
EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 1 of 17

EE8205: Embedded Computer Systems
Electrical, Computer & Biomedical Engineering, Ryerson University

Scheduling Real-time Applications using µVision and RTX

1. Objectives

This lab introduces students to develop RTX based multithreaded applications for ARM Cortex-M3 processors.
The students will learn how to schedule multithreaded applications by employing round-robin, priority
preemptive scheduling supported by µVision, RTX operating system and CMSIS libraries. Moreover, you will
learn how to schedule and implement a Rate Monotonic Scheduling (RMS), which is a popular Fixed Priority
Scheduling (FPS) technique.

2. Creating New Project:

 After launching µVision, select Project >> New µVision Project in the main menu bar. If a project already

exists, first close the project by selecting Project >> Close Project. Then Select New µVision Project as
shown in Figure 1.

 You should see a window shown in Figure 2. Select the icon for "New Folder" and name your working

folder “Lab3". Then name the project as “Multitasking” and Press Save.

 Type “LPC1768” as shown in the Figure 3 and select the device and press OK.

 Select the following Packages from Run Time Environment and add those to your project as depicted in

Figure 4.
a. CMSIS>CORE
b. CMSIS>RTOS(API)>Keil RTX
c. Device > Startup

Press OK once selected

Figure 1

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 2 of 17

Figure 3

Figure 2

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 3 of 17

 Now your Project files should look like as shown in Figure 5.

 Right click on Source Group1 folder and select “Add New Item to Group ‘Source Group 1’ as shown in

Figure 6.

Figure 4

Figure 5

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 4 of 17

 Select the User Code Template >expand CMSIS >RTOS:KeilRTX> CMSIS-RTOS’main’ function. Then

click Add as shown in Figure 7. The file will be added to the project.

Figure 6

Figure 7

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 5 of 17

 Repeat and this time select CMSIS>RTOS:Keil RTX> CMSIS-RTOS Thread. Then click Add and
another file will be added to your project as shown in Figure 8.

 Now your Project Folders should look like the Figure 9 depicted below.

Figure 9

Figure 8

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 6 of 17

 Click on the icon on the top menu as shown in Figure 10

 Do the Following changes shown in Figure 11: Under Target. ARM Compiler> Use default compiler
version 5. Check Use > Micro LIB.

Figure 10

Figure 11

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 7 of 17

 Select C/C++ and a window similar to Figure 12 will appear.

 Then select Debug option and check Use Simulator. Perform the following changes also.
 Dialog DLL: DARMP1.DLL, Parameter: -pLPC1768

Debug Window should look like the one in Figure 13. Then Press OK.

Now the Project Directory is all set for the Lab3 and related assignment.
Debug and Run the project and make sure no errors or warnings exist.
Then Replace the contents of main.c with the main.c file provided on D2L, and Threads.c file with the contents of
Threads.c from D2L.

Figure 12

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 8 of 17

RTX must be configured for specifications such as the time slice frequency of the CPU's systick timer and the
arbitration techniques for the multi-threaded applications.

Open the file RTX_Conf_CM.c, double click from the project directory as shown in Figure 14.
Select Configuration Wizard and click Expand All.

Make sure that the option Use Cortex-M SysTick timer as RTX Kernel Timer is selected, the RTOS Kernel
Timer input clock frequency [Hz] option is set to 10000000 (10 MHz), and the RTX Timer tick interval
value[us] option is set to 10000 (10ms). Make sure that the "User Timers" option is also checked for round-
robin scheduling. Your configuration file should now resemble Figure 15.

Figure 13

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 9 of 17

Figure 15

Figure 14

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 10 of 17

3. Analyzing the RTX Project

3.1 Watch Windows

Watch windows allow the programmer to keep track of the variables ‘counta’ and ‘countb’.
1. Open the watch window by selecting View > Watch Window > Watch 1.
2. You may hover the mouse over the variable name in the code window, right-click and select Add ‘counta'

or ‘countb' to... >> Watch 1.
3. When you click the RUN icon to execute the program, the values of ‘counta’ and ‘countb’ should

alternatively increment depending on the thread, which is currently executing.
4. It is also possible to change ‘counta’ and ‘countb’ values as its incrementing during execution. If you

enter a '0' in the value field, you may modify the variable's value without affecting the CPU cycles
during executing. This technique can work both in simulation and while executing on the CPU.

3.2 Performance Analyzer

1. Select View >> Analysis Windows >> Performance Analyzer (PA).
2. Expand the "Multitasking" in the PA window by pressing the "+" sign located next to the heading. There

should be a list of functions (like a tree) present under this heading. There should also be another
subheading titled "Thread.c". Press the "+" sign again to collapse the tree further. There you can observe
the execution of thread1 and thread2.

3. Reset the program (ensure that the program has been stopped first). Click RUN.
4. Watch the program execute and how the functions are called.

3.3 RTX Event Viewer
The Event Viewer is a graphical representation of a program’s thread-based execution timeline. An example
is shown in Figure 16. The Event Viewer runs on the Keil simulator but must be configured properly for
CPU execution using a Serial Wire Viewer (SWV).

To use this feature of the Serial Wire Viewer (SWV).

1. In the main menu select Debug >> OS Support >> Event Viewer. A window should appear.
2. Click RUN. Click the "All" button under the zoom menu in the Event Viewer window. You may also

select "In" or "Out" to adjust the view of the timeline which dynamically updates as the program
continues to execute. Note the other threads other than thread1 and thread2 that are also present in the
execution timeline.

3. Let the program execute for approximately 50 msec. Click STOP. Your window should now look

Figure 16

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 11 of 17

similar to that of Figure 16.
4. Hover the mouse over one of the thread time slices (blue blocks indicating execution of the task). You

will see stats of the thread appear. The stats should concur with the round-robin scheduling we set up in
RTX_Conf_CM.c (i.e. 10ms time slices).

5. Try going back to the RTX_Conf_CM.c file and changing the time stats of the round-robin scheduler.
Rebuild the project and run it again in Debug mode. See if the Event Viewer reflects the changes you
made to the file.

3.4 RTX Tasks and System Window

This window provides an RTX kernel summary with detailed specifications of RTX_Conf_CM.c, along
with the execution profiling information of executing tasks. An example window is provided in Figure 17.
The information obtained in this window comes from the Cortex-M3 DAP (Debug Access Port). The DAP
acquires such information by reading and writing to memory locations continuously using the JTAG port.

To use this feature:

 Select Debug >> OS Support >> System and Thread Viewer.
 As you run the program (or Reset and RUN), the state of the "Thread" heading will change

dynamically. However, The "System" information will remain the same as these information values
are specified prior to runtime in RTX_Conf_CM.c.

4. Programming Multithreaded Application with uVision and RTX

4.1 Understanding the RTX Program

Open the Thread.c file and examine the code. This program presents an example of a multithreaded RTX
application consisting of two simple threads, each executing their own code. The osThreadCreate() and
osThreadDef() functions will create the threads and set their priorities respectively.
Thread1 and Thread2 will loop infinitely using a round-robin scheduling technique. This timing specification
was included in the config file (RTX_Conf_CM.c). osKernelInitialize() and osKernelStart() will setup the
round-robin scheduling definition for the threads and execute the kernel respectively. Compile the application
and enter Debug mode. We will now use the uVision tools to analyze the RTX program.

4.2 Analyzing the RTX Project
As in the previous section, use the Watch Window, Watchpoints, Performance Analyzer, Event Viewer and RTX
System and Thread Window to analyze the application.

Figure 17

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 12 of 17

Note on Pre-emptive/Non Pre-emptive Scheduling Versus Round-Robin Scheduling
To implement pre-emptive/ non pre-emptive scheduling techniques, make note that the
RTX_Conf_CM.c file must be adjusted. Specifically in the Configuration Wizard, the option System
Configuration >> Round- Robin Thread switching must be disabled. Ensure however that the
systick timers are enabled.

4.3 Reviewing Thread.c and Main.c
1. Now that we have analyzed a simplistic multi-threaded application and its various performance features

using uVision. Let's take a look at the code once more step-by-step using uVision's analysis tools.
2. Re-execute the code and take a look at the Event Viewer. Which thread executes first? osTimerThread()

thread initializes and executes - this thread is responsible for executing time management functions
specified by ARM's RTOS configuration.

3. The program starts executing from main(), where main() ensures that:
a. The Cortex-M3 system and timers are initialized - SystemInit()
b. An os kernel is initialized for interfacing software to hardware - osKernelInitialize()
c. Creates the threads to execute thread1 and thread2 - Init_Thread ();
d. Starts the kernel to begin thread switching - osKernelStart()

4. The Thread1 thread executes for its round-robin time slice since it is created first. After 10msec the timer
thread forces control to the Thread2 thread.

5. The Thread2 thread executes during its time slice for 10msec and is forced to stop again and execute task1.
This occurs infinitely.

4.4 Processor Idling Time
As an exercise, let us determine the idling time of the code we have been currently working with by using the
idle demon, i.e. open the RTX_Conf_CM.c file. Under the line #include <cmsis_os.h> insert the
definition for the global variable unsigned int countIDLE = 0; and setup.

void os_idle_demon (void) (
for (;;) {

countIDLE++;
}

}

1. Save the file and compile the project. Re-enter Debug mode. Open the Watch window. Add counta, countb,
and countIDLE to the expression list of variables to watch during execution. Click reset, and RUN.

2. Observe the Watch 1 window, and as counta and countb increment, but the countIDLE variable does not.
What does this mean? This The CPU is currently under 100% utilization by the task threads. Note that
Idle Demon is set with the lowest priority in the task list. You can verify this by using the System and
thread viewer tool.

5. Implementing Various Scheduling Algorithms
Exercise 1- Setting Priority: Exit the Debug mode to access the Thread.c file. Change the line:

osThreadDef(Thread1, osPriorityNormal, 1, 0); to
osThreadDef(Thread1, osPriorityAboveNormal, 1, 0);

Compile the program and return to Debug mode. Run the program and open the Event Viewer window.
Question 1: What do you notice?
By setting the priority of Thread2 to a higher priority than that of Thread1, a pre-emptive scheduling technique
was created where the higher priority thread will execute to completion first. Since Thread1 was created first, it

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 13 of 17

was expected to run first. However, Thread1 will never be executed due to its "Normal" priority (in comparison
to Thread2's "AboveNormal") and the fact that Thread2 executes infinitely. Conversely, if the code was
programmed such that the Thread2 terminates after a finite time (when its workload completes), Thread1 would
thereafter be able to execute. It is recommended that the CMSIS-RTOS API Thread Management and osPriority
enumerations be consulted during coding.

Exercise 2 - Pre-emptive Scheduling: Exit Debug mode to access the Thread.c file again. Change the Thread1
and Thread2 function code to the following:

void Thread2 (void const *argument) {
 for (;;){ // Infinite loop – runs while thread2 runs.
 countb++; // Increment global variable countb indefinitely

osThreadYield();
 } // suspend thread

}

void Thread1 (void const *argument) {
 for (;;){ // Infinite loop – runs while Thread1 runs.
 counta++; // Increment global variable counta indefinitely

osThreadYield();
 } // suspend thread

}

Also make sure to change:
osThreadDef(Thread1, osPriorityAboveNormal, 1, 0); back to
osThreadDef(Thread1, osPriorityNormal, 1, 0);

Recompile the files. Enter Debug mode. Open a Watch window to track the counta and countb variables, along
with the Event Viewer. Reset the program and click RUN.

Question 2: How does the execution of the code using osThreadYield() differ from round-robin?
If you were successful, you will observe short execution time slices per thread in the Event Viewer, where it
almost appears as if the threads were running as round-robin (after several msec). With the changes made to the
program, each thread should simply increment their counter by one and pass control to the next thread of equal
or greater priority using osThreadYield(). Specifically, you should observe that on average a single thread runs
for 2.52us before passing control to the next thread (which is the equivalent time spent entering the thread,
incrementing the counter, and passing control).
What is the utilization time of the processor?
Check the Idle Demon variable and task using the performance-based tools.
Exercise 3: Stop the previous program and exit Debug mode to gain access to the Thread.c file. Remove the
osThreadYield()functions you implemented in the last exercise. Change the Thread1 and Thread2 function
code to the following:

void Thread2 (void const *argument) {
 for(;;) {
 countb++;
 osDelay(1);
 }
}
void Thread1 (void const *argument) {

 for(;;) {
 counta++;
 osDelay(2);

}
}

Recompile the files and enter Debug mode. Setup the Watch 1 window with the variables counta, countb, and
countIDLE. RUN the program

Question 3: Assess the Watch window and note the difference between the execution of this code and the previous

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 14 of 17

code. Use the Performance Analyzer and Event Viewer to verify your findings. What is the utilization time of the
CPU?

6. Introduction to Rate Monotonic Scheduling for Real-time Applications
6.1 Virtual Timers

Virtual timers are a type of countdown timer used in the CMSIS RTX API. Each timer possesses a callback
function which is triggered once the timer has counted down. This callback indicates what action the timer is to
perform once triggered. Therefore, the instantiation of multiple timers can countdown various periods of time,
useful for the multiple tasks executed in a real-time system.

Virtual timers are defined after the #include and #define area in the .c code as:

osTimerDef(timer0_handle, callback);

Note its callback function must be declared before defining the timer(s). The virtual timer may then be
instantiated within the main() as an RTX thread.

osTimerId timer_0= osTimerCreate(osTimer(timer0_handle), osTimerPeriodic, (void *)0);

The above statement creates a timer called timer_0 that specifies information for once its countdown has
triggered. The timer0_handle will call the callback function with the argument (void *)0. In terms of the
frequency of the countdown timer, osTimerPeriodic defines a periodic timer whereas osTimerOnce is used to
declare a single-shot timer. The timer can then be started in the main() at any time using the following
statement.

osTimerStart(timer_0, 3000);

It signifies that the timer timer_0 should start, with a countdown of 3000 milliseconds. The use of multiple
virtual timers can trigger the callback function at various times and/or frequencies. An example application will
be provided to you in the next section after explaining the importance of inter-thread communication in RTX or
any other real-time operating system.

6.2 Inter-thread Communication - Signals and Waits
Up to now we have learned how to create threads, set their priorities, and use timers provided by RTX to create
and schedule applications. In many applications however, there is a need to synchronize and communicate
information among various threads. There are several means to communicate between threads in an RTOS. In
the first part of this lab, we will focus on the use of signal and wait flags to synchronize execution between
application threads. The concept is synonymous to signal and wait flags learned in general operating systems
also.
A single thread in the RTX API may contain up to 8 signal flags stored in its thread control block. Signals are
used to synchronize (signal or halt) the execution of threads. To synchronize threads, a thread usually "waits"
for a "signal" to continue its execution. If a thread's signal flag number matches the wait flag number that was
asserted by another thread, then the waiting thread can be released from the waiting state, and it will transition
to the ready state for execution. Thus, this method is used to synchronize any number of threads - the signal
thread must complete a certain task before the waiting thread can continue.

Like the previous lab, a thread is created and given an ID as given below.

void led_Thread1 (void const *argument);
osThreadDef(led_Thread1, osPriorityNormal, 1, 0);

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 15 of 17

 osThreadId T_led_ID1;

int main(void){
...
T_led_ID1 = osThreadCreate(osThread(led_Thread1), NULL);
...}

A wait flag may be set in the code as follows:

osSignalWait (0x03,osWaitForever);

The above statement signifies that the thread is waiting for the signal flag 0x03 to be asserted. The
second parameter indicates the maximum duration (in milliseconds) that the thread should wait to be
signalled. In this case the wait period is osWaitForever.

A signal may be sent to a thread or cleared using:

osSignalSet(T_led_ID2,0x01); or osSignalClear(T_led_ID2, 0x01);

6.3 Example Application

Launch the µVision application. Create a new project "virtual_demo" in your "lab3/example" folder. Select the
LPC1768 processor chip. Copy ‘virtual_demo.c’ file provided to you on D2L under lab3 folder, to your project
directory. Configure your project workspace with the same settings as you did in the other exercises. Your
project folder should resemble Figure 18.

Check the "Options for Target"->C/C++ -> C99 Mode. Make sure that the timers are enabled in
RTX_Conf_CM.c.

Open the virtual_demo.c file and examine the code. Note the following: two virtual timers created and started
with the countdown period of 3000 and 1000 respectively. The callback function is passed with the specified
timer parameters once the timer has triggered. Three threads are created for the signal and wait demonstration
(T_led_ID1, T_led_ID2, T_led_ID3). LEDs will flash according to the signal/wait pair that have been matched,
or virtual timer currently being called back and executed.

Figure 18

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 16 of 17

Build the project and analyze the application execution (LEDs), its timing characteristics, and how it correlates
with the sample code given. Use the debugging and analysis tools to trace variables to get an in-depth
understanding. Make sure to comment out the osDelay() while debugging.

7. Optional Lab Assignments (Bonus Marks 3% of the Course Marks)

Submit Lab-3 Report through D2L

7.1 Part I

The following outlines the specifications for 3 different scheduling applications (Questions 1, 2 and 3 in
section 5). You should create an analysis version for each application. The analysis will be used for debug
mode to analyze performance of your applications for your report.

1. Implement a round-robin scheduling example using 3 different tasks. Each task should be allotted a
time slice of 15msec. Note: Your code must perform a different functionality than the one provided in
this lab. Ensure that the tasks do not run infinitely, and they have a finite workload with respect to time.

TABLE 1: LIST OF PRE-EMPTIVE TASKS

2. Table 1 provides a list of pre-emptive threads, with their function and priority listed. Note: The lower the

number in the Priority column, the higher the priority. Write the pre-emptive code for a scheduling
algorithm which invokes the threads and functionalities in Table I based on their priority level (i.e. Task
C should finish computing first). Each task should print their final result to stdout (using printf or the
watch window).

Submit the printout of your .c code, RTX_Conf_CM.c Configuration Wizard file, and snapshots of your
Event Viewer and Performance Analyzer windows for each application.

7.2 Part II

Implement an RMS algorithm using the following process set given in Table 2.

Table 2: 3-Process Set

Process Period (T) Computation Time (C) Priority (P)

A 40000 20000 3

B 40000 10000 2

C 20000 5000 1

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using µVision and RTX 17 of 17

Schedule the above process set using inter-thread communication mechanisms and virtual timers. Since RMS is
a Fixed Priority Scheduling method, ensure that the priorities are followed accordingly (i.e., lower the number,
higher the priority). Note that the periods are much longer than the lecture examples due to debugging purposes.
Use a custom delay() function.

Hand in the .c code for the RMS scheduling technique of this process set. Moreover, include an execution
timeline for the processes (may be drawn). Submit this timeline with your code. Make sure that your program
execution matches your calculated timeline for verifying the correctness.

References

1. "The Keil RTX Real Time Operating System and μVision" www.keil.com. An ARM Company.
2. "Keil μVision and Microsemi SmartFusion" Cortex-M3 Lab by Robert Boys www.keil.com.
3. "Keil RTX RTOS the easy way" by Robert Boys www.keil.com.

