Graduate Course
Outlines

Electrical and Computer Engineering

Ryerson University

September, 2014
Table of contents

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE8102</td>
<td>Signal detection theory</td>
<td>1</td>
</tr>
<tr>
<td>EE8103</td>
<td>Random processes</td>
<td>5</td>
</tr>
<tr>
<td>EE8104</td>
<td>Adaptive signal processing</td>
<td>8</td>
</tr>
<tr>
<td>EE8105</td>
<td>Digital signal processing I</td>
<td>11</td>
</tr>
<tr>
<td>EE8107</td>
<td>Digital communications</td>
<td>15</td>
</tr>
<tr>
<td>EE8108</td>
<td>Multimedia processing and communications</td>
<td>17</td>
</tr>
<tr>
<td>EE8109</td>
<td>Wireless communications I</td>
<td>21</td>
</tr>
<tr>
<td>EE8111</td>
<td>Digital signal processing II</td>
<td>24</td>
</tr>
<tr>
<td>EE8114</td>
<td>Optical communication and network</td>
<td>27</td>
</tr>
<tr>
<td>EE8120</td>
<td>Applied optimization techniques</td>
<td>30</td>
</tr>
<tr>
<td>EE8121</td>
<td>Wireless networks</td>
<td>34</td>
</tr>
<tr>
<td>EE8122</td>
<td>Opto-electronic devices</td>
<td>36</td>
</tr>
<tr>
<td>EE8202</td>
<td>Digital image processing I</td>
<td>38</td>
</tr>
<tr>
<td>EE8205</td>
<td>Embedded computer systems</td>
<td>41</td>
</tr>
<tr>
<td>EE8207</td>
<td>High performance computing system design</td>
<td>45</td>
</tr>
<tr>
<td>EE8208</td>
<td>Arch Syn design of digital systems</td>
<td>50</td>
</tr>
<tr>
<td>EE8209</td>
<td>Intelligent systems</td>
<td>54</td>
</tr>
<tr>
<td>EE8212</td>
<td>Digital image processing II</td>
<td>59</td>
</tr>
<tr>
<td>EE8213</td>
<td>Computer network security</td>
<td>61</td>
</tr>
<tr>
<td>EE8214</td>
<td>Computer system modelling</td>
<td>65</td>
</tr>
<tr>
<td>EE8215</td>
<td>Human computer interaction</td>
<td>69</td>
</tr>
<tr>
<td>EE8216</td>
<td>Computer networks</td>
<td>74</td>
</tr>
<tr>
<td>EE8217</td>
<td>Reconfigurable comp systems</td>
<td>76</td>
</tr>
<tr>
<td>EE8218</td>
<td>Parallel computing</td>
<td>80</td>
</tr>
<tr>
<td>EE8219</td>
<td>Arch of FPGA</td>
<td>85</td>
</tr>
<tr>
<td>EE8220</td>
<td>Advanced digital filters</td>
<td>89</td>
</tr>
<tr>
<td>EE8301</td>
<td>Linear system theory</td>
<td>93</td>
</tr>
<tr>
<td>EE8306</td>
<td>Fundamentals of robotics</td>
<td>96</td>
</tr>
<tr>
<td>EE8403</td>
<td>Advanced topic in power systems</td>
<td>100</td>
</tr>
<tr>
<td>EE8405</td>
<td>Power system stability and control</td>
<td>104</td>
</tr>
<tr>
<td>EE8407</td>
<td>Power converter systems</td>
<td>107</td>
</tr>
</tbody>
</table>
EE8408 Switch mode power supplies ... 108
EE8409 Electromagnetic theory ... 111
EE8410 Power electronics ... 115
EE8412 Advanced AC drive systems ... 118
EE8414 Lightning: modelling and detection .. 119
EE8416 Modelling and control of power electronic converters 123
EE8417 Vector control of rotating machines .. 126
EE8501 CMOS mixed-mode circuits and systems ... 129
EE8502 Analog CMOS integrated circuits .. 132
EE8503 VLSI circuits and systems for data communications 136
EE8504 VLSI design automation and CAD tools ... 141
EE8505 Digital system testing ... 145
EE8506 Digital CMOS VLSI integrated circuits .. 152
EE8604 Radio-frequency circuits and systems ... 153
EE8605 Selected topics in Computer Science: Semantic web technologies 157
EE8606 Selected topics in Biomedical Engineering: Biomedical simulations 161
EE8608 Selected topics in Electrical Engineering: Antenna theory and design 165
EE8102: Signal Detection Theory

Prerequisites
EE8103

Course Web Page

Compulsory Texts:
2. Lecture notes from Dr. Soosan Beheshti.

Calendar Description

Learning Objectives
At the end of this course, the successful student will have a solid understanding of hypothesis testing, Bayesian estimators, parametric estimation, MAP and ML estimators. In addition, the student will have in-depth knowledge of related filtering methods such as Kalman filter and Wiener Filter. The student will be able to evaluate an estimation problem and design the proper estimators accordingly.

Course Organization
3 hours of lecture per week for 13 weeks

Course Evaluation
Midterm exam 20%
Quiz 10%
Problem Set 10%
Course Project 30%
Final exam 30%
Total 100%
Examinations

Midterm examination is a 1.5-hour, closed-book examination that covers all the lectures up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course material.

Project Format

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles. You need to take a look at *IEEE Transactions on Circuits and Systems I - Regular Papers* and *IEEE Journal of Solid-State Circuits* for IEEE reference styles on books, journal papers, conference papers, and technical reports.
- Appendices
- Index - list of key words and their page number in the project report.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Random vectors and random process review</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Gaussian Random vectors</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Decision Theory, Hypothesis Testing</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Parameter Estimation, ML and Bayes’ Estimations</td>
<td>3</td>
</tr>
<tr>
<td>6-7</td>
<td>Parameter Estimation, Best Linear Unbiased Estimator (Blue)</td>
<td>6</td>
</tr>
<tr>
<td>8-9</td>
<td>Stochastic Processes and Systems</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Wiener Filters</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Kalman Filters</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Signal Representation</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Matched filters, Kernels</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Project</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students are required to choose a recently research papers in IEEE Transactions or highly cited Journal which is on the topic of detection and estimation. The project is on thorough and critical analysis of the paper.</td>
<td>5-13</td>
</tr>
</tbody>
</table>
Throughout the project students evaluate the advantages and disadvantages of the selected work and are encouraged to modify, further design or find other applications for the reviewed paper. In addition to the written project, students must have a 10min presentation.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.
6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.
7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.
8. Students are required to adhere to all relevant University policies including: Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf
9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8103: Random Processes

Prerequisites
None

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8103/

Compulsory Texts:
3. Lecture notes from Dr. Lian Zhao.

Reference Texts:

Calendar Description

Learning Objectives
At the end of this course, the successful student will have a solid understanding of the methods for statically analysis of random variables and random processes, a good understanding of probability density functions, cumulative distribution functions, typical distributions, mean, variance, characteristic functions, moment generation functions, correlations and covariance, etc. In addition, the student will have in-depth knowledge of conditional probabilities, expectation on condition, Bayes theorem. The student will also be able to solve problems in random processes, such as markov chains and poisson processes.
Course Organization

3 hours of lecture per week for 13 weeks

Course Evaluation

| Quiz | 20% |
|---------------------------------|
| Midterm exam | 30% |
| Final exam | 50% |
| Total | 100% |

Examinations

Quizs are 0.5-hour, closed-book examinations that covers all the lecture materials up to the week of the specific examination.

Midterm examination is a 3-hour, closed-book examination that covers all the lecture materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course materials.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Introduction, set theory, three axioms, Bayes’ theorem, law of total probability</td>
<td>6</td>
</tr>
<tr>
<td>3-4</td>
<td>Random variables, pdf, cdf, special distributions, binomial random variable approximations</td>
<td>6</td>
</tr>
<tr>
<td>5-7</td>
<td>Statistics of RVs: mean, variance, characteristic functions, moment generation functions, correlation and covariance, function of RVs.</td>
<td>9</td>
</tr>
<tr>
<td>8-10</td>
<td>Conditional Probabilities: conditional probabilities, conditional cdf and pdf, expectation on condition, independence.</td>
<td>9</td>
</tr>
<tr>
<td>11-13</td>
<td>Random Processes: concept, correlation and covariance, markov chains, Poisson processes</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on
the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

3. Student who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

4. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

5. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.
EE 8104 Adaptive Signal Processing

Instructor

Sridhar (Sri) Krishnan, Ph.D., P.Eng.
T 247 Eric Palin Hall
T) 416.979.5000 X 6086
F) 416.979.5280

E) krishnan@ee.ryerson.ca
W) www.ee.ryerson.ca/~krishnan/ee8104.html

Lecture hours: Mondays, 6pm to 9pm
Office hours: Tuesdays, 2pm to 5pm

Calender Description

The course begins with a brief review of linear signals and systems. Adaptive filter algorithms such as least mean squares (LMS), recursive least squares (RLS), and recursive least squares lattice (RLSL) will be covered. Linear prediction theory, autoregressive modeling, and spectral estimation will also be discussed. The course will briefly cover advanced adaptive signal analysis techniques based on time-frequency and wavelet transforms. 1 Credit

Course Details

1. Fundamentals of Digital Signal Processing
 - Discrete-time signals and systems
 - Z-transform
 - Discrete Fourier Transform (FFT)
 - FIR, IIR filters

2. Adaptive Filter Algorithms
 - Stochastic Processes
 - Least Mean Squares (LMS)
 - Recursive Least Squares (RLS)
 - Recursive Least Squares Lattice (RLSL)
3. **Signal Modeling**
 - Linear Prediction Theory
 - Autoregressive Modeling, Pole-Zero Modeling
 - Adaptive Signal Models

4. **Spectral Estimation**
 - Parametric Spectral Estimation
 - Non-parametric Spectral Estimation

5. **Advanced Topics**
 - Adaptive Time-frequency Analysis
 - Adaptive Wavelet Analysis

Course Evaluation

- Two Quizzes: 20%
 (Feb 9, March 8)

- Final Exam (will be determined later): 35%

- Project: 25%

- 3 Computer Assignments: 15%

- Class Participation: 5%

Recommended Books

Recommended Journals

(Use IEEE Xplore to access these journals)

- IEEE Transactions on Signal Processing
- IEEE Signal Processing Letters
- IEEE Transactions on Image Processing
- IEEE Transactions on Multimedia
- IEEE Trans on Circuits and Systems Part II: Analog and Digital Signal Processing
- IEEE Transactions on Speech and Audio Processing, Signal Processing (EURASIP),

Policy on Report Writing

“Students agree that by taking this course all required papers may be subject to submission for textual similarity review to Turnitin.com for the detection of plagiarism. All submitted documents will be included as source documents in the Turnitin.com reference database solely for the purpose of detecting plagiarism of such papers. Use of the Turnitin.com service is subject to the terms of user agreement posted on the Turnitin.com site”
EE8105: Digital Signal Processing I (F2014)

Prerequisites
None

Course Web Page
The course will be administered through Ryerson University Blackboard System

Compulsory Texts:

Reference Texts:

Calendar Description
The course provides an introductory treatment of the theory and principles of digital signal processing (DSP), with suitable supporting work in linear system concepts and digital filter design. More specifically, the course deals with the following topics: general concepts of digital signal processing, continuous-time system analysis, Fourier analysis and sampled-data signals, discrete-time system analysis, discrete-time systems, finite and infinite impulse response digital filter design, discrete and fast Fourier transforms, and general properties of the discrete Fourier transform.

Learning Objectives
At the end of this course, the successful student will be able to:

1. Analyze, design, and implement simple DSP systems for various applications.
2. Acquire required background for the advanced DSP II (EE8111) and related courses.
3. Better equip them with required DSP knowledge to pursue research in signal processing related areas.

Course Organization
3 hours of lecture per week for 12 weeks
Course Evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Assignments</td>
<td>15%</td>
</tr>
<tr>
<td>Course Project</td>
<td>25%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Examinations

Midterm examination is a 2 hour, closed-book examination that covers all the lecture and assignment materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course material and assignment materials.

Project

The course project is a major report on a topic that is related to digital signal processing theory and its applications. The project report should include a literature survey, theoretical analysis, performance analysis and applications. Whenever applicable, simulation and implementation results should accompany the theoretical analysis presented in the report. The simulation studies can be conducted in any environment of the student’s choice; however students may find it easier to use a simulation tool such as Matlab/Simulink. The report topic should ideally be related to the student’s interest/research area. All students need to consult, discuss and obtain approval about their project topic from the course instructors before proceeding with their projects. The important timeline for the project are as follows.

- Week 1 to Week 5: consultation and preliminary discussions to identify the project.
- Week 6: project proposal due date
- Week 11/12 (TBD): Final project report due date.

Further information about the project will be made available as required

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and Background</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Discrete-Time Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Discrete-Time Signals and Systems/ z-Transform</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Frequency-Domain Analysis of LTI Systems</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Frequency-Domain Analysis of LTI Systems</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>DFT/DCT/MDCT/FFT</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>DFT/DCT/MDCT/FFT</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Design of Digital Filters (1hr) (Mid-term 2 hours)</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Design of Digital Filters</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Design of Digital Filters</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Additional Advanced Topics</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Additional Advanced Topics</td>
<td>3</td>
</tr>
</tbody>
</table>
Important Notes

All course related information, announcements and material are available from Ryerson's BlackBoard system at:

http://my.ryerson.ca/

The administration of this course will be in accordance with the terms, conditions, regulations and policies contained in the Ryerson Calendar and Department of Electrical and Computer Engineering Student Handbook. For links to most relevant academic policies please refer to the departmental website and the University WEB pages at:

http://www.ryerson.ca/graduate/currentstudents/academicmatters/policies.html

http://www.ryerson.ca/senate/policies/

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format.

4. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

5. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

6. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

7. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final
examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

8. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

9. Students are required to adhere to all relevant University policies.

10. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

11. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

12. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

13. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

14. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8107: Digital Communication

Prerequisites None

Course Web Page http://www.ee.ryerson.ca/~courses/ee8107/

 2. Optional Lecture notes from Dr. A. Anpalagan and published scientific papers.

Calendar Description The class is intended to introduce the student to the concepts and theory of digital communications. The concepts of information, channel capacity, error probability, intersymbol interference, pulse shaping and spectrum shaping and optimum filtering are discussed. Digital multiplexing and bit stuffing, encoding, scrambling, equalization and synchronization problems are studied. Regenerative repeaters, M-ary signaling systems, basic modulation techniques - ASK, PSK and FSK; and performance characteristics of digital transmission systems are considered.

Course Organization 3 hours of lecture per week for 12 weeks

Course Evaluation Midterm test = 30%
 Exam = 40%
 Assignments = 10%
 Project = 20%
 Total = 100%

Examinations Midterm examination is a 2-hour, closed-book examination that covers all the lecture materials up to the week of mid-term examination.
 Final examination is a 3-hour open-book examination that covers all the course material.

Project Each student will do a project and submit a report at the end of the semester. Project proposal has to be approved by the instructor within 3 weeks from the first class. The project can include one or more of the following:
 • critical review of a major article (e.g, from journal papers or magazines)
 • evaluation of two methods proposed in two different papers
 • further development/analysis of an existing approach/idea
 • novel approach/technique, analysis or algorithm
Course Content

<table>
<thead>
<tr>
<th></th>
<th>Detailed Description</th>
<th>Approximate Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review of Fundamental Concepts: introduction to digital communication, probability theory, random processes, autocorrelation and power spectrum density, complex signals and systems, signal space representation, Fourier analysis of signals and systems</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Source Entropy and Channel Capacity: entropy, source coding, rate distortion, channel capacity and coding</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Digital Modulation Techniques: ASK, PSK, FSK, constellations, power spectra, pulse shaping, precoding</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Signal and Receiver Design with Performance Analysis: AWGN channel, band-limited channel, optimum receiver structure, error probability, intersymbol interference, signal design, performance characterization and analysis of digital communication systems</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Emerging Communication Systems and Techniques: OFDM, MIMO, Cognitive Radio</td>
<td>3</td>
</tr>
</tbody>
</table>

Remarks: SGS policy on course management always prevails.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Graduate Program Director</th>
<th>Signature of Graduate Program Director</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EE8108: Multimedia Processing and Communications

Prerequisites: None

Course Web Page: http://www.ee.ryerson.ca/~courses/ee8108/

Compulsory Texts:
1. Lecture notes from Dr. Ling Guan and published scientific papers.

Reference Texts:

Calendar Description: This course will touch some of the fundamental issues in media processing and applications. It will start with a quick look at the standards which set the baseline work for multimedia, such as MPEG-4 and MPEG-7. It will then present to the class the latest and the most important issues in multimedia, including indexing and retrieval, media coding, media transmission, human-computer interface, image and speech processing for multimedia, wireless multimedia, and more. Examples, demonstrations, and applications will also be provided.

Learning Objectives: At the end of this course, the successful students will have a solid understanding of multimedia standards, information organization and search in multimedia database, transmission of video and multimedia data over wire/wireless and cloud communication infrastructures, interaction with multimedia via various human-computer interaction techniques. Through the course project, which is research in nature, the students will gain in-depth knowledge on literature review, search for research topics, methodology design and implementation, testing and evaluation, and project planning and management, thus getting prepared for high quality research in multimedia domain and beyond.

Course Organization: 3 hours of lecture per week for 11 weeks
Course Evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz 1</td>
<td>20%</td>
</tr>
<tr>
<td>Quiz 2</td>
<td>20%</td>
</tr>
<tr>
<td>Project presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Project report</td>
<td>50%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Quizzes

Quiz 1 is a one hour, open-book test that covers the material up to the lecture taught in the week before the quiz.

Quiz 2 is a one hour, open-book test that covers all the course material, with emphasis on that taught after Quiz 1.

Project

Students are required to work on a technical topic, either chosen by yourselves in consultation with the instructor, or provided by the instructor. Students are encouraged to choose their own topics. The topics of your projects could be one of the following:

- comparison of two or more methods found in the literature
- further development/analysis of an existing method/idea
- novel approach/technique, analysis or algorithm

Projects of pure literature reviews in nature are not acceptable. Students are required to demonstrate that the system and/or algorithm designed works at the presentation time. The students are encouraged to work in a team of two students.

The project report must contain Background studies - An extensive background study of the research is required with a literature review, and must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All figures and tables must be embedded in the main body of the report and numbered.
- References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles. You need to take a look at *IEEE Transactions on Multimedia* for IEEE reference styles on books, journal papers, conference papers, and technical reports.
- Appendices
- Index - list of key words and their page number in the project report.
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to multimedia and MPEG standards</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Statistical pattern recognition and neural networks</td>
<td>3</td>
</tr>
<tr>
<td>3-4</td>
<td>Multimodal information fusion</td>
<td>6</td>
</tr>
<tr>
<td>5-6</td>
<td>Multimedia indexing and retrieval</td>
<td>6</td>
</tr>
<tr>
<td>7-8</td>
<td>Human signature recognition</td>
<td>6</td>
</tr>
<tr>
<td>9-10</td>
<td>Multimedia transmission</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Extra material</td>
<td>3</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>7</td>
</tr>
<tr>
<td>Students are required to identify a topic in multimedia processing and communications, in consultation with the instructor and submit a proposal to the instructor.</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>13</td>
</tr>
<tr>
<td>Students must demonstrate the design in work to the instructor and class during project presentation.</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>Projects should make an extensive use of the knowledge acquired from the course. Projects must be research-oriented. It can be hardware based or software based. For software projects, there is no restrictions on programming languages. Students are encouraged to work in groups of two.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Schedule of lectures is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. The project report must have a cover page. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a quiz or the project presentation, with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format.
4. Medical or Compassionate documents for the missing of a quiz or presentation must be submitted within 3 working days of the quiz or presentation. Students are responsible for notifying the instructor that they will be missing a quiz or exam as soon as possible.
5. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question. In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive
accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

6. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

7. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

8. Project reports handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

9. Students found to have plagiarized any portion of their project report will receive a grade of ZERO on the complete project. This will automatically lead to a failing grade.
EE8109: Wireless Communications

Prerequisites: None

Course Web Page: Blackboard. My.ryerson.ca

Compulsory Texts:
- Lecture notes from Dr. Xiao-Ping Zhang and published scientific papers.

Reference Texts:

Calendar Description: This class provides an overview of wireless communications systems and fundamental analysis and design techniques. The class introduces cellular system, channel characterization for propagation losses, fading, and interference. Coding, modulation, and advanced transceiver design issues are examined. Modern mobile wireless communication system applications are reviewed.

Learning Objectives: At the end of this course, the successful student will have a solid understanding of wireless communications systems and fundamental analysis and design techniques. The students will get a good overview and understanding on the state-of-the-art development in wireless communications systems. In addition, the students will learn the basic research and presentation skills through guided self-study of high quality research papers and related class discussions.

Course Organization:
- 3 hours of lecture per week for 12 weeks
- 2 hours of project work per week for 12 weeks

Course Evaluation:
- Project and presentations: 50%
- Final exam: 50%
- Total: 100%

To achieve a passing grade, student must pass both the theory and project components.

Examinations and project:
- Midterm presentation is a research presentation on one or more selected journal papers (most on IEEE Transactions).
Final project and presentation include (a) a full research presentation on one or more selected journal papers including simulations; and (b) a research report on the research study and simulations in IEEE paper format.

Final examination is a closed-book examination that covers all the course materials.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Introductions on history and state-of-the-art of wireless communication systems and networks</td>
<td>6</td>
</tr>
<tr>
<td>3-5</td>
<td>Radio Propagation, large scale path loss and channel modeling</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Channel modeling and basic estimation methods</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Midterm presentation</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Multipath and fading channels: modeling and channel properties</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Cellular structures and trunking</td>
<td>3</td>
</tr>
<tr>
<td>10-11</td>
<td>Advanced Modulation in wireless systems and spread spectrum, channel diversity techniques and multiple access</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Final presentation</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures is tentative and for reference only. There will be changes to be communicated.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8111: Digital Signal Processing II

Prerequisites
Digital signal processing I (Graduate level course preferred.) Good mathematical and matlab skills

Course Web Page
Blackboard. My.ryerson.ca

Compulsory Texts:
Lecture notes from Dr. Xiao-Ping Zhang and published scientific papers.

Reference Texts:
No specific texts. But any texts related to the topics can be referenced.

Calendar Description
This course covers signal processing topics such as short-time Fourier Transform, discrete cosine transform, principal component analysis, continuous and discrete wavelet transforms, multirate filterbanks, independent component analysis, and quadratic time-frequency distributions. Applications of the above techniques in denoising, data compression, feature extraction, and source localization will also be discussed.

Learning Objectives
At the end of this course, the successful student will have a solid conceptual understanding of digital signal processing (DSP) and mathematical transforms used in DSP. Students specially will master all types of time-frequency, time-scale and filterbanks transforms and be able to identify appropriate mathematical tools for DSP applications. Also, the students will get a good overview and understanding on the state-of-the-art development in advanced DSP research, such as signal processing for Finance. In addition, the students will learn the advanced research and presentation skills through guided self-study of high quality DSP research papers and related class discussions.

Course Organization
3 hours of lecture per week for 12 weeks
2 hours of project work per week for 12 weeks

Course Evaluation
Midterm presentation 30%
Final project and presentation 40%
Final exam 30%
Total 100%
To achieve a passing grade, student must pass both the theory and project components.

Examinations and project

Midterm presentation is a research presentation on one or more selected journal papers (most on IEEE Transactions).

Final project and presentation include (a) a research presentation on one or more selected journal papers including simulations; and (b) a research report on the research study and simulations in IEEE paper format.

Final examination is a closed-book examination that covers all the course materials.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A new look of DSP and Fourier transforms</td>
<td>3</td>
</tr>
<tr>
<td>2-4</td>
<td>Time-frequency transforms</td>
<td>9</td>
</tr>
<tr>
<td>4-6</td>
<td>Time-scale transforms</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Midterm presentation</td>
<td>3</td>
</tr>
<tr>
<td>8-9</td>
<td>Discrete wavelet transforms, multiresolution analysis, multirate filter banks and signal processing</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Various DSP applications and other topics</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Final presentation</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures is tentative and for reference only. There will be changes to be communicated. Note that additional advanced state-of-the-art topics such as graphical models in a seminar format may be added as needed.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term or equivalent (e.g. presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of
the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade
EE 8114: Optical Communications and Networks

Projects, Formatting, Drawing, Study Material and Problems, Reference Sources,

Prerequisites: Electrical engineering background with good understanding in digital and analog communications

Instructor: Xavier N. Fernando, Office: ENG-437, Phone: 416-979-5000 ext. 6077, E-mail: fernando at ryerson.ca, Counseling: Fridays 1-3 PM or by appointment

Lecture Hours: Mondays 6.00 PM - 9.00 PM at room VIC 101

Objective: The objective of the course is to provide a comprehensive understanding of optical communication systems and networks. The course starts with basics of light waves and their propagation, and single/multimode optical fibers. Then move to broadband (light emitting diode) and narrowband (laser diodes) optical sources and their modulation; PIN and Avalanche photo detectors and other elements of optical systems. We will study basic optical networks then using a design approach to point-to-point fiber links, star, bus and ring topologies. Multiple access techniques such as WDM (Wavelength Division Multiplexing) and SCM (Sub Carrier Multiplexing) also will be covered. Synchronous Optical Networks (SONET) will be covered to good extend. Passive Optical Networks (PON) widely used in fiber-to-the-home (FTTH) schemes and emerging radio over fiber (ROF) networks that bridge the optical and wireless networks will also be covered.

Teaching Method: Main form of information delivery will be through lectures. However, students have to frequently visit the course site to check for the course announcements, postings and to participate in the e-mail discussions.

Evaluation:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid term examination</td>
<td>20 % (October 21)</td>
</tr>
<tr>
<td>Final examination</td>
<td>35 %</td>
</tr>
<tr>
<td>Quizzes (2 - surprise)</td>
<td>10 %</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>5 % (Due September 30) [Click here for Project Proposal Form]</td>
</tr>
<tr>
<td>Project Presentation</td>
<td>10 % - Should match the proposal</td>
</tr>
<tr>
<td>Term paper</td>
<td>20 % - Publishable quality gets bonus</td>
</tr>
</tbody>
</table>
Term Paper: Each student will write a term paper. This will give the students a chance to explore a topic of their interest in detail. The project will involve with some additional background reading, and suggesting a better solution to a typical optical communications problem. Verification of results can be done by mathematical proof or by computer simulation or by experiment. A formal paper should be submitted to the course instructor and a visual presentation should be made.

Marking Scheme for the Paper

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Not more than 200 words, should precisely describe what is done</td>
<td>4 %</td>
</tr>
<tr>
<td>Introduction</td>
<td>A brief outline and motivation of the problem under investigation</td>
<td>3 %</td>
</tr>
<tr>
<td>Theory</td>
<td>Theoretical definition of the problem and your derivations (if any)</td>
<td>3 %</td>
</tr>
<tr>
<td>The Work</td>
<td>What has actually been done in the paper, details of the simulation, analysis or experiment</td>
<td>3 %</td>
</tr>
<tr>
<td>Results and Discussions</td>
<td>Significance and the application of the results</td>
<td>3 %</td>
</tr>
<tr>
<td>Reference</td>
<td>A properly formatted list of all the references</td>
<td>2 %</td>
</tr>
<tr>
<td>Formatting</td>
<td>Adhere to the specified format</td>
<td>2 %</td>
</tr>
</tbody>
</table>

The term paper should confirm the following format. There will be a penalty for not adhering to the format guidelines.

Plagiarism: Reproducing other's work or idea without proper citation is defined as plagiarism. If your work found to have plagiarized material, you will get zero marks for the work. If the offence is serious, then it may be reported to the academic council as an academic misconduct.

Note: Significant portion of research is studying what others have done. Then an attempt is made enhance the work by adding more. Therefore, a well-written paper should clearly mention relevant previous work and clarify what is done new.

References: There is no text book for the course, we will use given course notes, articles from journals and conferences, power point presentation slides etc.

US Department of Commerce Institute for Telecommunications Sciences Glossary Search Engine
Good site for long lasting high power LED related articles

http://www.lascomm.com/tutorial.htm

White Papers by Corning;

In-depth - very technical - Fiber optic write up

WDM basics (Wavelength Division Multiplexing)

DWDM basics (Dense Wavelength Division Multiplexing)

Fiber Optics Training Provider

Various publications from IEEE, Society of Photonics and Instrumentation Engineers (SPIE) and Lasers and Electro Optic Society (LEOS)

Jeff Hecht, 'Understanding Fiber Optics' 5/e, Prentice Hall (2006)

S. O. Kasap, 'Optoelectronics and Photonics: principles and practices' Prentice Hall (2001)

IEEE and OSA, 'Journal of Lightwave Technology'

IEEE LEOS, 'Photonics Technology Letters'
EE8120: Applied Optimization Techniques and Algorithms

Prerequisites None

Course Web Page http://www.ee.ryerson.ca/~courses/ee8120/

Compulsory Texts:
1. Published scientific papers as assigned per course project.

Reference Texts:

Calendar Description
This course covers the following topics: Linear and nonlinear programming, unconstrained optimization techniques such as gradient techniques (steepest descent, conjugate gradient, Newton-Raphson) and constrained optimization techniques such as Lagrange multiplier, quadratic and dynamic programming, least square techniques, integer and mixed-integer programming. NP-complete problems: branch-and-bound as well as heuristic algorithms, graph colouring, partitioning, and maximum matching. Bounds, variable priorities, special ordered sets and search algorithms (random search, binary search, genetic algorithms, and tabu search). Optimization algorithms in Electrical and Computer Engineering areas will be discussed in depth.

Learning Objectives
This is a core course where students learn to formulate optimization problem for a given application. These applications range from green technology, signal processing, to image processing and system/circuit designs. Examples are: Net-zero community, smart systems, wireless sensor networks, and image processing. At the end of this course, the successful student will have a solid understanding of traditional optimization algorithms during the class sessions. Students will get numerous one-on-one meetings to learn and apply new optimization algorithms.
Course Organization
3 hours of lecture per week for 13 weeks
Meeting one-on-one is an integral part of this course. Students are encouraged to meet and discuss challenges they face during selection, study, and implementation of the course projects. On average, half an hour per course project per week.

Course Evaluation
Midterm Project Report and Presentation 15%
Final Project Report and Presentation 45%
Final Exam 40%
Bonus (Outstanding Achievements in Projects) 5%
Total 100%

To achieve a passing grade, student must implement a selected paper and pass the exam.

Reports will be checked by turnitin.com software. Similarity factors must be below 5%. Higher similarity factors would be penalized proportionally.

Examinations
Midterm Project Presentation is 20 min per person. The midterm course project report must adhere to structures discussed in-class.

Final Project Presentation is 20 min per person. The final course project report must be in the form of an IEEE conference paper.

Final examination is a 3-hour closed-book examination that covers all the course material.

Project
Students are required to select a course project at the beginning of the class. The project must contain an element of optimization as explained. Initially, each student is required to find 6 papers given the specifications by the instructor. Students, then, study these papers and discuss their understanding of the materials during in-person meetings. A small literature review of the topic of interest is handed in as midterm course project report. Students are required to implement one paper among the six papers, and authenticate the results reported by the authors of the selected paper. A final course project report is required to show the discrepancies and also the strength of the selected research paper. Students are encouraged to further advance the knowledge in the area of interest by modifying the platform they have already created in a simulation environment. A general report may follow the items noted below. Final course project should be in the form of an IEEE conference paper.

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be
embedded in the main body of the report and numbered.
 o References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles. You need to take a look at IEEE Transactions on Circuits and Systems I - Regular Papers and IEEE Journal of Solid-State Circuits for IEEE reference styles on books, journal papers, conference papers, and technical reports.
 o Appendices
 o Index - list of key words and their page number in the project report.

Course Content (Fall 2014)

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>General description of Optimization problems, and project selections</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Genetic Algorithm, Simulated Annealing, Tabu Search, Other Evolutionary Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Solution of Linear and Nonlinear Systems of Equations</td>
<td>3</td>
</tr>
<tr>
<td>5-6</td>
<td>Unconstrained Optimization Techniques: Gradient Techniques (Steepest Descent, Conjugate Gradient, Newton-Raphson)</td>
<td>6</td>
</tr>
<tr>
<td>7-8</td>
<td>Midterm Presentations</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Constrained Optimization Techniques (Lagrange Multipliers)</td>
<td>3</td>
</tr>
<tr>
<td>10-11</td>
<td>Simplex Technique, Linear/Nonlinear Programming</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Modern Optimization Techniques, Graph Theory</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Final Presentations</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of
the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
Course Information Sheet

Objective: This is an advanced course that deals with the impact of wireless medium on the network design. It focuses on four major areas of Wireless Networks (WN): (1) Designs of different Wireless Networks including their integration; (2) Medium Access Control for WN; (3) Routing in WN including routing for ad hoc and sensor networks; and (4) TCP design for WN. A discussion on the impact of current major developments of physical layer on wireless networking is included to introduce the students with the emerging areas of research.

Instructor: Muhammad Jaseemuddin
Email: jaseem@ee.ryerson.ca, Phone: 979-5000x6073, office: ENG470
Office hours: Monday 1:00-2:00pm

Lectures: Wednesday 2:00pm – 5:00pm@EPH229

Prerequisites: COE865/EE8216 or Equivalent

William Stallings, Wireless Communications and Networks, Prentice Hall.
Grading: Based on the following weights

- Paper Reviews: 10%
- Assignments: 15%
- Project: 40%
- Two Quizzes: 10%
- Final Examination: 25%

Policies:

1. Textbook does not cover all the topics. Reading list contains list of papers that can be consulted for specific topics.
2. Please use emails for communicating your needs. I discourage phone calls unless it is an absolute necessity. I won’t be able to answer your questions through email, please use office hours for that purpose.
3. Check Blackboard for course related information.
4. Please make yourself aware of relevant university policies, such as regarding cheating and plagiarism, academic consideration etc (http://www.ryerson.ca/senate/policies/).
5. Project marks breakdown and deadlines are as follows:
 - Project proposal (5%) due February 5th
 - Interim Report (5%) due March 5th
 - Project report (20%) due April 9th
 - Presentation (10%) schedule will be posted on the web
6. Report will be marked based on the following criterion:
 - Introduction
 - Problem Definition: Statement, Motivation
 - Project Details: Analytical, Originality, Clarity, Writing style, Enough details
 - Conclusion: Summary, Conclusive Remarks, Future work
7. Project should show originality through creative thinking and analysis.
8. Make yourself familiar with the resources available at Ryerson Library (www.library.ryerson.ca), especially browse IEEE explore for accessing papers on-line.
9. You can use www.google.com and CiteSeer (http://citeseer.nj.nec.com/cs) for citation lookup.
10. Quiz dates will be announced one week in advance.
Course Contents:
This one-semester course offers a comprehensive overview of optical properties of semiconductors devices. The course begins with the transmission properties of electromagnetic wave in different media. This introduction is followed by the devices that generate light: light-emitting diodes (LEDs) and laser diodes (LDs). Topics also include optical spectra and transitions, spontaneous and stimulated emission, population inversion, carrier and optical coninements in heterostructures, etc. Some of the most popular devices such as LCD, CCD, DVD and LED will be discussed. The last part is the semiconductor photodetectors such as photoconductors, photodiodes and avalanche photodiodes.

Based on the acquired knowledge of photonics, students will be required to submit a written engineering design project (see the description on a separate page).

Course hours: 3 Lecture hours per week

References:

Course Evaluation:
Chapter 2 Assignment: mode calculations5%
Mid-term test (Oct. 24, 2013)25 %
Design Project (due with final exam)..............20 %
Final Examination (Dec. 2013)......................50 %
Total:100 %

Tests are closed-book tests, only calculators and one 8½x11 home-made formula sheet is allowed.

Note 1: Course written materials will be assessed not only by on their technical or academic merit, but also on the communication skills of the author as exhibited through these written materials.

Note 2: A faculty/course evaluation survey will be conducted in EE8122 class in late Nov. 2013.

Detailed Course Outline: Lecture Hours (36)

1.0 Wave Optics (8 hrs)
 1.1 Light propagation in homogeneous medium
 1.2 Light Reflection and transmission:
 1.3 Fresnel’s equations
 1.4 Optical Resonators
 1.5 Temporal and spatial coherence
 1.6 Diffraction

2.0 Waveguides and Optic Fibers (8 hrs)

2.1 Planar dielectric slab waveguide
 2.2 Step index fiber
 2.3 Dispersion in single mode fibers
 2.4 The graded index optical fiber
 2.5 Light absorption and scattering

3.0 Semiconductor Science and Light Emitting Diodes (6 hrs)
 3.1 Semiconductor concepts and energy bands
 3.2 pn junction principle
Based on the acquired knowledge of optoelectronics principles, students are expected to do their own research in the field of optoelectronic devices and submit a written engineering design project at the time of the final examination. The paper should be written in a standard scientific publication form (including abstract) and contain 8 - 10 pages of relevant information needed to construct an optoelectronic device. You can choose one topic from those listed in course outline, modify it, or create your own project based on the principles of optoelectronics (i.e., it should employ light in the visible, near IR, or UV region). Standard electronic devices (amplifiers, power sources, ADCs, etc.) may be presented in a block diagram form only, however, light sources, opto-electronic and photonic components should be described fully, i.e., detailed diagrams, specifications, functional ranges, and dimensions, including the theoretical equations and supporting calculations of the expected performance. Think of the project as of your own proposal to obtain a patent for a photonic device.

SUGGESTED TOPICS:
(1) Erbium-doped fiber Amplifier.
(2) Optical Add-Drop devices for fiber optic communication.
(3) Multiplexing and de-Multiplexing wavelength in fiber optic communication.
(4) Optical switching.
(5) Optical storage and retrieval of information.
(6) Liquid crystal display (LCD)
(7) Light emitting diode and high power LEDs
(8) White Light LEDs
(9) Digital versatile disk (DVD)
(10) Charge-coupled-devices (CCD).
(11) An instrument determining the position and speed of distant moving objects.
(12) A coding device that could code and decode visual information, such as a photograph.
(13) A wireless power transfer system.
(14) A device that could easily determine the coherence (quality) of any light source.
(15) A precision optical spectrum analyzer

NOTE: Projects will be judged by the creativity and feasibility. All projects must be strictly individual and original.

Professor X. Gu
Office: EPH-400C
Telephone: (416) 979-5000 ext. 4151
E-Mail: xgu@ee.ryerson.ca
Faculty of Engineering and Architectural Science
Department of Electrical and Computer Engineering

Course Outline (W2014)

EE8202: Digital Image Processing I

Instructor
Prof. Javad Alirezaie
Office: ENG452
Phone: (416) 979-5000 ext 6092, Email: javad@ee.ryerson.ca
URL: http://www.ee.ryerson.ca/~javad

Prerequisites
N/A, (note: knowledge of Signals and Systems I & II or similar courses from an undergraduate program is required)

Course Web Page
https://my.ryerson.ca/(Blackboard)

Compulsory Texts:

Reference Texts:
Digital Image Processing by Kenneth R. Castleman

Calendar Description
This course starts with the introduction to digital image fundamentals, imaging geometry, and image storage formats. Simple spatial domain techniques as well as spatial frequency domain methods and digital filter design for image enhancement and restoration are discussed. Low-level image segmentation and feature extraction concepts will also be introduced. Special topics in application of image processing including remote sensing, medical imaging, etc. will be presented.

Course Organization
3 hours of lecture per week for 13 weeks.

Course Evaluation
Mini course projects (i.e. 5 Lab projects) 25%
Main Course Project 30%
Final exam 45%
Total 100%

Examinations
Final exam, during exam period, 3 hours, closed book, a formula sheet is allowed (covers all the course material).
Course Outline:

1. Introduction and overview
2. 2D Linear Systems
3. The Discrete Fourier Transform
4. Point Operations and Contrast Enhancement
5. Local Operations
6. Discrete Gradient and Laplacian Operators
7. Global Operators: Linear Fitters
8. High Frequency Emphasis Filters
9. Homomorphic, Density Domain Filters
10. Implementation issues
11. Image Restoration: Random Processes
12. Optimal Restoration: Wiener Filter
13. Wiener Deconvolution and Extensions
14. Algebraic Restoration
15. Constrain Optimization
16. Discrete Systems Review, Adaptive Filters (Course notes)
17. Adaptive Filters for Image Smoothing
18. Local Statistics and Locally Optimal Filters

MAJOR PAPER AND COURSE PROJECT PRESENTATION

Each project combines two separate components: a written component, and an oral component. It is an individual project, marks will be awarded out of 35 marks as per following schedule:

- Reference summaries: 5 Marks
- Final project report. Week 12, 13. 15 Marks
- Final oral and presentation. Week 12, 13. 10 Marks

PAPER (COURSE PROJECT)

Write a 6 page paper (double column, IEEE style) on **Segmentation and Classification** of Digital Images; applications in multimedia image processing, biomedical imaging and remote sensing etc... are acceptable. The paper should be based primarily on journal articles, but information from one or two textbooks can be included. Material in the paper must be properly referenced.

The course project includes in the following steps:

- Select an application to the related topic (**Segmentation and Classification**) and compile a list of references (3 reference papers is appropriate). Receive the approval of course instructor on the selected topics. **TOPIC AND REFERENCE LIST DUE BY: TBA.**

- Write one page summary of each reference; the summaries can be done in point form. **SUMMARIES ARE DUE BY: TBA.**

- Write the full paper and prepare your oral presentation, **PAPER DUE BY: TBA.**
Please note, directly copying text from a reference (text book, journal paper, conference paper or online paper) is not acceptable (this is a form of plagiarism and is considered academic dishonesty). In your paper, text must not be copied verbatim; figures and tables may be used but must be properly referenced.

PRESENTATION

Prepare a presentation on the topic covered in your paper. The presentation should be about 15 minutes long and will be presented in class, with 2-3 minutes for questions.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.
4. Students are required to adhere to all relevant University policies including:
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
5. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.
6. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.
7. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.
8. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 20% per day.
9. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8205: Embedded Computer Systems

Prerequisites

None

Course Web Page

http://www.ee.ryerson.ca/~courses/ee8205/

Compulsory Texts:

Reference Texts:

The instructor will identify some relevant e-books and review articles.

Calendar Description

This course focuses on the design and implementation of software for embedded systems. High performance embedded system and safety critical embedded system architecture will be introduced, Fault-tolerant and reliable embedded system design techniques are also highlighted. The main topics to be covered include embedded computer organization, hardware/software codesign of embedded systems, CAD tools for hardware/software codesign, system on chip, advance concepts of real-time operating systems and real-time scheduling. The course introduces the technologies used in the design of embedded systems such as processor cores, embedded system specification languages, and software tools for hardware/software co-verification and system partitioning. The application of embedded systems for emerging networking and medical devices will also be covered.

Learning Objectives

At the end of this course, the students will also attain the background knowledge required for understanding embedded systems, system on chip technology and real-time operating system. The successful student will have a solid understanding of embedded system organization, embedded processors, CPU soft-cores and other IPs, multitasking, real-time scheduling, priority inversion and fault-tolerant embedded systems. After passing this course, the students will be able to grasp the main principles of real-time embedded systems, hardware-software codesign and embedded software design.
<table>
<thead>
<tr>
<th>Course Organization</th>
<th>3 hours of lecture per week for 12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Evaluation</td>
<td>Lab Projects</td>
</tr>
<tr>
<td></td>
<td>Course Project</td>
</tr>
<tr>
<td></td>
<td>Final exam</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Examinations
Final examination is a 2-3 hour closed-book examination that covers all the course and lab-project materials.

Project Details and Selection
Please choose a topic from any one of the following areas for your project. The project topics include but not limited to the following areas:
1. Case study and review of a specific embedded system related to aerospace, biomedical, space, multimedia or consumer electronics (smart-phone, HDTV, etc.) device.
2. Development of a μcLinux based Real-time/Embedded Multitasking Application of your choice by employing an enhanced SoPC based on the SoPC developed in Lab Project.
3. Developing a Real-time/Embedded Multitasking Embedded Application of your choice by using an ARM Cortex Microcontroller.
4. Embedded System Architecture for one of the following or any other industrial application of your interest:
 - Smart Home Controllers.
 - Multimedia Applications including MP3, MPEG and JPEG 2000.
 - RFID based Embedded Systems.
5. Codesign of a specific embedded system for a particular application including signal and image processing, image compression, multimedia, or any other interesting application.
7. Multitasking Embedded Application of your choice by employing RTX (RTOS) system for ARM Cortex M3 Microcontroller.
8. Case study of a Fault-tolerant Embedded System of your choice. (such as aerospace, military, banking or biomedical applications)
9. Modeling Embedded System of your choice or one of the following using UML, SystemC or any other simulation environment:
 - JPEG 2000, MPEG-1, MPEG-2 or MP3 encoder and decoder
 - RFID based embedded systems.
10. Any other approved project on Hardware-software Codesign and Network-on-Chip (NOC) and System on Chip (SoC) areas including:
 - Embedded System Partitioning into Hardware and Software Blocks.
• Embedded System Co-synthesis, NoC system design.
• ARM Cortex M3 processor and/or RTX, real time operating system

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Introduction to Embedded Computer Systems</td>
<td>4</td>
</tr>
<tr>
<td>2-3</td>
<td>Digital Camera Design: A Case Study</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Embedded System on Programmable Chips</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>SystemC and Hardware Software Codesign of Embedded System</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Embedded CPUs and IP Cores</td>
<td>3</td>
</tr>
<tr>
<td>7-8</td>
<td>ARM Cortex M3 Microcontroller and Embedded Systems</td>
<td>6</td>
</tr>
<tr>
<td>9-10</td>
<td>Real-time Operating System and Scheduling</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Accelerator based Embedded System Co-synthesis</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Introduction to Network on Chip and SoC Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Project/Labs - Room ENG408

<table>
<thead>
<tr>
<th>Labs./Project</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab 1: Configuring a basic Embedded System on Programmable Chip (SoPC) on DE2 board.</td>
<td>2-3</td>
</tr>
<tr>
<td>2</td>
<td>Lab 2: Study of ARM Cortex M3 Microcontroller and uVision Embedded Software Development Environment.</td>
<td>4-5</td>
</tr>
<tr>
<td>Project</td>
<td>Students are required to design and analyze an embedded system employing FPGA or RTX -ARM Cortex real-time operating system environment. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented.</td>
<td>5-12</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
3. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the
Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

4. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

5. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

6. Students are required to adhere to all relevant University policies:

7. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

8. Any changes in the course outline, submission dates, marking or evaluation will be discussed in class prior to being implemented.

9. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

10. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

11. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Graduate Program Director</th>
<th>Signature of Graduate Program Director</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EE8207: High Performance Computer System Design

Prerequisites
Digital systems and computer organization

Course Web Pages
http://www.ee.ryerson.ca/~courses/ele818/
http://www.ee.ryerson.ca/~courses/ee8207

Compulsory Texts:

References
Lab notes, SimpleScalar and WINMIPS Simulator manuals.

Calendar Description
This course will focus on the design of high performance computer systems. Topics covered include: Advanced pipelining and parallelism issues, including branch prediction, instruction and data level parallelism; Advanced processors including superscalar, VLIW, speculative, vector and multi-processors; Physical limitations and scalability issues; Real-world examples including MMX technology, PowerPC and Alpha architectures, and DLX architectures. The lab projects include using CAD tools to design a branch predictor and trace cache for Pentium 4 processor. Antirequisites: ELE818, COE818. 1 Credit

Learning Objectives
At the end of this course, the students will have a solid understanding of the design options available for high performance computers which include the design of advanced processors using superscalar, VLIW or vector processing. The students also will understand the design of recent multi-core and its limitations and how to improve system scalability. The students will understand the interaction between software and the different architectures and how to improve the performance of each system.
Course Organization
3 hours of lecture per week for 13 weeks
3 hours lecturing and an optional 1 hour of lab per week for 13 weeks

Course Evaluation
<table>
<thead>
<tr>
<th>Labs or a project</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm test</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>50%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Projects
Download Software for SimpleScalar to evaluate performance of a high Performance computer

Report must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles. You need to take a look at *IEEE Transactions on Circuits and Systems I - Regular Papers* and *IEEE Journal of Solid-State Circuits* for IEEE reference styles on books, journal papers, conference papers, and technical reports.
- Appendices
- Index - list of key words and their page number in the project report.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Homework & Project discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Instruction Set Principles</td>
<td>LAB1: Installation of SimpleScalar Simulator</td>
</tr>
<tr>
<td></td>
<td>- Review and Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Instruction Set Architectures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Memory Addressing</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Instruction Set Principles</td>
<td>LAB1: SimpleScalar</td>
</tr>
<tr>
<td></td>
<td>- Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Operands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Encoding Instruction Set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Role of Compilers</td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Pipelining</td>
<td>LAB1: Using SimpleScalar</td>
</tr>
<tr>
<td></td>
<td>- Basic Pipelining</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Data Hazards</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>Pipelining</td>
<td>LAB2: Performance Evaluation</td>
</tr>
<tr>
<td></td>
<td>- Data Hazards</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Pipelining</td>
<td>LAB2: Performance Evaluation</td>
</tr>
<tr>
<td></td>
<td>- Control Hazards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dealing with Exceptions</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Advanced Pipelining</td>
<td>LAB2: Performance Evaluation</td>
</tr>
<tr>
<td></td>
<td>Multi Cycle Operations</td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Advanced Pipelining</td>
<td>LAB2: Performance Evaluation</td>
</tr>
<tr>
<td></td>
<td>- Instruction Level Parallelism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Midterm Test</td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Instruction Level Parallelism</td>
<td>LAB3: Data Hazards or project</td>
</tr>
<tr>
<td></td>
<td>- Dynamic Scheduling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Branch Prediction</td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>Advanced Pipelining</td>
<td>LAB3: Data Hazards or project</td>
</tr>
<tr>
<td></td>
<td>- Superscalar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- VLIW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vector Processor and MMX</td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td>Multiprocessors</td>
<td>LAB4: ILP or project</td>
</tr>
<tr>
<td></td>
<td>- Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Shared Memory and coherency</td>
<td></td>
</tr>
<tr>
<td>Week 11</td>
<td>Multiprocessors</td>
<td>LAB4: ILP or project</td>
</tr>
<tr>
<td></td>
<td>- Coherency</td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Multiprocessors</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Coherency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Synchronization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Multithreading</td>
<td></td>
</tr>
<tr>
<td>LAB4:</td>
<td>ILP or project</td>
<td></td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.
8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>
EE8208: Architectural Synthesis and Design of Digital Systems

Prerequisites: None

Course Web Page: http://www.ee.ryerson.ca/~lkirisch/ee8208/ee8208.htm

Compulsory Texts:
2. Lecture notes from Dr. Lev G. Kirischian and published scientific papers.
3. Laboratory manual: Laboratory Manuals and Tutorials, Ryerson University.

Calendar Description
The goal of this course is to give theoretical background and practical skills in the area of synthesis and design of modern digital systems from high-level architectural synthesis to physical design stage.

This course explores the methodologies for high-level synthesis and architecture-to-task optimization techniques for application specific computing circuits. Topics include: i) fundamentals in high-level synthesis of application specific computing architectures, ii) methodology for formal selection of the optimum architecture variant in the multi-objective design space and iii) formal conversion of the optimized architectural variant of the application specific processing circuit to the logic design and HDL-implementation.

Case studies include the architectural synthesis of custom pipelined data-stream processor from specification to logic implementation.

Students are expected to read selected papers from current research literature, learn one of hardware description languages (VHDL or Verilog), get practical experience in design methodology of the custom computing circuits on the base of Xilinx ISE CAD system coupled with Xilinx Spartan-3E FPGA development platform.

Learning Objectives
At the end of this course, the successful student will have a solid understanding of the concept of high-level synthesis of digital computing circuits, and methodology for design of dedicated application specific processors (ASP) from specification to actual logic synthesis level. In the second part of the course students will learn the concept and methodology for multi-objective architecture optimization. This methodology will be illustrated in example of the design process of function-specific ASP optimized to satisfy performance and power consumption constraints with minimum area of the System-on-Chip. The lab tutorials and design project will extend understanding the above design methodology and let students get the hands-on experience in development of ASP.
Course Organization
3 hours of lecture per week for 13 weeks
2 hours of lab per week for 7 weeks

Course Evaluation
Project 1: Literature survey - 25%
Project 2: ASP design - 25%
Final exam - 50%
Total 100%

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations
Final examination is a 3-hour, closed-book examination that covers all the lecture materials.

Projects
Project 1: Students are required to conduct literature research on one of areas associated with high-level synthesis of application-specific computing circuits. The project assumes investigation of the state-of-art in the selected area of interest, analysis on main directions of research in this area based on recent publications and formulation of main trends and/or classification of methods of RCS development and application.

Project 2: Students are required to perform the engineering design of an on-chip function-specific ASP from determination of functional and technical specification to complete design and verification. The on-chip hardware design assumes: creation of ASP symbol and block-diagram of architecture followed by VHDL design using Xilinx ISP CAD system, compilation, and physical implementation on the Xilinx Spartan FPGA based evaluation platform. The performance verification using on-chip logic analyzer (e.g. Xilinx Chip-Scope) should complete the design process.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to synthesis and design process of modern digital computing systems: stages of digital systems design, tools and means for system design</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Architectural synthesis in multi-objective environment: Specification analysis, determination of constraints and optimization objectives, hardware/software partitioning.</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to high-level architectural synthesis. Mathematical background: Notation; Elements of the Graph theory; Decision & Optimization problems</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Formalization of architectural level synthesis: scheduling and binding; process synchronization; area and performance estimation</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Architectural Optimization: Area/Latency; Cycle-time/Latency, Cycle-time/Area; Design evaluation space & Pareto points</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>From SG-to-ASP. Conversion methodology: From the Sequencing Graph to the block-diagram of the Application Specific Processor (ASP)</td>
<td>3</td>
</tr>
</tbody>
</table>
7 From ASP block diagram to hardware implementation: determination of multiplexing scheme and data-path synthesis.

8 Determination of initiation / termination and synchronization signals and synthesis of the control unit for the ASP data-path.

9 From formalization to automation of high-level synthesis: i) automated architectural variants construction, ii) design space exploration and iii) selection of optimal variant of architecture in multi-objective design space.

10-11 Case study: Architectural synthesis of pipelined function-specific ASP of video-stream processor: Analytical models construction and Design Space Explorer; Determination of constrained design space by performance and power consumption requirements.

12 Selection of the optimal variant of ASP architecture in multi-objective design space. Concept of semantic filtration and determination of Pareto-set of architectural variants. Design verification process.

13 Course review and final examination

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required
observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 - Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 - Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Lev Kirischian</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td></td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>
RYERSON UNIVERSITY

Department of Electrical and Computer Engineering

ELE 888: Intelligent Systems (EE 8209)

Course Outline: Winter 2013 (EPH 216, 3-6 pm)

TEACHING STAFF:

Professor: Anastasios (Tas) Venetsanopoulos

Phone: (416) 979-5000 Ext. 4037

e-mail: tasvenet@ryerson.ca

web: http://en.wikipedia.org/wiki/Anastasios_Venetsanopoulos

Office hours: Mondays 1 pm-3pm (ENG 428)

Teaching Assistants:

Ghassem Tofighi, gtofighi@ryerson.ca, office: EPH 408

Nastaran Rahnama, nastaram.rahnama@ryerson.ca, office: EPH 439

CALENDAR DESCRIPTION

Machine learning and pattern classification are fundamental blocks in the design of an intelligent system. This course will introduce fundamentals of machine learning and pattern classification concepts, theories, and algorithms. Topics covered include: Bayesian decision theory, linear discriminant functions, multilayer neural networks, classifier evaluation, and an introduction to unsupervised clustering/grouping, self-organization and evolutionary computation. The course will also discuss recent applications of machine learning such as image/data mining, robotic vision, biometrics and some biomedical applications.

INSTRUCTIONAL HOURS

3 hours of lecture per week for 12 weeks

1 hour of lab per week for 11 weeks

2 Teaching Assistants

PRE AND CO-REQUISITES
Prerequisite MTH 514, Co-requisite ELE 632

COURSE WEBSITE

Blackboard will be used as soon as it is activated

COURSE EVALUATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Lab Projects</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To be awarded a passing grade, a student must pass both the **theory** and **lab** components of the course. Graduate students may replace Lab projects and Assignments by a research project, only after agreement with the professor.

Examinations: Midterm exam in week 8, two hours long, closed book, “cheat sheet provided” (Covers weeks 1-7). Final Exam: During exam period, three hours long, closed book, “cheat sheet provided” (Covers weeks 1-13).

COMPULSORY TEXT

REFERENCE MATERIAL

7. cgm.cs.mcgill.ca/~godfried/teaching/pr-web.html

8. Machine Learning (Stanford). Twenty lectures on “Machine Learning” given by Prof. Andrew Ng (CS229) and available on the web through Youtube.

COURSE CONTENT

<table>
<thead>
<tr>
<th>Date</th>
<th>Week. No.</th>
<th>Topic</th>
<th>Approx. hours/weeks</th>
<th>chapter</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 07</td>
<td>1.</td>
<td>Introd. and Review to course, Examples</td>
<td>3/1</td>
<td>1</td>
<td>19,notes</td>
</tr>
<tr>
<td>Jan 21</td>
<td>3.</td>
<td>Bayesian Decision Theory</td>
<td>9/3-5</td>
<td>2.1-2.4, 2.9</td>
<td>20-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(exclude 2.3.1, 2.3.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 28</td>
<td>4.</td>
<td>>></td>
<td>2.5, 2.6, 2.9, 2.11, 31-51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 4</td>
<td>5.</td>
<td>>></td>
<td>2.12, summary, 51-54, 62-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 11</td>
<td>6.</td>
<td>Linear Discriminant Functions</td>
<td>6/6-7</td>
<td>3.3, 5.1-5.6, 5.8, 5.11, 84-102</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(excl. 5.5.3, 5.6.2, 5.8.2-5)</td>
<td></td>
<td></td>
<td>107-124, 215-242, 259-265</td>
</tr>
<tr>
<td>Feb.25</td>
<td>7.</td>
<td>>></td>
<td>(excl. 5.5.3, 5.6.2, 5.8.2-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 04</td>
<td>8.</td>
<td>Midterm Exam</td>
<td>Lectures 1-7, Labs, Prob sets 1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 18</td>
<td>10.</td>
<td>>></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 25</td>
<td>11.</td>
<td>Neural Networks, Fuzzy Set Th.</td>
<td>4/10</td>
<td>Notes, 306-318</td>
<td></td>
</tr>
<tr>
<td>April 01</td>
<td>12.</td>
<td>Algorithm Independent</td>
<td>4/11-12</td>
<td>9.1-9.5</td>
<td>453-480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine Learning</td>
<td></td>
<td></td>
<td>(exclude 9.5.3-4)</td>
</tr>
<tr>
<td>April 08</td>
<td>13.</td>
<td>Unsupervised Learning and Clustering</td>
<td>2/13</td>
<td>10.1-10.4, 10.6-10.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.13, 10.14, (exclude 10.9.3-4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>517-530, 537-555, 568-570, 573-581</td>
</tr>
</tbody>
</table>
Laboratory

It starts one week after the lectures. Laboratory exams are shown below. All other lectures are preparatory.

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab.</th>
<th>Topic</th>
<th>ENG 409</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>1</td>
<td>Bayesian Decision Theory</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>2</td>
<td>Linear Discriminant Functions</td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td>3</td>
<td>Multilayer Neural Networks</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>Unsupervised Learning and Clustering</td>
<td>ENG 409</td>
</tr>
</tbody>
</table>

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment, but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assignments, even if that makes the grade on the final exam to be more than 70% of the final grade in the course.

3. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of “INC” (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within two weeks of the next semester) that carries the same weight and measures the same knowledge must be scheduled.

4. Medical and Compassionate documents for the missing of an exam must be submitted within three working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

5. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor not later than two weeks prior to the conflict in question (in
case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

5. The results of the first test of mid-term test will be returned to students before the deadline to drop an undergraduate course in good Academic standing.

6. Students are required to adhere to all relevant academic policies including the Student Code of Academic Conduct (www.ryerson.ca/senate/policies/po160.pdf) and Non-Academic conduct (www.ryerson.ca/senate/policies/po161.pdf).

7. Students are required to obtain and maintain a Ryerson matrix e-mail account for timely communications between the instructor and the students.

8. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.
Course Information

Professor:

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>Ext.</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Dimitri Androutsos</td>
<td>ENG 472</td>
<td>6104</td>
<td>dimitri@ee.ryerson.ca</td>
</tr>
</tbody>
</table>

Course Organization- Lecture/Tutorial Hours

Lecture – 3 hrs/week Wednesdays 9am-12pm
ENG LG13

Course Description:

This course deals with advanced concepts in digital image processing. In particular, emphasis will be on color image processing. The concepts that will be covered include: color vision, trichromacy theory, color spaces, colour image creation/representation/storage, component colour image processing, vector colour image processing, segmentation, and colour image compression. The course will include a practical aspect by discussing applications and implementations of image processing techniques currently in use in industry. The course will also have student projects and literature reviews in selected areas.

Pre-requisites: Courses in signal and image processing.

Text & References:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference 1</td>
<td>Color Image Processing, K.N. Plataniotis & A.N. Venetsanopoulos</td>
</tr>
<tr>
<td>Reference 2</td>
<td>Fundamentals of Digital Image Processing, A.K. Jain,</td>
</tr>
</tbody>
</table>
Lecture Content Outline:

<table>
<thead>
<tr>
<th>Topic Descriptions</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour Fundamentals</td>
<td></td>
</tr>
<tr>
<td>- light and colour</td>
<td></td>
</tr>
<tr>
<td>- human eye</td>
<td></td>
</tr>
<tr>
<td>- trichromacy theory</td>
<td></td>
</tr>
<tr>
<td>- additive/subtractive colour</td>
<td></td>
</tr>
<tr>
<td>- colour spaces</td>
<td>6</td>
</tr>
<tr>
<td>Digital Colour Images</td>
<td></td>
</tr>
<tr>
<td>- creation/display hardware</td>
<td></td>
</tr>
<tr>
<td>- gamma</td>
<td></td>
</tr>
<tr>
<td>- representation</td>
<td></td>
</tr>
<tr>
<td>- noise</td>
<td>4</td>
</tr>
<tr>
<td>Colour Image Processing</td>
<td></td>
</tr>
<tr>
<td>- Scalar Component image processing</td>
<td>12</td>
</tr>
<tr>
<td>- Vector image processing</td>
<td></td>
</tr>
<tr>
<td>Image Segmentation</td>
<td></td>
</tr>
<tr>
<td>- Region growing</td>
<td></td>
</tr>
<tr>
<td>- Split & merge</td>
<td></td>
</tr>
<tr>
<td>- Thresholding</td>
<td>4</td>
</tr>
<tr>
<td>STUDY WEEK</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td></td>
</tr>
<tr>
<td>- Erosion</td>
<td>8</td>
</tr>
<tr>
<td>- Dilation</td>
<td></td>
</tr>
<tr>
<td>- Opening</td>
<td></td>
</tr>
<tr>
<td>- Closing</td>
<td></td>
</tr>
<tr>
<td>Upsampling</td>
<td></td>
</tr>
<tr>
<td>- Increasing resolution</td>
<td>8</td>
</tr>
<tr>
<td>- Super-resolution</td>
<td></td>
</tr>
<tr>
<td>Image & Video Compression</td>
<td></td>
</tr>
<tr>
<td>- DCT</td>
<td></td>
</tr>
<tr>
<td>- Wavelets & Multiresolution</td>
<td>4</td>
</tr>
<tr>
<td>- JPEG</td>
<td></td>
</tr>
<tr>
<td>- MPEG</td>
<td></td>
</tr>
<tr>
<td>Current Applications</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Evaluation:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Due Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1: Implementation Assignment.</td>
<td>February 21, 2010 (11:59 pm)</td>
<td></td>
</tr>
<tr>
<td>Assignment 2: Literature Review Assignment & Presentation.</td>
<td>March 25, 2010</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>April 19, 2010</td>
<td>Due at 11:59 pm</td>
</tr>
</tbody>
</table>

IMPORTANT NOTE:

- It is the students' responsibility to regularly check the course web page for updates and announcements.

NOTE: Ryerson University Policy

- "All of the required course specific written reports will be assessed not only on their technical or academic merit, but also on the communication skills of the author as exhibited through these reports."
- "All students are required to activate and maintain a Ryerson University central Matrix e-mail account which shall be an official means by which they will receive University communications.” It is also recommended that, where possible, students utilize these accounts for communicating with their instructors."
EE8213: Computer Network Security

Prerequisites
None

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8213/

Compulsory Texts:
None

Reference Texts:

Calendar Description
This course provides a thorough understanding of technologies and methodologies in network security. It deals with the fundamental techniques used in implementing secure network communications, and forms of attacks on computer networks and approaches to their prevention and detection. Topics that are covered include introduction to Cryptography, Virtual Private Networks (VPN), Firewalls and intrusion detection techniques. In addition, the course covers worms, viruses, and DDOS attacks and their remedies. Kerberos authentication Protocol, SSL, and anonymous communication protocols.

Learning Objectives
At the end of this course, students will have a solid understanding of computer network security. In addition, students will have in-depth knowledge of security protocols, privacy, IP security, viruses, attack and defense techniques. Students will be able to analysis the vulnerabilities of security protocols.
Course Organization

3 hours of lecture per week for 13 weeks

Course Evaluation

<table>
<thead>
<tr>
<th>Assignment</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam</td>
<td>15%</td>
</tr>
<tr>
<td>Course Project</td>
<td>35%</td>
</tr>
<tr>
<td>Final exam</td>
<td>45%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Examinations

Midterm examination is a 1-hour, closed-book examination that covers all the lectures up to the week of mid-term examination.

Final examination is a 3-hour open-book examination that covers all the course materials.

Project

Students are required to write a research or survey paper on one of the following topics in wireless network security (ad-hoc networks, wireless mesh network, wireless sensor network, WLAN, etc):

- Authentication Protocol
- Secure handover
- Routing protocol
- Key management
- Secure payment
- Role-based Access Control
- Attack and Defence
- Anonymity and privacy

Research Paper

You can work on original research problems. The outcome should be a paper with original technical contribution. Your grade on this will be judged on originality, soundness of the approach, and quality of presentation. The research paper must be 8-12 pages (single-spaced) long and contain the following sections:

1. Title
2. Abstract
3. Introduction – motivate the problem and situate it in the context of security
4. Related work – provide comprehensive survey of existing work with references to literature
5. Your contribution – present your ideas/thoughts
6. Conclusion
7. References

Survey paper

You can write a paper that surveys a particular field on network security (25 - 30 papers). The outcome should be a paper that summarizes the trend in the field you have chosen. The survey paper must be 8-12 pages (single-spaced) long and contain...
the following sections:
1. Title
2. Abstract
3. Introduction
4. Body of survey paper
5. References
You will be graded based on your writing, presentation, and how it enhances the understanding of the research topic. Criteria include:

- Thoroughness and scope of survey
- Classification and organization of trends
- Critical evaluation of approaches (relative advantage/disadvantages)
- Quality of explanation (Draw your own figures, diagram, charts)
- Reference

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Introduction of network security and cryptography</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Access control</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Web security</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Multicast security</td>
<td>3</td>
</tr>
<tr>
<td>6-7</td>
<td>Authentication protocols</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>VPN</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Firewall</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Intrusion detection systems</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Malicious software</td>
<td>3</td>
</tr>
<tr>
<td>12-13</td>
<td>Attack and defense</td>
<td>6</td>
</tr>
</tbody>
</table>

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 - Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade
EE8214: Computer Systems Modelling

Prerequisites: Probability theory in undergraduate level

Course Web Page: http://www.ee.ryerson.ca/~odas/ee8214.html

Compulsory Texts:
2. Lecture notes from Dr. Olivia Das and published scientific papers.

Reference Texts:

Calendar Description: The objectives of this course are to study the characteristics of various analytical models of computer systems and to learn how to apply those models to analyze system performance and dependability. The modeling techniques to be covered include Poisson, renewal, Markov processes, fault trees, Petri nets and queuing networks. Examples include models of computer systems, computer networks, and wireless systems.
Learning Objectives

At the end of the course, students will have the knowledge of various models of computer-based systems for analyzing their performance, availability and reliability. The students will have in-depth knowledge of models, for example, fault trees, reliability block diagrams, Markov Chains and their applications in reliability and performance, Product-form Queueing Networks and Stochastic Petri Nets. The students will be able to build and solve models for computer-based systems using state-of-the-art modelling tools.

Course Organization

3 hours of lecture per week for 12 weeks

Course Evaluation

<table>
<thead>
<tr>
<th>Assignments</th>
<th>30% (Students must submit their work by the deadline to receive credit.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>10%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Project</td>
<td>30% (10% Presentation, 20% Report)</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Examinations

Midterm examination is a 1-hour, closed-book examination that covers all the lecture materials and assignments up to the week of mid-term examination.

Final examination is a 2-hour closed-book examination that covers all the course materials.

Project

The project must be done in a group of maximum 3 students. Projects should make an extensive use of the knowledge acquired from the course. It may involve one of the followings: (i) The students should survey at least 10 papers in a research domain related to stochastic modeling of computer-based systems. (ii) The students should build/extend and analyze a model of a computer-based system reported in a paper. The model results should be reported.

The project report should be at least 5 pages and at most 6 pages. The report format should adhere to the IEEE double-column conference format.

The project report must contain the following:
1. Abstract
2. Introduction: Describe the problem and explain why the problem you are studying is important.
3. Other Sections relevant to your project
4. Conclusions and Suggestions for Future work
5. References -- Provide a list of relevant references.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic definitions of reliability, availability and performance Methods of Evaluation</td>
<td>3</td>
</tr>
</tbody>
</table>
Fault trees and Reliability Block Diagrams 3
Quick review of probability, random variables and distributions
Order statistics and its applications in reliability modeling 6
Stochastic Process: Renewal, Poisson processes 3
Discrete-time Markov chains, Continuous-time Markov chains and
their applications in reliability 6
Introduction to queuing theory (single queues and Little’s law) 6
Product-form queuing networks 3
Stochastic Petri Nets 3
Project presentations 3

Note: Schedule of lectures is tentative. There may be some changes in the schedule that will be announced in the class and posted in Blackboard.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.
6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.
7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 - Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 - Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE 8215: Human Computer Interaction

Prerequisites
Registration within Ryerson’s School of Graduate Studies or approval.

Course Web Page
www.ee.ryerson.ca/~jasmith/courses/ee8215 & Blackboard

Compulsory Texts:
None. Reference texts to be posted or linked to online.

Reference Texts:
None. Reference texts to be posted or linked to online.

Calendar Description
This course looks at Human-Computer Interface from the perspective of human capabilities and limitations. Human sensory processes and central processing mechanisms will be studied along with optimal design of visual/auditory displays and human control input devices. Topics covered will include memory, attention, human error and decision making. Information theoretical approaches will be discussed in the modelling of human perception and information processing. Experimental techniques will be covered along with measurement and quantification methods. The perception of motion and human motion sensation will be introduced. Applications to be addressed include aviation and space, automation and robotics and various computer interfaces.

Learning Objectives
Describe differences between the various approaches that can be used to solve a human computer interaction problem using appropriate tools. Select one specific approach to solve the problem. When the selected approach fails to solve the problem satisfactorily, analyze the cause of failure using standard methods and debugging methodologies. Based on the analysis, come up with new suggestions to improve the existing approach. Integrate the new suggestions into the existing design plan. Judge the completeness and quality of the generated solutions using standard methods and debugging methodologies.

Produce lab and project reports using appropriate format, grammar, and citation styles for technical and non-technical audiences.

Course Organization
3 hours of lecture and discussion per week for 12 weeks

Course Evaluation
Discussion and Brainstorming (Participation) 10% of final grade
Midterm Project (in-class demo & presentation) 20% of final grade
Midterm Exam 20% of final grade
Final Project (in-class demo & presentation) 30% of final grade
Final Exam 20% of final grade
Total 100%

(a) Discussion & Brainstorming sessions: a number of discussions and design-oriented brainstorming sessions will be held throughout the semester. Your participation grade will be based on your work during these sessions.

(b) Midterm Exam: A single midterm exam will be held. The midterm exam will be take-home, essay-based and will be submitted electronically through TurnItIn. The topic will be based on your project selection and related to the presentation component of your project. A marking guide will be provided ahead of time.

(c) Final Exam: A single final exam will be held. The final exam will be take-home, essay-based and will be submitted electronically through TurnItIn. The topic will be based on your project selection and related to the presentation component of your project. A marking guide will be provided ahead of time.

(d) Midterm & Final Projects: You will choose a project on human-computer interaction early in the semester and be evaluated on it both mid-semester and end-of-semester. This will include a presentation component and a written component published online. The technical scope of the project will be determined on an individual basis, based on a consultation with the instructor. A marking guide will be provided ahead of time.

Project

Hands-on projects are an integral part of the course experience. Project material will be discussed during class time. Project selection and strategies will be tuned to the background and strengths of the individual students. For this reason student participation in the classroom and interaction with other students and the instructor is strongly encouraged.

The midterm and final reports are expected to adhere to IEEE format, including referencing, unless the student eventually intends to submit the work in some form to a non-IEEE publication, in which case the specific publication’s formatting style is to be adhered to (and a web link specifying this format is provided by the student to the instructor). Refer to the marking and style guides for details on what is required in these reports.

The hardware and software platforms for the projects will be discussed, debated and decided by the students and instructor during class. Options include -- but are not limited to -- Arduino, PIC32, ARM or Intel hardware platforms, as well as C, AJAX, Python, Processing or Wiring for software.

Course Content
<table>
<thead>
<tr>
<th>Topic</th>
<th>Readings</th>
<th>Hours</th>
<th>Topic, description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>TBA</td>
<td>3</td>
<td>Introduction to Design Thinking</td>
</tr>
<tr>
<td>Displays</td>
<td>TBA</td>
<td>3</td>
<td>Current display technologies</td>
</tr>
<tr>
<td>Controls</td>
<td>TBA</td>
<td>3</td>
<td>Current control interface technology</td>
</tr>
<tr>
<td>Rapid Prototyping</td>
<td>TBA</td>
<td>3</td>
<td>Methods of rapid prototyping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Applications of rapid prototyping to HCI</td>
</tr>
<tr>
<td>The Internet of Things (IoT)</td>
<td>TBA</td>
<td>3</td>
<td>Current Trends in IoT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Embedded systems (hardware and software tools)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wearable computing</td>
</tr>
<tr>
<td>HCI & Biomedical Engineering</td>
<td>TBA</td>
<td>3</td>
<td>Biomedical devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ubiquitous computing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Affective computing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Safety issues</td>
</tr>
<tr>
<td>HCI & Age</td>
<td>TBA</td>
<td>3</td>
<td>memory, attention, human error and decision making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>modelling of human perception and information processing</td>
</tr>
<tr>
<td>HCI & Robotics</td>
<td>TBA</td>
<td>3</td>
<td>Biomimetic robotic systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Uncanny Valley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Haptics / Multimodal interfaces</td>
</tr>
<tr>
<td>HCI, Culture & Gender</td>
<td>TBA</td>
<td>3</td>
<td>HCI factors related to culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCI factors related to gender</td>
</tr>
<tr>
<td>Student Presentations</td>
<td>n/a</td>
<td>6</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Note: The schedule is tentative. There may be some changes in the schedule that will be announced in the class and/or posted on the course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. No makeups will be provided for midterm exam or assignments. If any of the aforementioned are missed for an officially approved reason the associated weight will be assigned to the final exam.
4. Students who miss a final exam for an officially approved reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first assignment and/or midterm exam will be returned to students before the deadline to drop a course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including but not limited to:
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 - Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class.
 Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This may automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>James Andrew Smith, PhD, PEng</th>
<th>Signature of Instructor</th>
<th>Date</th>
<th>July 18, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Information Sheet

Objective: This is a graduate course in computer networking. The course is designed to include materials relevant to the industry, which is moving to deploy IP network in the backbone and offer QoS sensitive services, e.g. VOIP. The course deals with the principles, architectures, algorithms, and protocols related to Internet: with emphasis on routing, transport protocol design, flow control and congestion control, IP Quality of Service and Traffic Engineering.

Outline: Introduction: Internet Architecture, Overview of IP and ICMP [Ch. 5.1] IP Routing: ICMP Route Redirects, IP Source Routing, Distance Vector (RIP), Link State (OSPF) and Inter-domain (BGP), Multicast and IGMP [Ch. 5.2] Transport Protocol: TCP flow control and congestion control (RENO, TAHOE, Vegas), Network assisted congestion control – ECN [Ch. 6.1 – 6.6] IP QoS: Traffic Conditioning, QoS Scheduler (WFQ), Active Queue Management (RED), IntServ and RSVP, DiffServ [Ch. 5.4] Traffic Engineering: IP Traffic Engineering, MPLS [Ch. 5.5 – 5.6]

Instructor: Muhammad Jaseemuddin
Email: jaseem@ee.ryerson.ca, Phone: 979-5000x6073, office: ENG470
Office hour: Monday: 1:00pm – 2:00pm

Lectures: Mon 9:00am – 12:00noon @ENGLG02

Prerequisites: COE 768 Computer Networks or equivalent

Reference: W. Richard Stevens, TCP/IP Illustrated Volume 1, Addison-Wesley.
J. Kurose and K. Ross, Computer Networking – A Top-Down Approach Featuring the Internet, Addison-Wesley.

Grading: Based on the following weight
Two Quizzes 10%
Assignments 10%
Project 25%
Midterm Exam 20%
Final Exam 35%
Policies:
1. Textbook does not cover all the topics. Reading list contains list of papers that can be consulted for specific topics.
2. Please use e-mails for communicating your needs. I discourage phone calls unless it is an absolute necessity. I won’t be able to answer your questions through email, please use office hours for that purpose.
3. Check Blackboard for course related information.
4. Please make yourself aware of university policies, especially regarding student code of conduct and plagiarism (http://www.ryerson.ca/senate/policies/).
5. Midterm is scheduled on Feb 24th.
6. Final exam, during the final exam period on the day of COE865 final exam, three hours, and closed book.
7. Project marks breakdown and deadlines are as follows:
 - Project proposal (2.5%) due February 3rd
 - Interim Report (2.5%) due March 3rd
 - Project Report (20%) due April 7th
8. Report will be marked based on the following criterion:
 - Introduction
 - Problem Definition: Statement, Motivation
 - Project Details: Analytical, Originality, Clarity, Writing style, Enough details
 - Conclusion: Remarks, Future work
9. Project should contain some original idea showing creative thinking and analysis.
10. Make yourself familiar with the resources available at Ryerson Library, especially browse IEEE Explore for accessing papers on-line.
11. You should browse the Internet Engineering Task Force’s web page at www.ietf.org and familiarize yourself with its working process. You can also find all RFCs and current Internet Drafts at that site.
12. You can use www.google.com and CiteSeer (http://citeseer.nj.nec.com/cs) for citation lookup.
Faculty of Engineering and Architectural Science
Department of Electrical and Computer Engineering

EE8217: Reconfigurable Computer Systems Engineering

Prerequisites: None

Course Web Page: http://www.ee.ryerson.ca/~lkirisch/ee8603/ee8603.htm

Compulsory Texts:
2. Lecture notes from Dr. Lev G. Kirischian and published scientific papers.
3. Laboratory manual: *Laboratory Manuals and Tutorials*, Ryerson University.

Calendar Description: This course is designed to offer an introduction in the theory and engineering design principles of the modern Reconfigurable Computing Systems (RCS) – one of the most rapidly growing sectors of the high-performance computer technology. The emphasis is in understanding of the concepts of architecture re-configurability, classes of RSC, sources for performance acceleration and cost-efficiency of RCS. Concept of resource virtualization in RCS is discussed in details as well as stages of high-level synthesis of RCS architecture. The process of RCS development is described from the task algorithm / data structure analysis to virtual component synthesis, system integration and verification techniques. Additionally, the hardware basis of the modern RCS – fine and coarse-grained programmable logic devices: Field Programmable Gate Arrays (FPGA) and Coarse-Grained Reconfigurable Arrays (CGRA) will be overviewed.

The project portion of the course consists of: i) literature research project and ii) design project based on Xilinx FPGA-based platform. This project assumes getting hands-on experience in RCS component high-level synthesis, HDL-implementation, verification and comparative analysis with embedded software implementation.

Learning Objectives: At the end of this course, the successful student will have a solid understanding of the concept of RCS and classification of RCS architectures, RCS organization, sources and methods for performance acceleration in RCS and cost-efficiency. The novel concept of virtualization of computing resources and entire architecture is another important aspect to be learned in this course. In the second part of the course students will learn the design methodology and get hands-on experience in development of RCS components, integration and verification techniques.
Course Organization
3 hours of lecture per week for 13 weeks
2 hours of lab per week for 7 weeks

Course Evaluation
Project 1: Literature survey - 25%
Project 2: Component design - 25%
Final exam - 50%
Total 100%

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations
Final examination is a 3-hour, closed-book examination that covers all the lecture materials.

Projects
Project 1: Students are required to conduct literature research on one of areas associated with reconfigurable systems engineering. The project assumes investigation of the state-of-art in the selected area of interest, analysis on main directions of research in this area based on recent publications and formulation of main trends and/or classification of methods of RCS development and application.

Project 2: Students are required to perform the engineering design of a on-chip functional component from determination of functional and technical specification to complete design and verification. The on-chip hardware design assumes: creation of component’s symbol and block-diagram of architecture followed by VHDL design, compilation, and physical implementation on the Xilinx Spartan FPGA based evaluation platform. The performance verification using on-chip logic analyzer (e.g. Xilinx Chip-Scope) should complete the design process.
In addition to the above, the comparison of performance between the designed hardware component and implementation in soft-core processor deployed in the same FPGA is required for analysis of component’s cost-performance efficiency.
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classification of computing systems and definition of Reconfigurable Computing Systems (RCS)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Classification of RCS architectures: homogenous and heterogeneous architectures, fine-grain and coarse-grain systems, statically and dynamically reconfigurable RCS</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>FCR - Field of Configurable Resources; Communication infrastructure; Memory hierarchy in RCS and Interface elements.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Performance acceleration in RCS: Sources of parallelism in task algorithm and data structure. Sources for hardware performance acceleration</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Cost-efficiency of RCS: Performance-Cost Ratio (PCR) and cost-efficiency, PCR calculation. Increasing cost-efficiency by partitioning the workload between hardware and software in RCS</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Virtualization of resources in RCS: Segmentation of task algorithm and concept of Virtual Hardware Components (VHC). Concept of Application Specific Virtual Processors (ASVP)</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>RCS architecture integration: Integration of ASVP in time domain (temporal partitioning) and in spatial domain (spatial partitioning)</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>RCS Development: Application and specification analysis. High-level synthesis of RCS architecture</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Determination of RCS components: Determination of component set and component nature (HW or SW). Determination of component interface and synchronization scheme</td>
<td>3</td>
</tr>
<tr>
<td>10-11</td>
<td>High-level synthesis of RCS components: Creation of component’s symbol, data-path and control unit. Main stages of process: creation of sequencing graph (SG), scheduling, binding and getting data-path block diagram.</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>RCS implementation – Low-level synthesis: Conversion of scheduled SG to the component block diagram; Resource sharing and multiplexing scheme; HDL coding and configuration bit-stream generation.</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Course review and final examination</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format.
Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on
the final exam, or another single assessment. This may not cause that exam or assessment to be
worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or
exam, the grade may be distributed over other course assessments even if that makes the grade on
the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam
prior to the submission of final course grades, must be given a grade of INC (as outlined in the
Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of
the beginning of the next semester) that carries the same weight and measures the same knowledge,
must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3
working days of the exam. Students are responsible for notifying the instructor that they will be
missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the
instructor no later than two weeks prior to the conflict in question (in the case of final examinations
within two weeks of the release of the examination schedule). In extenuating circumstances this
deadline may be extended. If the dates are not known well in advance because they are linked to
other conditions, requests should be submitted as soon as possible in advance of the required
observance. Given that timely requests will prevent difficulties with arranging constructive
accommodations, students are strongly encouraged to notify the instructor of an observance
accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to
drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
Undergraduate Grading, Promotion and Academic Standing,
http://www.ryerson.ca/senate/policies/pol46.pdf
Undergraduate Academic Consideration and Appeals,
http://www.ryerson.ca/senate/policies/pol134.pdf
Accom.of Student Relig., Abor. andSpir. Observance,
http://www.ryerson.ca/senate/policies/pol150.pdf
Est. of Stud. Email Accts for Official Univ. Commun.,

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely
communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to
being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class.
Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear
rows of the class. This restriction allows use of such devices by their users while limiting audible and
visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive
a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of
zero on the complete project. This automatically will lead to a failing grade
EE8218: Parallel Computing

Prerequisites
Computer architecture, mathematics, algorithms and programming

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8218/

Compulsory Texts:

References
MPICH2 “Message Passing Interface” Reference
2-http://www-unix.mcs.anl.gov/mpi/
3-OPENMP References

Calendar Description
This course will introduce students to parallel computing including parallel algorithms, parallel programming and different parallel architectures. It covers the basic programming models used in parallel computers, parallel algorithms, parallel programming, the shared memory multiprocessor and NUMA multiprocessor. The Laboratory projects include parallel programming using one of the parallel models.

1 Credit

Learning Objectives
At the end of this course, the successful student will have a solid understanding of different parallel computer models, and the limitations of each mode. Students should be able to know the methodology used to write an efficient parallel programs and implement them in real parallel computer using MPI or OPENMP or combination of both. Students will be able to use different Parallel Algorithms in parallel applications to improve scalability of parallel computer.
Course Organization
3 hours of lecture per week for 12 weeks
2 hours lecturing and 1 hour of lab or open discussion per week for 12 weeks

Course Evaluation
Assignments 10%
Labs 20%
Course Project 60%
Participation 10%
Total 100%

Projects
1-Download Software for implementing parallel computer (MPI, OPENMP or combination of both).
2-Install software
3-Run a parallel programs
4-Evaluate the performance gain for using parallel computing

Final Report must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- Appendices
- Index - list of key words and their page number in the project report.
Course Content

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Homework & Project discussion</th>
</tr>
</thead>
</table>
| Week 1 | **Introduction to Parallel Architecture**
- shared memory
- message passing
- other parallel architectures
- programming model and communication | Introduction to SIMD (download SIMPil simulator) |
| Week 2 | **Parallel Programs**
- Examples of Parallel Applications | Using SIMPil |
| Week 3 | **Parallel Programs**
- Examples of Parallel Applications
- Parallelization Process | Running application on SIMPil |
| Week 4 | **Parallel Programs**
- Examples of Parallel Applications
- Parallelization Process | Installing MPI, OpenMP |
| Week 5 | **Parallel Programs**
- Example Program | Installing MPI, OpenMP |
| Week 6 | **Programming for Performance**
- partitioning | Installing MPI, OpenMP |
| Week 7 | **Programming for Performance**
- partitioning
- Communication-Programming for Performance | Compile and Running application |
| Week 8 | **Shared Memory Multiprocessors**
- Cache Coherence
- Memory Consistency | Compile and Running application |
| Week 9 | **Shared Memory Multiprocessors**
- Design Snooping Protocol
- Design Trade-offs | Compile and Running application |
| Week 10 | **Shared Memory Multiprocessors**
- Synchronization
- Implication for Software | Optimization of Performance |
| Week 11 | **Multiprocessor Design** | Evaluate system scalability and define bottleneck |
| Week 12 | **Projects Presentation** | Final Presentation |
Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>
EE8219: Field-Programmable Gate Array Architectures

Prerequisites
Knowledge in digital hardware design and C programming. One of the following courses: ELE734 (Low-Power Digital Integrated Circuits), or ELE863 (VLSI Systems), or EE8501 (VLSI System Design), or EE8504 (VLSI Design Automation and CAD Tools) or Permission of instructor.

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8501/

Compulsory Texts:
2. Research papers will be suggested as the course proceeds.

Reference Texts:
None

Calendar Description
This course will explore various aspects in the design of Field-Programmable Gate Arrays (FPGAs). FPGAs are a new class of digital devices that enable the rapid prototyping and implementation of digital systems. Comparing to traditional methods of implementing digital applications, FPGAs combine the programmability of CPU systems with the ability of exploring the massive amount of parallelism inherent in many digital applications. As the logic capacity and application domain of FPGAs grow, their design has become increasingly complex and requires specialized engineering expertise. This course will explore the design of FPGA devices from an architectural perspective. We will exam a wide range of FPGA architectures and discuss the various methods employed in the modeling and evaluation of these architectures. The particular topics that will be covered in this course include:

1. The Modeling and Evaluation of FPGA Architectures
3. Physical-Level CAD Algorithms used in FPGA Architectural Evaluation – Placement and Routing Tools
4. Power Modelling and Power-Aware CAD Tools for FPGAs
5. Low Power FPGA Architectures and Circuit-Level Design Techniques

Learning Objectives
The design of FPGA architectures is a classic example of large scale SOC design, where the architect must be aware of the impact of his/her architecture-level design choices on high-level CAD that are required to support these choices and low-level circuits that are required to implement these choices. Furthermore the
The architect must be able to accurately model and quantify the effect of each design choice on the power, performance and area efficiency of the resulting SOC design. At the same time, real-life benchmarks must be used in all evaluations in order to ensure the accuracy and fidelity of the evaluation results. Consequently, this course is designed to give a flavor of such design processes through the review of 18 highly significant papers in the area. At the end of this course, the successful student will have a solid understanding of the modeling and evaluation of FPGA architectures, high-level CAD algorithms used in FPGA architectural evaluation – Technology Mapping and Packing Tools, physical-level CAD algorithms used in FPGA architectural evaluation – Placement and Routing Tools, power modeling and power-aware CAD tools for FPGAs, and low-power FPGA architectures and circuit-level design techniques.

Course Organization

<table>
<thead>
<tr>
<th>Course Evaluation</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>30%</td>
</tr>
<tr>
<td>Project</td>
<td>30%</td>
</tr>
<tr>
<td>Final exam</td>
<td>35%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To achieve a passing grade, the student must pass both the theory and assignment/project components.

Examinations

Final examination is a 3-hour closed-book examination with 2 pages of aid-sheet that covers all the course materials.

Project

Students are required to model an FPGA architecture and construct a placer/router for the architecture (both in C). The placer/router must be successfully used to place/route 5 benchmark circuits provided by the instructor and graphically display the routing results through the X-Windows programming interface. Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report – Snap shots of the graphical display of placement/routing results must be embedded in the main body of the report and numbered.
- References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles. You need to take a look at *IEEE Transactions on Circuits and Systems I - Regular Papers* and *IEEE Journal of Solid-State Circuits* for IEEE reference styles on books, journal papers, conference papers, and technical
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Management, Introduction to FPGAs, FPGA Programming Technologies</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>The Evolution of FPGA Logic Block Architectures</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>The Evolution of FPGA Routing Architectures</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Cluster-Based FPGA Logic Blocks and Packing Algorithms (Technology mapping and look-up tables, clustering)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>FPGA Placement Algorithms (Simulated Annealing)</td>
<td>3</td>
</tr>
<tr>
<td>6-7</td>
<td>Routing Tools (Lee, Directed Lee, Negotiated Congestion, Path Finder)</td>
<td>6</td>
</tr>
<tr>
<td>8-9</td>
<td>FPGA Circuitry and Process Modeling</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Power Modeling Techniques for FPGAs</td>
<td>3</td>
</tr>
<tr>
<td>11-12</td>
<td>Power Efficient Circuitry and Architectures for FPGAs</td>
<td>3</td>
</tr>
</tbody>
</table>

Assignments/Projects

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commercially Available FPGAs</td>
<td>2-3</td>
</tr>
<tr>
<td>2</td>
<td>The Modeling of FPGA Logic and Routing Architectures</td>
<td>4-6</td>
</tr>
<tr>
<td>3</td>
<td>FPGA CAD and Circuit-Level Design</td>
<td>7-9</td>
</tr>
<tr>
<td>Project</td>
<td>Students are required to model an FPGA architecture and construct a placer/router for the architecture (both in C). The placer/router must be successfully used to place/route 5 benchmark circuits provided by instructor and graphically display the routing results through the X-Windows programming interface.</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on
the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
Undergraduate Grading, Promotion and Academic Standing,
http://www.ryerson.ca/senate/policies/pol46.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class.
Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
CALENDAR DESCRIPTION

This course will enable graduate students and other researchers to pursue research in linear, nonlinear, adaptive, multidimensional and multichannel (vector) digital filters in one and more dimensions, which are applied to such diverse fields as radar, sonar, telecommunications, biomedicine, remote sensing, biometrics and image/video processing. The students will be encouraged to develop designs and introduce their filters to novel applications.

PROGRAM LEVEL

This is a second level graduate course. It shall make use of the Blackboard.

INSTRUCTIONAL HOURS

3 hours of lecture.

PRE AND CO-REQUISITES

Prerequisites: undergraduate courses on “Signals and Systems”, “Probability Theory”, EE8105 “Digital Signal Processing I” or equivalent.

Other relevant courses are EE8202 “Digital Image Processing I”, 8212 “Digital Image Processing II”, which complement but do not overlap with this course.

DETAILED COURSE DESCRIPTION

1. Introduction, Overview of the Course, Mathematical and Statistical Foundations

2. Nonlinear and Adaptive 2-D Filters

3. Morphological Filters

4. Vector Filters, 3-Dimensional (3-D) and M-D Filters.

Multichannel signal processing. Fuzzy set theory and Fuzzy filters. Digital filters for color signal processing. 3-D image processing and analysis. 3-D image representation. 3-D and M-D Discrete Fourier transforms. Design of 3-D and M-D filters. Visualization techniques. Stereoscopic filters and emerging applications.

DETAILED LECTURES

8. March 5, Midterm Exam.

9. March 12, 13. Homomorphic and Polynomial Filters. [1], pp 217-266.

15. April ? Final Exam TBA

PROJECT COMPONENTS: Students use MATLAB to design and implement their projects. Students are also encouraged to use C and C++ and Java as programming language tools. Problems will be assigned from time to time to increase the skills of the students.

MARKING SCHEME

1. Mid-term Exam 30%
2. Design Project 30%
3. Final Exam 40%

INSTRUCTOR

Anastasios (Tas) Venetsanopoulos, ENG 428, tel. 416-979-5000, Ext. 4037, email: <tasvenet@ryerson.ca.

PRESCRIBED TEXT

OTHER RELATED TEXTS

OTHER REFERENCES

COURSE DOCUMENTATION AND ANNOUNCEMENTS

All course related information, announcements and material, such as sample programs, design and application sheets, handouts, etc. will be available from the web and Ryerson’s Blackboard system.

LECTURE ROOM

KHE 220 between 5pm-8 pm.

REMARKS

The written reports will be assessed not only on their technical or academic merit, but also on the communications skills of the author as exhibited through the reports.

January 30, 2013
EE8301: Linear System Theory

Prerequisites
Undergraduate level control course and working knowledge of MATLAB.

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8301

Compulsory Texts
None

Reference Texts

Calendar Description
The main thrust of the class is to introduce an algebraic unification of finite-dimensional linear systems with emphasis on continuous and discrete dynamic systems, using an operator theoretic approach. Topics covered include transition matrices, functions of matrices, adjoint systems, weighing patterns, realizability; canonical forms; stability, minimal realization; minimum norm, and approximation problems.

Learning Objectives
At the end of this course, the successful student will be able to:

1. Understand fundamental concepts of linear algebra such as vector spaces, subspaces, linear independence, basis, dimension and rank.
2. Understand the four fundamental subspaces and the relationship between them.
3. Formulate solutions of engineering problems as solutions of systems of linear equations and solving them as least-squares or least-norm problems.
4. Understand eigenvalues, eigenvectors and singular-value decomposition and their applications to engineering problems.
5. Model physical systems using linear state-space system model.
6. Obtain solution of systems described using linear state-space model.
7. Determine if a given linear state-space model is controllable and observable.
8. Design state-feedback controller and observer.
9. Solve certain optimal control problems as LQR problem.

Course Organization
3 hours of lecture per week for 13 weeks.
| Course Evaluation | | |
|-------------------|----------------|
| Midterm exam | 30% |
| Project | 20% |
| Final exam | 50% |
| Total | 100% |

Examinations
Midterm exam in approximately Week 7, two hours, open-book.
Final exam, during exam period, 24-hour take-home exam.

Course Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction and motivation</td>
</tr>
</tbody>
</table>
| 2 | 4 | Review of Linear Algebra
Linear functions, vector spaces, subspaces, linear independence, basis, dimension, rank. The four fundamental subspaces. Orthogonality and orthonormality. |
| 3 | 4 | Least Squares Problems
| 4 | 4 | Least Norm Problems
| 5 | 7 | Symmetric and positive definite matrices
Eigenvalues and eigenvectors, quadratic forms, singular values decomposition, matrix norm and minimal rank approximations. |
| 6 | 7 | Autonomous Linear Systems
| 7 | 8 | Linear Systems with Bounded Inputs
| 8 | 2 | The LQR Optimal Control Problem |

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or
another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
Faculty of Engineering, Architecture and Science

Department of Electrical and Computer Engineering

ELE869/EE8306: Fundamentals of Robotics

Prerequisites ELE639 or MEC709 or an undergraduate-level first control course.

Course Web Page http://www.ee.ryerson.ca/~courses/ele869

Compulsory Texts None

Calendar Description This course provides a comprehensive treatment on the fundamentals of robotics, particularly in kinematics and dynamics. Topics include: Forward kinematics: homogeneous transformations, the Denavit-Hartenberg representation of linkages. Inverse kinematics: closed-form and numerical solutions. Differential motion, Jacobian matrix, singularities. Dynamics: Euler-Lagrange formulation. Trajectory generation. Motion and interaction control of robotic manipulators. Actuators and sensors.

Learning Objectives At the end of this course, the successful student will be able to:

1. Develop mathematical models for robotic manipulators and use them to design control systems for robotic manipulators.
2. Interconnect electrical engineering, computer engineering and mechanical engineering concepts to solve control problems for robotic manipulators.
3. Propose improved mathematical models to simplify the control problem for robotic manipulators.
4. Use improved mathematical models to address nonlinearity in the control problem.
5. Develop MAPLE programs to automatically generate dynamics equations for robotic manipulators.

Course Organization 3 hours of lecture per week for 13 weeks.
1 hour of laboratory/tutorial per week for 10 weeks.

Course Evaluation
Home Work	10%
Midterm exam	30%
Project	10%
Final exam	50%
Total	100%
Examinations

Midterm exam in approximately Week 7, two hours, closed-book, formula sheet provided. Final exam, during exam period, three hours, closed-book, formula sheet provided.

Course Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sections</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | 1.1-1.4 | 1 | Introduction
Automation and robots, robot classification, applications, robot specifications. |
| 2 | 2.1-2.5, 2.7 | 6 | Rigid Motion and Homogeneous Transformation
Rotation, composite rotation, translation, composite translation, homogeneous transform. |
| 3 | 2.8-2.10 | 5 | Forward Kinematics and the Denavit-Hartenberg Representation
Coordinate frames, kinematic chains, link and joint parameters, the Denavit-Hartenberg (DH) representation, the arm equation. Joint Space and Operational Space. |
| 4 | 2.12 | 5 | Inverse Kinematics
Solving the arm equation, general properties of solutions, kinematic decoupling, inverse position and inverse orientation problems. |
| 5 | 3.1-3.3, 3.6 | 4 | Differential Kinematics and Differential Motion
Linear and angular velocities, the manipulator Jacobian, singularities, differential motion transform. |
| 6 | 4.1, 4.3 | 6 | Dynamics
Kinetic and potential energy, Euler-Lagrange formulation, direct and inverse dynamics. |
| 7 | 6.1-6.4, 7.1-7.3 | 8 | Motion and Interaction Control of Robotic Manipulators
Trajectory generation. Independent joint control, PID control, computed-torque control. Compliance control, impedance control. |
| 8 | 8.1-8.3 | 2 | Actuators and Sensors
Joint actuating system; proprioceptive sensors. |

Laboratory/Tutorials

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rotation matrix and its applications</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Homogeneous transformation matrix and its applications</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Forward kinematics problem</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Inverse kinematics problem</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Differential kinematics and differential motion</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Singular configurations</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Dynamics model for robotic manipulators</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Trajectory generation</td>
<td>1</td>
</tr>
</tbody>
</table>

Important Notes
1. All of the required course-specific written reports will be assessed not only on their
technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed
and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by
the student(s) prior to submission of the work. Submissions without the cover pages will not be
accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate
documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should
cover the same material as the original assessment but need not be of an identical format. Only if it is not
possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or
another single assessment. This may not cause that exam or assessment to be worth more than 70% of the
student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed
over other course assessments even if that makes the grade on the final exam worth more than 70% of the
final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to
the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion
and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next
semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days
of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon
as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the
instructor no later than two weeks prior to the conflict in question (in the case of final examinations within
two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be
extended. If the dates are not known well in advance because they are linked to other conditions, requests
should be submitted as soon as possible in advance of the required observance. Given that timely requests
will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to
notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an
undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
Undergraduate Grading, Promotion and Academic Standing,
http://www.ryerson.ca/senate/policies/pol46.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications
between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being
implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use
of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the
class. This restriction allows use of such devices by their users while limiting audible and visual distractions
to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a
mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.
13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>
EE8403: Advanced Topics in Power Systems

Prerequisites
None

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8403/

Compulsory Texts:
1. Lecture notes from Dr. Bala Venkatesh and IEEE papers.

Calendar Description
Some case studies.

Learning Objectives
At the end of this course, a successful student will have a solid understanding of Power systems analysis, linear and nonlinear optimization techniques, electricity market formulation and nash-equilibrium, real power optimization, reactive power optimization and Unit commitment.
A successful student will be able design and develop computer codes for analysis and optimization of power systems.

Course Organization
3 hours of lecture per week

Course Evaluation
<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Examination</td>
<td>40%</td>
</tr>
<tr>
<td>Mid-term Examination/Evaluation</td>
<td>20%</td>
</tr>
<tr>
<td>Test/Assignment/Project 1:</td>
<td>20%</td>
</tr>
<tr>
<td>Test/Assignment/Project 2:</td>
<td>20%</td>
</tr>
</tbody>
</table>

Examinations
- Midterm examination is a 1.5-hour, closed-book examination that covers all the lecture materials up to the week of mid-term examination.
- Final examination is a 3-hour closed-book examination that covers all the course material materials.
Projects

Students are required to complete two projects.

Project 1: design and develop a program in matlab to solve power balance equations of an AC N-bus transmission network using Newton-Raphson technique.

Project 2: design and develop a program in matlab to solve linear optimization challenge using simplex technique.

Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles.
- Data sets studied and results of analysis
- Appendices
- Index - list of key words and their page number in the project report.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>Linear Programming, example problem set up, simplex method, Prices in LP, Dual LP, Matlab functions.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Mid term</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Non-linear programming, marginal prices, Matlab functions</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Unit Commitment: problem formulation and an MILP Solution</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Review</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.
Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All project reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including: Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.
10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their projects will receive a grade of zero on the complete project. This automatically will lead to a failing grade

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Bala Venkatesh</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Lian Zhao</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>
EE8405: Power System Stability and Control

Prerequisites
None

Course Web Page
http://www.ryerson.ca/content/dam/graduate/graduate_calendar/current/EM134EP.pdf

Compulsory Texts:
2. Lecture notes from Dr. Richard Cheung and published scientific papers.

Reference:

Calendar Description
This is an advanced course in power system stability studies focused on the design of digital signal processing systems for improvement of steady state and transient power system stabilities. This course provides studies on analytical techniques and computer methods for power system stability enhancement, and digital signal processing control design and implementation of advanced power system stabilizers.

Learning Objectives
At the end of this course, the successful students will have a solid understanding of large-scale power system stability and control. Students will also learn knowledge for the design of excitation systems for 540MW and 800MW generators used in Ontario nuclear generating stations, and acquire technical skills for the basic operations of these utility generators and the controls of the stability of these generators.
Course Organization

3 hours of lecture per week for 13 weeks

Course Evaluation

Students are required to carry out 2 major projects, mid-term exam and final exam:

<table>
<thead>
<tr>
<th>Project</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>25%</td>
</tr>
<tr>
<td>Project 2</td>
<td>30%</td>
</tr>
<tr>
<td>Mid-term Exam</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Examinations

The mid-term exam is a 2-hour open-book exam, covering all the lecture materials up to the week of mid-term exam.

The final exam is a 3-hour open-book exam, covering all the course materials.

Projects

Students are required to design and analyze an optimal generation-transmission system for supplying power from a generating station for example Bruce Power Nuclear Power Station to a large load center such as the City of Toronto. The system must be designed with real generator data and the system must be able to deliver rated active power to the load center, without causing any stability problem even when a three-phase fault occurs on one transmission line and very near to the step-up transformer terminal. The design and analysis are to be carried out in two projects. The first project is to provide the design and analysis of a basic generator excitation system, and the second project is to carry out a design optimization of the system’s PSS (power system stability) control.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power System General Characteristics</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Power System Stability Concepts</td>
<td>3</td>
</tr>
<tr>
<td>3-4</td>
<td>Generator Modeling</td>
<td>6</td>
</tr>
<tr>
<td>5-6</td>
<td>Power System Models for Stability Studies</td>
<td>6</td>
</tr>
<tr>
<td>7-8</td>
<td>Excitation Systems</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Active and Reactive Power Controls</td>
<td>3</td>
</tr>
<tr>
<td>10-11</td>
<td>Small-Signal Stability</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Transient Stability</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Voltage Stability</td>
<td>3</td>
</tr>
</tbody>
</table>

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. If a student misses the mid-term exam and its make-up exam, the grade will be loaded to the final exam.
3. If a student misses the final exam and its make-up exam, a grade of INC (as outlined in the Grading
Promotion and Academic Standing Policy will be given.

4. Medical or compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

5. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

6. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

7. Students are required to adhere to all relevant University policies including:

8. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

9. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

10. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

11. Projects submitted past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

12. Students found to have plagiarized *any* portion of their labs and final project will receive a grade of zero on the *complete* project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Richard Cheung</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Lian Zhao</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>

Graduate course course-outline

EE8407 Power Converter Systems
Course Outline

Course Description
A course on the analysis, simulation and design of power converter systems. Major topics includes: high-power dc/ac converters, voltage and current source converters, multi-level converters, pulse width modulation techniques, harmonic reduction techniques, modeling and simulation techniques, and industrial applications. Important concepts are illustrated with design projects using Matlab/Simulink.

Course Organization
This course consists of two hours of lecture and one hour of laboratory per week.

Textbook

Lecture Slides
PPT slides downloadable from Blackboard

Design Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Marks</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1: Series-type 12-pulse Diode Rectifier</td>
<td>15%</td>
<td>Wk4</td>
</tr>
<tr>
<td>Project 2: Space Vector Modulation Technique</td>
<td>30%</td>
<td>Wk7</td>
</tr>
<tr>
<td>Project 3: Control of Multilevel Cascaded H-Bridge Inverters</td>
<td>20%</td>
<td>Wk9</td>
</tr>
<tr>
<td>Project 4: Multilevel diode Clamped Inverters</td>
<td>15%</td>
<td>Wk11</td>
</tr>
<tr>
<td>Project 5: PWM Techniques for Current Source Converters</td>
<td>20%</td>
<td>Wk13</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Lecture Topics
1. Introduction (Chapter 1)
2. High-Power Semiconductor Devices (Chapter 2)
3. Multipulse Diode Rectifiers (Chapter 3)
4. Multipulse SCR Rectifiers (Chapter 4)
5. Two-level Voltage Source Inverter (Chapter 6)
6. Multilevel Cascaded H-Bridge Converters (Chapter 7)
7. Multilevel Diode-Clamped Inverter (Chapter 8)
8. Other Multilevel Voltage Source Converters (Chapter 9)
9. Current Source Inverters (Chapter 10)
10. Current Source Rectifiers (Chapter 11)
EE8408 Switch Mode Power Supplies
Course Outline (F2013)

Course Description
A course on switch mode power supplies. Major topics includes: Flyback converters, forward converters, bridge converters, Cuk converters, pre-regulators, inrush control, start-up methods, overvoltage and undervoltage protections, foldback current limiting, output filters, transformer design, induction and choke design, current mode control, stability.

Course Organization
This course consists of three hours of lecture every week and four projects.

Course Material
Text:

Reference:

Course Evaluation
Theoretical Component 40%
Final Examination 40%

Project Component 60%
Analysis of Cuk Converter 15%
Flyback Converter and Voltage Mode Control Scheme 15%
ZCS Resonant Converter 15%
Small Signal Model and Feedback Control for Buck-boost Converter 15%
Lecture Topics

1 Basic Switching Converters 6 hrs (week 1, 2)
 1.1 Introduction
 1.2 Buck converters
 1.3 Boost converter
 1.4 Buck-boost converter
 1.5 Cuk converter
 1.6 Converter with nonideal components

2 Isolated Switching Converters 6 hrs (week 3, 4)
 2.1 Introduction
 2.2 Forward converter
 2.3 Flyback converter
 2.4 Half-bridge converter

3 Control Scheme 3 hrs (week 5)
 3.1 Introduction
 3.2 Voltage-mode PWM
 3.3 Current-mode PWM
 3.4 Hysteresis Control
 3.5 Commercial integrated circuit

4 Resonant Converters 6 hrs (week 6, 7)
 4.1 Introduction
 4.2 Parallel resonant and serial resonant circuit
 4.3 Zero-current-switching buck converter
 4.4 Zero-voltage-switching buck converter
 4.5 Series-loaded resonant converter
 4.6 Parallel-loaded resonant converter

5 Dynamic Analysis 9 hrs (week 8, 9, 10)
 5.1 Introduction
 5.2 Switch converter models
 5.3 Negative feedback using classical control techniques
 5.4 Feedback compensation
 5.5 Stability
 5.6 State-space averaged model
 5.7 Transfer Functions

6 Converter Design 6 hrs (week 11, 12)
 6.1 Introduction
 6.2 Voltage Mode DCM Buck Converter Design
 6.3 UC3842 based flyback design
 6.4 Transformer and Inductor Design
Project Schedule

<table>
<thead>
<tr>
<th>Projects</th>
<th>Topics</th>
<th>Week #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>Analysis of Cuk Converter</td>
<td>2-3</td>
</tr>
<tr>
<td>Project 2</td>
<td>Flyback Converter and Voltage Mode Control Scheme</td>
<td>4-6</td>
</tr>
<tr>
<td>Project 3</td>
<td>ZCS Resonant Converter</td>
<td>7-8</td>
</tr>
<tr>
<td>Project 4</td>
<td>Small Signal Model and Feedback Control for Buck-boost Converter</td>
<td>9-12</td>
</tr>
</tbody>
</table>

All the projects start with problems, analysis and simulations. You are required to do the analysis on the converters and use simulation software to verify the theoretical results. Semi-formal project reports are required.

As a Ryerson graduate student, you are eligible to download and install the MATLAB with simulink toolbox for academic use. Please refer to the following guides from Ryerson Electrical & Computer Engineering Department.

http://www.ee.ryerson.ca/matlab/

You are required to submit the reports with the simulation models. Electronic submission (using email) of the reports is acceptable. Sample models will be provided for the first three projects.

Instructor
David Xu, Ph.D.
Room ENG333, 245 Church Street, Toronto
Department of Electrical and Computer Engineering
Ryerson University
(416) 979-5000 ext: 6075.
Email: dxu@ee.ryerson.ca
Prerequisites
A basic field theory under graduate course

Course Web Page http://www.ee.ryerson.ca/graduate/EM%20Theory_Outline.pdf

Important References

Calendar Description
Electromagnetostatic field, time-varying electromagnetic field and Maxwell’s equations, Poynting and uniqueness theorems, losses due to polarization damping forces, Helmholtz wave equation, auxiliary potential functions, Lorentz reciprocity theorem, transverse electromagnetic waves, wave polarization, reflection and transmission at interfaces, wave matrices, oblique incidence, antenna theory and characteristics, lightning-generated electromagnetic pulse.
Learning Objectives

Based on Maxwell’s equations in their most general forms, an in-depth understanding of generation and propagation of electromagnetic fast transients, taking into consideration all losses, including those resulting from electric and magnetic polarization damping forces.

Course Organization

3 hours of lecture per week for 13 weeks

Course Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term Tests</td>
<td>12</td>
</tr>
<tr>
<td>Assignments</td>
<td>9</td>
</tr>
<tr>
<td>Final Exam</td>
<td>9</td>
</tr>
</tbody>
</table>

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Tests and Final Examination

Closed-book 3 term tests (one-hour each) and final a two-hour final exam that covers all lecture materials.

Assignments

Four take-home problem set assignments, based on course lectures, in order to prepare students for term tests and the final exam.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Basic Electromagnetic Theory</td>
<td>12</td>
</tr>
<tr>
<td>5-7</td>
<td>Transverse Electromagnetic (TEM) Waves</td>
<td>9</td>
</tr>
<tr>
<td>8-10</td>
<td>Generation of Fast Transients</td>
<td>9</td>
</tr>
<tr>
<td>11-13</td>
<td>Electromagnetic Transients</td>
<td>9</td>
</tr>
</tbody>
</table>

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 - Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 - Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.
13. Students found to have plagiarized *any* portion of their labs and final project will receive a grade of zero on the *complete* project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Ali Hussein</th>
<th>Signature of Instructor</th>
<th>Date</th>
<th>Sept. 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EE8410 Power Electronics
Course Outline (F2013)

Course Description
A course on microprocessor-controlled solid state converters. Major topics includes: solid state switching devices, dc-dc switch mode converters, diode & thyristor rectifiers, current & voltage source inverters, industry applications and microprocessor programming techniques. Typical control schemes for these converters will also be discussed. Important concepts are illustrated with laboratory design projects. An MC68HC11 microprocessor based MPP board will be used in the projects.

Antirequisite
ELE754 or Power Electronics equivalent.

Course Organization
This course consists of three hours of lecture every week, and three design projects.

Course Material
Text:
Reference:

Course Notes

Course Evaluation
- Theoretical component 55%
 Mid-term Examination 20%
 Final Examination 35%

- Design Projects 45%
 DC/DC Switch Mode Power Supply 15%
 Phase Controlled Rectifiers 15%
 Three-phase AC Power Supply 15%

Each project starts from choosing converter topology, design of passive components, developing controllers and demonstrating the simulation results. Three semi-formal project reports are required.
Lecture Topics

1. **dc-dc Switch Mode Converters**
 (pp 161-199)
 7 hrs
 - 1.1 Introduction
 - 1.2 Buck converters
 - 1.3 One-quadrant chopper
 - 1.4 Two-quadrant chopper
 - 1.5 Review of 68HC11 based MPP board
 - 1.6 Microprocessor control of dc-dc converters

2. **Microprocessor Controlled dc Motor Drives**
 (pp 377-398)
 5 hrs
 - 2.1 Introduction
 - 2.2 Equivalent circuit of dc motors
 - 2.3 dc motor speed control
 - 2.4 Converters used in the dc motor drives
 - 2.5 Microprocessor control of dc motor drives

3. **Diode and Thyristor Rectifiers**
 (pp 79-160)
 8 hrs
 - 3.1 Introduction
 - 3.2 Single and three phase diode rectifiers
 - 3.3 Total harmonic distortions and power factor
 - 3.4 Single and three phase thyristor (SCR) rectifiers
 - 3.5 Microprocessor control of thyristor rectifiers

4. **Inverters (dc -ac converters)**
 (pp 200-248)
 8 hrs
 - 4.1 Introduction
 - 4.2 Single-phase Inverters
 - 4.3 Three-phase IGBT Inverters
 - 4.4 PWM techniques
 - 4.5 Current source Inverters
 - 4.6 Induction Motor Speed Control
 (pp 399-434)

5. **Applications**
 (pp 354-364, 460-504)
 6 hrs
 - 5.1 Introduction
 - 5.2 Uninterruptible power supplies (UPS)
 - 5.3 Power supplies
 - 5.4 Motor drives
 - 5.5 Active power filters
 - 5.6 Static var compensators
 - 5.7 Electronic ballasts

6. **Design Considerations**
 (pp 667-730)
 3 hrs
 - 6.1 Introduction
 - 6.2 Snubber circuit design
 - 6.2 Gate drive circuits
 - 6.3 Heatsink design
Project Schedule

<table>
<thead>
<tr>
<th>Projects</th>
<th>Topics</th>
<th>Week #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>DC/DC Switch Mode Power Supply</td>
<td>3-6</td>
</tr>
<tr>
<td>Project 2</td>
<td>Phase Controlled Rectifier</td>
<td>7-9</td>
</tr>
<tr>
<td>Project 3</td>
<td>Three-phase AC Power Supply</td>
<td>10-12</td>
</tr>
</tbody>
</table>

Instructor
David Xu, Ph.D.
Room ENG333, 245 Church Street, Toronto
Department of Electrical and Computer Engineering
Ryerson University
(416) 979-5000 ext: 6075.

Office hours
Every Thursday 3:00PM – 5:00PM, ENG333
Course Outline

Course Description
The topics include general configurations of voltage source inverter (VSI) and current source (CSI) fed drives, reference frame theory, space-vector and dq-axis models of ac machines, dynamic behavior of ac machines, principle of field orientation, indirect and direct field oriented controls (FOC) for VSI and CSI drives, direct torque control (DTC), sensorless control, and drive system simulation and design.

Course Organization
This course consists of two hours of lecture and one hour of laboratory per week.

Textbook

Lecture Slides
Download from http://www.ee.ryerson.ca/~bwu/courses.html

Design Projects Marks
Project 1: Induction Motor Transient Characteristics 20%
Project 2: Two-level VSI Fed Induction Motor Drive with V/F Control 20%
Project 3: Field Oriented Control (FOC) of Induction Motor Drive 30%
Project 4: Direct Torque Control (DTC) of Induction Motor Drive 30%
Total 100%

Lecture Topics

1. Introduction
2. Induction motor dynamic models
3. Power Converter Topologies
4. Voltage Source Inverter Fed Drives
5. Current Source Inverter Fed Drives
6. Field Oriented control (FOC)
7. Direct Torque Control (DTC)
EE8414: Lightning: Modelling and Detection

Prerequisites
A basic field theory under graduate course

Course Web Page http://www.ee.ryerson.ca/graduate/???

Important References

Calendar Description
Thunderstorm electrification mechanisms, electrical structure of thunderstorm clouds, electrostatic dipole and tri-pole models, mechanism of the downward-initiated lightning, tall-structure lightning, electromagnetic transients, mathematical modelling of lightning return stroke to a perfectly conducting flat ground, modelling of return stroke to a tall object, lightning-generated electromagnetic pulse, measurement of fast transients, lightning detection systems, deleterious effects of lightning and protective techniques.
Learning Objectives

Awareness and understanding of deleterious effects of lightning, one of modern-time most studied natural phenomena, starting with electrostatic modelling of a thunder cloud towards sophisticated time-domain modelling of lightning return stroke as antenna carrying fast transients for the purpose of computing the lightning-generated electromagnetic pulse (LEMP), which is necessary for the evaluation and development of detection algorithms, where the lightning current is estimated based on the easily measured LEMP. This study is fundamental to lightning protection of power systems, including wind turbines.

Course Organization

3 hours of lecture per week for 13 weeks

Course Evaluation

Four Assignments 45%

Project 25%

Final Exam 30%

Final Examination

Two-hour final exam that covers all lecture materials and assignments.

Assignments

Four take-home assignments, based on course lectures.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and thunderstorm electrification mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Deleterious effects of lightning, including those affecting power systems</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Electrostatic dipole and tri-pole models</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Downward- and upward-initiated lightning flashes</td>
<td>3</td>
</tr>
<tr>
<td>5-6</td>
<td>Measurement of the lightning current and its generated electromagnetic pulse (LEMP)</td>
<td>6</td>
</tr>
<tr>
<td>7-8</td>
<td>Maxwell’s equations for electromagnetic transients in the time domain to determine the magnetic and electric fields of LEMP</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Return-stroke modelling of lightning to flat ground</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Return-stroke modelling of lightning to a tall structure, such as the CN Tower</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Lightning protection measures</td>
<td>3</td>
</tr>
<tr>
<td>12-13</td>
<td>Project presentations an final exam</td>
<td>6</td>
</tr>
</tbody>
</table>
Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Ali Hussein</th>
<th>Signature of Instructor</th>
<th>Date</th>
<th>Sept. 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td></td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

ELEXXX Course Outline
This course will enable graduate students to pursue research in the area of design, modeling, and analysis of static, electronic, power converters. Even though the presented methodologies are rather general and thus applicable to various types of power-electronic converters, the emphasis will be on the three-phase Voltage-Sourced Converter (VSC) technology, which is widely employed in such systems as Distributed Energy Resource (DER) systems; active distribution systems and microgrids; wind, photovoltaic (PV), and fuel-cell energy systems; Flexible AC Transmissions Systems (FACTS); and High-Voltage DC (HVDC) transmission.

1. Introduction to high-power electronics, power switches, and power-electronic converter systems
2. Half-bridge Voltage-Sourced Converter (VSC) and Pulse-Width Modulation (PWM)
3. Switched and averaged models of the half-bridge VSC
4. Current-mode and voltage-mode control methods
5. Three-phase VSC, Sinusoidal PWM (SPWM), and SPWM with third harmonic injection
6. Space-phasors and vectorial representation of three-wire, three-phase systems
7. $\alpha\beta$-frame and dq-frame representations of three-wire, three-phase systems
8. Instantaneous real and reactive powers in three-wire, three-phase networks
9. Synchronization and the Phase-Locked Loop (PLL)
10. Real- and reactive-power control by the three-phase VSC
11. DC-link voltage regulation in the VSC, and Controlled DC-Voltage Power Port
12. State-space modeling and analysis of power-electronic converter systems
13. Sampled-data modeling and control of power-electronic converter systems
14. Review and analysis of important applications (wind power system, PV system, HVDC systems, etc.)

1) An undergraduate course or background in classical control (transfer functions, root-locus, Bode plot, lead/lag compensation, feed-forward, etc.).
2) An undergraduate course in power electronics or industrial electronics.

The course will be delivered through lectures. All course-related communications will be conducted through Blackboard.
Contact Hours

3 hours of lecture per week for 12 weeks

Software Requirements

MATLAB/SIMULINK or PSCAD/EMTDC.

Instructor

Dr. Amirnaser Yazdani
Office: ENG 326
Phone: (416) 979-5000 X. 6178
Email: yazdani@ryerson.ca
Website: www.ee.ryerson.ca/people/yazdani.html

Office Hours

Mondays 9:00-10:00 or by appointments.

Evaluation Components and Weights

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Content and Delivery Format</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment #1</td>
<td>10%</td>
<td>Modeling and simulation of current-controlled half-bridge and full-bridge converters using their detailed switched models. A paper-based written report, of a maximum of 10 letter-size pages, shall be delivered.</td>
<td>Sep. 29</td>
</tr>
<tr>
<td>Assignment #3</td>
<td>10%</td>
<td>Modeling and simulation of the three-phase PLL. A paper-based written report, of a maximum of 10 letter-size pages, shall be delivered.</td>
<td>Nov. 3</td>
</tr>
<tr>
<td>Assignment #4</td>
<td>20%</td>
<td>Modeling and simulation of the “Controlled DC-Voltage Power Port”, using the detailed switched model and dq-frame control. A paper-based written report, of a maximum of 10 letter-size pages, shall be delivered.</td>
<td>Nov. 17</td>
</tr>
</tbody>
</table>
Final Exam | 50% | It is open-book and includes both conceptual and analytical questions on the topics covered in the course. | See below
--- | --- | --- | ---
Total | 100% | | |

Final Exam Information

The final exam will be written during the exam period, on the date, at the time, and at the place determined by the University.

Return of Academic Work

Every marked academic work will be returned to the student approximately one week after the respective due date, in a manner that respects the privacy of the student. The marks will be posted through Blackboard. Final exams will not be returned.

Prescribed Text

Reference Text

Other References

3) Selected transaction and journal papers will be introduced as the course progresses.

Important Notes

1. Students are required to adhere to all relevant University policies, such as the student code of conduct (policies 60 and 61), which are listed at http://www.ryerson.ca/acadcouncil/policies.html, set out in the Ryerson calendar and the Graduate Student Information Guide.

2. The written reports will be assessed not only on their technical merits, but also on the communication skills of their authors as exhibited through the submitted work.

Approved by _______________________________ Date ________________________________

Associate Chair, Program Director
or Department Chair

Last Updated: August 17, 2014—AY
EE 8417 – Vector Control of Rotating Machines
Course Outline (Winter 2013)

Calendar Description
This course will enable graduate students to pursue research in the area of advanced control of rotating electric machines. The applications include regenerative industrial drives, rotating-machine-based distributed generation and energy storage systems, high-performance position-control machines, and transportation systems. The course will teach methodologies for design, parameter selection, and signal-processing and estimation techniques pertaining to advance control of rotating electric machines.

List of Topics
1. Elementary principles of three-phase AC machines
2. Dynamics of motion and torque-speed characteristics
3. Space-phasor, αβ-frame, and dq-frame representations of three-phase AC machines; the generalized model of three-phase AC machines
4. Pulse-width Modulation (PWM) and Hysteresis-Band methods of control
5. Voltage-Sourced Converter (VSC); the Current-Sourced Converter (CSC)
6. Torque and speed control of squirrel-cage induction machines based on the quasi steady-state model (constant V/f control)
7. Field-oriented torque and speed control of squirrel-cage inductions machines
8. Field-oriented torque and speed control of doubly-fed induction machines
9. Field-oriented torque and speed control of synchronous machines
10. Review and analysis of important applications (wind energy systems, flywheel energy storage systems, regenerative mine conveyors, etc.)

Pre-requisites
1) An undergraduate course in electric machines
2) An undergraduate course or enough background in classical control
3) An undergraduate course in power electronics or industrial electronics

Methods of Delivery and Communications
The course will be delivered through lectures. All course-related communications will be conducted through Blackboard.

Contact Hours
3 hours of lecture per week for 13 weeks

Software Requirements
MATLAB/SIMULINK or PSCAD/EMTDC.
Instructor
Dr. Amirnaser Yazdani
Office: ENG 326
Phone: (416) 979-5000 X. 6178
Email: yazdani@ryerson.ca
Website: www.ee.ryerson.ca/people/yazdani.html

Office Hours
TBA

Evaluation Components and Weights

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Content and Delivery Format</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment #1</td>
<td>10%</td>
<td>Modeling and simulation of an induction machine speed control system based on the scalar (v/f constant) control strategy. A paper-based, page-limited, written report shall be submitted.</td>
<td>TBA</td>
</tr>
<tr>
<td>Assignment #2</td>
<td>10%</td>
<td>Modeling and simulation of an induction machine speed-control system, based on the vectorial control strategy in rotor flux coordinates. A paper-based, page-limited, written report shall be submitted.</td>
<td>TBA</td>
</tr>
<tr>
<td>Assignment #3</td>
<td>20%</td>
<td>Modeling and simulation of a double-fed induction machine speed-control system based on the vectorial control strategy in stator flux coordinates. A paper-based, page-limited, written report shall be submitted.</td>
<td>TBA</td>
</tr>
<tr>
<td>Project</td>
<td>20%</td>
<td>Design, modeling, simulation, and validation of a wind energy conversion system based on the doubly-fed induction machine, using the model developed in Assignment #3 and the design techniques presented in the course. A comprehensive electronic written report is expected to demonstrate the design process, simulation results verifying the fulfillment of the design objectives, and to comment on the behavior of the designed system under normal and adverse operating conditions. In addition, the simulation model used</td>
<td>TBA</td>
</tr>
</tbody>
</table>
shall be submitted. The written report and the simulation model will be delivered through a CD.

<table>
<thead>
<tr>
<th>Final Exam</th>
<th>40%</th>
<th>It is the open-book nature and includes both conceptual and analytical questions on the topics covered by the course.</th>
<th>See below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100%</td>
<td>--------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Final Exam Information

The final exam will be written on “*date, time, and venue*”.

Return of Work

Every marked academic work will be returned to the student approximately one week after the respective due date, in a manner that respects the privacy of the student. The marks will be posted through Blackboard. Final exams will not be returned.

Prescribed Text

Reference Texts

3) B. Wu, “*High-Power Converters and AC Drives*”,

Other References

6) Selected transaction and journal papers will be introduced as the course progresses.

Important Notes

1. Students are required to adhere to all relevant University policies, such as the student code of conduct (policies 60 and 61), which are listed at http://www.ryerson.ca/acadcouncil/policies.html, set out in the Ryerson calendar and the Graduate Student Information Guide.

2. The written reports will be assessed not only on their technical merits, but also on the communication skills of their authors as exhibited through the submitted work.
EE8501: CMOS Mixed-Mode Circuits and Systems

Prerequisites None

Course Web Page http://www.ee.ryerson.ca/~courses/ee8501/

Compulsory Texts:
2. Lecture notes from Dr. Fei Yuan and published scientific papers.
3. Laboratory manual: ELE 7xx Laboratory Manual, Ryerson University.

Reference Texts:

Calendar Description
This course deals with the design of CMOS mixed-mode circuits and systems. Key components include switching noise, analog & digital grounding, ESD Protection, clock and power distribution, fundamentals of ADCs, Nyquist ADCs, introduction to switched-capacitor networks, over-sampling ADCs, dynamic element matching, time-mode ADCs, and decimation filters. The laboratory component consists of the design of a set of ADCs using mixed-mode circuit techniques. The third essential component of the course is the project. Students are required to complete a design project on CMOS mixed-mode circuits with a professionally prepared project report.

Learning Objectives
At the end of this course, the successful student will have a solid understanding of switching noise, analog and digital grounding, electrostatic discharge (ESD) protection, on-chip clock and power distribution, fundamentals of ADCs and Nyquist ADCs (flash, pipelined, and charge redistribution successive approximation ADCs). In addition, the student will have in-depth knowledge of switched-capacitor networks, over-sampling ADCs, time-mode ADCs and decimation filters. The student will also be able to design a complex mixed-mode circuit using state-of-the-art commercial computer-aided design tools for integrated circuits and systems.
Course Organization
3 hours of lecture per week for 13 weeks
2 hours of lab per week for 12 weeks

Course Evaluation
Midterm exam 20%
Labs 30%
Course Project 20%
Final exam 30%
Total 100%

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations
Midterm examination is a 1.5-hour, closed-book examination that covers all the lecture and laboratory materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course material and laboratory materials.

Project
Students are required to design and analyze an analog or mixed analog-digital system using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies. The design of the system must contain the followings: (i) Background studies - An extensive background study of the system to be designed is required. A literature review must be included in the project report. (ii) Schematic-level design - The schematic-level design must be simulated. All schematics of the design must be included in the project report. The dimensions of all transistors and devices must be tabulated explicitly and included in the project report. All simulation results must be included in the project report. (iii) Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- Appendices
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Switching noise analog & digital grounding</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>ESD Protection</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Clock and power distribution</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Fundamentals of ADCs</td>
<td>3</td>
</tr>
<tr>
<td>6-7</td>
<td>Nyquist ADCs (Flash, Pipelined, and Charge redistribution Successive Approximation ADCs)</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to switched-capacitor networks</td>
<td>3</td>
</tr>
<tr>
<td>9-10</td>
<td>Over-sampling ADCs</td>
<td>6</td>
</tr>
<tr>
<td>11-12</td>
<td>Time-mode ADCs (voltage-to-time converters, time-to-digital converters, VCO quantizers, time-mode Nyquist ADCs, Time-mode noise-shaping ADCs)</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Decimation filters</td>
<td>3</td>
</tr>
</tbody>
</table>

Laboratory/Projects - Room ENG408

<table>
<thead>
<tr>
<th>Labs.</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab 1: ring oscillators and switching noise</td>
<td>2-3</td>
</tr>
<tr>
<td>2</td>
<td>Lab 2: charge redistribution successive approximation ADC</td>
<td>4-6</td>
</tr>
<tr>
<td>3</td>
<td>Lab 3: Switched-capacitor 2nd-order delta-sigma modulator.</td>
<td>7-9</td>
</tr>
<tr>
<td>4</td>
<td>Lab 4: Time-mode 2nd-order delta-sigma modulator.</td>
<td>10-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Detailed Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students are required to design and analyze a mixed analog-digital system using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies.</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be
EE8502: Analog CMOS Integrated Circuits

Prerequisites
None

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8501/

Compulsory Texts:
2. Lecture notes from Dr. Fei Yuan and published scientific papers.

Reference Texts:

Calendar Description
This course deals with the design of CMOS mixed-mode circuits and systems. Key components include switching noise, analog & digital grounding, ESD Protection, on-chip clock and power distribution, fundamentals of ADCs, Nyquist ADCs, introduction to switched-capacitor networks, over-sampling ADCs, dynamic element matching, time-mode ADCs, and decimation filters. The laboratory component consists of the design of a set of ADCs using mixed-mode circuit techniques. The third essential component of the course is the project. Students are required to complete a design project on CMOS mixed-mode circuits with a professionally prepared project report.

Learning Objectives
At the end of this course, the successful student will have a solid understanding of switching noise, analog and digital grounding, electrostatic discharge (ESD) protection, on-chip clock and power distribution, fundamentals of ADCs and Nyquist ADCs (flash, pipelined, and charge redistribution successive approximation ADCs). In addition, the student will have in-depth knowledge of switched-capacitor networks, over-sampling ADCs, time-mode ADCs and decimation filters. The student will also be able to design a complex mixed-mode circuit using state-of-the-art commercial computer-aided design tools for integrated circuits and systems.
Course Organization

3 hours of lecture per week for 13 weeks
2 hours of lab per week for 12 weeks

Course Evaluation

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Labs</td>
<td>30%</td>
</tr>
<tr>
<td>Course Project</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations

Midterm examination is a 1.5-hour, closed-book examination that covers all the lecture and laboratory materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course material and laboratory materials.

Project

Students are required to design and analyze an analog or mixed analog-digital system using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies. The design of the system must contain the followings: (i) Background studies - An extensive background study of the system to be designed is required. A literature review must be included in the project report. (ii) Schematic-level design - The schematic-level design must be simulated. All schematics of the design must be included in the project report. The dimensions of all transistors and devices must be tabulated explicitly and included in the project report. All simulation results must be included in the project report. (iii) Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- Appendices
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Switching noise analog & digital grounding</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>ESD Protection</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Clock and power distribution</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Fundamentals of ADCs</td>
<td>3</td>
</tr>
<tr>
<td>6-7</td>
<td>Nyquist ADCs (Flash, Pipelined, and Charge redistribution Successive Approximation ADCs)</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to switched-capacitor networks</td>
<td>3</td>
</tr>
<tr>
<td>9-10</td>
<td>Over-sampling ADCs</td>
<td>6</td>
</tr>
<tr>
<td>11-12</td>
<td>Time-mode ADCs (voltage-to-time converters, time-to-digital converters, VCO quantizers, time-mode Nyquist ADCs, Time-mode noise-shaping ADCs)</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Decimation filters</td>
<td>3</td>
</tr>
</tbody>
</table>

Laboratory/Projects - Room ENG408

<table>
<thead>
<tr>
<th>Labs.</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab 1: ring oscillators and switching noise</td>
<td>2-3</td>
</tr>
<tr>
<td>2</td>
<td>Lab 2: charge redistribution successive approximation ADC</td>
<td>4-6</td>
</tr>
<tr>
<td>3</td>
<td>Lab 3: Switched-capacitor 2nd-order delta-sigma modulator.</td>
<td>7-9</td>
</tr>
<tr>
<td>4</td>
<td>Lab 4: Time-mode 2nd-order delta-sigma modulator.</td>
<td>10-12</td>
</tr>
<tr>
<td>Project</td>
<td>Students are required to design and analyze a mixed analog-digital system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>using a given CMOS technology and CAD tools from Cadence Design Systems. Projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>must make an extensive use of the knowledge acquired from the course. Projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>must be design-oriented and all designs must be in CMOS technologies.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be
worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 Undergraduate Grading, Promotion and Academic Standing,
 http://www.ryerson.ca/senate/policies/pol46.pdf
 Undergraduate Academic Consideration and Appeals,
 http://www.ryerson.ca/senate/policies/pol134.pdf
 Accom. of Student Relig., Abor. and Spir. Observance,
 http://www.ryerson.ca/senate/policies/pol150.pdf
 Est. of Stud. Email Accts for Official Univ. Commun.,

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class.
 Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade
EE8503: VLSI Circuits and Systems for Data Communications

Prerequisites
EE8501 or equivalent

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8503/

Compulsory Texts:
1. No single text can serve as the textbook of the course.
2. Lecture notes from Dr. Fei Yuan and published scientific papers.

Reference Texts:
6. Published peer-reviewed scientific papers in scientific journals and conference proceedings.

Calendar Description
This graduate course deals with the design of VLSI circuits and systems for communications. Major topics include fundamentals of data communication (modeling of MOS devices, noise figures, PWM, PAM. Inter-symbol interference, modeling of channels, transmission lines, and impedance matching, pre-emphasis and post-equalization, wideband amplifier design techniques (low-noise design, gain-boosting, bandwidth enhancement, switching noise, mismatch compensation, voltage-mode and current-mode), high-speed electrical signaling schemes, Gbps serialization and de-serialization, voltage and current-controlled oscillators, phase noise of oscillators, phase-locked loops, clock and data recovery. Pre-requisites: EE8501 or EE8502 or equivalent.

Learning Objectives
At the end of this course, successful students will gained a solid understanding of wire channels, fundamental of data communications over wire channels, electrical signaling for high-speed data links, channel equalization techniques, and clock and data recovery. Students will also be able to design serial links using commercial computer-aided design tools for integrated circuits.

Course
3 hours of lecture per week for 13 weeks
Organization

1 hours of lab per week for 12 weeks

Course Evaluation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Labs</td>
<td>30%</td>
</tr>
<tr>
<td>Course Project</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations

Midterm examination is a 1.5-hour, closed-book examination that covers all the lecture and laboratory materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course material and laboratory materials.

Project

Students are required to design a serial link with pre-emphasis and post-equalization using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies. The design of the system must contain the followings: (i) Background studies - An extensive background study of the system to be designed is required. A literature review must be included in the project report. (ii) Schematic-level design - The schematic-level design must be simulated. All schematics of the design must be included in the project report. The dimensions of all transistors and devices must be tabulated explicitly and included in the project report. All simulation results must be included in the project report. (iii) Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- Appendices
- Index - list of key words and their page number in the project report.
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Interconnects</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Bandwidth enhancement techniques</td>
<td>3</td>
</tr>
<tr>
<td>4-5</td>
<td>Electrical signaling</td>
<td>6</td>
</tr>
<tr>
<td>6-7</td>
<td>Fundamentals of serial links</td>
<td>6</td>
</tr>
<tr>
<td>8-10</td>
<td>Channel equalization</td>
<td>9</td>
</tr>
<tr>
<td>11-13</td>
<td>Clock and data recovery</td>
<td>9</td>
</tr>
</tbody>
</table>

Laboratory/Projects - Room ENG408

<table>
<thead>
<tr>
<th>Labs.</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab 1: Phase-locked loops</td>
<td>2-4</td>
</tr>
<tr>
<td>2</td>
<td>Lab 2: Pre-emphasis</td>
<td>5-6</td>
</tr>
<tr>
<td>3</td>
<td>Lab 3: Linear post-equalization</td>
<td>7-8</td>
</tr>
<tr>
<td>4</td>
<td>Lab 4: Decision feedback equalization</td>
<td>9-12</td>
</tr>
<tr>
<td>Project</td>
<td>Students are required to design and analyze a serial link with pre-emphasis and post-equalization using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8504: VLSI Design Automation and CAD Tools

Prerequisites None

Course Web Page http://www.ee.ryerson.ca/~courses/ee8504/

Compulsory Texts:

Reference Texts:

Calendar Description
The objective of this course is to introduce the fundamental principles of VLSI (Very Large Scale Integrated) circuit design and layout. Algorithms for VLSI design automation will be presented in order to explain how VLSI CAD tools function. The goal is to show why some problems can only be approximately solved after short computation times while others are solved exactly in a longer time.

Each lecture consists of two sections: The first section will deal with an introduction to the mathematical topics of "algorithmic graph theory", and will be followed by introductions to,"computational complexity", and "general methods for combinatorial optimization" for layout partitioning, floorplaning, placement, routing and compaction based on exact mathematical programming (linear, integer and nonlinear programming) as well as an introduction to advanced heuristic techniques (i.e. Tabu search, genetic algorithms and simulated annealing, neural networks, etc).

Learning Objectives
At the end of this course, the successful student will have a solid understanding of "computational complexity", and "general methods for combinatorial optimization" for layout partitioning, floorplaning, placement, routing and compaction based on exact mathematical programming (linear, integer and nonlinear programming) as well as an introduction to advanced heuristic techniques. Additionally, each lecture will introduce design flow for full-custom, semi-custom, and programmable design using CAD tools.
Course Organization
3 hours of lecture per week for 13 weeks
1 hour of lab per week for 12 weeks

Course Evaluation
Design project 25%
Examination 75%
Total 100%

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations
Final examination is a 3-hour closed-book examination that covers all the course material and laboratory materials.

Project
Students are required to design and analyze an digital system using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies. The design of the system must contain the followings: The first step in the design flow of an integrated circuit typically involves defining a specification. For circuit generation either a behavioral or structural VHDL code can be used or a circuit schematic can be drawn. The next step in the design process involves running a simulation of the circuit to verify that the circuit is operating correctly. Synopsys software will be used to synthesize and simulate the circuit. In the layout synthesis a manual or automatic physical layout of the circuit will be generated using floorplaning, placement and routing of the circuit’s components. Verification of the generated layout involves running Design Rule Checker to determine whether any process rules such as minimum wide or spacing rules have been violated. Following the circuit extraction, parasitic extraction and electrical rules check procedures the final step of the design process deals with the conversion of the layout to a format suitable for fabrication, such as CIF or GLSII.

Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Deadline for report: last day of fall term
- Report should include:
 - Description of circuit designed (full schematic and layout)
 - Block diagram showing different module in chip
 - Print of the entire chip
 - Evidence that it works (from simulation plots)
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Outline, Course Management</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Graph Theory, Complexity, Combinatorial Optimization Problem, Definitions</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Algorithms – Design Flow</td>
<td>Set-up of Synopsys and Cadence</td>
</tr>
<tr>
<td>4</td>
<td>Specification – Circuit Generation</td>
<td>Synopsys</td>
</tr>
<tr>
<td>5</td>
<td>Circuit Generation – Simulation Algorithms</td>
<td>Synopsys & Cadence</td>
</tr>
<tr>
<td>6</td>
<td>Layout Synthesis - Layout Generation with Cadence</td>
<td>Cadence-Synopsys Data Transfer</td>
</tr>
<tr>
<td>7</td>
<td>Partitioning / Algorithm</td>
<td>Cadence</td>
</tr>
<tr>
<td>8</td>
<td>Floorplanning / Algorithm</td>
<td>Cadence</td>
</tr>
<tr>
<td>9</td>
<td>Placement / Algorithm (Generation)</td>
<td>Cadence (Manual, Auto Layout)</td>
</tr>
<tr>
<td>10</td>
<td>Routing: Global, Area, Channel / Algorithm</td>
<td>Cadence</td>
</tr>
<tr>
<td>11</td>
<td>Routing: Detailed / Algorithm (Generation)</td>
<td>Cadence (Manual, Auto Layout)</td>
</tr>
<tr>
<td>12</td>
<td>Design Rule Check (DRC), Extraction, Layout vs. Schematic (LVS), Post Layout Simulation</td>
<td>Cadence</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8505: Digital Systems Testing

Prerequisites
None

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8505/

Compulsory Texts:
5. V. Geurkov. Lecture notes.

Reference Texts:

Calendar Description
The course covers theory and techniques for digital systems testing and testable design. The concepts of fault modeling, fault simulation, test generation, functional testing, and logic-level diagnosis are examined. Memory testing, programmable logic array (PLA) and field-programmable gate array (FPGA) testing, microprocessor testing, and design for testability issues are discussed. Compression techniques, built-in self-test and self-checking circuits are also covered.

Learning Objectives
At the end of this course, the successful student will have a solid understanding of principles of digital testing and test philosophy, fault models, fault simulation, testability measures, combinational and sequential circuit test generation methods, memory testing, delay test methodology, various methods of design for testability (including scan design, built-in self-test, and boundary scan). In addition, the student will have fundamental understanding of the principles of error-control coding and their application to self-checking design and design for test of digital devices (including programmable logic devices).
Course Organization

Course Evaluation

Examinations

Project

Course Content

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.
12. Projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.

<table>
<thead>
<tr>
<th>Name of Instructor</th>
<th>Vadim Geurkov</th>
<th>Signature of Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Graduate Program Director</td>
<td>Lian Zhao</td>
<td>Signature of Graduate Program Director</td>
<td>Date</td>
</tr>
</tbody>
</table>
EE8506: Digital CMOS VLSI Integrated Circuits

Prerequisites: None

Course Web Page: Course website on Blackboard (http://my.ryerson.ca)

Compulsory Texts:

Reference Texts: None

Calendar Description: This course deals with the design of Digital CMOS integrated circuits. The course consists of three essential components: Theory, Laboratory, and project. Variety of design techniques, such as Static CMOS, Dynamic CMOS, and Transmission Gate are discussed in theory. These designs are studied on basic logic gates as well as combinational and sequential circuits. The lessons learned are applied to arithmetic building blocks such as adders, multipliers, and memory elements. A MOS transistor is studied using I-V equations, and the different areas of operations are modeled. The static (DC) are dynamic (transient) behaviors for an important building block, a CMOS inverter, are studied in depth.

Learning Objectives: At the end of this course, the successful student will have a solid understanding of the operations of MOS transistors pertaining to digital circuit operations including the I-V characteristics of MOS transistors, static and dynamic behaviours of the CMOS inverter, Static CMOS design techniques, Dynamic CMOS design techniques, Transmission Gate design techniques, and the performance and power evaluation of digital CMOS circuits. The student will develop a good understanding of the basic logic gate design techniques as well as advanced combinational and sequential circuit design techniques including the design and implementation of arithmetic building blocks such as adders, multipliers, and memory elements. The student will also be able to perform schematic-level and layout-level design of advanced digital CMOS circuits using computer-aided design tools (CAD) from Cadence Design Systems (CAD tools for IC design are used extensively in both laboratories and course projects).

Course: 3 hours of lecture per week for 13 weeks
Organization

2 hours of lab per week for 12 weeks

Course Evaluation

<table>
<thead>
<tr>
<th>Course</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Labs</td>
<td>30%</td>
</tr>
<tr>
<td>Course Project</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To achieve a passing grade, student must pass both the theory and laboratory/project components.

Examinations

Midterm examination is a 1.5-hour, closed-book examination with one page of aid-sheet that covers all the lecture and laboratory materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination with two pages of aid-sheet that covers all the course material and laboratory materials.

Project

Students are required to perform the design and layout of either a 4x4 array multiplier or an 8 entry SRAM block using a given CMOS technology and CAD tools from Cadence Design Systems. The design of the system must contain the followings: (i) Schematic-level design - The schematic-level design must be fully simulated to verify its correctness. All schematics of the design must be included in the project report. The dimensions of all transistors and devices must be tabulated explicitly and included in the project report. All simulation results must be included in the project report. The critical path(s) of the circuit must be correctly identified. The performance of the critical path(s) must be measured through simulation. Reasonable effort must be made to minimize the delay of the critical path(s). (ii) Layout-level design – the layout-level design must faithfully reproduce the schematic-level design decisions that are made in (i). Efforts must be made to produce a modular and regular layout in order to minimize layout effort. (iii) Layout Vs Schematic (LVS) comparison and the measured performance of the post layout critical path(s) through simulation. (iv) Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- References - list of the books, journal papers, conference papers, and other publications used in the project report. References must be listed using IEEE reference styles. You need to take a look at *IEEE Transactions on Circuits and Systems I - Regular Papers* and *IEEE Journal of Solid-State Circuits* for IEEE reference styles on books, journal papers, conference papers, and technical...
Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Digital CMOS Design</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MOS Transistor Theory</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Circuit Simulation</td>
<td>3</td>
</tr>
<tr>
<td>4-5</td>
<td>Delay Estimation</td>
<td>4.5</td>
</tr>
<tr>
<td>5-6</td>
<td>Power Estimation</td>
<td>4.5</td>
</tr>
<tr>
<td>7-8</td>
<td>Interconnect Design (Midterm in week 8)</td>
<td>4</td>
</tr>
<tr>
<td>9-10</td>
<td>Combinational Circuit Design</td>
<td>4.5</td>
</tr>
<tr>
<td>10-11</td>
<td>Datapath Subsystems</td>
<td>4.5</td>
</tr>
<tr>
<td>12-13</td>
<td>Sequential Circuit Design</td>
<td>4.5</td>
</tr>
<tr>
<td>13</td>
<td>Review and Catch-up</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Laboratory/Projects - Room ENG408

<table>
<thead>
<tr>
<th>Labs</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab 1: Characteristics of MOSFET Devices</td>
<td>2-4</td>
</tr>
<tr>
<td>2</td>
<td>Lab 2: CMOS Inverter Design</td>
<td>5-7</td>
</tr>
<tr>
<td>3</td>
<td>Lab 3: CMOS Logic Families</td>
<td>8-10</td>
</tr>
<tr>
<td>4</td>
<td>Lab 4: 1-bit CMOS Full Adder</td>
<td>11-13</td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students are required to perform the design and layout of either an 4x4 array multiplier or an 8 entry SRAM block using a given CMOS technology and CAD tools from Cadence Design Systems.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or
exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 Undergraduate Grading, Promotion and Academic Standing,
 http://www.ryerson.ca/senate/policies/pol46.pdf
 Undergraduate Academic Consideration and Appeals,
 http://www.ryerson.ca/senate/policies/pol134.pdf
 Accom. of Student Relig., Abor. and Spir. Observance,
 http://www.ryerson.ca/senate/policies/pol150.pdf
 Est. of Stud. Email Accts for Official Univ. Commun.,

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade.
EE8604: Radio-Frequency Circuits and Systems

Prerequisites
EE8501 or equivalent

Course Web Page
http://www.ee.ryerson.ca/~courses/ee8604/

Compulsory Texts:
3. Published scientific papers.

Reference Texts:

Calendar Description
This course deals with design of CMOS circuits for wireless communications. Topics include: characterization of RF circuits, architecture of RF transceivers, low-noise amplifiers, mixers, frequency synthesizers, and power amplifiers. Students are required to complete a design project with a professionally prepared project report.

Learning Objectives
At the end of this course, successful students will have a solid understanding of RF transceivers, characterization of RF circuits, low-noise amplifiers, mixers, frequency synthesizers, and power amplifiers. Students will also be able to design a RF circuit using commercial computer-aided design tools for integrated circuits.

Course Organization
3 hours of lecture per week for 13 weeks
2 hours of lab per week for 12 weeks

Course Evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Labs</td>
<td>30%</td>
</tr>
<tr>
<td>Course Project</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To achieve a passing grade, student must pass both the theory and laboratory/project components.
Examinations

Midterm examination is a 1.5-hour, closed-book examination that covers all the lecture and laboratory materials up to the week of mid-term examination.

Final examination is a 3-hour closed-book examination that covers all the course material and laboratory materials.

Project

Students are required to design and analyze a RF circuit using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies. The design of the system must contain the followings: (i) Background studies - An extensive background study of the system to be designed is required. A literature review must be included in the project report. (ii) Schematic-level design - The schematic-level design must be simulated. All schematics of the design must be included in the project report. The dimensions of all transistors and devices must be tabulated explicitly and included in the project report. All simulation results must be included in the project report. (iii) Project reports must be prepared in a single-column double-space format, and must contain the followings:

- Title page - Title of the project, authors' name, and course name.
- Abstract - Abstract of the project report.
- Table of contents - list of chapters, sections, and subsections of the project report.
- List of figures - list of all figures in the project report.
- List of tables - list of all tables in the project report.
- Main body of the project report - All schematics and figures must be embedded in the main body of the report and numbered.
- Appendices
- Index - list of key words and their page number in the project report.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Architecture of RF transceivers</td>
<td>6</td>
</tr>
<tr>
<td>3-4</td>
<td>Impedance transformation</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Low-Noise Amplifiers</td>
<td>3</td>
</tr>
<tr>
<td>6-8</td>
<td>Mixers</td>
<td>9</td>
</tr>
</tbody>
</table>
9-10 | Power amplifiers | 6
11-13 | Frequency synthesizers | 9

Laboratory/Projects - Room ENG408

<table>
<thead>
<tr>
<th>Labs.</th>
<th>Detailed Description</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab 1: Low-noise amplifier</td>
<td>2-4</td>
</tr>
<tr>
<td>2</td>
<td>Lab 2: Mixer</td>
<td>5-7</td>
</tr>
<tr>
<td>3</td>
<td>Lab 3: Frequency synthesizer</td>
<td>8-12</td>
</tr>
</tbody>
</table>
| Project | Students are required to design and analyze a RF circuit using a given CMOS technology and CAD tools from Cadence Design Systems. Projects must make an extensive use of the knowledge acquired from the course. Projects must be design-oriented and all designs must be in CMOS technologies. |}

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.

2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.

3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.

4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.

5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.

6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive
accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade
EE8605: Semantic Web Technologies

Prerequisites
None

Compulsory Texts:

Reference Texts:

Calendar Description
The objectives of this course are to provide an in depth understanding of Semantic Web Techniques. The emphasis will be on how data and information can be formally represented such that machines not only efficiently store and retrieve them but also exploit them for automated inference, integration, reasoning and reuse. This course will cover topics such as Semi-Structured Data, Semantic Relations, Resource Description Framework, Querying Semantic Information, Ontologies, Reasoning and the Linked Open Data.

Learning Objectives
In this course, students will learn how to semantically model and describe complex domain and information models in order to enable efficient reasoning and automation. Students will get practical experience in information and knowledge modeling, formal reasoning, working with Semantic Web and Linked Open Data.

Course Organization
3 hours of lecture per week for 13 weeks

Course Evaluation
<table>
<thead>
<tr>
<th>Assignments</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Project</td>
<td>40%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

To achieve a passing grade, student must pass both the theory and assignment/project components.
Examinations

Final examination is a 3-hour closed-book examination that covers all the course material and project materials.

Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>Detailed Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Fundamentals of data modeling techniques especially relational models</td>
<td>6</td>
</tr>
<tr>
<td>3-4</td>
<td>Semi-Structured Data, XML, XML Schema, XPath, XQuery</td>
<td>3</td>
</tr>
<tr>
<td>5-6</td>
<td>Resource Description Framework, RDF, RDFS</td>
<td>3</td>
</tr>
<tr>
<td>7-8</td>
<td>Formal Ontologies, RDFS, OWL</td>
<td>3</td>
</tr>
<tr>
<td>9-10</td>
<td>Querying the Semantic Web through SPARQL</td>
<td>6</td>
</tr>
<tr>
<td>11-12</td>
<td>Embedded Semantics, RDFa, Microformat</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Linked Open Data Cloud and Semantic Data Integration</td>
<td>6</td>
</tr>
</tbody>
</table>

Note: Schedule of lectures and labs is tentative. There may be some changes in the schedule that will be announced in the class and posted on course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. Should a student miss a mid-term test or equivalent (e.g. studio or presentation), with appropriate documentation, a make-up will be scheduled as soon as possible in the same semester. Make-ups should cover the same material as the original assessment but need not be of an identical format. Only if it is not possible to schedule such a make-up may the weight of the missed work be placed on the final exam, or another single assessment. This may not cause that exam or assessment to be worth more than 70% of the student’s final grade. If a student misses a scheduled make-up test or exam, the grade may be distributed over other course assessments even if that makes the grade on the final exam worth more than 70% of the final grade in the course.
4. Students who miss a final exam for a verifiable reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.
6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this
deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.

7. The results of the first test or mid-term exam will be returned to students before the deadline to drop an undergraduate course in good Academic Standing.

8. Students are required to adhere to all relevant University policies including:
 - Undergraduate Grading, Promotion and Academic Standing, http://www.ryerson.ca/senate/policies/pol46.pdf
 - Student Code of Academic Conduct, http://www.ryerson.ca/senate/policies/pol60.pdf
 - Undergraduate Academic Consideration and Appeals, http://www.ryerson.ca/senate/policies/pol134.pdf

9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.

10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.

11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO. In some genuine cases late submission will be allowed with a penalty of 5% per day.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This automatically will lead to a failing grade
EE8606: Biomedical Simulations (Selected Topics in Biomedical Engineering)

Prerequisites
Registration within Ryerson’s School of Graduate Studies or approval.

Course Web Page
http://www.ee.ryerson.ca/~jasmith/courses/ee8606

Compulsory Texts:
5. Programming Interactivity, 2nd Edition; Joshua Noble (eBook at Ryerson)

Reference Texts:
To be determined.

Calendar Description
This course provides a comprehensive treatment on design processes and fundamental concepts of device design related to medical simulations of people and interactive biomedical devices. Topics include: biomimetics, physical simulation tools (electrical and mechanical), and computer simulations. Biology- and human-centric design methodologies will be applied to contemporary problems such as soft devices, medical suturing simulators, and robotics. By the end of the course, the student will have gained knowledge in some of the essentials of biomedical simulation engineering and its application to environments where interactions with and mimicry of people are key. The student will be capable of specifying design requirements, components and system integration strategies in such scenarios.
Learning Objectives

Describe differences between the various approaches that can be used to solve a biomedical simulation problem using appropriate tools. Select one specific approach to solve the problem. When the selected approach fails to solve the problem satisfactorily, analyze the cause of failure using standard methods and debugging methodologies. Based on the analysis, come up with new suggestions to improve the existing approach. Integrate the new suggestions into the existing design plan. Judge the completeness and quality of the generated solutions using standard methods and debugging methodologies.

Produce lab and project reports using appropriate format, grammar, and citation styles for technical and non-technical audiences.

Course Organization

3 hours of lecture and discussion per week for 12 weeks

Course Evaluation

<table>
<thead>
<tr>
<th>Evaluation Type</th>
<th>Percentage of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion (Participation)</td>
<td>10%</td>
</tr>
<tr>
<td>Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final Project</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

(a) Discussion sessions: A number of discussions and design-oriented brainstorming sessions will be held throughout the semester. Your participation grade will be based on your work during these sessions.

(b) Assignments Exam: Five half-page “milestone” reports related to the final project, distributed throughout the semester.

(c) Midterm Exam: A single midterm exam will be held.

(d) Final Exam: A single final exam will be held.

(e) Final Project: You will choose a project early in the semester and be evaluated on it by the end-of-semester. The technical scope of the project will be determined on an individual basis, based on a consultation with the instructor. A marking guide will be provided ahead of time.

Project

The final project report is expected to adhere to IEEE format, including referencing, unless the student eventually intends to submit the work in some form to a non-IEEE
publication, in which case the specific publication’s formatting style is to be adhered to (and a web link specifying this format is provided by the student to the instructor). Refer to the marking and style guides for details on what is required in these reports.

Course Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Readings</th>
<th>Hours</th>
<th>Topic, description</th>
</tr>
</thead>
</table>
| Introduction | Ch. 1 Fritzson; Ch. 1 Passino; Ch. 1 Gallagher & O'Sullivan | 3 | - Introduction to Biomedical Simulations
- Biomimetics and Biomimicry; Evolutionary vs. Engineering Constraints |
| Design Thinking | Dow and Klemmer; MacFadyen; Brown | 3 | - General human-centric design methodologies
- Design requirements, components and system integration strategies |
| Medical & Mechanical aspects of Biomedical Physical Modeling | Ch. 2, 3, 5, Gallagher & O'Sullivan; Ch 1, 2, 3, 17, 45 Merica | 9 | - Simulations for Procedural Training
- Human Factors in Acquiring Medical Skill
- Metrics for Measurement of Skill
- Medical moulage materials, techniques and processes.
- Modeling Abscesses, Bites and Stings
- Modeling Blood
- Modeling Scars
- Case Studies |
| Electrical Aspects of Biomedical Physical Modeling | Ch. 7, 8, 11, Noble | 6 | - Physical Input
- Graphical Output
- Sensor & actuator interfacing |
| Computer Models & Simulations of Biomedical Systems | Ch. 2, 13, 14 & 15 Fritzson | 9 | - Multiphysics approaches to computer simulations
- MapleSim and Modelica
- System Modeling Methodology & Continuous Model Representation
- Discrete Event, Hybrid and Concurrent Modeling
- Basic Laws of Nature |
| Student Presentations | n/a | 6 | - TBD |

Course Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Readings</th>
<th>Hours</th>
<th>Topic, description</th>
</tr>
</thead>
</table>
| Introduction | Ch. 1 Fritzson; Ch. 1 Passino; Ch. 1 Gallagher & O'Sullivan | 3 | - Introduction to Biomedical Simulations
- Biomimetics and Biomimicry; Evolutionary vs. Engineering Constraints |
| Design Thinking | Dow and Klemmer; MacFadyen; Brown | 3 | - General human-centric design methodologies
- Design requirements, components and system integration strategies |
| Medical & Mechanical aspects of Biomedical Physical Modeling | Ch. 2, 3, 5, Gallagher & O'Sullivan; Ch 1, 2, 3, 17, 45 Merica | 9 | - Simulations for Procedural Training
- Human Factors in Acquiring Medical Skill
- Metrics for Measurement of Skill
- Medical moulage materials, techniques and processes.
- Modeling Abscesses, Bites and Stings
- Modeling Blood
- Modeling Scars
- Case Studies |
| Electrical Aspects of Biomedical Physical Modeling | Ch. 7, 8, 11, Noble | 6 | - Physical Input
- Graphical Output
- Sensor & actuator interfacing |
| Computer Models & Simulations of Biomedical Systems | Ch. 2, 13, 14 & 15 Fritzson | 9 | - Multiphysics approaches to computer simulations
- MapleSim and Modelica
- System Modeling Methodology & Continuous Model Representation
- Discrete Event, Hybrid and Concurrent Modeling
- Basic Laws of Nature |
| Student Presentations | n/a | 6 | - TBD |
Note: The schedule is tentative. There may be some changes in the schedule that will be announced in the class and/or posted on the course website.

Important Notes

1. All of the required course-specific written reports will be assessed not only on their technical/academic merit, but also on the communication skills exhibited through these reports.
2. All assignment and lab/tutorial reports must have the standard cover page which can be completed and printed from the Department website at www.ee.ryerson.ca. The cover page must be signed by the student(s) prior to submission of the work. Submissions without the cover pages will not be accepted.
3. No makeups will be provided for midterm exam or assignments. If any of the aforementioned are missed for an officially approved reason the associated weight will be assigned to the final exam.
4. Students who miss a final exam for an officially approved reason and who cannot be given a make-up exam prior to the submission of final course grades, must be given a grade of INC (as outlined in the Grading Promotion and Academic Standing Policy) and a make-up exam (normally within 2 weeks of the beginning of the next semester) that carries the same weight and measures the same knowledge, must be scheduled.
5. Medical or Compassionate documents for the missing of an exam must be submitted within 3 working days of the exam. Students are responsible for notifying the instructor that they will be missing an exam as soon as possible.
6. Requests for accommodation of specific religious or spiritual observance must be presented to the instructor no later than two weeks prior to the conflict in question (in the case of final examinations within two weeks of the release of the examination schedule). In extenuating circumstances this deadline may be extended. If the dates are not known well in advance because they are linked to other conditions, requests should be submitted as soon as possible in advance of the required observance. Given that timely requests will prevent difficulties with arranging constructive accommodations, students are strongly encouraged to notify the instructor of an observance accommodation issue within the first two weeks of classes.
7. The results of the first assignment and/or midterm exam will be returned to students before the deadline to drop a course in good Academic Standing.
9. Students are required to obtain and maintain a Ryerson Matrix e-mail account for timely communications between the instructor and the students.
10. Any changes in the course outline, test dates, marking or evaluation will be discussed in class prior to being implemented.
11. In-class use of cellular telephones is not permitted. Please turn off your cell phone prior to class. Quiet use of laptops, text-messengers and similar non-audible devices are permitted only in the rear
rows of the class. This restriction allows use of such devices by their users while limiting audible and visual distractions to other students. This policy may change without notice.

12. Labs, projects handed in past the due date and time will not be accepted for marking and will receive a mark of ZERO.

13. Students found to have plagiarized any portion of their labs and final project will receive a grade of zero on the complete project. This may automatically will lead to a failing grade.
Ryerson University
Electrical and computer Engineering Department
EE8608 Antenna Theory and Design
Winter Term 2014

The course introduces the fundamental principles of Analysis and design of antennas. In addition, the course develops appreciation for research issues of antennas for mobile wireless and advanced communications systems.

Particular topics covered are: fundamental parameters of antennas such as radiation patterns, directivity, gain, near field and far field zones, Detailed Analysis of traditional antennas such as linear wire antennas, loops, arrays and aperture antennas. Theory will also be covered for the analysis and design of linear planar arrays.

Lecturer: Dr. Farah Mohammadi,
Office: ENG 461
Email: fmohamma@ee.ryerson.ca
Extension: 6094

Prerequisites:
Decent Math background in vector Analysis, differential equations and complex numbers
Undergraduate Electromagnetic Courses (e.g. ELE531-Electromagnetics)
Knowledge of Maxwell Equations and Basic Waves.

Review material: Review Maxwell’s Equations and a Wave Chapter in any available undergraduate textbook

Other Textbooks:
Antenna Theory and Design, Stutzman and Thiele, Wiley
Antennas for All Applications, Kraus and Marhefka, McGraw Hill

Office hours: Mondays 4pm to 6pm
Course Evaluation:

- Project: 30%
- Test 1: 15%
- Test 2: 15%
- Final: 40%

Bonus: Antenna picture and report assignment 15%

Assignments: Optional

The instructions for the Project and Antenna picture assignment will be provided in detail.

Course Outline:

I. Introduction to Antennas for Wireless Communications

II. Electromagnetic Theory Review

III. Antennas

a. Types of antennas
b. Radiation mechanism
c. Current distribution
d. Historical advancement

IV. Fundamental Parameters of Antennas

a. Antenna
b. Radiation mechanism
c. Radiation pattern
d. Radiation intensity
e. Directivity
f. Gain
g. Efficiency, beam width, and bandwidth
h. Polarization
i. Impedance
j. Antenna as an aperture

Test 1
V. Radiation Integrals

a. Vector potential A
b. Vector potential F
c. Far-field radiation
d. Duality, reciprocity, and reaction theorem

VI. Wire Antennas

a. Short wire
b. Finite length dipole
c. Ground effects

d. Ground effects

e. Finite length dipole

VII. Loop Antenna

a. Small circular loop
b. Large circular loop
c. Ground effects
d. Polygonal loops
Test 2

e. Large circular loop

VIII. Arrays

a. Linear array
1. Broadside
2. Endfire
3. Scanning
4. Binomial
5. Dolph-Tchebyscheff
b. Planar array
c. Circular array
d. Designs
1. Dolph-Tchebyscheff
2. Yagi-Uda
3. Log-Periodic
e. Smart/Intelligent/Adaptive Antennas