
A MICRO-MANUAL FOR LISP - NOT THE WHOLE T R U T H

John McCarthy
Artificial Intelligence Laboratory

Stanford University

LISP data are symbolic expressions that can be either atoms
ol lists. Atoms are s~tittgs of letters and digits and other characters
not otherwise used in LISP. A list consists of a left parenthesis
followed by zero or more atoms or lists separated by spaces and
end ing with a right parenthesis. Examples: A, ONION, 0, (A), (A
O N I O N A), (PLUS B (TIMES X PI) i), (CAR (QUOTE CA B))).

T h e LISP programming language is defined by rules
whereby certain LISP expressions have other LISP expressions as
values. T h e function called value that we will use in giving these
rules is not part of the LISP language but rather part of the
informal m3tbematical language u;ed to define LISP. Likewise,
the italic letters • and a (sometimes with subscripts) denote LISP
expressions, the letter v (usually subscripted) denotes an atom
serv ing as a variable, and the letter f stands for a LISP expression
serving as a function name.

1. value (Q U O T E e) = e. Thus the value of (QUOTE A) is A.

2. value (CAR e), where value e is a non-empty list, is the first
element of value e. Thus value (CAR (QUOTE (A B C))) - A.

3. value (CDR e), where value e is a non-empty list, is the the list
that remains when the first element of value e is deleted. Thus
value (CDR (Q U O T E (A B C))) = (B C).

4. value (CONS el e2), is the list that results from prefixing
value el onto the list value e2. Thus
value (CONS (Q U O T E A) (Q U O T E (B C))) = (A B C).

5. value (E Q U A L el e2) is T if value el = value e2. Otherwise, its
value is NIL. Thus
value (E Q U A L (CAR (Q U O T E (A B))) (QUOTE A)) = T,

6. value CATOM e) - T if value e is an atom; otherwise its value Is
NIL.

7. value (COND(p t e I) . . . (PB en)) = value e i, where Pi is the the
first of the p's whose value is not NIL. Thus

value (C O N D ((ATOM (Q U O T E A)) (QUOTE B)) ((QUOTE T)
(Q U O T E C))) = B.

8. A n atom v, regarded as a variable, may have a value.

9. value ((L A M B D A (v I . . . v,) e) e I . . . e a) is the same as value e
but in an environment in which the variables v I . . . v n take the
values of the expressions e I . . . e n in the original environment.
T h u s

value ((LAMBDA (X Y) (CONS (CAR X) Y)) (OJJOTE (A B))
(CDR (Q U O T E (C D)))) = (A D).

10. Here 's the hard one. value ((LABEL f (LAMBDA (o I . . . v,)
e)) e I . . . en) is the same as value ((LAMBDA (v I . . . vn) e) e I . . .
e n) with the additional rule that whenever ~¢al an) must be
evaluated, f is replaced by (LABEL/" (LAMBDA (v I . . . vn) e)).
Lists beg inn ing with LABEL define functions recursively.

Th i s is the core of LISP, and here are more examples:

value (CAR X) = (A B) if value X ~ ((A B) C), and value
((L A B E L FF (LAMB DA (X) (GOND ((ATOM X) X) ((QUOTE

T) (FF (CAR X)))))) (Q U O T E ((A B) C))) - A. Thus ((LABEL
FF (L A M B D A (X) (COND ((ATOM X) X) ((QUOTE T) (FF
(C A R X)))))), is the LISP name of a function f f such that f f e is
the first atom in the written form of e. Note that the list f f is
subst i tuted for the atom FF twice.

Difficult mathematical type exercise: Find a list e such that
value e = e.

Abbrev i a t i ons

T h e above LISP needs some abbreviations for practical use.

1. T h e variables T and NIL are permanently assigned the values T
and NIL, and NIL is the name of the null list 0.

2. So as not to describe a LISP function each time it is used, we
def ine it permanently by typing (DEFUN f Ca I . . . v n) e).
The rea f t e r ~f e I . . . e n) is evaluated by evaluating e with the
var iables v I ,v n taking the values value el, . . . , v a l u e e n
respectively. Thus, after we define (DEFUN FF (X) (COND
((A T O M X) X) (T (FF (CAR X))))), typing (FF (QUOTE (CA B)
C))), gets A from LISP.

3. We have the permanent function definitions

(D E F U N N U L L (X) (EQUAL X NIL)) and

(D E F U N C A D R (X) (CAR (CDR X))),

and similarly for arbitrary combinations of A and D.

4. (LIST e I . . . en) is defined for each n to be (CONS e I (CONS ...
(C O N S e n NIL))).

5. (A N D p q) abbreviates (COND (p q) (T NIL)). ANDs with
more terms are defined similarly, and the propositional connectives
O R and N O T are used in abbreviating corresponding conditional
expressions.

H e r e are more examples o f L ISP funct ion def in i t ions:

¢1978 Association for Computing Machinery, Inc. '2..1.5 ACM SIGPLAN Notices, Vol. 13, No. 8, August 1978

(DEFUN ALT (X) (COND ((OR (NULL X) (NULL (CDR X)))
X) (T (CONS (CAR X) (ALT (CDDR X))))))

de f i nes a f u n c t i o n tha t gives al ternate elements o f a list start ing

with the first element. Thus (ALT (QUOTE (A B C D E))) = (A
c E)

(DEFUN SUBST (X Y Z) (COND ((ATOM Z) (COND ((EQUAL
Z Y) X) (T Z))) (T (CONS (SUBST X Y (CAR Z)) (SUBST X Y
(C D R Z)))))),

where Y is an atom, gives the result of substituting X for Y in Z.
Thus

(SUBST (q U O T E (PLUS X Y)) (qUOTE V) (qUOTE (TIMES
X V))) = (TIMES X (PLUS X Y)).

You may now program in LISP. Call LISP on a time-
sharing computer, define some functions, type in a LISP
expression, and LISP will output its value on your terminal.

THE LISP INTERPRETER WRITTEN IN LISP

T h e rules we have given fo r eva lua t ing L I S P expressions

can themselves be expressed as a LISP function (EVAL e a),
where e is an expression to be evaluated, and a is a list of
variable-value pairs, a is used in the recursion and is often
initially NIL. The long LISP expression that follows is just such
an evaluator. It is presented as a single LABEL expressions with
all auxiliary functions also defined by LABEL expressions
internally, so that it references only the basic function of LISP and
some of abbreviations like CADR and friends. It knows about all
the functions that are used in its own definition so that it can

e v a l u a t e i tse l f e v a l u a t i n g some other expression. I t does not know
about DEFUNs or any features of LISP not explained in this
micro-manual such as functional arguments, property list functions,
input-output, or sequential programs.

The function EVAL can serve as an interpreter fo r LISP,
and LISP interpreters are actually made by hand-compiling EVAL
into machine language or by cross-compiling it on a machine for
which a LISP system already exists.

The definition would have been easier to follow had we
defined auxiliary functions separately rather than include them
using LABEL. However, we would then have needed property list
functions in order to make the EVAL self-applicable. These
auxiliary functions are EVLIS which evaluates lists of expressions,
E V C O N D which evaluates conditional expressions, ASSOC which
finds the value associated with a variable in the environment, and
P A I R U P which pairs up the corresponding elements of two lists.

Here is EVAL.

(LRBEL EVBL (LRnBDB (E R)
(CONO ((ATOM E)

(CONO ((EQ E Nil.) NIL)
((EQ E T) T)
(T (CDR ((LRBEL

RSSOC
(LflMBDfl (E fl)

(COND ((NULL R) NIL)
((EQ E (CflgR R)) (CflR R))
(T (RSSOC E (CDR f l))))))

E
R)))))

((ATOM (CAR E))
(COND ((EQ (CRR E) (QUOTE QUOTE)) (CflgR E))

((EQ (CRR E) (QUOTE CRR))
(CflR (EVRL (CRDR E) R)))

((EQ (CAR E) (QUOTE CUR))
(CDR (EVRL (CRDR E) R)))

((EQ (CAR E) (QUOTE CAOR))
(CflDR (EVRL (CAOR E) fl)))

((EQ (CRR E) (QUOTE CRODR))
(CRDDR (EVRL (CRDR E) R)))

((EQ (CRR E) (QUOTE CRflR))
(CRflR (EVflL (CADR E) A)))

((EQ (CRR E) (QUOTE CADflR))
(CRDRR (EVRL (CROR E) A)))

((EQ (CflR E) (QUOTE CADOAR))
(CRDDRR (EVRL (CflDR E) R)))

((EQ (CAR E) (QUOTE ATOfl))
(RTOM (EVRL (CRDR E) A)))

((EQ (CAR E) (QUOTE NULL))
(NULL (EVRL (CADR E) A)))

((EQ (CflR E) (QUOTE CONS))
(CONS (EVRL (CROR E) R) (EVRL (CflDDR E) R)))

((EQ (CRR E) (QUOTE EO))
(EQ (EVflL (CROR E) R) (EVRL (CROON E) R)))

((EQ (CRR E) (QUOTE COND))
((LRBEL EVCUNO

(LRMBDA (U A) (COND ((EVRL (CflAR U) R)
(EVAL (CflORR U)

A))
(T (EVCONO (CDR U)

A)))))
(CDR E)
A))

(T (EVRL (CONS (CDR ((LRBEL
RSSOC
(LflMBOR (E fl)
(COND
((NULL R) NIL)
((EQ E (CRRR fl))
(CRR R))

(T (RSSOC E
(CUR R))))))

(CflR E)
R))

(CDR E))
R))))

((EQ (CRRR E) (QUOTE LRMBDfl)
(EVRL (CRDORR E)

((LABEL FFflPPEND
(LAflBDA (U V)

(COND ((NULL U) V)
(T (CONS (CRR U)

(FFflPPEND (COR U)
V))))))

((LRBEL
PRIRUP
(LflMBUA (U V)

(COND ((NULL U) NIL)
iT (CONS (CONS (CRR U) (CAN V))

'-(PR]RUP (CDR U)
(CON V)))))))

(CflDflR E)
((LRBEL

EVLIS
(LRflBDR (U A)

(COND ((NULL U) NIL)
(T (CONS (EVflL (CAR U) R)

(EVL]S (CDR O)
A))))))

(CON E)
R))

A)))
((EQ (CRAR E) (QUOTE LABEL))
(EVAL (CONS (CADOAR E) (CDR E))

(CONS (CONS (CRORR E) (CRR E)) f l)))))

216

