer of control away from a program’s normal flow
of execution, caused by an event, either internal or external to the
processor, which requires immediate attention. Exception processing is
the act of responding to an exception, and then returning to the pre-
exception execution state.

An exception causes the processor to take the following steps:

1. Copies the contents of the status register (ctl0) to estatus
(ctl1) saving the processor’s pre-exception status
Altera Corporation 3–5
November 2006 Nios II Processor Reference Handbook

Exception Processing
2. Clears the PIE bit of the status register, disabling external
processor interrupts

3. Writes the address of the instruction after the exception to the ea
register (r29)

4. Transfers execution to the address of the exception handler that
determines the cause of the interrupt

The address of the exception handler is specified at system generation
time. At run-time this address is fixed, and software cannot modify it.
Programmers do not directly access the exception handler address, and
can write programs without awareness of the address.

The exception handler is a routine that determines the cause of each
exception, and then dispatches an appropriate exception routine to
respond to the interrupt.

f For a detailed discussion of writing programs to take advantage of
exception and interrupt handling, see the Exception Handling chapter in
the Nios II Software Developer’s Handbook.

Exception Types

Nios II exceptions fall into the following categories:

■ Hardware interrupt
■ Software trap
■ Unimplemented instruction
■ Other

The following sections describe each exception type in detail.

Hardware Interrupt

An external source such as a peripheral device can request a hardware
interrupt by asserting one of the processor’s 32 interrupt-request inputs,
irq0 through irq31. A hardware interrupt is generated if and only if all
three of these conditions are true:

■ The PIE bit of the status register (ctl0) is 1
■ An interrupt-request input, irqn, is asserted
■ The corresponding bit n of the ienable register (ctl3) is 1.

Upon hardware interrupt the PIE bit is set to 0, disabling further
interrupts. The value of the ipending register (ctl4) shows which
interrupt requests (IRQ) are pending. By peripheral design, an IRQ bit is
3–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
guaranteed to remain asserted until the processor explicitly responds to
the peripheral. Figure 3–1 shows the relationship between ipending,
ienable, PIE, and the generation of an interrupt.

Figure 3–1. Relationship Between ienable, ipending, PIE & Hardware
Interrupts

A software exception routine determines which of the pending interrupts
has the highest priority, and then transfers control to the appropriate
interrupt service routine (ISR). The ISR must stop the interrupt from being
visible (either by clearing it at the source or masking it using ienable)
before returning and/or before re-enabling PIE. The ISR must also save
estatus (ctl1) and ea (r29) before re-enabling PIE.

IP
E

N
D

IN
G

0

IP
E

N
D

IN
G

1

IP
E

N
D

IN
G

2

ipending Register

IP
E

N
D

IN
G

31

irq0

irq1

irq2

irq31

31 0

IE
N

A
B

LE
0

IE
N

A
B

LE
1

IE
N

A
B

LE
2

31 0

ienable Register

External hardware
interrupt request
inputs irq[31..0]

Relationship Between ienable, ipending, PIE, and
 Interrupt Generation

. . .

. . .

. . .

PIE bit

Generate
Hardware
 Interrupt

IE
N

A
B

LE
31
Altera Corporation 3–7
November 2006 Nios II Processor Reference Handbook

Exception Processing
Interrupts can be re-enabled by writing 1 to the PIE bit, thereby allowing
the current ISR to be interrupted. Typically, the exception routine adjusts
ienable so that IRQs of equal or lower priority are disabled before re-
enabling interrupts.

f See “Nested Exceptions” on page 3–10.

Software Trap

When a program issues the trap instruction, it generates a software trap
exception. A program typically issues a software trap when the program
requires servicing by the operating system. The exception handler for the
operating system determines the reason for the trap and responds
appropriately.

Unimplemented Instruction

When the processor issues a valid instruction that is not implemented in
hardware, an unimplemented instruction exception is generated. The
exception handler determines which instruction generated the exception.
If the instruction is not implemented in hardware, control is passed to an
exception routine that emulates the operation in software.

f See “Potential Unimplemented Instructions” on page 3–21 for further
details.

1 “Unimplemented instruction” does not mean “invalid
instruction.” Processor behavior for undefined, i.e., invalid,
instruction words is dependent on the Nios II core. For most
Nios II core implementations, executing an invalid instruction
produces an undefined result. See the Nios II Core Implementation
Details chapter of the Nios II Processor Reference Handbook for
details.

Other Exceptions

The previous sections describe all of the exception types defined by the
Nios II architecture at the time of publishing. However, some processor
implementations might generate exceptions that do not fall into the above
categories. For example, a future implementation might provide a
memory management unit (MMU) that generates access violation
exceptions. Therefore, a robust exception handler should provide a safe
response (such as issuing a warning) in the event that it cannot exactly
identify the cause of an exception.
3–8 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Determining the Cause of Exceptions

The exception handler must determine the cause of each exception and
then transfer control to an appropriate exception routine. Figure 3–2
shows an example of the process used to determine the exception source.

Figure 3–2. Process to Determine the Cause of an Exception

If the EPIE bit of the estatus register (ctl1) is 1 and the value of the
ipending register (ctl4) is non-zero, the exception was caused by an
external hardware interrupt. Otherwise, the exception might be caused
by a software trap or an unimplemented instruction. To distinguish
between software traps and unimplemented instructions, read the
instruction at address ea–4 (the Nios II data master must have access to
the code memory to read this address). If the instruction is trap, the

 Enter
 Exception Handler

(EPIE == 1)&(ipending != 0)?

Is Instruction at (ea-4) trap?

 Is instruction at (ea-4)
 div, mul, mulxuu, etc.?

Yes

Yes

Yes

No

Process hardware
 interrupt

 Process
 software trap

 Process
unimplemented
 instuction

No

Other exception

No
Altera Corporation 3–9
November 2006 Nios II Processor Reference Handbook

Exception Processing
exception is a software trap. If the instruction at address ea-4 is one of
the instructions that can be implemented in software, the exception was
caused by an unimplemented instruction. See “Potential Unimplemented
Instructions” on page 3–21 for details. If none of the above conditions
apply, the exception type is unrecognized, and the exception handler
should report the condition.

Nested Exceptions

Exception routines must take special precautions before:

■ Issuing a trap instruction
■ Issuing an unimplemented instruction
■ Re-enabling hardware interrupts

Before allowing any of these actions, the exception routine must save
estatus (ctl1) and ea (r29), so that they can be restored properly
before returning.

Returning from an Exception

The eret instruction is used to resume execution from the pre-exception
address. Except for the et register (r24), the exception routine must
restore any registers modified during exception processing before
returning.

When executing the eret instruction, the processor:

1. Copies the contents of estatus (ctl1) to status (ctl0)

2. Transfers program execution to the address in the ea register (r29)

Return Address

The return address requires some consideration when returning from
exception processing routines. After an exception occurs, ea contains the
address of the instruction after the point where the exception was
generated.

When returning from software trap and unimplemented instruction
exceptions, execution must resume from the instruction following the
software trap or unimplemented instruction. Therefore, ea contains the
correct return address.

On the other hand, hardware interrupt exceptions must resume execution
from the interrupted instruction itself. In this case, the exception handler
must subtract 4 from ea to point to the interrupted instruction.
3–10 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Break
Processing

A break is a transfer of control away from a program’s normal flow of
execution caused by a break instruction or the JTAG debug module.
Software debugging tools can take control of the Nios II processor via the
JTAG debug module. Only debugging tools control the processor when
executing in debug mode; application and system code never execute in
this mode.

Break processing is the means by which software debugging tools
implement debug and diagnostic features, such as breakpoints and
watchpoints. Break processing is similar to exception processing, but the
break mechanism is independent from exception processing. A break can
occur during exception processing, enabling debug tools to debug
exception handlers.

Processing a Break

The processor enters the break processing state under the following
conditions:

■ The processor issues the break instruction
■ The JTAG debug module asserts a hardware break

A break causes the processor to take the following steps:

1. Stores the contents of the status register (ctl0) to bstatus
(ctl2)

2. Clears the PIE bit of the status register, disabling external
processor interrupts

3. Writes the address of the instruction following the break to the ba
register (r30).

4. Transfers execution to the address of the break handler. The address
of the break handler is specified at system generation time.

Returning from a Break

After performing break processing, the debugging tool releases control of
the processor by executing a bret instruction. The bret instruction
restores status and returns program execution to the address in ba.

Register Usage

The break handler can use bt (r25) to help save additional registers.
Aside from bt, all other registers are guaranteed to be returned to their
pre-break state after returning from the break-processing routine.
Altera Corporation 3–11
November 2006 Nios II Processor Reference Handbook

Memory & Peripheral Access
Memory &
Peripheral
Access

Nios II addresses are 32 bits, allowing access up to a 4 gigabyte address
space. However, many Nios II core implementations restrict addresses to
31 bits or fewer.

f For details, refer to the Nios II Core Implementation Details chapter of the
Nios II Processor Reference Handbook.

Peripherals, data memory, and program memory are mapped into the
same address space. The locations of memory and peripherals within the
address space are determined at system generation time. Reading or
writing to an address that does not map to a memory or peripheral
produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read
and write byte, half-word (16-bit), or word (32-bit) data.

The Nios II architecture is little endian. For data wider than 8-bits stored
in memory, the more-significant bits are located in higher addresses.

Addressing Modes

The Nios II architecture supports the following addressing modes:

■ Register addressing
■ Displacement addressing
■ Immediate addressing
■ Register indirect addressing
■ Absolute addressing

In register addressing, all operands are registers, and results are stored
back to a register. In displacement addressing, the address is calculated as
the sum of a register and a signed, 16-bit immediate value. In immediate
addressing, the operand is a constant within the instruction itself.
Register indirect addressing uses displacement addressing, but the
displacement is the constant 0. Limited-range absolute addressing is
achieved by using displacement addressing with register r0, whose
value is always 0x00.

Cache Memory

The Nios II architecture and instruction set accommodate the presence of
data cache and instruction cache memories. Cache management is
implemented in software by using cache management instructions.
3–12 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Instructions are provided to initialize the cache, flush the caches
whenever necessary, and to bypass the data cache to properly access
memory-mapped peripherals.

Some Nios II processor cores support a mechanism called bit-31 cache
bypass to bypass the cache depending on the value of the most-significant
bit of the address. The address space of these processor implementations
is 2 GBytes, and the high bit of the address controls the caching of data
memory accesses.

f Refer to the Nios II Core Implementation Details chapter of the Nios II
Processor Reference Handbook for complete details of which processor
cores support bit-31 cache bypass.

Code written for a processor core with cache memory behaves correctly
on a processor core without cache memory. The reverse is not true.
Therefore, for a program to work properly on all Nios II processor core
implementations, the program must behave as if the instruction and data
caches exist. In systems without cache memory, the cache management
instructions perform no operation, and their effects are benign.

f For a complete discussion of cache management, see the Cache & Tightly
Coupled Memory chapter of the Nios II Software Developer’s Handbook.

Some consideration is necessary to ensure cache coherency after
processor reset. See “Processor Reset State” on page 3–13 for details.

f For details on the cache architecture and the memory hierarchy see the
Processor Architecture chapter of the Nios II Processor Reference Handbook.

Processor Reset
State

After reset, the Nios II processor:

1. Clears the status register to 0x0.

2. Invalidates the instruction-cache line associated with the reset
address, the address of the reset routine.

3. Begins executing from the reset address.

Clearing status (ctl0) disables hardware interrupts. Invalidating the
reset cache line guarantees that instruction fetches for reset code comes
from uncached memory. The reset address is specified at system
generation time.
Altera Corporation 3–13
November 2006 Nios II Processor Reference Handbook

Instruction Set Categories
Aside from the instruction-cache line associated with the reset address,
the contents of the cache memories are indeterminate after reset. To
ensure cache coherency after reset, the reset routine must immediately
initialize the instruction cache. Next, either the reset routine or a
subsequent routine should proceed to initialize the data cache.

The reset state is undefined for all other system components, including
but not limited to:

■ General-purpose registers, except for zero (r0) which is
permanently zero.

■ Control registers, except for status (ctl0) which is reset to 0x0.
■ Instruction and data memory.
■ Cache memory, except for the instruction-cache line associated with

the reset address.
■ Peripherals. Refer to the appropriate peripheral data sheet or

specification for reset conditions.
■ Custom instruction logic. Refer to the custom instruction

specification for reset conditions.

Instruction Set
Categories

This section introduces the Nios II instructions categorized by type of
operation performed.

Data Transfer Instructions

The Nios II architecture is a load-store architecture. Load and store
instructions handle all data movement between registers, memory, and
peripherals. Memories and peripherals share a common address space.
Some Nios II processor cores use memory caching and/or write buffering
to improve memory bandwidth. The architecture provides instructions
for both cached and uncached accesses.
3–14 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Table 3–4 describes the wide (32-bit) load and store instructions.

The data transfer instructions in Table 3–5 support byte and half-word
transfers.

Table 3–4. Wide Data Transfer Instructions

Instruction Description

ldw
stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The effective
address is the sum of a register's contents and a signed immediate value contained in the
instruction. Memory transfers can be cached or buffered to improve program performance. This
caching and buffering might cause memory cycles to occur out of order, and caching might
suppress some cycles entirely.

Data transfers for I/O peripherals should use ldwio and stwio.

ldwio
stwio

ldwio and stwio instructions load and store 32-bit data words from/to peripherals without
caching and buffering. Access cycles for ldwio and stwio instructions are guaranteed to occur
in instruction order and are never suppressed.

Table 3–5. Narrow Data Transfer Instructions

Instruction Description

ldb
ldbu
stb
ldh
ldhu
sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and ldh
sign-extend the value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits.
stb and sth store byte and half-word values, respectively.
Memory accesses can be cached or buffered to improve performance. To transfer data to I/O
peripherals, use the “io” versions of the instructions, described below.

ldbio
ldbuio
stbio
ldhio
ldhuio
sthio

These operations load/store byte and half-word data from/to peripherals without caching or
buffering.
Altera Corporation 3–15
November 2006 Nios II Processor Reference Handbook

Instruction Set Categories
Arithmetic & Logical Instructions

Logical instructions support and, or, xor, and nor operations.
Arithmetic instructions support addition, subtraction, multiplication,
and division operations. See Table 3–6.

Table 3–6. Arithmetic & Logical Instructions

Instruction Description

and
or
xor
nor

These are the standard 32-bit logical operations. These operations take two register values and
combine them bit-wise to form a result for a third register.

andi
ori
xori

These operations are immediate versions of the and, or, and xor instructions. The 16-bit
immediate value is zero-extended to 32 bits, and then combined with a register value to form the
result.

andhi
orhi
xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16
bits to form a 32-bit operand. Zeroes are shifted in from the right.

add
sub
mul
div
divu

These are the standard 32-bit arithmetic operations. These operations take two registers as input
and store the result in a third register.

addi
subi
muli

These instructions are immediate versions of the add, sub, and mul instructions. The
instruction word includes a 16-bit signed value.

mulxss
mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose
the appropriate instruction depending on whether the operands should be treated as signed or
unsigned values. It is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication.
3–16 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Move Instructions

These instructions provide move operations to copy the value of a
register or an immediate value to another register. See Table 3–7.

Comparison Instructions

The Nios II architecture supports a number of comparison instructions.
All of these compare two registers or a register and an immediate value,
and write either 1 (if true) or 0 to the result register. These instructions
perform all the equality and relational operators of the C programming
language. See Table 3–8.

Table 3–7. Move Instructions

Instruction Description

mov
movhi
movi
movui
movia

mov copies the value of one register to another register. movi moves a 16-bit signed immediate
value to a register, and sign-extends the value to 32 bits. movui and movhi move an immediate
16-bit value into the lower or upper 16-bits of a register, inserting zeros in the remaining bit
positions. Use movia to load a register with an address.

Table 3–8. Comparison Instructions (Part 1 of 2)

Instruction Description

cmpeq ==

cmpne !=

cmpge signed >=

cmpgeu unsigned >=

cmpgt signed >

cmpgtu unsigned >

cmple unsigned <=

cmpleu unsigned <=

cmplt signed <
Altera Corporation 3–17
November 2006 Nios II Processor Reference Handbook

Instruction Set Categories
Shift & Rotate Instructions

The following instructions provide shift and rotate operations. The
number of bits to rotate or shift can be specified in a register or an
immediate value. See Table 3–9.

cmpltu unsigned <

cmpeqi
cmpnei
cmpgei
cmpgeui
cmpgti
cmpgtui
cmplei
cmpleui
cmplti
cmpltui

These instructions are immediate versions of the comparison
operations. They compare the value of a register and a 16-bit
immediate value. Signed operations sign-extend the
immediate value to 32-bits. Unsigned operations fill the upper
bits with zero.

Table 3–8. Comparison Instructions (Part 2 of 2)

Instruction Description

Table 3–9. Shift & Rotate Instructions

Instruction Description

rol
ror
roli

The rol and roli instructions provide left bit-rotation. roli uses an immediate value to
specify the number of bits to rotate. The ror instructions provides right bit-rotation.
There is no immediate version of ror, because roli can be used to implement the equivalent
operation.

sll
slli
sra
srl
srai
srli

These shift instructions implement the << and >> operators of the C programming language. The
sll, slli, srl, srli instructions provide left and right logical bit-shifting operations, inserting
zeros. The sra and srai instructions provide arithmetic right bit-shifting, duplicating the sign bit
in the most significant bit. slli, srli and srai use an immediate value to specify the number
of bits to shift.
3–18 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Program Control Instructions

The Nios II architecture supports the unconditional jump and call
instructions listed in Table 3–10. These instructions do not have delay
slots.

The conditional-branch instructions compare register values directly, and
branch if the expression is true. See Table 3–11. The conditional branches
support the equality and relational comparisons of the C programming
language:

■ == and !=
■ < and <= (signed and unsigned)
■ > and >= (signed and unsigned)

The conditional-branch instructions do not have delay slots.

Table 3–10. Unconditional Jump & Call Instructions

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute address,
and stores the return address in register ra.

callr This instruction calls a subroutine at the absolute address contained in a register, and stores the
return address in register ra. This instruction serves the roll of dereferencing a C function pointer.

ret The ret instruction is used to return from subroutines called by call or callr. ret loads and
executes the instruction specified by the address in register ra.

jmp The jmp instruction jumps to an absolute address contained in a register. jmp is used to
implement switch statements of the C programming language.

br Branch relative to the current instruction. A signed immediate value gives the offset of the next
instruction to execute.

Table 3–11. Conditional-Branch Instructions

Instruction Description

bge
bgeu
bgt
bgtu
ble
bleu
blt
bltu
beq
bne

These instructions provide relative branches that compare
two register values and branch if the expression is true.
See “Comparison Instructions” on page 3–17 for a
description of the relational operations implemented.
Altera Corporation 3–19
November 2006 Nios II Processor Reference Handbook

Instruction Set Categories
Other Control Instructions

Table 3–12 shows other control instructions.

Custom Instructions

The custom instruction provides low-level access to custom instruction
logic. The inclusion of custom instructions is specified at system
generation time, and the function implemented by custom instruction
logic is design dependent.

f For further details, see the “Custom Instructions” section of the Processor
Architecture chapter of the Nios II Processor Reference Handbook and the
Nios II Custom Instruction User Guide.

Machine-generated C functions and assembly macros provide access to
custom instructions, and hide implementation details from the user.
Therefore, most software developers never use the custom assembly
instruction directly.

No-Operation Instruction

The Nios II assembler provides a no-operation instruction, nop.

Table 3–12. Other Control Instructions

Instruction Description

trap
eret

The trap and eret instructions generate and return from exceptions. These instructions are
similar to the call/ret pair, but are used for exceptions. trap saves the status register in
the estatus register, saves the return address in the ea register, and then transfers execution
to the exception handler. eret returns from exception processing by restoring status from
estatus, and executing the instruction specified by the address in ea.

break
bret

The break and bret instructions generate and return from breaks. break and bret are
used exclusively by software debugging tools. Programmers never use these instructions in
application code.

rdctl
wrctl

These instructions read and write control registers, such as the status register. The value is
read from or stored to a general-purpose register.

flushd
flushi
initd
initi

These instructions are used to manage the data and instruction cache memories.

flushp This instruction flushes all pre-fetched instructions from the pipeline. This is necessary before
jumping to recently-modified instruction memory.

sync This instruction ensures that all previously-issued operations have completed before allowing
execution of subsequent load and store operations.
3–20 Altera Corporation
Nios II Processor Reference Handbook November 2006

Programming Model
Potential Unimplemented Instructions

Some Nios II processor cores do not support all instructions in hardware.
In this case, the processor generates an exception after issuing an
unimplemented instruction. Only the following instructions can generate
an unimplemented-instruction exception:

■ mul
■ muli
■ mulxss
■ mulxsu
■ mulxuu
■ div
■ divu

All other instructions are guaranteed not to generate an unimplemented-
instruction exception.

An exception routine must exercise caution if it uses these instructions,
because they could generate another exception before the previous
exception is properly handled. See “Unimplemented Instruction ” on
page 3–8 for details regarding unimplemented instruction processing.

Document
Revision History

Table 3–13 shows the revision history for this document.

Table 3–13. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

No change from previous release.

May 2006, v6.0.0 No change from previous release.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 No change from previous release.

September 2004,
v1.1

● Added details for new control register ctl5.
● Updated details of debug mode and break processing to

reflect new behavior of the break instruction.

May 2004, v1.0 First publication.
Altera Corporation 3–21
November 2006 Nios II Processor Reference Handbook

Document Revision History
3–22 Altera Corporation
Nios II Processor Reference Handbook November 2006

Altera Corporation
November 2006

NII51004-6.1.0
4. Implementing the Nios II
Processor in SOPC Builder
Introduction This chapter describes the Nios® II configuration wizard in SOPC Builder.
The Nios II configuration wizard allows you to specify the processor
features for a particular Nios II hardware system. This chapter covers
only the features of the Nios II processor that you can configure with the
Nios II configuration wizard. It is not a user guide for creating complete
Nios II processor systems.

f To get started using SOPC Builder to design custom Nios II systems,
refer to the Nios II Hardware Development Tutorial. Nios II development
kits also provide a number of ready-made example hardware designs
that demonstrate several different configurations of the Nios II
processor.

The Nios II processor configuration wizard has several tabs. The
following sections describe the settings available on each tab.

1 Due to evolution and improvement of the Nios II configuration
wizard, the figures in this chapter might not match the exact
screens that appear in SOPC Builder.
 4–1

Nios II Core Tab
Nios II Core Tab The Nios II Core tab presents the main settings for configuring the
Nios II processor core. Figure 4–1 shows an example of the Nios II Core
tab.

Figure 4–1. Nios II Core Tab in the Nios II Configuration Wizard

Core Setting

The main purpose of the Nios II Core tab is to select the processor core.
The core you select on this tab affects other options available on this and
other tabs.

Currently, Altera® offers three Nios II cores:

■ Nios II/f—The Nios II/f “fast” core is designed for fast performance.
As a result, this core presents the most configuration options
allowing you to fine-tune the processor for performance.

■ Nios II/s—The Nios II/s “standard” core is designed for small size
while maintaining performance.

■ Nios II/e—The Nios II/e “economy” core is designed to achieve the
smallest possible core size. As a result, this core has a limited feature
set, and many settings are not available when the Nios II/e core is
selected.

As shown in Figure 4–1, the Nios II Core tab displays a “selector guide”
table that lists the basic properties of each core.
4–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
f For complete details of each core, see the Nios II Core Implementation
Details chapter of the Nios II Processor Reference Handbook.

Multiply & Divide Settings

The Nios II/s and Nios II/f cores offer different hardware multiply and
divide options. You can choose the best option to balance embedded
multiplier usage, logic element (LE) usage, and performance.

The Hardware Multiply setting provides the following options:

■ Include embedded multipliers (e.g., the DSP blocks in Stratix®
devices) in the arithmetic logic unit (ALU). This is the default when
targeting devices that have embedded multipliers.

■ Include LE-based multipliers in the ALU. This option achieves high
multiply performance without consuming embedded multiplier
resources.

■ Omit hardware multiply. This option conserves logic resources by
eliminating multiply hardware. Multiply operations are
implemented in software.

Turning on the Hardware Divide setting includes LE-based divide
hardware in the ALU. The Hardware Divide option achieves much
greater performance than software emulation of divide operations.

f For details on the effects of the Hardware Multiply and Hardware
Divide options on performance, see the Nios II Core Implementation
Details chapter of the Nios II Processor Reference Handbook.
Altera Corporation 4–3
November 2006 Nios II Processor Reference Handbook

Caches & Tightly Coupled Memories Tab
Caches & Tightly
Coupled
Memories Tab

The Caches & Tightly Coupled Memories tab allows you to configure
the cache and tightly coupled memory usage for the instruction and data
buses. Figure 4–2 shows an example of the Caches & Tightly Coupled
Memories tab.

Figure 4–2. Caches & Tightly Coupled Memories Tab in the Nios II Configuration Wizard

Instruction Settings

The Instruction settings provide the following options for the Nios II/f
and Nios II/s cores:

■ Instruction Cache - Specifies the size of the instruction cache. Valid
sizes are from 512 bytes to 64 Kbytes, or None.

Choosing None disables the instruction cache, which also removes
the Avalon instruction master port from the Nios II core. In this case,
you must include a tightly coupled instruction memory.

■ Include tightly coupled instruction master port(s) - When turned
on, the Nios II core includes tightly coupled memory ports. You can
specify one to four ports with the Number of ports setting. Tightly
coupled memory ports appear on the connection panel of the Nios II
core in the SOPC Builder System Contents tab. You must connect
each port to exactly one memory component in the system.
4–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
Data Settings

The Data settings provide the following options for the Nios II/f core:

■ Data Cache - Specifies the size of the data cache. Valid sizes are from
512 bytes to 64 Kbytes, or None. Depending on the value specified
for Data Cache, the following options are available:

● Data Cache Line Size - Valid sizes are 4, 16, or 32 bytes.
● Omit data master port - If you set Data Cache to None, you can

optionally turn on Omit data master port to remove the Avalon
data master port from the Nios II core. In this case, you must
include a tightly coupled data memory.

■ Include tightly coupled data master port(s) - When turned on, the
Nios II core includes tightly coupled memory ports. You can specify
one to four ports with the Number of ports setting. Tightly coupled
memory ports appear on the connection panel of the Nios II core in
the SOPC Builder System Contents tab. You must connect each port
to exactly one memory component in the system.

Advanced
Features Tab

The Advanced Features tab allows you to enable specialized features of
the Nios II processor. It contains one option: Include cpu_resetrequest
and cpu_resettaken signals. This option adds processor-only reset
request signals to the Nios II processor. These signals let another device
individually reset the Nios II processor without resetting the entire SOPC
Builder system. The signals are exported to the top level of your SOPC
Builder system.

Figure 4–3 on page 4–6 shows the Advanced Features tab.
Altera Corporation 4–5
November 2006 Nios II Processor Reference Handbook

JTAG Debug Module Tab
Figure 4–3. Advanced Features Tab in the Nios II Configuration Wizard

f For further details on the processor-only reset request signals, refer to the
Processor Architecture chapter in the Nios II Processor Reference Handbook.

JTAG Debug
Module Tab

The JTAG Debug Module tab presents settings for configuring the JTAG
debug module on the Nios II core. You can select the debug features
appropriate for your target application.

Soft-core processors such as the Nios II processor offer unique debug
capabilities beyond the features of traditional-fixed processors. The soft-
core nature of the Nios II processor allows you to debug a system in
development using a full-featured debug core, and later remove the
debug features to conserve logic resources. For the release version of a
product, you might choose to reduce the JTAG debug module
functionality, or remove it altogether.
4–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
Table 4–1 describes the debug features available to you for debugging
your system.

Table 4–1. Debug Configuration Features

Feature Description

JTAG Target
Connection

The ability to connect to the processor through the standard JTAG pins on the Altera
FPGA. This provides the basic capabilities to start and stop the processor, and
examine/edit registers and memory.

Download Software The ability to download executable code to the processor’s memory via the JTAG
connection.

Software Breakpoints The ability to set a breakpoint on instructions residing in RAM

Hardware Breakpoints The ability to set a breakpoint on instructions residing in nonvolatile memory, such as
flash memory.

Data Triggers The ability to trigger based on address value, data value, or read or write cycle. You can
use a trigger to halt the processor on specific events or conditions, or to activate other
events, such as starting execution trace, or sending a trigger signal to an external logic
analyzer. Two data triggers can be combined to form a trigger that activates on a range
of data or addresses.

Instruction Trace The ability to capture the sequence of instructions executing on the processor in real
time.

Data Trace The ability to capture the addresses and data associated with read and write operations
executed by the processor in real time.

On-Chip Trace The ability to store trace data in on-chip memory.

Off-Chip Trace The ability to store trace data in an external debug probe. Off-chip trace requires a
debug probe from First Silicon Solutions (FS2).
Altera Corporation 4–7
November 2006 Nios II Processor Reference Handbook

JTAG Debug Module Tab
Debug Level Settings

There are five debug levels in the JTAG Debug Module tab as shown in
Figure 4–4.

Figure 4–4. JTAG Debug Module Tab in the Nios II Configuration Wizard

Table 4–2 on page 4–9 is a detailed list of the characteristics of each debug
level. Different levels consume different amounts of on-chip resources.
Certain Nios II cores have restricted debug options, and certain options
require debug tools provided by First Silicon Solutions (FS2).
4–8 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
f For details on the Nios II debug features available from FS2, visit
www.fs2.com.

On-Chip Trace Buffer Settings

Debug levels 3 and 4 support trace data collection into an on-chip
memory buffer. The on-chip trace buffer size can be set to sizes from 128
to 64K trace frames.

Larger buffer sizes consume more on-chip M4K RAM blocks. Every M4K
RAM block can store up to 128 trace frames.

Table 4–2. JTAG Debug Module Levels

Debug Feature No
Debug Level 1 Level 2 Level 3 Level 4 (1)

Logic Usage 0 300 - 400 LEs 800 - 900 LEs 2,400 - 2,700 LEs 3,100 - 3,700 LEs

On-Chip Memory Usage 0 Two M4Ks Two M4Ks Four M4Ks Four M4Ks

External I/O Pins Required
(2)

0 0 0 0 20

JTAG Target Connection No Yes Yes Yes Yes

Download Software No Yes Yes Yes Yes

Software Breakpoints None Unlimited Unlimited Unlimited Unlimited

Hardware Execution
Breakpoints

0 None 2 2 4

Data Triggers 0 None 2 2 4

On-Chip Trace 0 None None Up to 64K Frames
(3)

Up to 64K Frames

Off-Chip Trace (4) 0 None None None 128K Frames

Notes to Table 4–2:
(1) Level 4 requires the purchase of a software upgrade from FS2.
(2) Not including the dedicated JTAG pins on the Altera FPGA.
(3) An additional license from FS2 is required to use more than 16 frames.
(4) Off-chip trace requires the purchase of additional hardware from FS2.
Altera Corporation 4–9
November 2006 Nios II Processor Reference Handbook

Custom Instructions Tab
Custom
Instructions Tab

The Custom Instructions tab allows you to connect custom instruction
logic to the Nios II arithmetic logic unit (ALU). You can achieve
significant performance improvements—often on the order of 10x to
100x—by implementing performance-critical operations in hardware
using custom-instruction logic. Figure 4–5 shows an example of the
Custom Instructions tab.

Figure 4–5. Custom Instructions Tab in the Nios II Configuration Wizard

To add a custom instruction to the Nios II processor, select the custom
instruction from the Library list at the left side of the dialog box, and click
Add.

f A complete discussion of the hardware and software design process for
custom instructions is beyond the scope of this chapter. For full details
on the topic of custom instructions, including working example designs,
see the Nios II Custom Instruction User Guide.

Floating-Point Custom Instructions

The Nios II core offers a set of optional predefined custom instructions
that implement floating-point arithmetic operations. You can choose to
include these custom instructions to support computation-intensive
floating-point applications.
4–10 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
The basic set of floating-point custom instructions includes single
precision (32-bit) floating-point addition, subtraction, and multiplication.
Floating-point division is available as an extension to the basic instruction
set. The best choice for your hardware design depends on a balance
among floating-point usage, hardware resource usage, and performance.

To add the floating-point custom instructions to the Nios II processor,
select Floating Point Hardware from the Library list, and click Add.

Figure 4–6. Nios II Floating Point Hardware Dialog Box

The Nios II Floating Point Hardware dialog box, shown in Figure 4–6,
provides one option: Use floating point division hardware. If you leave
this check box off, SOPC Builder omits floating-point division from the
Nios II processor, while including addition, subtraction, and
multiplication. The floating-point division hardware requires more
resources than the other instructions, so you might wish to omit it if your
application does not make heavy use of floating-point division.

Click Finish to add the floating point custom instructions to the Nios II
processor.

If the target device includes on-chip multiplier blocks, the floating-point
custom instructions incorporates them as needed. If there are no on-chip
multiplier blocks, the floating-point custom instructions are entirely
based on general-purpose logic elements.

1 The opcode extensions for the floating-point custom
instructions are 252 through 255 (0xFC through 0xFF). These
opcode extensions cannot be modified.
Altera Corporation 4–11
November 2006 Nios II Processor Reference Handbook

System-Dependent Nios II Processor Settings
f For details on floating-point instruction usage in the Nios II Embedded
Design Suite (EDS), see the tutorial Using Nios II Floating-Point Custom
Instructions.

Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction
which reduces average and worst case interrupt latency.

To add the interrupt vector custom instruction to the Nios II processor,
select Nios II Interrupt Vector Instruction from the Library list, and click
Add.

There can only be one interrupt vector custom instruction component in
a Nios II processor. If the interrupt vector custom instruction is present in
the Nios II processor, the hardware abstraction layer (HAL) source
detects it at compile time and generates code using the custom
instruction.

The interrupt vector custom instruction improves both average and
worst-case interrupt latency by up to 20%. To achieve the lowest possible
interrupt latency, consider using tightly-coupled memories so that
interrupt handlers can run without cache misses.

f For details of the interrupt vector custom instruction implementation,
see the Exception & Interrupt Controller section in the Processor Architecture
chapter of the Nios II Processor Reference Handbook. For guidance with
tightly-coupled memories, see the Tightly Coupled Memory section in the
Processor Architecture chapter of the Nios II Processor Reference Handbook.

System-
Dependent
Nios II
Processor
Settings

The Nios II processor core has settings which cannot be configured until
other system components are in place. These settings include:

■ Reset Address
■ Exception Address
■ Break Location

These settings are not in the Nios II processor configuration wizard. They
are grouped in the More “Nios II module name” Settings tab in SOPC
Builder, as shown in Figure 4–7 on page 4–13.
4–12 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
Figure 4–7. More “Nios II module name” Settings Tab

The following sections describe each system-dependent setting.

Reset Address

You can select the memory module where the reset code (boot loader)
resides, and the location of the reset vector (reset address).

Memory Module

You can select the reset memory module from a drop-down list, which
includes all memory modules mastered by the Nios II processor. In a
typical system, you select a nonvolatile memory module for the reset
code.

Offset

You can edit the offset field to specify the location of the reset vector
relative to the memory module’s base address.
Altera Corporation 4–13
November 2006 Nios II Processor Reference Handbook

System-Dependent Nios II Processor Settings
Address

SOPC Builder calculates the physical address of the reset vector when
you modify the memory module, the offset, or the memory module’s base
address. You cannot edit the Address field.

Exception Address

You can select the memory module where the exception vector (exception
address) resides, and the location of the exception vector.

Memory Module

You can select the exception vector memory module from a drop-down
list, which includes all memory modules mastered by the Nios II
processor. In a typical system, you select a low-latency memory module
for the exception code.

Offset

You can edit the offset field to specify the location of the exception vector
relative to the memory module’s base address.

Address

SOPC Builder calculates the physical address of the exception vector
when you modify the memory module, the offset, or the memory
module’s base address. You cannot edit the Address field.

Break Location

If the Nios II processor core contains a JTAG debug module, SOPC
Builder displays the break vector (break location). Memory Module is
always the JTAG debug module. Offset is fixed at 0x20, and Address is
determined by the base address of the JTAG debug module. You cannot
modify any of the Break Location fields.
4–14 Altera Corporation
Nios II Processor Reference Handbook November 2006

Implementing the Nios II Processor in SOPC Builder
Document
Revision History

Table 4–3 shows the revision history for this document.

Table 4–3. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

● Add section on interrupt vector custom instruction.
● Add section on system-dependent Nios II processor settings.

May 2006, v6.0.0 ● Added details on floating point custom instructions.
● Added section on Advanced Features tab.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 ● Updates to reflect new GUI options in Nios II processor
version 5.0.

● New details in “Caches and Tightly Coupled Memory” section.

September 2004,
v1.1

● Updates to reflect new GUI options in Nios II processor
version 1.1.

● New details in section “Multiply and Divide Settings.”

May 2004, v1.0 First publication.
Altera Corporation 4–15
November 2006 Nios II Processor Reference Handbook

Document Revision History
4–16 Altera Corporation
Nios II Processor Reference Handbook November 2006

Altera Corporation
Section II. Appendixes
This section provides additional information about the Nios® II processor.

This section includes the following chapters:

■ Chapter 5, Nios II Core Implementation Details

■ Chapter 6, Nios II Processor Revision History

■ Chapter 7, Application Binary Interface

■ Chapter 8, Instruction Set Reference
 Section II–1

Appendixes Nios II Processor Reference Handbook
Section II–2 Altera Corporation

Altera Corporation
November 2006

NII51015-6.1.0
5. Nios II Core
Implementation Details
Introduction This document describes all of the Nios® II processor core
implementations available at the time of publishing. This document
describes only implementation-specific features of each processor core.
All cores support the Nios II instruction set architecture.

f For more information regarding the Nios II instruction set architecture,
refer to the Instruction Set Reference chapter of the Nios II Processor
Reference Handbook.

For details on a specific core, see the appropriate section for that core:

■ “Nios II/f Core” on page 5–3
■ “Nios II/s Core” on page 5–12
■ “Nios II/e Core” on page 5–18

Table 5–1 compares the objectives and features of each Nios II processor
core. The table is designed to help system designers choose the core that
best suits their target application.

Table 5–1. Nios II Processor Cores (Part 1 of 2)

Feature Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance DMIPS/MHz (1) 0.15 0.74 1.16

Max. DMIPS (2) 31 127 218

Max. fM A X (2) 200 MHz 165 MHz 185 MHz

Area < 700 LEs;
< 350 ALMs

< 1400 LEs;
< 700 ALMs

< 1800 LEs;
< 900 ALMs

Pipeline 1 Stage 5 Stages 6 Stages

External Address Space 2 Gbytes 2 GBytes 2 GBytes

Instruction
Bus

Cache – 512 bytes to 64
kbytes

512 bytes to 64 kbytes

Pipelined Memory Access – Yes Yes

Branch Prediction – Static Dynamic

Tightly Coupled Memory – Optional Optional
 5–1

Device Family Support
Device Family
Support

All Nios II cores provide the same support for target Altera device
families. Nios II cores provide either full or preliminary device family
support, as described below:

■ Full support means the Nios II cores meet all functional and timing
requirements for the device family and may be used in production
designs

Data Bus Cache – – 512 bytes to 64 Kbytes

Pipelined Memory Access – – –

Cache Bypass Methods – – I/O instructions; bit-31
cache bypass

Tightly Coupled Memory – – Optional

Arithmetic
Logic Unit

Hardware Multiply – 3-Cycle (3) 1-Cycle (3)

Hardware Divide – Optional Optional

Shifter 1 Cycle-per-bit 3-Cycle Shift (3) 1-Cycle Barrel
Shifter (3)

JTAG Debug
Module

JTAG interface, run
control, software
breakpoints

Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Exception
Handling

Exception Types Software trap,
unimplemented

instruction,
hardware interrupt

Software trap,
unimplemented

instruction,
hardware interrupt

Software trap,
unimplemented

instruction,
hardware interrupt

Integrated Interrupt
Controller

Yes Yes Yes

User Mode Support No; Permanently
in supervisor

mode

No; Permanently in
supervisor mode

No; Permanently in
supervisor mode

Custom Instruction Support Yes Yes Yes

Notes to Table 5–1:
(1) DMIPS performance for the Nios II/s and Nios II/f cores depends on the hardware multiply option.
(2) Using the fastest hardware multiply option, and targeting a Stratix II FPGA in the fastest speed grade.
(3) Multiply and shift performance depends on which hardware multiply option is used. If no hardware multiply

option is used, multiply operations are emulated in software, and shift operations require one cycle per bit. For
details, see the arithmetic logic unit description for each core.

Table 5–1. Nios II Processor Cores (Part 2 of 2)

Feature Core

Nios II/e Nios II/s Nios II/f
5–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
■ Preliminary support means the Nios II cores meet all functional
requirements, but may still be undergoing timing analysis for the
device family; they may be used in production designs with caution.

Table 5–2 shows the level of support offered to each of the Altera device
families by the Nios II cores.

Nios II/f Core The Nios II/f “fast” core is designed for high execution performance.
Performance is gained at the expense of core size, making the Nios II/f
core approximately 25% larger than the Nios II/s core. Altera designed
the Nios II/f core with the following design goals in mind:

■ Maximize the instructions-per-cycle execution efficiency
■ Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well
as for applications with large amounts of code and/or data, such as
systems running a full-featured operating system.

Overview

The Nios II/f core:

■ Has separate instruction and data caches
■ Can access up to 2 GBytes of external address space
■ Supports optional tightly coupled memory for instructions and data
■ Employs a 6-stage pipeline to achieve maximum DMIPS/MHz
■ Performs dynamic branch prediction

Table 5–2. Device Family Support

Device Family Support

Stratix® III Preliminary

Stratix II Full

Stratix II GX Full

Stratix GX Full

Stratix Full

Hardcopy® II Full

HardCopy Full

Cyclone™ II Full

Cyclone Full

Other device families No support
Altera Corporation 5–3
November 2006 Nios II Processor Reference Handbook

Nios II/f Core
■ Provides hardware multiply, divide, and shift options to improve
arithmetic performance

■ Supports the addition of custom instructions
■ Supports the JTAG debug module
■ Supports optional JTAG debug module enhancements, including

hardware breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/f
core implementation. This document does not discuss low-level design
issues or implementation details that do not affect Nios II hardware or
software designers.

Register File

At system generation time, the cpuid control register (clt5) is assigned
a value that is guaranteed to be unique for each processor in the system.

Arithmetic Logic Unit

The Nios II/f core provides several arithmetic logic unit (ALU) options to
improve the performance of multiply, divide, and shift operations.

Multiply & Divide Performance

The Nios II/f core provides the following hardware multiplier options:

■ No hardware multiply — Does not include multiply hardware. In this
case, multiply operations are emulated in software.

■ Use embedded multipliers — Includes dedicated embedded multipliers
available on the target device. This option is available only on Altera
FPGAs that have embedded multipliers, such as the DSP blocks in
Stratix II FPGAs.

■ Use LE-based multipliers — Includes hardware multipliers built from
logic element (LE) resources.

The Nios II/f core also provides a hardware divide option that includes
LE-based divide circuitry in the ALU.

Including an ALU option improves the performance of one or more
arithmetic instructions.

1 The performance of the embedded multipliers differ, depending
on the target FPGA family.
5–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
Table 5–3 lists the details of the hardware multiply and divide options.

The cycles per instruction value determines the maximum rate at which
the ALU can dispatch instructions and produce each result. The latency
value determines when the result becomes available. If there is no data
dependency between the results and operands for back-to-back
instructions, then the latency does not affect throughput. However, if an
instruction depends on the result of an earlier instruction, then the
processor stalls through any result latency cycles until the result is ready.

In the following code example, a multiply operation (with 1 instruction
cycle and 2 result latency cycles) is followed immediately by an add
operation that uses the result of the multiply. On the Nios II/f core, the
addi instruction, like most ALU instructions, executes in a single cycle.
However, in this code example, execution of the addi instruction is
delayed by two additional cycles until the multiply operation completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Table 5–3. Hardware Multiply & Divide Details for the Nios II/f Core

ALU Option Hardware Details Cycles per
Instruction

Result Latency
Cycles

Supported
Instructions

No hardware multiply
or divide

Multiply & divide
instructions generate an
exception

– – None

LE-based multiplier ALU includes 32 x 4-bit
multiplier

11 +2 mul, muli

Embedded multiplier
on Stratix and Stratix II
families

ALU includes 32 x 32-bit
multiplier

1 +2 mul, muli,
mulxss, mulxsu,

mulxuu

Embedded multiplier
on Cyclone II family

ALU includes 32 x 16-bit
multiplier

5 +2 mul, muli

Hardware divide ALU includes multicycle
divide circuit

4 – 66 +2 div, divu
Altera Corporation 5–5
November 2006 Nios II Processor Reference Handbook

Nios II/f Core
Shift & Rotate Performance

The performance of shift operations depends on the hardware multiply
option. When a hardware multiplier is present, the ALU achieves shift
and rotate operations in one or two clock cycles. Otherwise, the ALU
includes dedicated shift circuitry that achieves one-bit-per-cycle shift and
rotate performance. Refer to Table 5–5 on page 5–11 for details.

Memory Access

The Nios II/f core provides both instruction and data caches. The cache
size for each is user-definable, between 512 bytes and 64 Kbytes. The
Nios II/f core supports the bit-31 cache bypass method for accessing I/O
on the data master port. Addresses are 31 bits wide to accommodate the
bit-31 cache bypass method.

Instruction and Data Master Ports

The instruction and data master ports on the Nios II/f core are optional.
A master port can be excluded, as long as the core includes at least one
tightly coupled memory to take the place of the missing master port.

The instruction master port is a pipelined Avalon® master port. If the core
includes data cache with a line size greater than four bytes, then the data
master port is a pipelined Avalon master port. Otherwise, the data master
port is not pipelined.

Support for pipelined Avalon transfers minimizes the impact of
synchronous memory with pipeline latency. The pipelined instruction
and data master ports can issue successive read requests before prior
requests complete.

Instruction Cache

The instruction cache memory has the following characteristics:

■ Direct-mapped cache implementation
■ 32 bytes (8 words) per cache line
■ The instruction master port reads an entire cache line at a time from

memory, and issues one read per clock cycle.
■ Critical word first

The instruction byte address is divided into the following fields:

. . . 5 4 3 2 1 0

tag line offset 0 0
5–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
The sizes of the line and tag fields depend on the size of the cache
memory, but the offset field is always three bits (i.e., an 8-word line). The
maximum instruction byte address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache
from the Nios II/f core requires that the core include at least one tightly
coupled instruction memory.

Data Cache

The data cache memory has the following characteristics:

■ Direct-mapped cache implementation
■ Configurable line size of 4, 16, or 32 bytes
■ The data master port reads an entire cache line at a time from

memory, and issues one read per clock cycle.
■ Write-back
■ Write-allocate (i.e., store instructions that miss allocate the line for

that address)

The data byte address is divided into the following fields:

The size of the line and tag fields depend on the size of the cache memory.
The size of the offset field depends on the line size. The maximum data
byte address size is 31 bits.

The data cache is optional. If the data cache is excluded from the core, the
data master port can also be excluded.

Cache Bypass
The normal method for bypassing the data cache is to use I/O load and
store instructions that bypass the cache. In addition, the Nios II/f core
also implements the bit-31 cache bypass method on the data master port.
This method uses bit 31 of the address as a tag that indicates whether the
processor should transfer data to/from cache, or bypass it. This is a
convenience for software, which might need to cache certain addresses
and bypass others. Software can pass addresses as parameters between
functions, without having to specify any further information about
whether the addressed data is cached or not.

. . . 2 1 0

tag line offset 0 0
Altera Corporation 5–7
November 2006 Nios II Processor Reference Handbook

Nios II/f Core
Mixing Cached and Noncached Accesses
Mixing cached and noncached accesses to the same cache line can result
in invalid data reads. For example, the following sequence of events
causes cache incoherency.

1. The Nios II core writes data to cache, creating a dirty data cache line.

2. The Nios II core reads data from the same address, but bypasses the
cache.

Software should not mix both cached and uncached accesses to the same
cache line. If it is necessary to mix cached and uncached data accesses,
flush the corresponding line of the data cache after completing the cached
accesses and before performing the uncached accesses.

Tightly Coupled Memory

The Nios II/f core provides optional tightly-coupled memory interfaces
for both instructions and data. A Nios II/f core can use up to four each of
instruction and data tightly coupled memories. When a tightly-coupled
memory interface is enabled, the Nios II core includes an additional
memory interface master port. Each tightly-coupled memory interface
must connect directly to exactly one memory slave port.

When tightly coupled memory is present, the Nios II core decodes
addresses internally to determine if requested instructions or data reside
in tightly coupled memory. If the address resides in tightly coupled
memory, the Nios II core fetches the instruction or data through the
tightly-coupled memory interface. Software accesses tightly coupled
memory with the usual load and store instructions, such as ldw or
ldwio.

Accessing tightly coupled memory bypasses cache memory. The
processor core functions as if cache were not present for the address span
of the tightly coupled memory. Instructions for managing cache, such as
initd and flushd, do not affect the tightly coupled memory, even if the
instruction specifies an address in tightly coupled memory.

Execution Pipeline

This section provides an overview of the pipeline behavior for the benefit
of performance-critical applications. Designers can use this information
to minimize unnecessary processor stalling. Most application
programmers never need to analyze the performance of individual
instructions.
5–8 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
The Nios II/f core employs a 6-stage pipeline. The pipeline stages are
listed in Table 5–4.

Up to one instruction is dispatched and/or retired per cycle. Instructions
are dispatched and retired in-order. Dynamic branch prediction is
implemented using a 2-bit branch history table. The pipeline stalls for the
following conditions:

■ Multi-cycle instructions
■ Avalon instruction master port read accesses
■ Avalon data master port read/write accesses
■ Data dependencies on long latency instructions (e.g., load, multiply,

shift).

Pipeline Stalls

The pipeline is set up so that if a stage stalls, no new values enter that
stage or any earlier stages. No “catching up” of pipeline stages is allowed,
even if a pipeline stage is empty.

Only the A-stage and D-stage are allowed to create stalls.

The A-stage stall occurs if any of the following conditions occurs:

■ An A-stage memory instruction is waiting for Avalon data master
requests to complete. Typically this happens when a load or store
misses in the data cache, or a flushd instruction needs to write back
a dirty line.

■ An A-stage shift/rotate instruction is still performing its operation.
This only occurs with the multi-cycle shift circuitry (i.e., when the
hardware multiplier is not available).

■ An A-stage divide instruction is still performing its operation. This
only occurs when the optional divide circuitry is available.

Table 5–4. Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

A Align

W Writeback
Altera Corporation 5–9
November 2006 Nios II Processor Reference Handbook

Nios II/f Core
■ An A-stage multi-cycle custom instruction is asserting its stall signal.
This only occurs if the design includes multi-cycle custom
instructions.

The D-stage stall occurs if the following condition occurs and no M-stage
pipeline flush is active:

An instruction is trying to use the result of a late result instruction too
early. The late result instructions are loads, shifts, rotates, rdctl, multiplies
(if hardware multiply is supported), divides (if hardware divide is
supported), and multi-cycle custom instructions (if present).

Branch Prediction

The Nios II/f core performs dynamic branch prediction to minimize the
cycle penalty associated with taken branches.

Instruction Performance

All instructions take one or more cycles to execute. Some instructions
have other penalties associated with their execution. Late result
instructions have a two cycle bubble placed between them and an
instruction that uses their result. Instructions that flush the pipeline cause
up to three instructions after them to be cancelled. This creates a three-
cycle penalty and an execution time of four cycles. Instructions that
require Avalon transfers are stalled until any required Avalon transfers
(up to one write and one read) are completed.
5–10 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
Execution performance for all instructions is shown in Table 5–5.

Exception Handling

The Nios II/f core supports the following exception types:

■ Hardware interrupt
■ Software trap
■ Unimplemented instruction

Table 5–5. Instruction Execution Performance for Nios II/f Core

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multi-cycle custom instructions 1 Late result

Branch (correctly predicted, taken) 2

Branch (correctly predicted, not taken) 1

Branch (mis-predicted) 4 Pipeline flush

trap, break, eret, bret, flushp, wrctl, and unimplemented instructions 4 Pipeline flush

call 2

jmp, ret, callr 3

rdctl 1 Late result

load (without Avalon transfer) 1 Late result

load (with Avalon transfer) > 1 Late result

store, flushd (without Avalon transfer) 1

store, flushd (with Avalon transfer) > 1

initd 1

flushi, initi 4

Multiply (1) Late result

Divide (1) Late result

Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result

Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result

Shift/rotate (without hardware multiply present) 1 - 32 Late result

All other instructions 1

Note to Table 5–5:
(1) Depends on the hardware multiply or divide option. See Table 5–3 on page 5 for details.
Altera Corporation 5–11
November 2006 Nios II Processor Reference Handbook

Nios II/s Core
JTAG Debug Module

The Nios II/f core supports the JTAG debug module to provide a JTAG
interface to software debugging tools. The Nios II/f core supports an
optional enhanced interface that allows real-time trace data to be routed
out of the processor and stored in an external debug probe.

Unsupported Features

The Nios II/f core does not handle the execution of instructions with
undefined opcodes. If the processor issues an instruction word with an
undefined opcode, the resulting behavior is undefined.

Nios II/s Core The Nios II/s “standard” core is designed for small core size. On-chip
logic and memory resources are conserved at the expense of execution
performance. The Nios II/s core uses approximately 20% less logic than
the Nios II/f core, but execution performance also drops by roughly 40%.
Altera designed the Nios II/s core with the following design goals in
mind:

■ Do not cripple performance for the sake of size.
■ Remove hardware features that have the highest ratio of resource

usage to performance impact.

The resulting core is optimal for cost-sensitive, medium-performance
applications. This includes applications with large amounts of code
and/or data, such as systems running an operating system where
performance is not the highest priority.

Overview

The Nios II/s core:

■ Has instruction cache, but no data cache
■ Can access up to 2 Gbytes of external address space
■ Supports optional tightly coupled memory for instructions
■ Employs a 5-stage pipeline
■ Performs static branch prediction
■ Provides hardware multiply, divide, and shift options to improve

arithmetic performance
■ Supports the addition of custom instructions
■ Supports the JTAG debug module
■ Supports optional JTAG debug module enhancements, including

hardware breakpoints and real-time trace
5–12 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
The following sections discuss the noteworthy details of the Nios II/s
core implementation. This document does not discuss low-level design
issues, or implementation details that do not affect Nios II hardware or
software designers.

Register File

At system generation time, the cpuid control register (clt5) is assigned
a value that is guaranteed to be unique for each processor in the system.

Arithmetic Logic Unit

The Nios II/s core provides several ALU options to improve the
performance of multiply, divide, and shift operations.

Multiply & Divide Performance

The Nios II/s core provides the following hardware multiplier options:

■ No hardware multiply – Does not include multiply hardware. In this
case, multiply operations are emulated in software.

■ Use embedded multipliers – Includes dedicated embedded multipliers
available on the target device. This option is available only on Altera
FPGAs that have embedded multipliers, such as the DSP blocks in
Stratix II FPGAs.

■ Use LE-based multipliers – Includes hardware multipliers built from
logic element (LE) resources.

The Nios II/s core also provides a hardware divide option that includes
LE-based divide circuitry in the ALU.

Including an ALU option improves the performance of one or more
arithmetic instructions.

1 The performance of the embedded multipliers differ, depending
on the target FPGA family.
Altera Corporation 5–13
November 2006 Nios II Processor Reference Handbook

Nios II/s Core
Table 5–6 lists the details of the hardware multiply and divide options.

Shift & Rotate Performance

The performance of shift operations depends on the hardware multiply
option. When a hardware multiplier is present, the ALU achieves shift
and rotate operations in three or four clock cycles. Otherwise, the ALU
includes dedicated shift circuitry that achieves one-bit-per-cycle shift and
rotate performance. Refer to Table 5–8 on page 5–17 for details.

Memory Access

The Nios II/s core provides instruction cache, but no data cache. The
instruction cache size is user-definable, between 512 bytes and 64 Kbytes.
The Nios II/s core can address up to 2 Gbyte of external memory. The
Nios II/s core does not support bit-31 data cache bypass. The most-
significant bit of addresses is ignored.

Instruction and Data Master Ports

The instruction port on the Nios II/s core is optional. The instruction
master port can be excluded, as long as the core includes at least one
tightly-coupled instruction memory. The instruction master port is a
pipelined Avalon master port.

Support for pipelined Avalon transfers minimizes the impact of
synchronous memory with pipeline latency. The pipelined instruction
master port can issue successive read requests before prior requests
complete.

Table 5–6. Hardware Multiply & Divide Details for the Nios II/s Core

ALU Option Hardware Details Cycles per
instruction Supported Instructions

No hardware multiply or
divide

Multiply & divide instructions
generate an exception

– None

LE-based multiplier ALU includes 32 x 4-bit
multiplier

11 mul, muli

Embedded multiplier on
Stratix and Stratix II families

ALU includes 32 x 32-bit
multiplier

3 mul, muli, mulxss,
mulxsu, mulxuu

Embedded multiplier on
Cyclone II family

ALU includes 32 x 16-bit
multiplier

5 mul, muli

Hardware divide ALU includes multicycle
divide circuit

4 – 66 div, divu
5–14 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
The data master port on the Nios II/s core is always present.

Instruction Cache

The instruction cache for the Nios II/s core is nearly identical to the
instruction cache in the Nios II/f core. The instruction cache memory has
the following characteristics:

■ Direct-mapped cache implementation
■ The instruction master port reads an entire cache line at a time from

memory, and issues one read per clock cycle.
■ Critical word first

The instruction byte address is divided into the following fields:

The size of the line and tag fields depend on the size of the cache memory,
but the offset field is always three bits (i.e., an 8-word line). The maximum
instruction byte address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache
from the Nios II/s core requires that the core include at least one tightly
coupled instruction memory.

Tightly Coupled Memory

The Nios II/s core provides optional tightly-coupled memory interfaces
for instructions. A Nios II/s core can use up to four tightly coupled
instruction memories. When a tightly-coupled memory interface is
enabled, the Nios II core includes an additional memory interface master
port. Each tightly-coupled memory interface must connect directly to
exactly one memory slave port.

When tightly coupled memory is present, the Nios II core decodes
addresses internally to determine if requested instructions reside in
tightly coupled memory. If the address resides in tightly coupled
memory, the Nios II core fetches the instruction through the tightly-
coupled memory interface. Software does not require awareness of
whether code resides in tightly coupled memory or not.

. . . 5 4 3 2 1 0

tag line offset 0 0
Altera Corporation 5–15
November 2006 Nios II Processor Reference Handbook

Nios II/s Core
Accessing tightly coupled memory bypasses cache memory. The
processor core functions as if cache were not present for the address span
of the tightly coupled memory. Instructions for managing cache, such as
initi and flushi, do not affect the tightly coupled memory, even if the
instruction specifies an address in tightly coupled memory.

Execution Pipeline

This section provides an overview of the pipeline behavior for the benefit
of performance-critical applications. Designers can use this information
to minimize unnecessary processor stalling. Most application
programmers never need to analyze the performance of individual
instructions, and live happy lives without ever studying Table 5–7.

The Nios II/s core employs a 5-stage pipeline. The pipeline stages are
listed in Table 5–7.

Up to one instruction is dispatched and/or retired per cycle. Instructions
are dispatched and retired in-order. Static branch prediction is
implemented using the branch offset direction; a negative offset is
predicted as taken, and a positive offset is predicted as not-taken. The
pipeline stalls for the following conditions:

■ Multi-cycle instructions (e.g., shift/rotate without hardware
multiply)

■ Avalon instruction master port read accesses
■ Avalon data master port read/write accesses
■ Data dependencies on long latency instructions (e.g., load, multiply,

shift operations)

Pipeline Stalls

The pipeline is set up so that if a stage stalls, no new values enter that
stage or any earlier stages. No “catching up” of pipeline stages is allowed,
even if a pipeline stage is empty.

Table 5–7. Implementation Pipeline Stages for Nios II/s Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

W Writeback
5–16 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
Only the M-stage is allowed to create stalls.

The M-stage stall occurs if any of the following conditions occurs:

■ An M-stage load/store instruction is waiting for Avalon data master
transfer to complete.

■ An M-stage shift/rotate instruction is still performing its operation
when using the multi-cycle shift circuitry (i.e., when the hardware
multiplier is not available).

■ An M-stage shift/rotate/multiply instruction is still performing its
operation when using the hardware multiplier (which takes three
cycles).

■ An M-stage multi-cycle custom instruction is asserting its stall signal.
This only occurs if the design includes multi-cycle custom
instructions.

Branch Prediction

The Nios II/s core performs static branch prediction to minimize the
cycle penalty associated with taken branches.

Instruction Performance

All instructions take one or more cycles to execute. Some instructions
have other penalties associated with their execution. Instructions that
flush the pipeline cause up to three instructions after them to be
cancelled. This creates a three-cycle penalty and an execution time of four
cycles. Instructions that require an Avalon transfer are stalled until the
transfer completes.

Execution performance for all instructions is shown in Table 5–8.

Table 5–8. Instruction Execution Performance for Nios II/s Core (Part 1 of 2)

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multi-cycle custom instructions 1

Branch (correctly predicted taken) 2

Branch (correctly predicted not taken) 1

Branch (mispredicted) 4 Pipeline flush

trap, break, eret, bret,
flushp, wrctl, unimplemented

4 Pipeline flush

jmp, ret, call, callr 4 Pipeline flush
Altera Corporation 5–17
November 2006 Nios II Processor Reference Handbook

Nios II/e Core
Exception Handling

The Nios II/s core supports the following exception types:

■ Hardware interrupt
■ Software trap
■ Unimplemented instruction

JTAG Debug Module

The Nios II/s core supports the JTAG debug module to provide a JTAG
interface to software debugging tools. The Nios II/s core supports an
optional enhanced interface that allows real-time trace data to be routed
out of the processor and stored in an external debug probe.

Unsupported Features

The Nios II/s core does not handle the execution of instructions with
undefined opcodes. If the processor issues an instruction word with an
undefined opcode, the resulting behavior is undefined.

Nios II/e Core The Nios II/e “economy” core is designed to achieve the smallest
possible core size. Altera designed the Nios II/e core with a singular
design goal: Reduce resource utilization any way possible, while still
maintaining compatibility with the Nios II instruction set architecture.

rdctl 1

load, store > 1

flushi, initi 4

Multiply (1)

Divide (1)

Shift/rotate (with hardware multiply using embedded multipliers) 3

Shift/rotate (with hardware multiply using LE-based multipliers) 4

Shift/rotate (without hardware multiply present) 1 to 32

All other instructions 1

Note to Table 5–8:
(1) Depends on the hardware multiply or divide option. See Table 5–6 on page 14 for details.

Table 5–8. Instruction Execution Performance for Nios II/s Core (Part 2 of 2)

Instruction Cycles Penalties
5–18 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
Hardware resources are conserved at the expense of execution
performance. The Nios II/e core is roughly half the size of the Nios II/s
core, but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications, as well as
applications that require simple control logic.

Overview

The Nios II/e core:

■ Executes at most one instruction per six clock cycles
■ Can access up to 2 Gbytes of external address space
■ Supports the addition of custom instructions
■ Supports the JTAG debug module
■ Does not provide hardware support for potential unimplemented

instructions
■ Has no instruction cache or data cache
■ Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e
core implementation. This document does not discuss low-level design
issues, or implementation details that do not affect Nios II hardware or
software designers.

Register File

At system generation time, the cpuid control register (clt5) is assigned
a value that is guaranteed to be unique for each processor in the system.

Arithmetic Logic Unit

The Nios II/e core does not provide hardware support for any of the
potential unimplemented instructions. All unimplemented instructions
are emulated in software.

The Nios II/e core employs dedicated shift circuitry to perform shift and
rotate operations. The dedicated shift circuitry achieves one-bit-per-cycle
shift and rotate operations.

Memory Access

The Nios II/e core does not provide instruction cache or data cache. All
memory and peripheral accesses generate an Avalon transfer. The
Nios II/e core can address up to 2 Gbytes of external memory. The core
Altera Corporation 5–19
November 2006 Nios II Processor Reference Handbook

Nios II/e Core
does not support bit-31 data cache bypass. However, the most-significant
bit of addresses is ignored to maintain consistency with Nios II core
implementations that do support bit-31 cache bypass method.

Instruction Execution Stages

This section provides an overview of the pipeline behavior as a means of
estimating assembly execution time. Most application programmers
never need to analyze the performance of individual instructions.

Instruction Performance

The Nios II/e core dispatches a single instruction at a time, and the
processor waits for an instruction to complete before fetching and
dispatching the next instruction. Because each instruction completes
before the next instruction is dispatched, branch prediction is not
necessary. This greatly simplifies the consideration of processor stalls.
Maximum performance is one instruction per six clock cycles. To achieve
six cycles, the Avalon instruction master port must fetch an instruction in
one clock cycle. A stall on the Avalon instruction master port directly
extends the execution time of the instruction.

Execution performance for all instructions is shown in Table 5–9.

Table 5–9. Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add,
cmplt)

6

branch, jmp, ret, call, callr 6

trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

load word 6 + Duration of Avalon read transfer

load halfword 9 + Duration of Avalon read transfer

load byte 10 + Duration of Avalon read transfer

store 6 + Duration of Avalon write transfer

Shift, rotate 7 to 38

All other instructions 6

Combinatorial custom instructions 6

Multi-cycle custom instructions ≥6
5–20 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Core Implementation Details
Exception Handling

The Nios II/e core supports the following exception types:

■ Hardware interrupt
■ Software traps
■ Unimplemented instruction

JTAG Debug Module

The Nios II/e core supports the JTAG debug module to provide a JTAG
interface to software debugging tools. The JTAG debug module on the
Nios II/e core does not support hardware breakpoints or trace.

Unsupported Features

The Nios II/e core does not handle the execution of instructions with
undefined opcodes. If the processor issues an instruction word with an
undefined opcode, the resulting behavior is undefined.

Document
Revision History

Table 5–10 shows the revision history for this document.

Table 5–10. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

Add preliminary Stratix III device family support Stratix III device family

May 2006, v6.0.0 Performance for flushi and initi instructions changes from
1 to 4 cycles for Nios II/s and Nios II/f cores.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 Updates to Nios II/f and Nios II/s cores. Added tightly coupled
memory and new data cache options. Corrected cycle counts for
shift/rotate operations.

December 2004,
v1.2

Updates to Multiple & Divide Performance section for Nios II/f &
Nios II/s cores.

September 2004,
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication.
Altera Corporation 5–21
November 2006 Nios II Processor Reference Handbook

Document Revision History
5–22 Altera Corporation
Nios II Processor Reference Handbook November 2006

Altera Corporation
November 2006

NII51018-6.1.0
6. Nios II Processor Revision
History
Introduction Each release of the Nios® II Embedded Design Suite (EDS) introduces
improvements to the Nios II processor, the software development tools,
or both. This document catalogs the history of revisions to the Nios II
processor; it does not track revisions to development tools, such as the
Nios II IDE.

Improvements to the Nios II processor may affect:

■ Features of the Nios II architecture – An example of an architecture
revision is adding instructions to support floating-point arithmetic.

■ Implementation of a specific Nios II core – An example of a core revision
is increasing the maximum possible size of the data cache memory
for the Nios II/f core.

■ Features of the JTAG debug module – An example of a JTAG debug
module revision is adding an additional trigger input to the JTAG
debug module, allowing it to halt processor execution on a new type
of trigger event.

Altera implements Nios II revisions such that code written for an existing
Nios II core also works on future revisions of the same core.

Nios II Versions The number for any version of the Nios II processor is determined by the
version of the Nios II EDS. For example, in the Nios II EDS version 6.0, all
Nios II cores are also version 6.0.
 6–1

Architecture Revisions
Table 6–1 lists the version numbers of all releases of the Nios II processor.

Architecture
Revisions

Architecture revisions augment the fundamental capabilities of the
Nios II architecture, and affect all Nios II cores. A change in the
architecture mandates a revision to all Nios II cores to accommodate the
new architectural enhancement. For example, when Altera adds a new

Table 6–1. Nios II Processor Revision History

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 The name Nios II Development Kit describing the software
development tools changed to Nios II Embedded Design Suite.

5.1 SP1 January 2006 Bug fix for Nios II/f core.

5.1 October 2005 No changes.

5.0 May 2005 ● Changed version nomenclature. Altera® now aligns the Nios II
processor version with Altera's Quartus II® software version.

● Memory structure enhancements:
(1) Added tightly coupled memory.
(2) Made data cache line size configurable.
(3) Made cache optional in Nios II/f and Nios II/s cores.

● Verified Cyclone™ II device support in hardware.
● Support for HardCopy® devices.

1.1 December 2004 ● Minor enhancements to the architecture: Added cpuid control
register, and updated the break instruction.

● Increased user control of multiply and shift hardware in the
arithmetic logic unit (ALU) for Nios II/s & Nios II/f cores.

● Minor bug fixes.

1.01 September 2004 ● Verified Stratix™ II device support in hardware.
● Minor bug fixes.

1.0 May2004 Initial release of the Nios processor.
6–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Processor Revision History
instruction to the instruction set, Altera consequently must update all
Nios II cores to recognize the new instruction. Table 6–2 lists revisions to
the Nios II architecture.

Core Revisions Core revisions introduce changes to an existing Nios II core. Core
revisions most commonly fix identified bugs, or add support for an
architecture revision. Not every Nios II core is revised with every release
of the Nios II architecture.

Nios II/f Core

Table 6–3 lists revisions to the Nios II/f core.

Table 6–2. Nios II Architecture Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 Added optional cpu_resetrequest and and cpu_resettaken
signals to all processor cores.

5.1 October 2005 No changes.

5.0 May 2005 Added the flushda instruction.

1.1 December 2004 ● Added cpuid control register.
● Updated break instruction specification to accept an immediate

argument for use by debugging tools.

1.01 September 2004 No changes.

1.0 May 2004 Initial release of the Nios II processor architecture.

Table 6–3. Nios II/f Core Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4
cycles. (SPR 201456)

5.1 SP1 January 2006 Bug Fix:
Back-to-back store instructions can cause memory corruption to the
stored data. If the first store is not to the last word of a cache line and the
second store is to the last word of the line, memory corruption occurs.
(SPR 201895)

5.1 October 2005 No changes.
Altera Corporation 6–3
November 2006 Nios II Processor Reference Handbook

Core Revisions
5.0 May 2005 ● Added optional tightly coupled memory ports. Designers can add zero
to four tightly coupled instruction master ports, and zero to four tightly
coupled data master ports.

● Made the data cache line size configurable. Designers can configure
the data cache with the following line sizes: 4, 16, or 32 bytes.
Previously, the data cache line size was fixed at 4 bytes.

● Made instruction and data caches optional (previously, cache
memories were always present). If the instruction cache is not present,
the Nios II core does not have an instruction master port, and must use
a tightly coupled instruction memory.

● Verified Cyclone II device support in hardware.
● Full support for HardCopy devices (previous versions required a work

around to support HardCopy devices).

1.1 December 2004 ● Added user-configurable options affecting multiply and shift
operations. Now designers can choose one of three options:
(1) Use embedded multiplier resources available in the target device
family (previously available).
(2) Use logic elements to implement multiply and shift hardware (new
option).
(3) Omit multiply hardware. Shift operations take one cycle per bit
shifted; multiply operations are emulated in software (new option).

● Added cpuid control register.
● Bug Fix:

Interrupts that were disabled by wrctl ienable remained enabled
for one clock cycle following the wrctl instruction. Now the
instruction following such a wrctl cannot be interrupted. (SPR
164828)

1.01 September 2004 ● Verified Stratix II device support in hardware.
● Bug Fixes:

(1) When a store to memory is followed immediately in the pipeline by
a load from the same memory location, and the memory location is
held in d-cache, the load may return invalid data.This situation can
occur in C code compiled with optimization off (-O0). (SPR 158904)
(2) The SOPC Builder top-level system module included an extra,
unnecessary output port for systems with very small address spaces.
(SPR 155871)

1.0 May 2004 Initial release of the Nios II/f core.

Table 6–3. Nios II/f Core Revisions

Version Release Date Notes
6–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Processor Revision History
Nios II/s Core

Table 6–4 lists revisions to the Nios II/s core.

Table 6–4. Nios II/s Core Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 ● Cycle count for flushi and initi instructions changes from 1 to 4
cycles. (SPR 201456)

5.1 October 2005 No changes.

5.0 May 2005 ● Added optional tightly coupled memory ports. Designers can add zero
to four tightly coupled instruction master ports.

● Made instruction cache optional (previously instruction cache was
always present). If the instruction cache is not present, the Nios II core
does not have an instruction master port, and must use a tightly coupled
instruction memory.

● Verified Cyclone II device support in hardware.
● Full support for HardCopy devices (previous versions required a work

around to support HardCopy devices).

1.1 December 2004 ● Added user-configurable options affecting multiply and shift operations.
Now designers can choose one of three options:
(1) Use embedded multiplier resources available in the target device
family (previously available).
(2) Use logic elements to implement multiply and shift hardware (new
option).
(3) Omit multiply hardware. Shift operations take one cycle per bit
shifted; multiply operations are emulated in software (new option).

● Added user-configurable option to include divide hardware in the ALU.
Previously this option was available for only the Nios II/f core.

● Added cpuid control register.

1.01 September 2004 ● Verified Stratix II device support in hardware.
● Bug Fix:

The SOPC Builder top-level system module included an extra,
unnecessary output port for systems with very small address spaces.
(SPR 155871)

1.0 May 2004 Initial release of the Nios II/s core.
Altera Corporation 6–5
November 2006 Nios II Processor Reference Handbook

JTAG Debug Module Revisions
Nios II/e Core

Table 6–5 lists revisions to the Nios II/e core.

JTAG Debug
Module
Revisions

JTAG debug module revisions augment the debug capabilities of the
Nios II processor, or fix bugs isolated within the JTAG debug module
logic.

Table 6–5. Nios II/e Core Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 ● Verified Cyclone II device support in hardware.
● Full support for HardCopy devices (previous versions required a work

around to support HardCopy devices).

1.1 December 2004 Added cpuid control register.

1.01 September 2004 ● Verified Stratix II device support in hardware.
● Bug Fix:

The SOPC Builder top-level system module included an extra,
unnecessary output port for systems with very small address spaces.
(SPR 155871)

1.0 May 2004 Initial release of the Nios II/e core.
6–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Nios II Processor Revision History
Table 6–6 lists revisions to the JTAG debug module.

Table 6–6. JTAG Debug Module Revisions

Version Release Date Notes

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Full support for HardCopy devices (previous versions of the JTAG debug
module did not support HardCopy devices).

1.1 December 2004 Bug fix:
When using the Nios II/s and Nios II/f cores, hardware breakpoints may
have falsely triggered when placed on the instruction sequentially following
a jmp, trap, or any branch instruction. (SPR 158805)

1.01 September 2004 ● Feature enhancements:
(1) Added the ability to trigger based on the instruction address. Uses
include triggering trace control (trace on/off), sequential triggers (see
below), and trigger in/out signal generation.
(2) Enhanced trace collection such that collection can be stopped when
the trace buffer is full without halting the Nios II processor.
(3) Armed triggers – Enhanced trigger logic to support two levels of
triggers, or "armed triggers"; enabling the use of "Event A then event B"
trigger definitions.

● Bug fixes:
(1) On the Nios II/s core, trace data sometimes recorded incorrect
addresses during interrupt processing. (SPR 158033)
(2) Under certain circumstances, captured trace data appeared to start
earlier or later than the desired trigger location. (SPR 154467)
(3) During debug, the processor would hang if a hardware breakpoint
and an interrupt occurred simultaneously. (SPR 154097)

1.0 May 2004 Initial release of the JTAG debug module.
Altera Corporation 6–7
November 2006 Nios II Processor Reference Handbook

Document Revision History
Document
Revision History

Table 6–7 shows the revision history for this document.

Table 6–7. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

No change from previous release.

May 2006, v6.0.0 Updates for Nios II cores version 6.0.

October 2005,
v5.1.0

Updates for Nios II cores version 5.1.

May 2005, v5.0.0 Updates for Nios II cores version 5.0.

December 2004,
v1.1

Updates for Nios II cores version 1.1.

September 2004
,v1.0

First publication.
6–8 Altera Corporation
Nios II Processor Reference Handbook November 2006

Altera Corporation
November 2006

NII51016-6.1.0
7. Application Binary
Interface
This section describes the Application Binary Interface (ABI) for the
Nios® II processor. The ABI describes:

■ How data is arranged in memory
■ Behavior and structure of the stack
■ Function calling conventions

Data Types Table 7–1 shows the size and representation of the C/C++ data types for
the Nios II processor.

Memory
Alignment

Contents in memory are aligned as follows:

■ A function must be aligned to a minimum of 32-bit boundary.
■ The minimum alignment of a data element is its natural size. A data

element larger than 32-bits need only be aligned to a 32-bit boundary.

Table 7–1. Representation of Data Types

Type Size (Bytes) Representation

char, signed char 1 2s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 2s complement

unsigned short 2 binary

int, signed int 4 2s complement

unsigned int 4 binary

long, signed long 4 2s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 2s complement

unsigned long long 8 binary
 6.0 7–1

Register Usage
■ Structures, unions, and strings must be aligned to a minimum of
32 bits.

■ Bit-fields inside structures are always 32-bit aligned.

Register Usage The ABI adds additional usage conventions to the Nios II register file
defined in the Programming Model chapter of the Nios II Processor Reference
Handbook. The ABI uses the registers as shown in Table 7–2.

Table 7–2. Nios II ABI Register Usage (Part 1 of 2)

Register Name Used by
Compiler

Callee Saved
(1) Normal Usage

r0 zero v 0x00000000

r1 at Assembler Temporary

r2 v Return Value (Least-significant 32 bits)

r3 v Return Value (Most-significant 32 bits)

r4 v Register Arguments (First 32 bits)

r5 v Register Arguments (Second 32 bits)

r6 v Register Arguments (Third 32 bits)

r7 v Register Arguments (Fourth 32 bits)

r8 v Caller-Saved General-Purpose Registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v
r16 v v Callee-Saved General-Purpose Registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v v
r23 v v
r24 et Exception Temporary
7–2 6.0 Altera Corporation
Nios II C2H Compiler User Guide User Guide November 2006

Application Binary Interface
The endianess of values greater than 8-bits is little endian. The upper
8 bits of a value are stored at the higher byte address.

Stacks The stack grows downward (i.e. towards lower addresses). The Stack
Pointer points to the last used slot. The frame grows upwards, which
means that the Frame Pointer points to the bottom of the frame.

Figure 7–1 shows an example of the structure of a current frame. In this
case, function a() calls function b(), and the stack is shown before the
call and after the prolog in the called function has completed.

r25 bt Break Temporary

r26 gp v Global Pointer

r27 sp v Stack Pointer

r28 fp v Frame Pointer (2)

r29 ea Exception Return Address

r30 ba Break Return Address

r31 ra v Return Address

Notes to Table 7–2:
(1) A function may use one of these registers if it saves it first. The function must restore the register's original value

before exiting.
(2) If the frame pointer is not used, the register is available as a temporary. See “Frame Pointer Elimination” on

page 7–4.

Table 7–2. Nios II ABI Register Usage (Part 2 of 2)

Register Name Used by
Compiler

Callee Saved
(1) Normal Usage
Altera Corporation 6.0 7–3
November 2006 Nios II C2H Compiler User Guide

Stacks
Figure 7–1. Stack Pointer, Frame Pointer & the Current Frame

Each section of the current frame is aligned to a 32-bit boundary. The ABI
requires the stack pointer be 32-bit aligned at all times.

Frame Pointer Elimination

Because, in the normal case, the frame pointer is the same as the stack
pointer, the information in the frame pointer is redundant. Therefore, to
achieve most optimal code, eliminating the frame pointer is desirable.
However, when the frame pointer is eliminated, because debuggers have
issues locating the stack properly, debugging without a frame pointer is
difficult to do. When the frame pointer is eliminated, register fp becomes
available as a temporary.

Call Saved Registers

Implementation note: the compiler is responsible for saving registers that
need to be saved in a function. If there are any such registers, they are
saved on the stack in this order from high addresses: ra, fp, r2, r3, r4,
r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19,
r20, r21, r22, r23, r24, r25, gp, and sp. Stack space is not allocated for
registers that are not saved.

p g () g p g

incoming
stack

arguments

saved
registers

space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

fp and sp

outgoing
stack

arguments

Higher addresses

fp and sp

Lower addresses

space for
stack

temporaries
7–4 6.0 Altera Corporation
Nios II C2H Compiler User Guide User Guide November 2006

Application Binary Interface
Further Examples of Stacks

There are a number of special cases for stack layout, which are described
in this section.

Stack Frame for a Function With alloca()

Figure 7–2 depicts what the frame looks like after alloca() is called.
The space allocated by alloca() replaces the outgoing arguments and the
outgoing arguments get new space allocated at the bottom of the frame.

Implementation note: the Nios II C/C++ compiler maintains a frame
pointer for any function that calls alloca(), even if –fomit-frame-
pointer is specifed.

Figure 7–2. Stack Frame after Calling alloca()

Stack Frame for a Function with Variable Arguments

Functions that take variable arguments still have their first 16-bytes of
arguments arriving in registers r4 through r7, just like other functions.

Implementation note: In order for varargs to work, functions that take
variable arguments will allocate 16 extra bytes of storage on the stack.
They will copy to the stack the first 16-bytes of their arguments from
registers r4 through r7 as shown in Figure 7–3.

higher addresses

lower addresses

space for
outgoing

stack
 arguments

sp

sp

space for
outgoing

stack
 arguments

memory
allocated

by
alloca()

Before After calling alloca()
Altera Corporation 6.0 7–5
November 2006 Nios II C2H Compiler User Guide

Stacks
Figure 7–3. Stack Frame Using Variable Arguments

Stack Frame for a Function with Structures Passed By Value

Functions that take struct value arguments still have their first 16-bytes of
arguments arriving in registers r4 through r7, just like other functions.

Implementation note: if part of a structure is passed via registers, the
function may need to copy the register contents back to the stack. This is
similar to the variable arguments case as shown in Figure 7–3.

Function Prologs

The Nios II C/C++ compiler generates function prologs that allocate the
stack frame of a function for storage of stack temporaries and outgoing
arguments. In addition, each prolog is responsible for saving any state of
its calling function for variables marked callee-saved by the ABI. The
callee-saved register are listed in Table 7–2 on page 7–2. A function prolog
is required to save a callee saved register only if the function will be using
the register.

In Function a()
Just Prior to Calling b()

In Function b()
Just after Executing Prolog

incoming
stack

arguments

saved
registers

space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

outgoing
stack

arguments

Higher addresses

Lower addresses fp and sp

fp and sp

copy of r7
copy of r6
copy of r5
copy of r4

space for
stack

temporaries
7–6 6.0 Altera Corporation
Nios II C2H Compiler User Guide User Guide November 2006

Application Binary Interface
Debuggers can use the knowledge of how the function prologs work to
disassemble the instructions to reconstruct state when doing a back trace.
Preferably, debuggers can use information stored in the DWARF2
debugging information to find out what a prolog has done.

The instructions found in a Nios II function prolog perform the following
tasks:

■ Adjust the SP (to allocate the frame)
■ Store registers to the frame.
■ Assign the SP to the FP

Example 7–1 shows an example of a function prolog.

Example 7–1. A function prolog

/* Adjust the stack pointer */
addisp, sp, -120/* make a 120 byte frame */

/* Store registers to the frame */
stw ra, 116(sp)/* store the return address */
stw fp, 112(sp)/* store the frame pointer*/
stw r16, 108(sp)/* store callee-saved register */
stw r17, 104(sp) /* store callee-saved register */

/* Set the new frame pointer */
mov fp, sp

Prolog Variations

The following variations can occur in a prolog:

■ If the function’s frame size is greater than 32,767 bytes, extra
temporary registers will be used in the calculation of the new SP as
well as for the offsets of where to store callee-saved registers. This is
due to the maximum size of immediate values allowed by the Nios II
processor.

■ If the frame pointer is not in use, the move of the SP to FP will not
happen.

■ If variable arguments are used, there will be extra instructions to
store the argument registers to the stack.

■ If the function is a leaf function, the return address will not be saved.
■ If optimizations are on, especially instruction scheduling, the order

of the instructions may change and may become interlaced with
instructions located after the prolog.
Altera Corporation 6.0 7–7
November 2006 Nios II C2H Compiler User Guide

Arguments & Return Values
Arguments &
Return Values

This section discusses the details of passing arguments to functions and
returning values from functions.

Arguments

The first 16-bytes to a function are passed in registers r4 through r7. The
arguments are passed as if a structure containing the types of the
arguments was constructed, and the first 16-bytes of the structure are
located in r4 through r7.

A simple example:

int function (int a, int b);

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16-bytes of the struct are assigned to r4 through r7. Therefore
r4 is assigned the value of a and r5 the value of b.

The first 16-bytes to a function taking variable arguments are passed the
same way as a function not taking variable arguments. The called
function must clean-up the stack as necessary to support the variable
arguments. See “Stack Frame for a Function with Variable Arguments” on
page 7–5.

Return Values

Return values of types up to 8-bytes are returned in r2 and r3. For return
values greater than 8-bytes, the caller must allocate memory for the result
and must pass the address of the result memory as a hidden zero
argument.

The hidden zero argument is best explained through an example.
7–8 6.0 Altera Corporation
Nios II C2H Compiler User Guide User Guide November 2006

Application Binary Interface
Example 7–2. Example: function a() calls function b(), which returns a struct.
/* b() computes a structure-type result and returns it
*/
STRUCT b(int i, int j)
{

...
return result;

}

void a(...)
{

...
value = b(i, j);

}

In this example, as long as the result type is no larger than 8 bytes, b()
will return its result in r2 and r3.

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats
this program as if a() had passed a pointer to b(). The example below
shows how the Nios II C/C++ compiler sees the code above.

Example 7–3. void b(STRUCT *p_result, int i, int j)
{

...
*p_result = result;

}

void a(...)
{

STRUCT value;
...
b(*value, i, j);

}

Altera Corporation 6.0 7–9
November 2006 Nios II C2H Compiler User Guide

Document Revision History
Document
Revision History

Table 7–3 shows the revision history for this document.

Table 7–3. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

No change from previous release.

May 2006, v6.0.0 No change from previous release.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 No change from previous release.

May 2004, v1.0 First publication.
7–10 6.0 Altera Corporation
Nios II C2H Compiler User Guide User Guide November 2006

Altera Corporation
November 2006

NII51017-6.1.0
8. Instruction Set Reference
Introduction This section introduces the Nios® II instruction-word format and
provides a detailed reference of the Nios II instruction set.

Word Formats There are three types of Nios II instruction word format: I-type, R-type,
and J-type.

I-Type

The defining characteristic of the I-type instruction-word format is that it
contains an immediate value embedded within the instruction word. I-
type instructions words contain:

■ A 6-bit opcode field OP
■ Two 5-bit register fields A and B
■ A 16 bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field
B specifies the destination register. IMM16 is considered signed except for
logical operations and unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi
and andi; branch operations; load and store operations; and cache-
management operations.

The I-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP
 8–1

Word Formats
R-Type

The defining characteristic of the R-type instruction-word format is that
all arguments and results are specified as registers. R-type instructions
contain:

■ A 6-bit opcode field OP
■ Three 5-bit register fields A, B, and C
■ An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C
specifies the destination register. Some R-Type instructions embed a small
immediate value in the low-order bits of OPX.

R-type instructions include arithmetic and logical operations such as add
and nor; comparison operations such as cmpeq and cmplt; the custom
instruction; and other operations that need only register operands.

The R-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP
8–2 Altera Corporation
Nios II Processor Reference Handbook November 2006

Instruction Set Reference
J-Type

J-type instructions contain:

■ A 6-bit opcode field
■ A 26-bit immediate data field

The only J-type instruction is call.

The J-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMMED26 OP
Altera Corporation 8–3
November 2006 Nios II Processor Reference Handbook

Instruction Opcodes
Instruction
Opcodes

The OP field in the Nios II instruction word specifies the major class of an
opcode as shown in Table 8–1 and Table 8–2. Most values of OP are
encodings for I-type instructions. One encoding, OP = 0x00, is the J-type
instruction call. Another encoding, OP = 0x3a, is used for all R-type
instructions, in which case, the OPX field differentiates the instructions.
All unused encodings of OP and OPX are reserved.

Table 8–1. OP Encodings

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

0x01 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38

0x09 0x19 0x29 0x39

0x0A 0x1A 0x2A 0x3A R-Type

0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F
8–4 Altera Corporation
Nios II Processor Reference Handbook November 2006

Instruction Set Reference
Table 8–2. OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F
Altera Corporation 8–5
November 2006 Nios II Processor Reference Handbook

Assembler Pseudo-instructions
Assembler
Pseudo-
instructions

Table 8–3 lists pseudoinstructions available in Nios II assembly language.
Pseudoinstructions are used in assembly source code like regular
assembly instructions. Each pseudoinstruction is implemented at the
machine level using an equivalent instruction. The movia
pseudoinstruction is the only exception, being implemented with two
instructions. Most pseudoinstructions do not appear in disassembly
views of machine code.

Table 8–3. Assembler Pseudoinstructions

Pseudoinstruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label orhi rB, r0, %hiadj(label)
addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi, rB, rA, IMMED addi rB, rA, IMMED
8–6 Altera Corporation
Nios II Processor Reference Handbook November 2006

Instruction Set Reference
Assembler
Macros

The Nios II assembler provides macros to extract halfwords from labels
and from 32-bit immediate values. Table 8–4 lists the available macros.
These macros return 16-bit signed values or 16-bit unsigned values
depending on where they are used. When used with an instruction that
requires a 16-bit signed immediate value, these macros return a value
ranging from –32768 to 32767. When used with an instruction that
requires a 16-bit unsigned immediate value, these macros return a value
ranging from 0 to 65535.

Table 8–4. Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xffff

%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xffff

%hiadj(immed32) Extract bits [31..16] and adds bit 15 of immed32 ((immed32 >> 16) & 0xffff) +
((immed32 >> 15) & 0x1)

%gprel(immed32) Replace the immed32 address with an offset

from the global pointer (1)

immed32 –_gp

Note to Table 8–4:
(1) See the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more

information about global pointers.
Altera Corporation 8–7
November 2006 Nios II Processor Reference Handbook

Instruction Set Reference
Instruction Set
Reference

The following pages list all Nios II instruction mnemonics in alphabetical
order. Table 8–5 shows the notation conventions used to describe
instruction operation.

Table 8–5. Notation Conventions

Notation Meaning

X ← Y X is written with Y

PC ← X The program counter (PC) is written with address X; the
instruction at X will be the next instruction to execute

PC The address of the assembly instruction in question

rA, rB, rC One of the 32-bit general-purpose registers

IMMn An n-bit immediate value, embedded in the instruction word

IMMED An immediate value

Xn The nth bit of X, where n = 0 is the LSB

Xn..m Consecutive bits n through m of X

0xNNMM Hexadecimal notation

X : Y Bitwise concatenation
For example, (0x12 : 0x34) = 0x1234

σ(X) The value of X after being sign-extended into a full register-
sized signed integer

X >> n The value X after being right-shifted n bit positions

X << n The value X after being left-shifted n bit positions

X & Y Bitwise logical AND

X | Y Bitwise logical OR

X ^ Y Bitwise logical XOR

~X Bitwise logical NOT (one’s complement)

Mem8[X] The byte located in data memory at byte-address X

Mem16[X] The halfword located in data memory at byte-address X

Mem32[X] The word located in data memory at byte-address X

label An address label specified in the assembly file

(signed) rX The value of rX treated as a signed number

(unsigned) rX The value of rX, treated as an unsigned number
8–8 Altera Corporation
Nios II Processor Reference Handbook November 2006

add
add
Operation: rC ← rA + rB

Assembler Syntax: add rC, rA, rB

Example: add r6, r7, r8

Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and
unsigned addition.

Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking
whether the unsigned sum is less than one of the unsigned operands. The carry bit
can be written to a register, or a conditional branch can be taken based on the carry
condition. Both cases are shown below.

add rC, rA, rB
cmpltu rD, rC, rA

add rC, rA, rB
bltu rC, rA, label

; The original add operation
; rD is written with the carry bit

; The original add operation
; Branch if carry was generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or
when two negatives are added and the sum is positive. The overflow condition can
control a conditional branch, as shown below.

add rC, rA, rB
xor rD, rC, rA
xor rE, rC, rB
and rD, rD, rE
blt rD, r0,label

; The original add operation
; Compare signs of sum and rA
; Compare signs of sum and rB
; Combine comparisons
; Branch if overflow occurred

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x31 0 0x3a
Altera Corporation 8–9
November 2006 Nios II Processor Reference Handbook

addi
addi
add immediate

Operation: rB ← rA + σ (IMM16)

Assembler Syntax: addi rB, rA, IMM16

Example: addi r6, r7, -100

Description: Sign-extends the 16-bit immediate value and adds it to the value of rA. Stores the sum
in rB.

Usage: Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking
whether the unsigned sum is less than one of the unsigned operands. The carry bit
can be written to a register, or a conditional branch can be taken based on the carry
condition. Both cases are shown below.

addi rB, rA, IMM16
cmpltu rD, rB, rA

addi rB, rA, IMM16
bltu rB, rA, label

; The original add operation
; rD is written with the carry bit

; The original add operation
; Branch if carry was generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or
when two negatives are added and the sum is positive. The overflow condition can
control a conditional branch, as shown below.

addi rB, rA, IMM16
xor rC, rB, rA
xorhi rD, rB, IMM16
and rC, rC, rD
blt rC, r0,label

; The original add operation
; Compare signs of sum and rA
; Compare signs of sum and IMM16
; Combine comparisons
; Branch if overflow occurred

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x04
8–10 Altera Corporation
Nios II Processor Reference Handbook November 2006

and
and
bitwise logical and

Operation: rC ← rA & rB

Assembler Syntax: and rC, rA, rB

Example: and r6, r7, r8

Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0e 0 0x3a
Altera Corporation 8–11
November 2006 Nios II Processor Reference Handbook

andhi
andhi
bitwise logical and immediate into high halfword

Operation: rB ← rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, IMM16

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2c
8–12 Altera Corporation
Nios II Processor Reference Handbook November 2006

andi
andi
bitwise logical and immediate

Operation: rB ← rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA, IMM16

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0c
Altera Corporation 8–13
November 2006 Nios II Processor Reference Handbook

beq
beq
branch if equal

Operation: if (rA == rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: beq rA, rB, label

Example: beq r6, r7, label

Description: If rA == rB, then beq transfers program control to the instruction at label. In the
instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following beq. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x26
8–14 Altera Corporation
Nios II Processor Reference Handbook November 2006

bge
bge
branch if greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bge rA, rB, label

Example: bge r6, r7, top_of_loop

Description: If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed
number of bytes relative to the instruction immediately following bge. The two least-
significant bits of IMM16 are always zero, because instruction addresses must be
word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0e
Altera Corporation 8–15
November 2006 Nios II Processor Reference Handbook

bgeu
bgeu
branch if greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bgeu rA, rB, label

Example: bgeu r6, r7, top_of_loop

Description: If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the
instruction at label. In the instruction encoding, the offset given by IMM16 is treated as
a signed number of bytes relative to the instruction immediately following bgeu. The
two least-significant bits of IMM16 are always zero, because instruction addresses
must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2e
8–16 Altera Corporation
Nios II Processor Reference Handbook November 2006

bgt
bgt
branch if greater than signed

Operation: if ((signed) rA > (signed) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: bgt rA, rB, label

Example: bgt r6, r7, top_of_loop

Description: If (signed) rA > (signed) rB, then bgt transfers program control to the instruction at
label.

Pseudoinstruction: bgt is implemented with the blt instruction by swapping the register operands.
Altera Corporation 8–17
November 2006 Nios II Processor Reference Handbook

bgtu
bgtu
branch if greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: bgtu rA, rB, label

Example: bgtu r6, r7, top_of_loop

Description: If (unsigned) rA > (unsigned) rB, then bgtu transfers program control to the
instruction at label.

Pseudoinstruction: bgtu is implemented with the bltu instruction by swapping the register operands.
8–18 Altera Corporation
Nios II Processor Reference Handbook November 2006

ble
ble
branch if less than or equal signed

Operation: if ((signed) rA <= (signed) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: ble rA, rB, label

Example: ble r6, r7, top_of_loop

Description: If (signed) rA <= (signed) rB, then ble transfers program control to the instruction at
label.

Pseudoinstruction: ble is implemented with the bge instruction by swapping the register operands.
Altera Corporation 8–19
November 2006 Nios II Processor Reference Handbook

bleu
bleu
branch if less than or equal to unsigned

Operation: if ((unsigned) rA <= (unsigned) rB)
then PC ← label
else PC ← PC + 4

Assembler Syntax: bleu rA, rB, label

Example: bleu r6, r7, top_of_loop

Description: If (unsigned) rA <= (unsigned) rB, then bleu transfers program counter to the
instruction at label.

Pseudoinstruction: bleu is implemented with the bgeu instruction by swapping the register operands.
8–20 Altera Corporation
Nios II Processor Reference Handbook November 2006

blt
blt
branch if less than signed

Operation: if ((signed) rA < (signed) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: blt rA, rB, label

Example: blt r6, r7, top_of_loop

Description: If (signed) rA < (signed) rB, then blt transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed
number of bytes relative to the instruction immediately following blt. The two least-
significant bits of IMM16 are always zero, because instruction addresses must be
word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x16
Altera Corporation 8–21
November 2006 Nios II Processor Reference Handbook

bltu
bltu
branch if less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bltu rA, rB, label

Example: bltu r6, r7, top_of_loop

Description: If (unsigned) rA < (unsigned) rB, then bltu transfers program control to the
instruction at label. In the instruction encoding, the offset given by IMM16 is treated as
a signed number of bytes relative to the instruction immediately following bltu. The
two least-significant bits of IMM16 are always zero, because instruction addresses
must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
MM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x36
8–22 Altera Corporation
Nios II Processor Reference Handbook November 2006

bne
bne
branch if not equal

Operation: if (rA != rB)
then PC ← PC + 4 + σ (IMM16)
else PC ← PC + 4

Assembler Syntax: bne rA, rB, label

Example: bne r6, r7, top_of_loop

Description: If rA != rB, then bne transfers program control to the instruction at label. In the
instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following bne.The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1e
Altera Corporation 8–23
November 2006 Nios II Processor Reference Handbook

br
br
unconditional branch

Operation: PC ← PC + 4 + σ (IMM16)

Assembler Syntax: br label

Example: br top_of_loop

Description: Transfers program control to the instruction at label. In the instruction encoding, the
offset given by IMM16 is treated as a signed number of bytes relative to the instruction
immediately following br. The two least-significant bits of IMM16 are always zero,
because instruction addresses must be word-aligned.

Instruction Type: I

Instruction Fields: IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 IMM16 0x06
8–24 Altera Corporation
Nios II Processor Reference Handbook November 2006

break
break
debugging breakpoint

Operation: bstatus ← status
PIE ← 0
U ← 0
ba ← PC + 4
PC ← break handler address

Assembler Syntax: break
break imm5

Example: break

Description: Breaks program execution and transfers control to the debugger break-processing
routine. Saves the address of the next instruction in register ba and saves the contents
of the status register in bstatus. Disables interrupts, then transfers execution to
the break handler.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the
debugger.

break with no argument is the same as break 0.

Usage: break is used by debuggers exclusively. Only debuggers should place break in a
user program, operating system, or exception handler. The address of the break
handler is specified at system generation time.

Some debuggers support break and break 0 instructions in source code. These
debuggers treat the break instruction as a normal breakpoint.

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1e 0x34 IMM5 0x3a
Altera Corporation 8–25
November 2006 Nios II Processor Reference Handbook

bret
bret
breakpoint return

Operation: status ← bstatus
PC ← ba

Assembler Syntax: bret

Example: bret

Description: Copies the value of bstatus into the status register, then transfers execution to
the address in ba.

Usage: bret is used by debuggers exclusively and should not appear in user programs,
operating systems, or exception handlers.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0 0x09 0 0x3a
8–26 Altera Corporation
Nios II Processor Reference Handbook November 2006

call
call
call subroutine

Operation: ra ← PC + 4

PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: call label

Example: call write_char

Description: Saves the address of the next instruction in register ra, and transfers execution to the
instruction at address (PC31..28 : IMM26 × 4).

Usage: call can transfer execution anywhere within the 256 MB range determined by
PC31..28. The linker must handle cases in which the address is out of this range.

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0
Altera Corporation 8–27
November 2006 Nios II Processor Reference Handbook

callr
callr
call subroutine in register

Operation: ra ← PC + 4
PC ← rA

Assembler Syntax: callr rA

Example: callr r6

Description: Saves the address of the next instruction in the return-address register, and transfers
execution to the address contained in register rA.

Usage: callr is used to dereference C-language function pointers.

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0x1f 0x1d 0 0x3a
8–28 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpeq
cmpeq
compare equal

Operation: if (rA == rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpeq rC, rA, rB

Example: cmpeq r6, r7, r8

Description: If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

Usage: cmpeq performs the == operation of the C programming language. Also, cmpeq can
be used to implement the C logical-negation operator “!”.

cmpeq rC, rA, r0 ; Implements rC = !rA

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x20 0 0x3a
Altera Corporation 8–29
November 2006 Nios II Processor Reference Handbook

cmpeqi
cmpeqi
compare equal immediate

Operation: if (rA σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpeqi rB, rA, IMM16

Example: cmpeqi r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value
of rA. If rA == σ (IMM16), cmpeqi stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpeqi performs the == operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x20
8–30 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpge
cmpge
compare greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpge rC, rA, rB

Example: cmpge r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpge performs the signed >= operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x08 0 0x3a
Altera Corporation 8–31
November 2006 Nios II Processor Reference Handbook

cmpgei
cmpgei
compare greater than or equal signed immediate

Operation: if ((signed) rA >= (signed) σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgei rB, rA, IMM16

Example: cmpgei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value
of rA. If rA >= σ(IMM16), then cmpgei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgei performs the signed >= operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x08
8–32 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpgeu
cmpgeu
compare greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpgeu rC, rA, rB

Example: cmpgeu r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgeu performs the unsigned >= operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x28 0 0x3a
Altera Corporation 8–33
November 2006 Nios II Processor Reference Handbook

cmpgeui
cmpgeui
compare greater than or equal unsigned immediate

Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgeui rB, rA, IMM16

Example: cmpgeui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value
of rA. If rA >= (0x0000 : IMM16), then cmpgeui stores 1 to rB; otherwise stores 0 to
rB.

Usage: cmpgeui performs the unsigned >= operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x28
8–34 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpgt
cmpgt
compare greater than signed

Operation: if ((signed) rA > (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpgt rC, rA, rB

Example: cmpgt r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgt performs the signed > operation of the C programming language.

Pseudoinstruction: cmpgt is implemented with the cmplt instruction by swapping its rA and rB
operands.
Altera Corporation 8–35
November 2006 Nios II Processor Reference Handbook

cmpgti
cmpgti
compare greater than signed immediate

Operation: if ((signed) rA > (signed) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgti rB, rA, IMMED

Example: cmpgti r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA.
If rA > σ(IMMED), then cmpgti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgti performs the signed > operation of the C programming language. The
maximum allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudoinstruction: cmpgti is implemented using a cmpgei instruction with an immediate value
IMMED + 1.
8–36 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpgtu
cmpgtu
compare greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpgtu rC, rA, rB

Example: cmpgtu r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgtu performs the unsigned > operation of the C programming language.

Pseudoinstruction: cmpgtu is implemented with the cmpltu instruction by swapping its rA and rB
operands.
Altera Corporation 8–37
November 2006 Nios II Processor Reference Handbook

cmpgtui
cmpgtui
compare greater than unsigned immediate

Operation: if ((unsigned) rA > (unsigned) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmpgtui rB, rA, IMMED

Example: cmpgtui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of
rA. If rA > IMMED, then cmpgtui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgtui performs the unsigned > operation of the C programming language. The
maximum allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudoinstruction: cmpgtui is implemented using a cmpgeui instruction with an immediate value
IMMED + 1.
8–38 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmple
cmple
compare less than or equal signed

Operation: if ((signed) rA <= (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmple rC, rA, rB

Example: cmple r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmple performs the signed <= operation of the C programming language.

Pseudoinstruction: cmple is implemented with the cmpge instruction by swapping its rA and rB
operands.
Altera Corporation 8–39
November 2006 Nios II Processor Reference Handbook

cmplei
cmplei
compare less than or equal signed immediate

Operation: if ((signed) rA < (signed) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmplei rB, rA, IMMED

Example: cmplei r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of
rA. If rA <= σ(IMMED), then cmplei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplei performs the signed <= operation of the C programming language. The
maximum allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudoinstruction: cmplei is implemented using a cmplti instruction with an immediate value
IMMED + 1.
8–40 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpleu
cmpleu
compare less than or equal unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpleu rC, rA, rB

Example: cmpleu r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpleu performs the unsigned <= operation of the C programming language.

Pseudoinstruction: cmpleu is implemented with the cmpgeu instruction by swapping its rA and rB
operands.
Altera Corporation 8–41
November 2006 Nios II Processor Reference Handbook

cmpleui
cmpleui
compare less than or equal unsigned immediate

Operation: if ((unsigned) rA <= (unsigned) IMMED)
then rB ← 1
else rB ← 0

Assembler Syntax: cmpleui rB, rA, IMMED

Example: cmpleui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of
rA. If rA <= IMMED, then cmpleui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpleui performs the unsigned <= operation of the C programming language. The
maximum allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudoinstruction: cmpleui is implemented using a cmpltui instruction with an immediate value
IMMED + 1.
8–42 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmplt
cmplt
compare less than signed

Operation: if ((signed) rA < (signed) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmplt rC, rA, rB

Example: cmplt r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmplt performs the signed < operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x10 0 0x3a
Altera Corporation 8–43
November 2006 Nios II Processor Reference Handbook

cmplti
cmplti
compare less than signed immediate

Operation: if ((signed) rA < (signed) σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmplti rB, rA, IMM16

Example: cmplti r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value
of rA. If rA < σ (IMM16), then cmplti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplti performs the signed < operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x10
8–44 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpltu
cmpltu
compare less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpltu rC, rA, rB

Example: cmpltu r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpltu performs the unsigned < operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x30 0 0x3a
Altera Corporation 8–45
November 2006 Nios II Processor Reference Handbook

cmpltui
cmpltui
compare less than unsigned immediate

Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpltui rB, rA, IMM16

Example: cmpltui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value
of rA. If rA < (0x0000 : IMM16), then cmpltui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpltui performs the unsigned < operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x30
8–46 Altera Corporation
Nios II Processor Reference Handbook November 2006

cmpne
cmpne
compare not equal

Operation: if (rA != rB)
then rC ← 1
else rC ← 0

Assembler Syntax: cmpne rC, rA, rB

Example: cmpne r6, r7, r8

Description: If rA != rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpne performs the != operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x18 0 0x3a
Altera Corporation 8–47
November 2006 Nios II Processor Reference Handbook

cmpnei
cmpnei
compare not equal immediate

Operation: if (rA != σ (IMM16))
then rB ← 1
else rB ← 0

Assembler Syntax: cmpnei rB, rA, IMM16

Example: cmpnei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value
of rA. If rA != σ (IMM16), then cmpnei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpnei performs the != operation of the C programming language.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x18
8–48 Altera Corporation
Nios II Processor Reference Handbook November 2006

custom
custom
custom instruction

Operation: if c == 1
then rC ← fN(rA, rB, A, B, C)

else Ø ← fN(rA, rB, A, B, C)

Assembler Syntax: custom N, xC, xA, xB
Where xA means either general purpose register rA, or custom register cA.

Example: custom 0, c6, r7, r8

Description: The custom opcode provides access to up to 256 custom instructions allowed by the
Nios II architecture. The function implemented by a custom instruction is user-defined
and is specified at system generation time. The 8-bit immediate N field specifies which
custom instruction to use. Custom instructions can use up to two parameters, xA and
xB, and can optionally write the result to a register xC.

Usage: To access a custom register inside the custom instruction logic, clear the bit readra,
readrb, or writerc that corresponds to the register field. In assembler syntax, the
notation cN refers to register N in the custom register file and causes the assembler
to clear the c bit of the opcode. For example, custom 0, c3, r5, r0 performs
custom instruction 0, operating on general-purpose registers r5 and r0, and stores the
result in custom register 3.

Instruction Type: R

Instruction Fields: A = Register index of operand A
B = Register index of operand B
C = Register index of operand C
N = 8-bit number that selects instruction
readra = 1 if instruction uses rA, 0 otherwise
readrb = 1 if instruction uses rB, 0 otherwise
writerc = 1 if instruction provides result for rC, 0 otherwise

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C N 0x32

readra
readrb
writerc
Altera Corporation 8–49
November 2006 Nios II Processor Reference Handbook

div
div
divide

Operation: rC ← rA ÷ rB

Assembler Syntax: div rC, rA, rB

Example: div r6, r7, r8

Description: Treating rA and rB as signed integers, this instruction divides rA by rB and then stores
the integer portion of the resulting quotient to rC. After attempted division by zero, the
value of rC is undefined. There is no divide-by-zero exception. After dividing
–2147483648 by –1, the value of rC is undefined (the number +2147483648 is not
representable in 32 bits). There is no overflow exception.

Nios II processors that do not implement the div instruction cause an
unimplemented-instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using
the following instruction sequence:

div rC, rA, rB
mul rD, rC, rB
sub rD, rA, rD

; The original div operation

; rD = remainder

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x25 0 0x3a
8–50 Altera Corporation
Nios II Processor Reference Handbook November 2006

divu
divu
divide unsigned

Operation: rC ← rA ÷ rB

Assembler Syntax: divu rC, rA, rB

Example: divu r6, r7, r8

Description: Treating rA and rB as unsigned integers, this instruction divides rA by rB and then
stores the integer portion of the resulting quotient to rC. After attempted division by
zero, the value of rC is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction cause an
unimplemented-instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using
the following instruction sequence:

divu rC, rA, rB
mul rD, rC, rB
sub rD, rA, rD

; The original divu operation

; rD = remainder

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x24 0 0x3a
Altera Corporation 8–51
November 2006 Nios II Processor Reference Handbook

eret
eret
exception return

Operation: status ← estatus
PC ← ea

Assembler Syntax: eret

Example: eret

Description: Copies the value of estatus into the status register, and transfers execution to the
address in ea.

Usage: Use eret to return from traps, external interrupts, and other exception-handling
routines. Note that before returning from hardware interrupt exceptions, the exception
handler must adjust the ea register.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0 0 0x01 0 0x3a
8–52 Altera Corporation
Nios II Processor Reference Handbook November 2006

flushd
flushd
flush data cache line

Operation: Flushes the data-cache line associated with address rA + σ (IMM16).

Assembler Syntax: flushd IMM16(rA)

Example: flushd -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushd flushes the
cache line that is mapped to the specified address, regardless whether the addressed
data is currently cached. This entails the following steps:
● Computes the effective address specified by the sum of rA and the signed 16-bit

immediate value
● Identifies the data-cache line associated with the computed effective address.

flushd ignores the cache line tag, which means that it flushes the cache line
regardless whether the specified data location is currently cached

● If the line is dirty, writes the line back to memory
● Clears the valid bit for the line

A cache line is dirty when one or more words of the cache line have been modified by
the processor, but are not yet written to memory.

If the Nios II processor core does not have a data cache, the flushd instruction
performs no operation.

Usage: flushd flushes the cache line even if the addressed memory location is not in the
cache. By contrast, the flushda instruction does nothing if the addressed memory
location is not in the cache.

For more information on data cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x3b
Altera Corporation 8–53
November 2006 Nios II Processor Reference Handbook

flushda
flushda
flush data-cache address

Operation: Flushes the data cache line currently cacheing address rA + σ (IMM16)

Assembler Syntax: flushda IMM16(rA)

Example: flushda -100(r6)

Description: If the addressed data is currently cached, flushda flushes the cache line mapped to
that address. This entails the following steps:
● Computes the effective address specified by the sum of rA and the signed 16-bit

immediate value
● Identifies the data-cache line associated with the computed effective address.
● Compares the cache line tag with the effective address. If they do not match, the

effective address is not cached, and the instruction does nothing.
● If the tag matches, and the data cache contains dirty data, writes the dirty cache

line back to memory.
● Clears the valid bit for the line

A cache line is dirty when one or more words of the cache line have been modified by
the processor, but are not yet written to memory.

If the Nios II processor core does not have a data cache, the flushda instruction
performs no operation.

Usage: flushda flushes the cache line only if the addressed memory location is currently
cached. By contrast, the flushd instruction flushes the cache line even if the
addressed memory location is not cached.

For more information on the Nios II data cache, see the Cache & Tightly-Coupled
Memory chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x1b
8–54 Altera Corporation
Nios II Processor Reference Handbook November 2006

flushi
flushi
flush instruction cache line

Operation: Flushes the instruction-cache line associated with address rA.

Assembler Syntax: flushi rA

Example: flushi r6

Description: Ignoring the tag, flushi identifies the instruction-cache line associated with the byte
address in rA, and invalidates that line.

If the Nios II processor core does not have an instruction cache, the flushi
instruction performs no operation.

For more information on data cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0c 0 0x3a
Altera Corporation 8–55
November 2006 Nios II Processor Reference Handbook

flushp
flushp
flush pipeline

Operation: Flushes the processor pipeline of any pre-fetched instructions.

Assembler Syntax: flushp

Example: flushp

Description: Ensures that any instructions pre-fetched after the flushp instruction are removed
from the pipeline.

Usage: Use flushp before transferring control to newly updated instruction memory.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x04 0 0x3a
8–56 Altera Corporation
Nios II Processor Reference Handbook November 2006

initd
initd
initialize data cache line

Operation: Initializes the data-cache line associated with address rA + σ (IMM16).

Assembler Syntax: initd IMM16(rA)

Example: initd 0(r6)

Description: initd computes the effective address specified by the sum of rA and the signed 16-
bit immediate value. Ignoring the tag, initd indentifies the data-cache line
associated with the effective address, and then initd invalidates that line.

If the Nios II processor core does not have a data cache, the initd instruction
performs no operation.

Usage: The instruction is used to initialize the processor’s data cache. After processor reset
and before accessing data memory, use initd to invalidate each line of the data
cache.

For more information on data cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x33
Altera Corporation 8–57
November 2006 Nios II Processor Reference Handbook

initi
initi
initialize instruction cache line

Operation: Initializes the instruction-cache line associated with address rA.

Assembler Syntax: initi rA

Example: initi r6

Description: Ignoring the tag, initi identifies the instruction-cache line associated with the byte
address in ra, and initi invalidates that line.

If the Nios II processor core does not have an instruction cache, the initi instruction
performs no operation.

Usage: This instruction is used to initialize the processor’s instruction cache. Immediately after
processor reset, use initi to invalidate each line of the instruction cache.

For more information on instruction cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x29 0 0x3a
8–58 Altera Corporation
Nios II Processor Reference Handbook November 2006

jmp
jmp
computed jump

Operation: PC ← rA

Assembler Syntax: jmp rA

Example: jmp r12

Description: Transfers execution to the address contained in register rA.

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines
called by call or callr, use ret instead of jmp.

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0d 0 0x3a
Altera Corporation 8–59
November 2006 Nios II Processor Reference Handbook

ldb / ldbio
ldb / ldbio
load byte from memory or I/O peripheral

Operation: rB ← σ (Mem8[rA + σ (IMM16)])

Assembler Syntax: ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example: ldb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Loads register rB with the desired memory byte, sign
extending the 8-bit value to 32 bits. In Nios II processor cores with a data cache, this
instruction may retrieve the desired data from the cache instead of from memory.

Usage: Use the ldbio instruction for peripheral I/O. In processors with a data cache, ldbio
bypasses the cache and is guaranteed to generate an Avalon data transfer. In
processors without a data cache, ldbio acts like ldb.

For more information on data cache, see the Cache & Tightly-Coupled Memory chapter
in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x07

Instruction format for ldb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x27

Instruction format for ldbio
8–60 Altera Corporation
Nios II Processor Reference Handbook November 2006

ldbu / ldbuio
ldbu / ldbuio
load unsigned byte from memory or I/O peripheral

Operation: rB ← 0x000000 : Mem8[rA + σ (IMM16)]

Assembler Syntax: ldbu rB, byte_offset(rA)
ldbuio rB, byte_offset(rA)

Example: ldbu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Loads register rB with the desired memory byte, zero
extending the 8-bit value to 32 bits.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the
cache instead of from memory. Use the ldbuio instruction for peripheral I/O. In
processors with a data cache, ldbuio bypasses the cache and is guaranteed to
generate an Avalon data transfer. In processors without a data cache, ldbuio acts
like ldbu.

For more information on data cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x03

Instruction format for ldbu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x23

Instruction format for ldbuio
Altera Corporation 8–61
November 2006 Nios II Processor Reference Handbook

ldh / ldhio
ldh / ldhio
load halfword from memory or I/O peripheral

Operation: rB ← σ (Mem16[rA + σ (IMM16)])

Assembler Syntax: ldh rB, byte_offset(rA)
ldhio rB, byte_offset(rA)

Example: ldh r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Loads register rB with the memory halfword located at
the effective byte address, sign extending the 16-bit value to 32 bits. The effective byte
address must be halfword aligned. If the byte address is not a multiple of 2, the
operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the
cache instead of from memory. Use the ldhio instruction for peripheral I/O. In
processors with a data cache, ldhio bypasses the cache and is guaranteed to
generate an Avalon data transfer. In processors without a data cache, ldhio acts like
ldh.

For more information on data cache, see the Cache & Tightly-Coupled Memory chapter
in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0f

Instruction format for ldh

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2f

Instruction format for ldhio
8–62 Altera Corporation
Nios II Processor Reference Handbook November 2006

ldhu / ldhuio
ldhu / ldhuio
load unsigned halfword from memory or I/O peripheral

Operation: rB ← 0x0000 : Mem16[rA + σ (IMM16)]

Assembler Syntax: ldhu rB, byte_offset(rA)
ldhuio rB, byte_offset(rA)

Example: ldhu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Loads register rB with the memory halfword located at
the effective byte address, zero extending the 16-bit value to 32 bits. The effective byte
address must be halfword aligned. If the byte address is not a multiple of 2, the
operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the
cache instead of from memory. Use the ldhuio instruction for peripheral I/O. In
processors with a data cache, ldhuio bypasses the cache and is guaranteed to
generate an Avalon data transfer. In processors without a data cache, ldhuio acts
like ldhu.

For more information on data cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0b

Instruction format for ldhu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2b

Instruction format for ldhuio
Altera Corporation 8–63
November 2006 Nios II Processor Reference Handbook

ldw / ldwio
ldw / ldwio
load 32-bit word from memory or I/O peripheral

Operation: rB ← Mem32[rA + σ (IMM14)]

Assembler Syntax: ldw rB, byte_offset(rA)
ldwio rB, byte_offset(rA)

Example: ldw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Loads register rB with the memory word located at the
effective byte address. The effective byte address must be word aligned. If the byte
address is not a multiple of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the
cache instead of from memory. Use the ldwio instruction for peripheral I/O. In
processors with a data cache, ldwio bypasses the cache and memory. Use the
ldwio instruction for peripheral I/O. In processors with a data cache, ldwio
bypasses the cache and is guaranteed to generate an Avalon data transfer. In
processors without a data cache, ldwio acts like ldw.

For more information on data cache, see the Cache & Tightly-Coupled Memory
chapter in the Nios II Software Developer's Handbook.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x17

Instruction format for ldw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x37

Instruction format for ldwio
8–64 Altera Corporation
Nios II Processor Reference Handbook November 2006

mov
mov
move register to register

Operation: rC ← rA

Assembler Syntax: mov rC, rA

Example: mov r6, r7

Description: Moves the contents of rA to rC.

Pseudoinstruction: mov is implemented as add rC, rA, r0.
Altera Corporation 8–65
November 2006 Nios II Processor Reference Handbook

movhi
movhi
move immediate into high halfword

Operation: rB ← (IMMED : 0x0000)

Assembler Syntax: movhi rB, IMMED

Example: movhi r6, 0x8000

Description: Writes the immediate value IMMED into the high halfword of rB, and clears the lower
halfword of rB to 0x0000.

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To
load a 32-bit constant into a register, first load the upper 16 bits using a movhi
pseudoinstruction. The %hi() macro can be used to extract the upper 16 bits of a
constant or a label. Then, load the lower 16 bits with an ori instruction. The %lo()
macro can be used to extract the lower 16 bits of a constant or label as shown below.

movhi rB, %hi(value)
ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro
and the addi instruction as shown below.

movhi rB, %hiadj(value)
addi rB, rB, %lo(value)

Pseudoinstruction: movhi is implemented as orhi rB, r0, IMMED.
8–66 Altera Corporation
Nios II Processor Reference Handbook November 2006

movi
movi
move signed immediate into word

Operation: rB ← σ (IMMED)

Assembler Syntax: movi rB, IMMED

Example: movi r6, -30

Description: Sign-extends the immediate value IMMED to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMMED is 32767. The minimum allowed value is
–32768. To load a 32-bit constant into a register, see the movhi instruction.

Pseudoinstruction: movi is implemented as addi rB, r0, IMMED.
Altera Corporation 8–67
November 2006 Nios II Processor Reference Handbook

movia
movia
move immediate address into word

Operation: rB ← label

Assembler Syntax: movia rB, label

Example: movia r6, function_address

Description: Writes the address of label to rB.

Pseudoinstruction: movia is implemented as:
orhi rB, r0, %hiadj(label)
addi rB, rB, %lo(label)
8–68 Altera Corporation
Nios II Processor Reference Handbook November 2006

movui
movui
move unsigned immediate into word

Operation: rB ← (0x0000 : IMMED)

Assembler Syntax: movui rB, IMMED

Example: movui r6, 100

Description: Zero-extends the immediate value IMMED to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To
load a 32-bit constant into a register, see the movhi instruction.

Pseudoinstruction: movui is implemented as ori rB, r0, IMMED.
Altera Corporation 8–69
November 2006 Nios II Processor Reference Handbook

mul
mul
multiply

Operation: rC ← (rA × rB) 31..0

Assembler Syntax: mul rC, rA, rB

Example: mul r6, r7, r8

Description: Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result
is the same whether the operands are treated as signed or unsigned integers.

Nios II processors that do not implement the mul instruction cause an
unimplemented-instruction exception.

Usage: Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB of rC can be detected
using the following instruction sequence:

mul rC, rA, rB
mulxuu rD, rA, rB
cmpne rD, rD, r0

; The mul operation (optional)
; rD is non-zero if carry occurred
; rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a non-zero value into rD if the multiplication of unsigned
numbers will generate a carry (unsigned overflow). If a 0/1 result is desired, follow the
mulxuu with the cmpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the following instruction
sequence:

mul rC, rA, rB
cmplt rD, rC, r0
mulxss rE, rA, rB
add rD, rD, rE
cmpne rD, rD, r0

; The original mul operation

; rD is non-zero if overflow
; rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a non-zero value into rD if the
product in rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is
desired, follow the instruction sequence with the cmpne instruction.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x27 0 0x3a
8–70 Altera Corporation
Nios II Processor Reference Handbook November 2006

muli
muli
multiply immediate

Operation: rB ← (rA × σ(IMM16)) 31..0

Assembler Syntax: muli rB, rA, IMM16

Example: muli r6, r7, -100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and multiplies it by the value
of rA. Stores the 32 low-order bits of the product to rB. The result is independent of
whether rA is treated as a signed or unsigned number.

Nios II processors that do not implement the muli instruction cause an
unimplemented-instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, see the mul instruction.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x24
Altera Corporation 8–71
November 2006 Nios II Processor Reference Handbook

mulxss
mulxss
multiply extended signed/signed

Operation: rC ← ((signed) rA) × ((signed) rB)) 63..32

Assembler Syntax: mulxss rC, rA, rB

Example: mulxss r6, r7, r8

Description: Treating rA and rB as signed integers, mulxss multiplies rA times rB, and stores the
32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxss instruction cause an
unimplemented-instruction exception.

Usage: Use mulxss and mul to compute the full 64-bit product of two 32-bit signed integers.
Furthermore, mulxss can be used as part of the calculation of a 128-bit product of
two 64-bit signed integers. Given two 64-bit integers, each contained in a pair of 32-
bit registers, (S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2)
<< 32) + ((U1 × S2) << 32) + ((S1 × S2) << 64). The mulxss and mul instructions
are used to calculate the 64-bit product S1 × S2.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1f 0 0x3a
8–72 Altera Corporation
Nios II Processor Reference Handbook November 2006

mulxsu
mulxsu
multiply extended signed/unsigned

Operation: rC ← ((signed) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxsu rC, rA, rB

Example: mulxsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mulxsu multiplies rA
times rB, and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxsu instruction cause an
unimplemented-instruction exception.

Usage: mulxsu can be used as part of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 :
U1) and (S2 : U2), their 128-bit product is: (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2)
<< 32) + ((S1 × S2) << 64). The mulxsu and mul instructions are used to calculate
the two 64-bit products S1 × U2 and U1 × S2.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x17 0 0x3a
Altera Corporation 8–73
November 2006 Nios II Processor Reference Handbook

mulxuu
mulxuu
multiply extended unsigned/unsigned

Operation: rC ← ((unsigned) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxuu rC, rA, rB

Example: mulxuu r6, r7, r8

Description: Treating rA and rB as unsigned integers, mulxuu multiplies rA times rB and
stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxss instruction cause an
unimplemented-instruction exception.

Usage: Use mulxuu and mul to compute the 64-bit product of two 32-bit unsigned
integers. Furthermore, mulxuu can be used as part of the calculation of a 128-
bit product of two 64-bit signed integers. Given two 64-bit signed integers, each
contained in a pair of 32-bit registers, (S1 : U1) and (S2 : U2), their 128-bit
product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32) + ((S1 × S2) << 64).
The mulxuu and mul instructions are used to calculate the 64-bit product
U1 × U2.

mulxuu also can be used as part of the calculation of a 128-bit product of two
64-bit unsigned integers. Given two 64-bit unsigned integers, each contained in
a pair of 32-bit registers, (T1 : U1) and (T2 : U2), their 128-bit product is (U1 × U2)
+ ((U1 × T2) << 32) + ((T1 × U2) << 32) + ((T1 × T2) << 64). The mulxuu and
mul instructions are used to calculate the four 64-bit products U1 × U2, U1 × T2,
T1 × U2, and T1 × T2.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x07 0 0x3a
8–74 Altera Corporation
Nios II Processor Reference Handbook November 2006

nextpc
nextpc
get address of following instruction

Operation: rC ← PC + 4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC.

Usage: A relocatable code fragment can use nextpc to calculate the address of its data
segment. nextpc is the only way to access the PC directly.

Instruction Type: R

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x1c 0 0x3a
Altera Corporation 8–75
November 2006 Nios II Processor Reference Handbook

nop
nop
no operation

Operation: None

Assembler Syntax: nop

Example: nop

Description: nop does nothing.

Pseudoinstruction: nop is implemented as add r0, r0, r0.
8–76 Altera Corporation
Nios II Processor Reference Handbook November 2006

nor
nor
bitwise logical nor

Operation: rC ← ~(rA | rB)

Assembler Syntax: nor rC, rA, rB

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a
Altera Corporation 8–77
November 2006 Nios II Processor Reference Handbook

or
or
bitwise logical or

Operation: rC ← rA | rB

Assembler Syntax: or rC, rA, rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x16 0 0x3a
8–78 Altera Corporation
Nios II Processor Reference Handbook November 2006

orhi
orhi
bitwise logical or immediate into high halfword

Operation: rB ← rA | (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA, IMM16

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x34
Altera Corporation 8–79
November 2006 Nios II Processor Reference Handbook

ori
ori
bitwise logical or immediate

Operation: rB ← rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA, IMM16

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in
rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x14
8–80 Altera Corporation
Nios II Processor Reference Handbook November 2006

rdctl
rdctl
read from control register

Operation: rC ← ctlN

Assembler Syntax: rdctl rC, ctlN

Example: rdctl r3, ctl31

Description: Reads the value contained in control register ctlN and writes it to register rC.

Instruction Type: R

Instruction Fields: C = Register index of operand rC
N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x26 N 0x3a
Altera Corporation 8–81
November 2006 Nios II Processor Reference Handbook

ret
ret
return from subroutine

Operation: PC ← ra

Assembler Syntax: ret

Example: ret

Description: Transfers execution to the address in ra.

Usage: Any subroutine called by call or callr must use ret to return.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0 0x05 0 0x3a
8–82 Altera Corporation
Nios II Processor Reference Handbook November 2006

rol
rol
rotate left

Operation: rC ← rA rotated left rB4..0 bit positions

Assembler Syntax: rol rC, rA, rB

Example: rol r6, r7, r8

Description: Rotates rA left by the number of bits specified in rB4..0 and stores the result in rC. The
bits that shift out of the register rotate into the least-significant bit positions. Bits 31–5
of rB are ignored.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x03 0 0x3a
Altera Corporation 8–83
November 2006 Nios II Processor Reference Handbook

roli
roli
rotate left immediate

Operation: rC ← rA rotated left IMM5 bit positions

Assembler Syntax: roli rC, rA, IMM5

Example: roli r6, r7, 3

Description: Rotates rA left by the number of bits specified in IMM5 and stores the result in rC. The
bits that shift out of the register rotate into the least-significant bit positions.

Usage: In addition to the rotate-left operation, roli can be used to implement a rotate-right
operation. Rotating left by (32 – IMM5) bits is the equivalent of rotating right by IMM5
bits.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x02 IMM5 0x3a
8–84 Altera Corporation
Nios II Processor Reference Handbook November 2006

ror
ror
rotate right

Operation: rC ← rA rotated right rB4..0 bit positions

Assembler Syntax: ror rC, rA, rB

Example: ror r6, r7, r8

Description: Rotates rA right by the number of bits specified in rB4..0 and stores the result in rC. The
bits that shift out of the register rotate into the most-significant bit positions. Bits 31– 5
of rB are ignored.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0b 0 0x3a
Altera Corporation 8–85
November 2006 Nios II Processor Reference Handbook

sll
sll
shift left logical

Operation: rC ← rA << (rB4..0)

Assembler Syntax: sll rC, rA, rB

Example: sll r6, r7, r8

Description: Shifts rA left by the number of bits specified in rB4..0 (inserting zeroes), and then stores
the result in rC. sll performs the << operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x13 0 0x3a
8–86 Altera Corporation
Nios II Processor Reference Handbook November 2006

slli
slli
shift left logical immediate

Operation: rC ← rA << IMM5

Assembler Syntax: slli rC, rA, IMM5

Example: slli r6, r7, 3

Description: Shifts rA left by the number of bits specified in IMM5 (inserting zeroes), and then stores
the result in rC.

Usage: slli performs the << operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x12 IMM5 0x3a
Altera Corporation 8–87
November 2006 Nios II Processor Reference Handbook

sra
sra
shift right arithmetic

Operation: rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax: sra rC, rA, rB

Example: sra r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (duplicating the sign bit), and then
stores the result in rC. Bits 31–5 are ignored.

Usage: sra performs the signed >> operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x3b 0 0x3a
8–88 Altera Corporation
Nios II Processor Reference Handbook November 2006

srai
srai
shift right arithmetic immediate

Operation: rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax: srai rC, rA, IMM5

Example: srai r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and
then stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x3a IMM5 0x3a
Altera Corporation 8–89
November 2006 Nios II Processor Reference Handbook

srl
srl
shift right logical

Operation: rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax: srl rC, rA, rB

Example: srl r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (inserting zeroes), and then
stores the result in rC. Bits 31–5 are ignored.

Usage: srl performs the unsigned >> operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1b 0 0x3a
8–90 Altera Corporation
Nios II Processor Reference Handbook November 2006

srli
srli
shift right logical immediate

Operation: rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax: srli rC, rA, IMM5

Example: srli r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then
stores the result in rC.

Usage: srli performs the unsigned >> operation of the C programming language.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x1a IMM5 0x3a
Altera Corporation 8–91
November 2006 Nios II Processor Reference Handbook

stb / stbio
stb / stbio
store byte to memory or I/O peripheral

Operation: Mem8[rA + σ (IMM16)] ← rB7..0

Assembler Syntax: stb rB, byte_offset(rA)
stbio rB, byte_offset(rA)

Example: stb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Stores the low byte of rB to the memory byte specified
by the effective address.

Usage: In processors with a data cache, this instruction may not generate an Avalon bus cycle
to non-cache data memory immediately. Use the stbio instruction for peripheral I/O.
In processors with a data cache, stbio bypasses the cache and is guaranteed to
generate an Avalon data transfer. In processors without a data cache, stbio acts like
stb.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x05

Instruction format for stb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x25

Instruction format for stbio
8–92 Altera Corporation
Nios II Processor Reference Handbook November 2006

sth / sthio
sth / sthio
store halfword to memory or I/O peripheral

Operation: Mem16[rA + σ (IMM16)] ← rB15..0

Assembler Syntax: sth rB, byte_offset(rA)
sthio rB, byte_offset(rA)

Example: sth r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Stores the low halfword of rB to the memory location
specified by the effective byte address. The effective byte address must be halfword
aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon data
transfer immediately. Use the sthio instruction for peripheral I/O. In processors with a
data cache, sthio bypasses the cache and is guaranteed to generate an Avalon data
transfer. In processors without a data cache, sthio acts like sth.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0d

Instruction format for sth

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2d

Instruction format for sthio
Altera Corporation 8–93
November 2006 Nios II Processor Reference Handbook

stw / stwio
stw / stwio
store word to memory or I/O peripheral

Operation: Mem32[rA + σ (IMM16)] ← rB

Assembler Syntax: stw rB, byte_offset(rA)
stwio rB, byte_offset(rA)

Example: stw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's
signed 16-bit immediate value. Stores rB to the memory location specified by the
effective byte address. The effective byte address must be word aligned. If the byte
address is not a multiple of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon data
transfer immediately. Use the stwio instruction for peripheral I/O. In processors with
a data cache, stwio bypasses the cache and is guaranteed to generate an Avalon
bus cycle. In processors without a data cache, stwio acts like stw.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x15

Instruction format for stw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x35

Instruction format for stwio
8–94 Altera Corporation
Nios II Processor Reference Handbook November 2006

sub
sub
subtract

Operation: rC ← rA – rB

Assembler Syntax: sub rC, rA, rB

Example: sub r6, r7, r8

Description: Subtract rB from rA and store the result in rC.

Usage: Carry Detection (unsigned operands):

The carry bit indicates an unsigned overflow. Before or after a sub operation, a carry
out of the MSB can be detected by checking whether the first operand is less than
the second operand. The carry bit can be written to a register, or a conditional branch
can be taken based on the carry condition. Both cases are shown below.

sub rC, rA, rB
cmpltu rD, rA, rB

sub rC, rA, rB
bltu rA, rB, label

; The original sub operation (optional)
; rD is written with the carry bit

; The original sub operation (optional)
; Branch if carry was generated

Overflow Detection (signed operands):

Detect overflow of signed subtraction by comparing the sign of the difference that is
written to rC with the signs of the operands. If rA and rB have different signs, and the
sign of rC is different than the sign of rA, an overflow occurred. The overflow condition
can control a conditional branch, as shown below.

sub rC, rA, rB
xor rD, rA, rB
xor rE, rA, rC
and rD, rD, rE
blt rD, r0, label

; The original sub operation
; Compare signs of rA and rB
; Compare signs of rA and rC
; Combine comparisons
; Branch if overflow occurred

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x39 0 0x3a
Altera Corporation 8–95
November 2006 Nios II Processor Reference Handbook

subi
subi
subtract immediate

Operation: rB ← rA – σ (IMMED)

Assembler Syntax: subi rB, rA, IMMED

Example: subi r8, r8, 4

Description: Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA
and then stores the result in rB.

Usage: The maximum allowed value of IMMED is 32768. The minimum allowed value is
–32767.

Pseudoinstruction: subi is implemented as addi rB, rA, -IMMED
8–96 Altera Corporation
Nios II Processor Reference Handbook November 2006

sync
sync
memory synchronization

Operation: None

Assembler Syntax: sync

Example: sync

Description: Forces all pending memory accesses to complete before allowing execution of
subsequent instructions. In processor cores that support in-order memory accesses
only, this instruction performs no operation.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x36 0 0x3a
Altera Corporation 8–97
November 2006 Nios II Processor Reference Handbook

trap
trap
Operation: estatus ← status

PIE ← 0
U ← 0
ea ← PC + 4
PC ← exception handler address

Assembler Syntax: trap

Example: trap

Description: Saves the address of the next instruction in register ea, saves the contents of the
status register in estatus, disables interrupts, and transfers execution to the
exception handler. The address of the exception handler is specified at system
generation time.

Usage: To return from the exception handler, execute an eret instruction.

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1d 0x2d 0 0x3a
8–98 Altera Corporation
Nios II Processor Reference Handbook November 2006

wrctl
wrctl
write to control register

Operation: ctlN ← rA

Assembler Syntax: wrctl ctlN, rA

Example: wrctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctlN.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x2e N 0x3a
Altera Corporation 8–99
November 2006 Nios II Processor Reference Handbook

xor
xor
bitwise logical exclusive or

Operation: rC ← rA ^ rB

Assembler Syntax: xor rC, rA, rB

Example: xor r6, r7, r8

Description: Calculates the bitwise logical exclusive XOR of rA and rB and stores the result in rC.

Instruction Type: R

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1e 0 0x3a
8–100 Altera Corporation
Nios II Processor Reference Handbook November 2006

xorhi
xorhi
bitwise logical exclusive or immediate into high halfword

Operation: rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, IMM16

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores
the result in rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x3c
Altera Corporation 8–101
November 2006 Nios II Processor Reference Handbook

xori
xori
bitwise logical exclusive or immediate

Operation: rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax: xori rB, rA, IMM16

Example: xori r6, r7, 100

Description: Calculates the bitwise logical exclusive or of rA and (0x0000 : IMM16) and stores the
result in rB.

Instruction Type: I

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1c
8–102 Altera Corporation
Nios II Processor Reference Handbook November 2006

xorhi
Document
Revision History

Table 8–6 shows the revision history for this document.

Table 8–6. Document Revision History

Date & Document
Version Changes Made Summary of Changes

November 2006,
v6.1.0

No change from previous release.

May 2006, v6.0.0 No change from previous release.

October 2005,
v5.1.0

● Correction to the blt instruction.
● Added U bit operation for break and trap instructions.

July 2005, v5.0.1 ● new flushda instruction.
● flushd instruction updated.
● Instruction Opcode table updated with flushda instruction.

May 2005, v5.0.0 No change from previous release.

December 2004,
v1.2

● break instruction update.
● srli instruction correction.

September 2004,
v1.1

Updates for Nios II 1.01 release.

May 2004, v1.0 First publication.
Altera Corporation 8–103
November 2006 Nios II Processor Reference Handbook

Document Revision History
8–104 Altera Corporation
Nios II Processor Reference Handbook November 2006

	Nios II Processor Reference Handbook
	Contents
	Chapter Revision Dates
	About This Handbook
	Introduction
	Assumptions about the Reader

	How to Find Further Information
	How to Contact Altera
	Typographical Conventions

	Section I. Nios II Processor
	1. Introduction
	Introduction
	Nios II Processor System Basics
	Getting Started with the Nios II Processor
	Customizing Nios II Processor Designs

	Configurable Soft-Core Processor Concepts
	Configurable Soft-Core Processor
	Flexible Peripheral Set & Address Map
	Standard Peripherals
	Custom Peripherals

	Custom Instructions
	Automated System Generation

	Document Revision History

	2. Processor Architecture
	Introduction
	Processor Implementation
	Register File
	Arithmetic Logic Unit
	Unimplemented Instructions
	Custom Instructions
	Floating Point Instructions

	Reset Signals
	Exception & Interrupt Controller
	Exception Controller
	Integral Interrupt Controller
	Interrupt Vector Custom Instruction

	Memory & I/O Organization
	Instruction & Data Buses
	Memory & Peripheral Access
	Instruction Master Port
	Data Master Port
	Shared Memory for Instructions & Data

	Cache Memory
	Configurable Cache Memory Options
	Effective Use of Cache Memory
	Cache Bypass Method

	Tightly Coupled Memory
	Accessing Tightly Coupled Memory
	Effective Use of Tightly Coupled Memory

	Address Map

	JTAG Debug Module
	JTAG Target Connection
	Download & Execute Software
	Software Breakpoints
	Hardware Breakpoints
	Hardware Triggers
	Armed Triggers
	Triggering on Ranges of Values

	Trace Capture
	Execution vs. Data Trace
	Trace Frames

	Document Revision History

	3. Programming Model
	Introduction
	General- Purpose Registers
	Control Registers
	status (ctl0)
	estatus (ctl1)
	bstatus (ctl2)
	ienable (ctl3)
	ipending (ctl4)
	cpuid (ctl5)

	Operating Modes
	Normal Mode
	Debug Mode
	Changing Modes

	Exception Processing
	Exception Types
	Hardware Interrupt
	Software Trap
	Unimplemented Instruction
	Other Exceptions

	Determining the Cause of Exceptions
	Nested Exceptions
	Returning from an Exception
	Return Address

	Break Processing
	Processing a Break
	Returning from a Break
	Register Usage

	Memory & Peripheral Access
	Addressing Modes
	Cache Memory

	Processor Reset State
	Instruction Set Categories
	Data Transfer Instructions
	Arithmetic & Logical Instructions
	Move Instructions
	Comparison Instructions
	Shift & Rotate Instructions
	Program Control Instructions
	Other Control Instructions
	Custom Instructions
	No-Operation Instruction
	Potential Unimplemented Instructions

	Document Revision History

	4. Implementing the Nios II Processor in SOPC Builder
	Introduction
	Nios II Core Tab
	Core Setting
	Multiply & Divide Settings

	Caches & Tightly Coupled Memories Tab
	Instruction Settings
	Data Settings

	Advanced Features Tab
	JTAG Debug Module Tab
	Debug Level Settings
	On-Chip Trace Buffer Settings

	Custom Instructions Tab
	Floating-Point Custom Instructions
	Interrupt Vector Custom Instruction

	System- Dependent Nios II Processor Settings
	Reset Address
	Memory Module
	Offset
	Address

	Exception Address
	Memory Module
	Offset
	Address

	Break Location

	Document Revision History

	Section II. Appendixes
	5. Nios II Core Implementation Details
	Introduction
	Device Family Support
	Nios II/f Core
	Overview
	Register File
	Arithmetic Logic Unit
	Multiply & Divide Performance
	Shift & Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction Cache
	Data Cache

	Tightly Coupled Memory
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	JTAG Debug Module
	Unsupported Features

	Nios II/s Core
	Overview
	Register File
	Arithmetic Logic Unit
	Multiply & Divide Performance
	Shift & Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction Cache

	Tightly Coupled Memory
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	JTAG Debug Module
	Unsupported Features

	Nios II/e Core
	Overview
	Register File
	Arithmetic Logic Unit
	Memory Access
	Instruction Execution Stages
	Instruction Performance
	Exception Handling
	JTAG Debug Module
	Unsupported Features

	Document Revision History

	6. Nios II Processor Revision History
	Introduction
	Nios II Versions
	Architecture Revisions
	Core Revisions
	Nios II/f Core
	Nios II/s Core
	Nios II/e Core

	JTAG Debug Module Revisions
	Document Revision History

	7. Application Binary Interface
	Data Types
	Memory Alignment
	Register Usage
	Stacks
	Frame Pointer Elimination
	Call Saved Registers
	Further Examples of Stacks
	Stack Frame for a Function With alloca()
	Stack Frame for a Function with Variable Arguments
	Stack Frame for a Function with Structures Passed By Value

	Function Prologs
	Prolog Variations

	Arguments & Return Values
	Arguments
	Return Values

	Document Revision History

	8. Instruction Set Reference
	Introduction
	Word Formats
	I-Type
	R-Type
	J-Type

	Instruction Opcodes
	Assembler Pseudo- instructions
	Assembler Macros
	Instruction Set Reference
	add
	addi
	and
	andhi
	andi
	beq
	bge
	bgeu
	bgt
	bgtu
	ble
	bleu
	blt
	bltu
	bne
	br
	break
	bret
	call
	callr
	cmpeq
	cmpeqi
	cmpge
	cmpgei
	cmpgeu
	cmpgeui
	cmpgt
	cmpgti
	cmpgtu
	cmpgtui
	cmple
	cmplei
	cmpleu
	cmpleui
	cmplt
	cmplti
	cmpltu
	cmpltui
	cmpne
	cmpnei
	custom
	div
	divu
	eret
	flushd
	flushda
	flushi
	flushp
	initd
	initi
	jmp
	ldb / ldbio
	ldbu / ldbuio
	ldh / ldhio
	ldhu / ldhuio
	ldw / ldwio
	mov
	movhi
	movi
	movia
	movui
	mul
	muli
	mulxss
	mulxsu
	mulxuu
	nextpc
	nop
	nor
	or
	orhi
	ori
	rdctl
	ret
	rol
	roli
	ror
	sll
	slli
	sra
	srai
	srl
	srli
	stb / stbio
	sth / sthio
	stw / stwio
	sub
	subi
	sync
	trap
	wrctl
	xor
	xorhi
	xori
	Document Revision History

