
 

 

 

 

Early Hardware/Software Integration Using SystemC 2.0 
 
 

Jon Connell, ARM. 
Bruce Johnson, Synopsys,  Inc. 

 
Class 552, ESC San Francisco 2002 



Abstract 
Capabilities added to SystemC 2.0 provide the needed expressiveness and abstraction to model processor-
based systems. By representing the system at a transaction-based level, the hardware and software teams 
share a common abstraction and verification environment.  Models of microprocessors are a natural 
addition to a system modeled at the transaction level.  Hardware-software interactions are first defined as 
processor independent transactions.  This view is then refined by adding a processor model which enables 
the verification of the hardware-software interactions from a very abstract, purely transactional basis, all 
the way down to the level of verifying the interaction of the software, processor, RTOS, and hardware 
subsystems. 

Background 
SystemC is the standard design and verification language that spans from concept to implementation in 
hardware and software.  The Open SystemC Initiative (OSCI) is a consortium of major EDA and IP 
companies that contributes to and governs SystemC development and distribution.  SystemC users may 
develop models using SystemC along with standard ANSI C++ compilers.  SystemC was first introduced in 
September 1999.   For more information about SystemC, refer to the SystemC web site: www.systemc.org. 
 
Prior to the introduction of SystemC in 1999 there were many proprietary C or C++ based environments.  
Since these environments are not based on an open standard, their usefulness is limited since model 
availability from IP vendors is non-existent.  SystemC has become the de facto standard for system level 
design.  As a result, IP vendors are starting to provide SystemC compatible models of their IP.  As model 
availability increases, so too will adoption increase.  After reviewing the material presented in this course it 
will be apparent that adopting SystemC and system level design needs to be on your organization’s 
technology roadmap. 

The Need for System-Level Modeling 
IP companies have heralded a new age in platform-based design for a number of years ever since 
semiconductor integration capacity reached the point where entire systems could theoretically be integrated 
into a single die. So why haven’t we seen a huge explosion in platform-based design? The key is the scope 
of the platform: only now are platforms being defined which include a wide assortment of elements from 
System-Level Design (SLD): the RTL hardware definition, bus architecture, power management strategy, 
device drivers, OS ports, and application software. To be successful, however, a platform will need more 
than this; an essential element for enabling differentiation will prove to be an advanced systems modeling 
and verification environment. Developers require a variety of views of the entire platform from RTL, 
system models, software development models, and real hardware development boards. 
 
Each view of the platform reflects the same system architecture, and designers can use test software in any 
of the higher-level views, providing a high degree of confidence in the design prior to tape out. This 
provides a valuable environment in which to investigate system bandwidth and performance requirements. 
System views must be extendible, allowing designers to exploit the advantages of a well-supported, pre-
verified base platform of hardware and software IP, whilst differentiating their own application with their 
own IP. 
 
 Platform Methodology Extension possibilities 

Unit Testing Platform constructed from 
well-tested Star IP 

Standard interfaces such as AMBA 
and uITRON ensure extensions work 
with platform 

Integration Testing Bus Functional Models are 
used to demonstrate that the 
platform RTL is wired up 
correctly 

Additional IP can be added to the 
platform RTL 



System Validation Coverification with processor 
models and RTL runs real 
software for firmware 
validation 

Additional hardware IP can be added 
to the RTL and new drivers validated 

System Modeling & 
Software Development 

SystemC models of the 
platform execute at high-speed 
with transaction accuracy to 
post and test application 
software 

Additional models can be added and 
ported to the OS for OS porting and 
software development 

 
At the system-level, availability of software becomes critical and it is no longer reasonable for the software 
team to wait for a prototype system. Coverification can move the integration schedule forward to the point 
where RTL is available, but this still delays the software integration to a point where much of the hardware 
design is complete. System and software designers would still be lacking a common environment. Consider 
instead a design flow where the system is first specified using SystemC, then partitioned into hardware and 
software blocks and handed to the respective teams.  This executable specification is a key enabler for both 
teams.  The software engineer not only has a platform for the development of his software, he has a C++ 
based simulation environment he can easily utilize. 
 
One of the key techniques used in this design flow is the modeling of the system at the transaction level.  
Transaction level modeling (TLM) is simply a higher abstraction level for modeling. Systems modeled in 
RTL are concerned about the hardware details such as pin-level behavior of their system.  With TLM it’s 
possible to accurately model many aspects of a system at a higher (e.g. Read and Write) level.  During this 
class we will introduce a TLM of a simple bus.   By using TLM we simplifying the modeling effort and we 
also gain simulation speed. 
 
Following the brief introduction to transaction level modeling we will provide an example system 
constructed using transaction level models of a bus, peripheral devices, and software.  We will then show 
how this platform model may be utilized as a software development platform so that the the original 
processor independent software may be refined, ultimately to that which is targeted for a specific processor.  
We will then demonstrate how a cycle accurate ARM processor model may be added to the system. 

Introduction to SystemC Modeling: The Simple Bus Model 
Synopsys has created an example transaction level bus model and contributed this to OSCI; it is open 
source.  We are using this model to demonstrate the operation of transaction level bus models. 
 
The model is referred to as simple because it is meant to be instructive on the use of transaction level 
modeling rather than on the development of models for sophisticated bus architectures. 
  
To begin, let us introduce some basic SystemC concepts and nomenclature.  A system may be modeled as a 
collection of modules that contain processes, ports, channels, and even other modules.  Processes define 
the behavior of a particular module and provide a method for expressing concurrency. A channel 
implements one or more interfaces, where an interface is simply a collection of method (a.k.a. function) 
definitions.  A process accesses a channel’s interface via a port on the module. 
 
This scheme is most easily understood via the following example showing how a countdown timer might 
be implemented: 

clock port interrupt port

read /write i/f

T im er



The timer has a read/write interface that allows the configuration register(s) to be read or written.  When 
the counter expires, an interrupt is asserted on the interrupt port.  And, of course, the timer is connected to a 
clock (another port). 
 
The process for the timer would be sensitized to a clock edge.  When the process is executed it would 
decrement the counter.   If the counter were zero it would assert an interrupt.  The timer process might look 
like: 
 

void timer::tick() 
{ 
   ... 
   if (--this->count == 0) 
      this->interrupt_port = 1; 
   ... 
} 

 
The implementation of the read interfaces might look like: 
 

void timer::read(int register, unsigned char *value) 
{ 
   *value = this->regs[register]; 
} 

  
Note that the timer itself implements the read/write interface. Modules which implement a channel’s 
interface are known as hierarchical channels. 
 
The connection of another module to the timer’s read/write interface is accomplished by defining a port and 
connecting the other module’s port to the timer’s port.  Keeping things generic, we’ll call this other module 
top.  The following fragment shows how top can instantiate, connect, and interface to the timer: 
 

void top::top() 
{ 
  ... 
  timer_p = new timer(...); 
  this->timer_conn(timer_p);  // bind the port to the channel 
  ... 
} 
void top::reset_timer(...) 
{ 
   this->timer_con->write(CONTROL_REG, RESET_VALUE); 
} 
 
void top::tick() 
{ 
  if (time == 0) 
    reset_timer(...) 
  ... 
} 

 



Now let’s  have a look at the simple bus model which is shown in the following diagram: 
 

DSP �C

MEM ASIC

 ARBBUS

clock

 
 
This system includes two bus masters: DSP and uC, a bus arbiter, a memory, an ASIC, and a clock.  The 
masters, bus, and ASIC are all sensitized to the clock.  The masters each have a port connecting them to the 
bus, which is a hierarchical channel.  The bus has a port which connects it to slave devices (MEM and 
ASIC in the diagram).  The slave devices are also modeled as hierarchical channels. Notice that ports may 
be connected to multiple channels, as is the case between the bus, memory, and the ASIC. Now we’ll step 
through the operation of this system.   
 
During system initialization each of the entities are instantiated, and the masters and slaves are registered 
with the bus.  For example, the slave addresses are registered with the bus so that the bus may perform the 
address decoding for memory accesses. 
 
During the rising clock edge any masters needing the bus, request it.  The bus then has a process that is 
sensitive to the falling edge of the clock.  If there were multiple requests, the arbiter is called.  Once master-
ship is determined, the busses memory map is consulted and slave accesses are made. 
 
The following sections will provide more details of the interfaces just described. 

Master Interfaces 
Masters have three interfaces: blocking, non-blocking, and direct. 
 
The blocking interface includes reads, writes, and burst methods.  Each of these methods does not return 
until the request has completed.  This flavor of interface is useful for abstract software behavior.  The 
following methods are included in the blocking interface: 
 

virtual simple_bus_status burst_read(unsigned int unique_priority, 
           int *data, 
           unsigned int start_address, 
           unsigned int length = 1, 
           bool lock = false); 
 
virtual simple_bus_status burst_write( 
                              unsigned int unique_priority, 
     int *data, 
     unsigned int start_address, 
     unsigned int length = 1, 



     bool lock = false); 
 

 
 
The non-blocking interface also includes read, write, and burst methods, but this interface is a cycle-
callable interface.  Masters using this interface interact with the bus model on a cycle-by-cycle basis; that’s 
why we refer to it as cycle-callable. This interface is useful for the integration of cycle-accurate processor 
models. 
 

virtual void read(unsigned int unique_priority, 
      int *data, 
      unsigned int address, 
      bool lock = false); 
virtual void write(unsigned int unique_priority, 
       int *data, 
       unsigned int address, 
       bool lock = false); 
 
virtual simple_bus_status get_status(unsigned int 
unique_priority); 

 
The direct interface is provided to allow “back door” memory accesses to slave devices without requiring 
simulation to progress. This interface is particularly useful for implementing a debugger interface for a 
processor model.   For example, when the user requests to see the value of a variable, the debugger turns 
that into the appropriate memory read requests which could then be satisfied by these functions. 
 

virtual bool direct_read(int *data, unsigned int address); 
virtual bool direct_write(int *data, unsigned int address); 

Slave Interfaces 
The slave interface includes functions called by the bus model to identify the address range occupied by the 
slave, to perform the read and write operations, and to satisfy direct memory access requests. 
 

unsigned start_address(); 
unsigned end_address(); 
 
status read(data*, address); 
status write(data*, address); 
 
status direct_read(data*, address) 
status direct_write(data*, address); 

 
As you can see using the simple bus infrastructure it would be very easy to, for example, write a cycle 
accurate model of a slave device, connect it to the bus and verify the implementation. To verify a new slave 
a master device acting as a stimulus generator would be added to the system.  
 
While we’ve by no means given a thorough description of SystemC or transaction level modeling it should 
be evident that SystemC does provide an incredibly useful infrastructure for the modeling and verification 
of systems at higher level of abstraction than has been customarily used in designs today.  For additional 
information please refer to the SystemC web site: www.systemc.org. 

Cycle-Accurate Processor Models 
We briefly mentioned that a processor model could be added to a transaction level model of a system.  
What’s a processor model? A processor model is a program that simulates the behavior of the target 
processor within the context of the overall SystemC simulation. In a typical embedded developer’s toolkit, 



an Integrated Debug Environment (IDE) contains a connection to a single ISS representing a single CPU 
with a simple memory system. Execution within the ISS occurs at instruction boundaries and interaction 
with the memory system is via an address map only. 
 
Complex systems can easily have multiple processing units, made up of CPU, DSP and application-specific 
cores. For each of these to interact, they must present a SystemC module that has a clock port, a connection 
to an appropriate bus, and probably some asynchronous input ports like reset and interrupts. Within the 
Simple Bus Model framework we’ve presented, you can see that a processor model would be modeled as a 
bus master module.  The processor model would be cycle-synchronous with the rest of the SystemC 
simulation: for each cycle of the SystemC simulation there would be a corresponding cycle within the 
processor model.  This integration scheme provides the greatest accuracy and, since the system is modeled 
at the transaction level, the overall simulation speed is extremely fast. 
 
This level of processor model integration provides a tight integration between the model and the rest of the 
system: 

AMBA 
AHB 

Transactions 

Debug 
Controller Cycle-Callable Model

Memory
Plugins 

Core 
Model 

Emulation Services
RDI

IPCRDI

SystemC 
Bus 

Model 

 
SystemC Simulator 

RDI 
Compliant 
Debugger 

 

The CCM Interfaces 
The Cycle-Based Model (CCM ) exposes two important interfaces to the designer which are used to 
interface the CCM to a cycle-based simulation environment: a bus-transaction interface, and a Remote 
Debug Interface (RDI). 
 
A simple callable interface provides pipeline-accurate AHB transactions which can easily be translated into 
bus transactions at the cycle-level. The advantage of using such a generic interface is that the same 
processor model can be used in a variety of abstractions. The speed of the interface is directly proportional 
to the level of detail extracted from the transactions provided by the processor model. Should the designer 
wish to re-use the model in a signal-level interface, this is still possible using the same model. 
 
The RDI is a standard debug interface for ARM cores which is extended for the CCM to include an 
interprocess layer to allow the debugger to reside in a separate process. In a typical IDE, this is unnecessary 
since the IDE controls the ISS execution and its behavior is predictable. In a complete system, the 
processor is but one part and execution is controlled by the SystemC simulator as shown above. Now a 
debug controller must be inserted between the debugger and the CCM to ensure that requests to clock the 
model are correctly multiplexed with requests from the debugger to continue program execution. Also, the 
user will expect to be able to interact with the software debugger even when the system is stopped such as 
when a hardware breakpoint inside another model is reached. 



Example Design Flow: The IP Router design 
Now that we’ve shown the modeling building blocks available, we’re going to demonstrate the application 
of TLM and processor models in an example design.  The design we’ve chosen is an Internet Protocol 
router.   This design is constructing using a cycle-accurate bus model for the AMBA AHB bus.   We will 
focus on the software block of the design, reviewing the entire design is well beyond the scope of the 
material we could cover within this class. 
 
The design is depicted in the following diagram: 
 

 
 

Operational Overview 
An IP Packet traffic generator, generator in the diagram, provides the stimulus.  This generates IP packets 
at the byte level along with a control signal. 
 
The parser parses each packet header, extracting information like IP version and destination address, then 
sends the packet and descriptor to the DMA controller (controller), which takes care of storing the packet 
in memory. 
 
The sw block is responsible for calculating the destination address of the packet and updating the in-
memory packet information. 
 
The remaining block is the IP transmitter, forward, in the diagram.  Depending on the destination address, 
it will forward the packet. 
 



The DMA controller, IP router, and IP transmitter blocks are connected to the AHB AMBA BUS that is 
defined by ARM.  They are all masters and they all access the memory that is modeled as a slave. 

Software Specification 
As you would expect, the initial software representation of the system was modeled purely in SystemC, 
without taking into consideration any processor or runtime environment. This version of the code would be 
used to verify the hardware/software partitioning and overall system operation.  This code could then be 
handed to the software team along with the rest of the executable system (aka platform) for actual processor 
specific implementation and verification. 
 
The software algorithm is very simple: loop continuously checking for new IP packets, each IP packet is 
then examined and its destination determined using a simple table lookup.   Recall that the IP packet is 
placed in memory by the DMA controller.  At this stage of refinement, the software is modeled as a single 
process within a SystemC module. 
 
The software module (sw in the diagram) is derived from the standard SystemC module class, sc_module: 
 

class sw_route_lk 
: public sc_module 

 
public: 
    // master port interface to the bus. 
    abm_master_port busport; 
 
   // process 
   void sw_code(); 
   ... 

 
Among other things the module contains a port, abm_master_port, which provides the connection 
between the software and the bus, and a function , sw_code, which represents the process for the module 
 
The following code fragment is one representation of a simple memory search for packets needing to have 
their destination address calculated: 
 

// look for a bank with data 
do 
 { 
  ... 
    address = get_destination_address(…); 
    busport.burst_read(&local_flags, 
    address,  
    1,   
    ABM_SINGLE,    
    4,  
    false ); 
 } while ((local_flags == BANK_EMPTY) 
    ||(local_flags == BANK_LOOKUP_DONE)); 
 

 
You’ll notice that the single 32 bit read is accomplished via the burst_read method call on the bus master 
port, which in turn requests the bus on behalf of this master and sees to it that the memory read transaction 
is performed.  When the transaction is complete the memory contents will be contained in the local_flags’ 
variable.  
 



The software developer would refine this code and eventually retarget it for execution on the target 
processor.  Prior to adding a processor model, the refinement process would execute the code natively.   
When appropriate a model of the target processor could be substituted for the sw module.  The code 
contained in the sw_code method would then be cross compiled, linked, and executed using the target 
processor.   In our example, the obvious modification to the sw_code module would be to change the 
memory access so that the code would appear as follows: 
 

// look for a bank with data 
do 
 { 
  ... 
    address = get_destination_address(…); 
    local_flags = *address; 

 } while ((local_flags == BANK_EMPTY) 
  ||(local_flags == BANK_LOOKUP_DONE)); 
 

While the translation is straightforward, it also wouldn’t be hard to implement a more structured #ifdef 
scheme where abstract memory accesses were handled via a function call and target compiled code is 
handled via a pointer de-reference. 
 
Another important observation is that while the above software may be functionally correct, it fails to take 
into consideration a few things: 
 
�� availability of processor to perform the operation (e.g. processor not busy doing something else) 
�� the amount of time it takes to perform the operation (e.g. instruction fetches and cycles to perform 

operations) 
�� bus availability  
�� RTOS scheduling 
 
It would be  possible to at least partially address these considerations by refining the sw_code method to 
include delay models to account for the performance and availability of the processor.  The addition of 
modeling infrastructure to address the software flow is planned for SystemC 3.0. 

Early System Integration 
 
 
Recall from our introduction, that for an SLD process to be successful, it must provide system designers 
with a continuum from specification through to implementation. Having determined that their design is 
functionally correct and that their hardware/software partitioning meets their design requirements, the 
designer can use the approach we described earlier of replacing the software component with a processor 
model.The model of the system then becomes a development platform for the system software. This would 
happen long before any physical prototype or RTL simulation environments were to become available!   
 
For the IP Router design we replaced the sw module with a cycle-accurate processor model for the 
ARM920.  The operation of the processor model and SystemC was very intuitive as well as simulating  
fast.  Debugging, from the software perspective, was accomplished using the ARM ADU debugger, while 
debugging from the SystemC perspective was accomplished using DDD.  It would be possible for an 
engineer who was unfamiliar with the hardware implementation to view the system from the perspective of 
the code running on the target processor, using ADU in our case.  Similarly, and engineer unfamiliar with 
the code running on the target processor could debug the system using DDD.  Use of one or the other, or 
both, debuggers is optional. 
 
Moving on from here, it would be possible to employ techniques like coverification to demonstrate that the 
software also performs as expected on the RTL implementation. 



Conclusion 
 
We’ve demonstrated a development flow which enables software integration earlier in the design process 
than is possible using more customary design flows.   This flow is enabled by using the open source 
SystemC infrastructure.   The flow is very natural and does not require the software team to learn new 
tools; from their perspective their platform is written in C++ , may be run on the workstation, and can be 
debugged using the workstation-native debug tools.  Additionally, the software team can look forward to 
refining their code using their target processor, its development environment, and SystemC, long before 
they could expect to see other development platforms (RTL or HW-based). 
 
 


	Early Hardware/Software Integration Using SystemC 2.0
	Abstract
	Background
	The Need for System-Level Modeling

	Unit Testing
	Introduction to SystemC Modeling: The Simple Bus Model
	Master Interfaces
	Slave Interfaces
	Cycle-Accurate Processor Models
	The CCM Interfaces
	Example Design Flow: The IP Router design
	Operational Overview
	Software Specification
	Early System Integration
	Conclusion


