An Introduction to the Z Shell

Paul Falstad
pf@z-code.com

Bas de Bakker
bas@phys.uva.nl

Introduction

zsh is a shell designed for interaati ise, although it is also a powerful scripting langualfany of the
useful features of bash, ksh, and tcsh were incorporatedsimtonary original features were addedhis
document details some of the unique featurezsiof It assumes basic kmdedge of the standard UNIX
shells; the intent is to stwa reader already familiar with one of the other major shells whatsmk
more useful or more peerful. Thisdocument is not at all comprehergiread the manual entry for a
description of the shell that is complete and concise, although somevdmahelming and deoid of
examples.

The text will frequently mention options that you can set to change the behavishr &ou can set these
options with the command

% setopt optionname
and unset them again with
% wsetopt optionname

Case is ignored in option names, as are embedded underscores.

Filename Generation
Otherwise known aglobbing filename generation is quitgtensie in zsh. Of course, it has all the basics:

% Is

Makefile file.pro foo.0 main.o g.c run234 stuff
bar.o foo link morestuff runl23 run240 sub
file.h foo.c main.h pipe run2 run303

% Is *.c

foo.c qg.c

% Is * .[co]

bar.o foo.c foo.0 main.o g.c

% Is f 00.?

foo.c foo.o

% Is * .[°c]

bar.o file.h foo.o main.h main.o

% Is * .[Coh]

foo.c qg.c

Also, if the EXTENDEDGLOBoption is set, some nefeatures are astited. For example, thé character
negaes the pattern following it:

% setopt extendedglob

% Is -d ~ *.c

Makefile file.pro link morestuff run2 run303
bar.o foo main.h pipe run234 stuff

file.h foo.o main.o runl23 run240 sub

% Is -d ~ **

Makefile link pipe run2 run240 stuff

foo morestuff runl23 run234 run303 sub

% Is -d © Makefile

bar.o foo link morestuff runl23 run240 sub
file.h foo.c main.h pipe run2 run303

file.pro foo.o main.o g.c run234 stuff

% Is -d * c

.rhosts bar.o file.h file.pro foo.o main.h main.o

An expression of the formx-y> matches a range of integers:

% Is r un<200-300>

run234 run240

% Is r un<300-400>

run303

% Is r un<-200>

runl23 run2

% Is r un<300->

run303

% Is r un<>

runl23 run2 run234 run240 run303

The NUMERICGLOBSOR Dption will sort files with numbers according to the numbghis will not
work with s as it resorts its arguments:

% <setopt numericglobsort
% eho run<>
run2 runl123 run234 run240 run303

Grouping is possible:

% Is (foo|bar).*

bar.o foo.c foo.o

% Is * .(c|o|pro)

bar.o file.pro foo.c foo.o main.o g.c

Also, the string*/ forces a recurge arch of subdirectories:

% Is - R

Makefile file.pro foo.0 main.o g.c run234 stuff
bar.o foo link morestuff runl23 run240 sub
file.h foo.c main.h pipe run2 run303

morestuff:

Stuff:
file xxx yyy

stuff/xxx:
foobar

stufflyyy:

frobar

% Is * */*bar

stuff/xxx/foobar stuff/yyy/frobar

% Is * */f*

file.h foo foo.o stuff/xxx/foobar

file.pro foo.c stuff/file stuff/yyy/frobar
% Is * bar*

bar.o

% Is * */[*bar*

bar.o stuff/xxx/foobar stufflyyy/frobar

% Is s tuff**/*pbar*
stuff/xxx/foobar stufflyyy/frobar

It is possible to exclude certain files from the patterns using the ~ charécteattern of the form
*.cC"bar.c lists all files matching.c , except for the filebar.c

% Is * .c

foo.c foob.c bar.c
% Is * .c"bar.c

foo.c foob.c

% Is * .c°f*

bar.c

One can add a number qgfialifiersto the end of anof these patterns, to restrict matches to certain file
types. Aqualified pattern is of the form

patterr(...
with single-character qualifiers inside the parentheses.

% dias I='ls -dF’

% | *

Makefile foo* main.h g.c run240

bar.o foo.c main.o runi23 run303

file.h foo.o morestuff/ run2 stuff/

file.pro link@ pipe run234 sub

% | * (/)

morestuff/ stuff/

% | *(@)

link@

% 1 * (%)

foo* link@ morestuff/ stuff/

% | *(x)

foo* link@ morestuff/ stuff/

% | *(X)

foo* link@ morestuff/ stuff/

% | *(R)

bar.o foo* link@ morestuff/ runl23 run240
file.h foo.c main.h pipe run2 run303
file.pro foo.o main.o g.c run234 stuff/

Note that*(x) and*(*) both match gecutables.*(X) matches filesyecutable by others, as opposed
to *(x) , which matches filesxecutable by thewner. *(R) and*(r) match readable fileg(W) and
(w) , which checks for writable files(W) is especially important, since it checks foond-writable
files:

% | *(w)

bar.o foo* link@ morestuff/ runl23 run240
file.h foo.c main.h pipe run2 run303
file.pro foo.o main.o g.c run234 stuff/

% | * (W)

link@ run240

% | -1 | inkrun240

[rwxrwxrwx 1 pfalstad 10 May 23 18:12 link -> /usr/bin/
-rw-rw-rw- 1 pfalstad 0 May 23 18:12 run240

If you want to hge dl the files of a certain type as well as all symbolic links pointing to files of that type,
prefix the qualifier with a:

% 1 * ()

link@ morestuff/ stuff/

You can filter out the symbolic links with thecharacter:
% I *(W@)

run240

% 1 *(X)

foo* link@ morestuff/ stuff/
% | *(X@))

foo*

To find all plain files, you can use

% 1 *()

Makefile file.h foo* foo.o main.o runl23 run234 run303
bar.o file.pro foo.c main.h g.c run2 run240 sub
% 1 *(.)

link@ morestuff/ pipe stuff/

% | s*()

stuff/ sub

% 1 *(p)

pipe

% 1-1* (p)

prw-r--r-- 1 pfalstad 0 May 23 18:12 pipe

*(U) matches all files owned by yolo sarch for all files not owned by you, ugdJ)
% 1 -1 * (CU)

-FW------- 1 subbarao 29 May 2318:13 sub

This searches for setuid files:

% | -l * (s)

-rwsr-xr-x 1 pfalstad 16 May 23 18:12 foo*

This checks for a certain usefiles:

% | -l * (u[subbarao])

-FW------- 1 subbarao 29 May 2318:13 sub

Startup Files

There are fig gartup files tharsh will read commands from:

$ZDOTDIR/.zshenv
$ZDOTDIR/.zprofile
$ZDOTDIR/.zshrc
$ZDOTDIR/.zlogin
$ZDOTDIR/.zlogout

If ZDOTDIR is not set, then the value HOME is used; this is the usual case.

.zshenv is sourced on all iocations of the shell, unless the option is set. It should contain com-
mands to set the command search path, plus other important enviromamables. .zshenv should not
contain commands that produce output or assume the shell is attached to a tty.

.zshrc is sourced in interaate dhells. Itshould contain commands to set up aliases, functions, options,
key bindings, etc.

.zlogin is sourced in login shellslt should contain commands that should kecated only in login
shells. .zlogout s sourced when login shellgie .zprofile is similar to.zlogin , except that it

is sourced beforezshrc . .zprofile is meant as an alternagi .zlogin for ksh fans; the tow are

not intended to be used togethdthough this could certainly be done if desiredlogin is not the
place for alias definitions, options, environmeatiable settings, etc.; as a general rule, it should not
change the shell environment at a@iather it should be used to set the terminal type and run a series of
external commanddd@rtune , msgs, €tc).

Shell Functions
zsh also allows you to create your own commands by defining shell funct@ngxample:

% yp () {
> ypmatch $1 passwd.byname

>}
% yp pfalstad
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

This function looks up a user in the NIS password mie $1 expands to the first argumentyp. The
function could hee been equialently defined in one of the following ways:

% function yp {

> ypmatch $1 passwd.byname
>}

% function yp () {

> ypmatch $1 passwd.byname
>}

% function yp () ypmatch $1 passwd.byname

Note that aliases areganded when the function definition is parsed, not when the functiomdated.
For example:

% dias ypmatch=echo
% yp pfalstad
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

Since the alias was defined after the functi@s warsed, it has no effect on the functaxécution. Hav-
eva, if we define the function again with the alias in place:

% function yp () { ypmatch $1 passwd.byname }
% yp pfalstad
pfalstad passwd.byname

it is parsed with the mealias definition in place Therefore, in general you must define aliases before func-
tions.

We @an male the function tak multiple arguments:

% walias ypmatch

% yp (O {

> fori

> do ypmatch $i passwd.byname
> done

>}

% yp pfalstad subbarao sukthnkr

pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh
subbarao:*:3338:35:Kartik Subbarao:/u/subbarao:/usr/princeton/bin/zsh
sukthnkr:*:1267:35:Rahul Sukthankar:/u/sukthnkr:/usr/princeton/bin/tcsh

Thefor i loops through each of the functisrerguments, setting equal to each of them in turinVe
can also makthe function do something sensible if no arguments asagi

% yp O {

> if(($# ==0))

> t hen echo usage: yp name ...; fi

> f or i; do ypmatch $i passwd.byname; done

>}

%

usage: yp name ...
% yp pfalstad sukthnkr

pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh
sukthnkr:*:1267:35:Rahul Sukthankar:/u/sukthnkr:/usr/princeton/bin/tcsh

$# is the number of arguments supplied to the functibrit is equal to zero, we print a usage message;
otherwise, we loop through the arguments, yoatch all of them.

Here’s a function that selects a random line from a file:

% randline () {

> i nteger z=$(wc -l <$1)
> sed -n ${RANDOM % z + 1]p $1
>}

% randline /etc/motd

PHOENIX WILL BE DOWN briefly Friday morning, 5/24/91 from 8 AM to

% randline /etc/motd

SunOS Release 4.1.1 (PHOENIX) #19: Tue May 14 19:03:15 EDT 1991

% randline /etc/motd

| P lease use the "msgs" command to read announcements. Refer to the |
% eho $z

%

randline has a local ariable,z, that holds the number of lines in the filSfRANDOM % z + 1]
expands to a random number between 1 and\n expression of the forr§[..] expands to the value of
the arithmetic expression within the brackets, andRA&IDOM variable returns a random number each
time it is referenced%is the modulus operataas in C Thereforesed -n ${RANDOM%z+1]p picks a
random line from its input, from 1 .

Function definitions can be viewed with tfluactions builtin:
% functions randline
randline () {

integer z=$(wc -l <$1)

sed -n $[RANDOM % z + 1]p $1

}
% functions
yp 0 {
if let $# ==
then
echo usage: yp name ...
fi
fori
do

ypmatch $i passwd.byname

done

}
randline () {
integer z=$(wc -l <$1)
sed -n $[RANDOM % z + 1]p $1

}

Heres another one:

% cx () { ¢ hmod +x $*}

% Is -1 f o0 bar

-rw-r--r-- 1 pfalstad 29 May 24 04:38 bar
-rw-r--r-- 1 pfalstad 29 May 24 04:38 foo
% cx foo bar

% Is -1 f o0 bar

-rwXr-xr-x 1 pfalstad 29 May 24 04:38 bar
-rwXr-xr-x 1 pfalstad 29 May 24 04:38 foo

Note that this could also %@ keen implemented as an alias:

% dmod 644 foo bar

% dias cx="chmod +x’

% cx foo bar

% Is -l f o0 bar

-rWXr-xr-x 1 pfalstad 29 May 24 04:38 bar
-rWXr-xr-x 1 pfalstad 29 May 24 04:38 foo

Instead of defining a lot of functions in yaashrc , dl of which you may not use, it is often better to use
the autoload builtin. Theidea is, you create a directory where function definitions are stored, declare
the names in yourshrc , and tell the shell where to look for theriVheneer you reference a function,

the shell will automatically load it into memory.

% rkdir /tmp/funs

% at >/tmp/funsl/yp

ypmatch $1 passwd.byname
"D

% @t >/tmp/funs/cx

chmod +x $*

"D

% HMPATH=/tmp/funs

% autoload cx yp

% functions cx yp

undefined cx ()

undefined yp ()

% dmod 755 /tmp/funs/{cx,yp}
% yp egsirer
egsirer:*:3214:35:Emin Gun Sirer:/u/egsirer:/bin/sh
% functions yp

yp () {

}

This idea has other benefits. By addingl aheader to the files, you can neatkem double as shell scripts.
(Although it is faster to use them as functions, since a separate process is not created.)

ypmatch $1 passwd.byname

% ed /tmp/funslyp

25

[

#! lusr/local/bin/zsh

w

42

q

% <tmp/funs/yp

#! lusr/local/bin/zsh

ypmatch $1 passwd.byname
% [/tmp/funs/yp sukthnkr
sukthnkr:*:1267:35:Rahul Sukthankar:/u/sukthnkr:/usr/princeton/bin/tcsh

Now other people, who may not ugsh, or who dont want to cop &l of your .zshrc , may use these
functions as shell scripts.

Directories
One nice feature afsh is the way it prints directoried=or example, if we set the prompt &khis:

phoenix% PROMPT="%">"
> cd src
“Isrc>

the shell will print the current directory in the prompt, using theharacter Howeve, zsh is smarter than
most other shells in this respect:

“/src> cd “subbarao
“subbarao> cd "maruchck
“maruchck> cd lib
“maruchck/lib> cd fun
“maruchck/lib/fun> foo=/usr/princeton/common/src
“maruchck/lib/fun> cd “foo
“foo> cd ..
/usr/princeton/common> cd src
“foo> cd news/nntp
“foo/news/nntp> cd inews
“foo/news/nntp/inews>

Note thatzsh printsotherusers’ directories in the forfiuser . Also note that you can set a parameter and
use it as a directory namezsh will act as if foo is a user with the login directory
/usr/princeton/common/src . This is conenient, especially if youé sick of seeing prompts &k
this:

phoenix:/usr/princeton/common/src/X.V11R4/contrib/clients/xv/docs>
If you get stuck in this position, you carvgithe current directory a short nameglikis:

lusr/princeton/common/src/news/nntp/inews> inews=$PWD
/usr/princeton/common/src/news/nntp/inews> echo “inews
/usr/princeton/common/src/news/nntp/inews

“inews>

When you reference a directory in the fomews , the shell assumes that you want the directory dis-
played in this form; thus simply typingcho “inews or cd “inews causes the prompt to be short-
ened. Yu can define a shell function for this purpose:

“inews> namedir () { $1=$PWD ; DT $1}
“inews> cd /usr/princeton/bin

/usr/princeton/bin> namedir pbin

“pbin> cd /var/spool/mail

/var/spool/mail> namedir spool
“spool> cd .msgs
“spool/.msgs>

You may want to add this one-line function to yozshrc

zsh can also put the current directory in your title, lilgyou are using a windowing system. One way to do
this is with thechpwd function, which is automaticallyxecuted by the shell whewer you change direc-
tory. If you are using xterm, this will work:

chpwd () { print -Pn "[]2;%G’ }

The -P option tellsprint to treat its arguments kka pompt string; otherwise th&™ would not be
expanded. Then option suppresses the terminating newline, as @dtio .

If you are using an IRI®ish, do tis:
chpwd () { print -Pn "[P1.y%™ 7 }

The print -D command has other useBor example, to print the current directory to standard output in
short form, you can do this:

% pint -D $PWD
“subbarao/src

and to print each component of the path in short form:

% pint -D $path
/bin /usr/bin “locbin “locbin/X11 ~/bin

Directory Stacks

If you use csh, you may knoabout directory stacksThe pushd command puts the current directory on
the stack, and changes to avrdirectory; thepopd command pops a directoryfohe stack and changes to
it.

phoenix% cd

phoenix% PROMPT="Z %™>"’
Z "> pushd /tmp

tmp”~

Z [tmp> pushd /usr/etc
lusr/etc /tmp ~

Z [usr/etc> pushd /usr/bin
/usr/bin /usr/etc /tmp ~

Z [usr/bin> popd

lusr/etc /tmp ~

Z [usr/etc> popd

tmp”~

Z | tmp> pushd /etc

letc tmp ~

Z | etc> popd

tmp”~

zsh's directory stack commands work similari{pne difference is the ay pushd is handled if no gu-
ments are gen. Asin csh, this exchanges the toptdements of the directory stack:

Z [tmp> dirs
tmp”~

Z [tmp> pushd
[tmp

-10-

unless the stack only has one entry:

Z "> popd

tmp

Z [tmp> dirs

tmp

Z [tmp> pushd

[tmp

Z ">

or unless th® USHDTOHOMEoption is set:

Z "> s etopt pushdtohome
Z "> pushd
7 tmp

As an alternatie o using directory stacks in this manneme @an get something lé&kadirectory historyby
setting a fer more options and parameters:

"> DIRSTACKSIZE=8

“> setopt autopushd pushdminus pushdsilent pushdtohome
"> alias dh="dirs -v’

"> cd /tmp

/tmp> cd /usr

/usr> cd bin

{usr/bin> cd ../pub

/usr/pub> dh

0 / usr/pub
1 / usr/bin
2 / usr

3 / tmp

4 ~
/usr/pub> cd -3
/tmp> dh

0 / tmp

1 / usr/pub
2 / usr/bin
3 / usr

4 ~

tmp> Is =2/df
/usr/bin/df

/tmp> cd -4

>

Note that=2 expanded to the second directory in the history list, andcthaB recalled the third direc-
tory in the list.

You may be wondering what all those options dBUTOPUSHD madecd act like pushd . (alias
cd=pushd is not sufficient, for various reason)JSHDMINUSswapped the meaning ofl +1 andcd

-1 ; we want them to mean the opposite of whatyth@ean in csh, because it makes more sense in this
scheme, and #’easier to type:

> dh

0 ~

1 / tmp

2 / usr/pub
3 / usr/bin
4 [usr

-11-

"> unsetopt pushdminus
">cd +1

/tmp> dh

/ tmp

/ usr/pub
/ usr/bin
[usr
/tmp> cd +2
/usr/pub>

A WNPEFLO

PUSHDSILENTKeeps the shell from printing the directory stack each time we ab, and PUSHDTO-
HOME we mentioned earlier:

/usr/pub> unsetopt pushdsilent
Jusr/pub> cd /etc

/etc /usr/pub /tmp ~ /usr/bin fusr
/etc> cd

~ | etc /usr/pub /tmp ~ /usr/bin /usr
"> unsetopt pushdtohome

"> cd

/etc ™ Jusr/pub /tmp ~ /usr/bin /usr
/etc>

DIRSTACK SIZE keeps the directory stack from getting too large, muchHikeTSIZE

/etc> setopt pushdsilent
letc>cd /

/>cd/

/>cd/

/>cd/

/>cd/

/>cd/

/>cd/

/>cd/

/>dh

No o h~WNEO
~ e~~~ — — — -

Command/Process Substitution

Command substitution imsh can tale two forms. Inthe traditional form, a command enclosed in back-
quotes {(...') is replaced on the command line with its output. This is the form used by the older shells.
Newer shells (likesh) aso provide another forn§(...) . This form is much easier to nest.

% Is -I * echo /vmunix’
-rwXr-xr-x 1 root 1209702 May 14 19:04 /vmunix
% Is -1 $ (echo /vmunix)
-rwXr-xr-x 1 root 1209702 May 14 19:04 /vmunix

% wo | grep mad
subbarao ttyt7 May 23 15:02 (mad55sx15.Prince)

-12-

pfalstad ttyul May 23 16:25 (mad55sx14.Prince)
subbarao ttyu6 May 23 15:04 (mad55sx15.Prince)
pfalstad ttyv3 May 23 16:25 (mad55sx14.Prince)
% who | grep mad | awk {print $2}

ttyt7

ttyul

ttyué

ttyv3

% cd /dev; s -l $(who |

> grep $(echo mad) |

> awk { print $2 })

crwx-w---- 1 subbarao 20, 71 May 23 18:35 ttyt7

crw--w---- 1 pfalstad 20, 81 May 23 18:42 ttyul

crwx-w---- 1 subbarao 20, 86 May 23 18:38 ttyu6

crw--w---- 1 pfalstad 20, 99 May 23 18:41 ttyv3

Marny common uses of command substitution, heseasre superseded by other mechanismzsbf
% Is - * tty'

Crw-rw-rw- 1 root 20, 28 May 23 18:35 /devi/ttyqc

% Is -1 $ TTY

Crw-rw-rw- 1 root 20, 28 May 23 18:35 /devi/ttyqc

% Is -1 * which rn*

-rwXr-xr-x 1 root 172032 Mar 6 18:40 /usr/princeton/bin/rn
% Is -1 =

-rwXr-xr-x 1 root 172032 Mar 6 18:40 /usr/princeton/bin/rn

A command name with a prepended is replaced with its full pathname. This canebg aovenient. If
it’s rot corvenient for you, you can turn it off:

% Is

=foo =bar

% Is =foo =bar
zsh: foo not found
% <etopt noequals
% Is =foo =bar
=foo =bar

Another nice feature is process substitution:

% o | fgrep -f =(print -l root lemke shgchan subbarao)
root console May 19 10:41

lemke ttyqO May 22 10:05 (narnia:0.0)
lemke ttyr7 May 22 10:05 (narnia:0.0)
lemke ttyrd May 22 10:05 (narnia:0.0)
shgchan ttysl May 23 16:52 (gaudi.Princeton.)

subbarao ttyt7 May 23 15:02 (mad55sx15.Prince)
subbarao ttyu6 May 23 15:04 (mad55sx15.Prince)
shgchan ttyvb May 23 16:51 (gaudi.Princeton.)

A command of the fornx(...) is replaced with the name ofife containing its output. (A command sub-
stitution, on the other hand, is replaced with the output itsptint -I is like echo, excepts that it
prints its arguments one per line, the vignep expects them:

% pint -1 foo bar
foo
bar

We oould also hae written:

-13-

% o | fgrep -f =(echo 'root
> | emke

> shgchan

> subbarao’)

Using process substitution, you can edit the output of a command:

% ed who | fgrep -f */.friends)
355

g/lemke/d

w /tmpf/filbar

226

q

% at /tmp/filbar

root console May 19 10:41

shgchan ttysl May 23 16:52 (gaudi.Princeton.)
subbarao ttyt7 May 23 15:02 (mad55sx15.Prince)
subbarao ttyu6 May 23 15:04 (mad55sx15.Prince)
shgchan ttyvb May 23 16:51 (gaudi.Princeton.)

or easily read arcthed mail:

% nail -f =(zcat "/mail/oldzshmail.Z)
"tmp/zsha06024": 84 messages, 0 new, 43 unread

> 1 U TO: pfalstad, zsh (10)
2 U nytimtim@uunet.uu.net, Re: Zsh on Sparcl /SunOS 4.0.3
3 U JAM%TPN@utrcgw.utc.com, zsh fix (15)
4 U dm@eng.umd.edu, way to find out if running zsh? (25)
5 U dm@eng.umd.edu, Re: way to find out if running zsh? (17)
6 r djm@eng.umd.edu, Meta . (18)
7 U jack@cs.glasgow.ac.uk, Re: problem building zsh (147)
8 U nytimtim@uunet.uu.net, Re: Zsh on Sparcl /SunOS 4.0.3
9 ursaljmd, Another fix... (61)
10 U pplacewa@bbn.com, Re: v18i084: Zsh 2.00 - A small complaint (36)
11 U lubkin@cs.rochester.edu, POSIX job control (34)
12 U vyalelbronson!tan@uunet.UU.NET
13 U brett@rpi.edu, zsh (36)
14 S subbarao, zsh sucks!!!! (286)
15 U snibru!d241s008!d241s013!ala@relay.EU.net, zsh (165)
16 U nytimltim@uunet.UU.NET, Re: Zsh on Sparcl /SunOS 4.0.3
17 U subbarao, zsh is a junk shell (43)
18 U amaranth@vela.acs.oakland.edu, zsh (33)
43u/84 1: x

% Is -l / tmp/zsha06024
/tmp/zsha06024 not found

Note that the shell creates a temporary file, and deletes it when the command is finished.

% dff =(Is) =(Is -F)
3c3

< f ortune

> f ortune*

10c10

< strfile

> strfile*

-14-

If you readzsh’s man page, you may notice thef...) is another form of process substitution which is
similar to=(...) . There is an important difference between the.twnthe<(.. case, the shell creates a
named pipe (FIFO) instead of a file. This is betrce it does not fill up the file systemytlit does not
work in all cases. In fact, if we had replace(...) with <(...) in the examples abe, dl of them would

have gopped working except fdgrep -f <(... You can not edit a pipe, or open it as a mail folder;
fgrep , howeve, has no problem with reading a list of words from a pigeu may wonder wi diff
<(foo) bar doesnt work, sincefoo | diff - bar works; this is becaussiff creates a tempo-

rary file if it notices that one of its arguments jsnd then copies its standard input to the temporary file.

>(..) is just like <(..) except that the command between the parentheses will get its input from the
named pipe.

% dvips -0 >(Ipr) zsh.dvi

Redirection

Apart from all the regular redirections éikhe Bourne shell hagsh can do more.You can send the output
of a command to more than one file, by specifying more redirections like

% eho Hello World >filel >file2

and the text will end up in both files. Similgngpu can send the output to a file and into a pipe:
% rake > make.log | grep Error

The same goes for inpu¥ou can male the input of a command come from more than one file.
% oort <filel <file2 <file3

The command will first get the contents of filel as its standard input, then those of file2 and finally the con-
tents of file3. This, too, works with pipes.

% aut -d: -f1 /etc/passwd | sort <newnames

The sort will get as its standard input first the outpuiadf and then the contents méwnames.

Suppose you would l&kto watch the standard output of a command on your terminalyént to pipe the
standard error to another command. An easy way to do th#h is by redirecting the standard error using
2>>().

% find / -name games 2> >(grep -v 'Permission’ > realerrors)

The abee redirection will actually be implemented with a regular pipe, not a temporary named pipe.
Aliasing

Often-used commands can be abbreviated with an alias:

% dias uc=uncompress
% Is

hanoi.Z

% uc hanoi

% Is

hanoi

or commands with certain desired options:

% dias fm="finger -m’

% fm root

Login name: root In real life: Operator

Directory: / Shell: /bin/csh

On since May 19 10:41:15 on console 3 days 5 hours Idle Time

No unread mail
No Plan.

-15-

% dias lock="lock -p -60000’

% lock

lock: /dev/ttyr4 on phoenix. timeout in 60000 minutes
time now is Fri May 24 04:23:18 EDT 1991

Key:

% dias I='ls -AF’

% 1/

.bash_history kadb*
.bashrc lib@
.cshrc licensed/
.exrc lost+found/
Jogin macsyma

Aliases can also be used to replace old commands:

% dias grep=egrep ps=sps make=gmake
% dias whoami="echo root’

% woami

root

or to define n& ones:

% cd /

% dias sz='ls -l | sort -n +3 | tail -10’

% <

drwxr-sr-x 7 bin 3072 May 23 11:59 etc

drwxrwxrwx 26 root 5120 May 24 04:20 tmp

drwxr-xr-x 2 root 8192 Dec 26 19:34 lost+found

drwxr-sr-x 2 bin 14848 May 23 18:48 dev

-r--r--r-- 1 root 140520 Dec 26 20:08 boot

-rwxr-xr-x 1 root 311172 Dec 26 20:08 kadb

-rWXr-xr-x 1 root 1209695 Apr 16 15:33 vmunix.old

-rwxr-xr-x 1 root 1209702 May 14 19:04 vmunix

-rWXr-xr-x 1 root 1209758 May 21 12:23 vmunix.new.kernelmap.old
-rwxr-xr-x 1 root 1711848 Dec 26 20:08 vmunix.org

% o

% dias rable='ls -AFtrd *(R)’ nrable='ls -AFtrd *("R)’

% rable

README func/ bin/ pub/ News/ src/
nicecolors etc/ scr/ tmp/ iris/ zsh*
% mable

Mailboxes/ mail/ notes

(The patterrt(R) matches all readable files in the current diregtangd *("R) matches all unreadable
files.)

Most other shells ha diases of this kindqommandaliases). Haever, zsh also hagylobal aliases, which
are substituted anywhere on a line. Global aliases can be used teiabbrequently-typed usernames,
hostnames, etc.

% dias -g me=pfalstad gun=egsirer mjm=maruchck

% wno | grep me

pfalstad ttypO May 24 03:39 (mickey.Princeton)

pfalstad ttyp5 May 24 03:42 (mickey.Princeton)

% fm gun

Login name: egsirer In real life: Emin Gun Sirer

-16-

Directory: /u/egsirer Shell: /bin/sh
Last login Thu May 23 19:05 on ttyg3 from bow.Princeton.ED
New mail received Fri May 24 02:30:28 1991,

unread since Fri May 24 02:30:27 1991
% dias -g phx=phoenix.princeton.edu warc=wuarchive.wustl.edu
% ftp warc
Connected to wuarchive.wustl.edu.

Here are some more interesting uses.

% dias -g M="| more’ GF='| fgrep -f “/.friends’

% wo M # pipes the output afho throughmore
% wwo GF # see if your friends &m

% w G # see what your friends arbing

Another example mas use oksh’s process substitution. If you run NIS, and you miss being able to do
this:

% gep pfalstad /etc/passwd
you can define an alias that will seem more naturalyparatch pfalstad passwd

% dias -g PASS="<(ypcat passwd)’
% gep pfalstad PASS
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

If you're really crazyyou can gen call it /etc/passwd

% dias -g /etc/passwd="<(ypcat passwd)’
% gep pfalstad /etc/passwd
pfalstad:*:3564:35:Paul John Falstad:/u/pfalstad:/usr/princeton/bin/zsh

The last example sk one of the perils of global aliases;ythm@vea lot of potential to cause confusion.

For example, if you defined a global alias callpd(which is possible)zsh would begin to act ery
strangely; eery pipe symbol would be replaced with thettef your alias. To sme extent, global aliases

are like macros in C; discretion is advised in using them and in choosing names for them. Using nhames in
all caps is not a bad idea, especially for aliases which introduce shell metasyntsbafik&Fabove).

Note thatzsh aliases are not l&k csh aliases.The syntax for defining them is different, andytli® not
have aguments. Allyour favaite csh aliases will probably not work undsh. For example, if you try:

alias rm mv '\I* /tmp/wastebasket’

no aliases will be definedubzsh will not report an error In csh, this line defines an alias that raim
safe---files that arem’d will be moved to atemporary directory instead of instantly deg&o. Inzsh’s
syntax, havever, this line asks the shell to print yarexisting alias definitions forrm, mv, or

I* tmp/wastebasket . Since there are none, mostdll, the shell will not print anything, although
alias will return a nonzero exit code. The proper syntax is this:

alias rm="mv \I* /tmp/wastebasket’
However, this wont work either:

% rm foo.dvi
zsh: no matches found: !*

While this malesrm safe, it is certainly not what the user intendédzsh, you must use a shell function
for this:

% uwalias rm

% rm () { mv $ / tmp/wastebasket }
% rm foo.dvi

% Is / tmp/wastebasket

-17-

foo.dvi

While this is much cleaner and easier to read (I hope you will agree), it is not csh-comFéiésifore, a
script to comert csh aliases and variables has beenrigenl. You should only need to use it once, to con-
vert all your csh aliases and parametersstoformat:

% csh

csh> alias

| | s - AF

more less

on last -2 I:11; who | grep :1
csh> exit

% @z >neat_zsh_aliases

% atneat zsh_aliases

alias I="Is -AF’

alias more="less’

on () {last-2 $1 ; who | grep $1}

The first two diases were corerted to rgular zsh aliases, while the third, since it needed to handje-ar
ments, was caorerted to a function.c2z can comert most aliases tash format without ag problems.
However, if you're using some really arcane csh tricks, or if yovera dias with a name ligdo (which
is reserved irzsh), you may hee fix some of the aliases by hand.

Thec2z script checks your csh setup, and produces a lisstoEommands which replicate your aliases
and parameter settings as closely as possida.could include its output in your startup fileshrc

History
There are sgral ways to manipulate history zsh. One way is to use csh-stylehistory:

% /usr/local/bin/!:0 !-2*:s/foo/bar/ >>$

If you dont want to use this, you can turn itf &y typing setopt nobanghist . If you are afraid of
accidentally gecuting the wrong command you can setkiSTVERIFYoption. Ifthis option is set, com-
mands that result from history expansion will not Becated immediatelybut will be put back into the
editor buffer for further consideration.

If you're not familiar with! history, here follows somex@lanation. Historysubstitutions alays start with
a!, commonly called “bang”. After theé comes an (optional) designation of whicleéiet” (command) to
use, then a colon, and then a designation of wbad wf that command to us&or example,!- n refers to
the commane commands ago.

% Is

foo bar
% cd foo
% 1-2

Is

baz bam

No word designator was used, which means that the whole command referizsl repeated. Note that
the shell will echo the result of the history substitution. Tledwdesignator can, among other things, be a
number indicating the argument to use, whkigthe command.

% /usr/bin/ls foo
foo

% 1.0 bar
/usr/bin/ls bar
bar

In this example, novent designator was used, which teh to use the previous command. $ specifies

-18-

the last argument

% rikdir /usr/local/lib/emacs/site-lisp/calc
% cd !'$
cd /usr/local/lib/emacs/site-lisp/calc

If you use more words of the same command, only the firgteds anwent designator.

% rake prig >> make.log

make: *** No rule to make target ‘prig’. Stop.
% cd src

% !1-2:0 prog >>!'$

make prog >> make.log

This is diferent from csh, where a bang with ne@ designator a&lays refers to the previous command.
If you actually like this behaviourset theCSHIJUNKIEHISTOR®ption.

% <etopt cshjunkiehistory
% !-2:0 prog2 >> I:$
make prog2 >> cshjunkiehistory

Another way to use history is to use tbecommand. Br example, if you type an erroneous command:

% for iin ‘cat /etc/clients’

do

rpu $i

done
zsh: command not found: rpu
zsh: command not found: rpu
zsh: command not found: rpu

typing fc will execute an editor on this command, allowing you to fix it. (The default editor iy the
way, not ed).

% fc
49
Irpu/s/irupl/p
rup $i
w
49
q
for i in ‘cat /etc/clients’
do
rup $i
done
beam up 2 days, 10:17, load average: 0.86, 0.80, 0.50
bow up 4 days, 8:41, load average: 0.91, 0.80, 0.50
burn up 17:18, load average: 0.91, 0.80, 0.50
burst up 9 days, 1:49, load average: 0.95, 0.80, 0.50
tan up 11:14, load average: 0.91, 0.80, 0.50
bathe up 3 days, 17:49, load average: 1.84, 1.79, 1.50
bird up 1 day, 9:13, load average: 1.95, 1.82, 1.51
bonnet up 2 days, 21:18, load average: 0.93, 0.80, 0.50

A variant of thefc command is , which redoes the last command, with optional changes:

% eho foo
foo

-19-

% r
echo foo
foo

% echo foo
foo

% r foo=bar
echo bar

bar

Command Line Editing

zsh’'s command line editoiZLE, is quite pawerful. Itis designed to emulate either emacs or vi; thaudef
is emacs.To st the bindings for vi mode, typgendkey -v . If your EDITOR or VISUAL environment
variable is vi,zsh will use vi emulation by deifult. You can then switch to emacs mode visthdkey
-e.

In addition to basic editing, the shell allows you to recaNipres lines in the historyln emacs mode, this
is done with"P (control-P) or (on manterminals) with the cursor-upel

% Is ~

- R EADME file mail pub tmp
Mailboxes bin func nicecolors scr zsh
News etc iris notes src

% echo foobar

foobar

% "P

% eho foobar P

% Is © _

PressingP once brings up the previous linecho foobar); pressing it again brings up the line before
that (s~). Thecursor is left at the end of the line, allowing you to edit the line if desired beferate
ing it. In mary casesZLE eliminates the need for tie command, since it is powerful enough to handle
even multiline commands:

% foriinabcde
> do

> echo $i

> done

a

o 0T

e
% "P
% foriinabcde
do
echo $i
done_

Now you can just mee W to the part you want to change...

% foriinabcde
do

echo $i

done

change it, andxecute the n& command.

-20-

% foriinfghij
do

echo $i

done

f
g
h
|
j

Also, you can search the history for a certain command &P

% st ESC-P
% <etopt autolist ESC-P
% <etopt nocorrect_

Another way is to do an incremental search, emacs-style:

% "R
% _
i-search:

% Is / usr/bin
i-search: |

% chte > foofile.c
i-search: le

Suppose you ha retrieved an dd history event in one of these ways and woulddito execute sgeral con-
secutve dd commands starting with this ongO will execute the current command and then put the ne
command from the history into the editarfier. Typing"O several times will therefore re@cute sgeral
consecutie mmmands from the histaryOf course, you can edit some of those commands in between.

In addition to completion (see beloWw)AB performs expansion if possible.

% Is *.c TAB
% Is f oofile.c fortune.c rnd.c strfile.c unstr.c_

For example, suppose you V@a lunch of weird files in an important directory:

% Is
*okox ; & % $??foo dspfok foo.c
I"foo"! ‘ \ ! f oo rer

You want to remue them, but you domwant to damagéo.c . Here is one way to do this:

% rm *TAB
% rm \ L\ AR Vool VA& %0\ \$
" foo \'\ \W * dspfok foo foo.c rrr_

When you gpand*, zsh inserts the names of all the files into the editinfjds, with proper shell quoting.
Now, just mave back and remee foo.c from the buffer:

% rm VL AR AIWfoo\"\ L\ &N 90\ \$
" foo \'\ W \' dspfok foo rrr

and press returnEverything ecceptfoo.c will be deleted from the directaryif you do not want to actu-
ally expand the current word, but woulddito e what the matches are, type .

% rm f*"Xg
foo foo.c
% rm f*_

-21-

Here's another trick; lets say you hae typed this command in:
% gc -0 x.out foob.c -g -Wpointer-arith -Wtrigraphs_

and you forget which library you amt. You need to escape out for a minute and check by typing
[usr/lib , or ome other such command; but you damant to retype the whole command again, and
you cant press return nw because the current command is incomplétezsh, you can put the line on the
buffer stak, usingESC-Q and type some other commands. The next time a prompt is printegtdhiene

will be popped dfthe stack and put in the editingiffer automatically; you can then enter the proper
library name and press return,(BSC-Qagain and look for some other libraries whose names yaofpr

A similar situation: what if you faget the option to gcc that finds bugs using Al techniqués® could
either useESC-Qagain, and typeman gcc , or you could pres&€SC-H which essentially does the same
thing; it puts the current line on theiffer stack, andecutes the commandun-help gcc , where
run-help is an alias foman

Another interesting command EESC-A This executes the current line, but retains it in thdfér, so that it
appears again when the next prompt is printed. Also, the cursor stays in the samé&tplateuseful for
executing a series of similar commands:

% cc grok.c -g -lc -Igl -Isun -Imalloc -Bstatic -0 b.out
% cc fubar.c -g -Ic -Igl -Isun -Imalloc -Bstatic -0 b.out
% cc fooble.c -g -Ic -Igl -Isun -Imalloc -Bstatic -0 b.out

The ESC-'command is useful for managing the siseffioting cowentions. Lets @ay you want to print
this string:

don't do that; type 'rm -rf *', with a \ before the *.

All that is necessary is to type it into the editing buffer:

% dn't do that; type 'rm -rf *', with a \ before the *.

pressESC-’(escape-quote):

% ’don’\"t do that; type \"rm -rf *\", with a \ before the *.’

then mae 1o the beginning and add teeho command.

% echo 'don’\"t do that; type '\"rm -rf *\”", with a \ before the *.’
don't do that; type 'rm -rf *', with a \ before the *.

Let's say you want to create an alias to do #tho command. Thigan be done by recalling the line with
"P and pressingSC-'again:

% ’echo '\"don'\"\'\""\"t do that; type "\"\'\"\"rm -rf
WP\ with a)\ before the *.'\'™

and then mee the beginning and add the command to create an alias.

% dias zoof="echo '\"don’\"\'\'""\"t do that; type "\"\'\"’\"rm
-rf W\ with a \ before the *.'\™”

% mof

don't do that; type 'rm -rf *'; with a \ before the *.

If one of thesedng editor commands changes your command line in a way you did not intend, you can
undo changes with_, if you can get it out of yourdyboard, orX"U , otherwise.

Another use of the editor is to edit thelwe of \ariables. Br example, an easy way to change your path is
to use thevared command:

% \ared PATH

> [u/pfalstad/scr:/u/pfalstad/bin/sun4:/u/maruchck/scr:/u/subbarao/bin:/u/maruc
hck/bin:/u/subbarao/scripts:/usr/princeton/bin:/usr/ucb:/usr/bin:/bin:/usr/host
s:/usr/princeton/bin/X11:/./usr/lang:/./usr/etc:/./etc

-22-

You can nav edit the path. When you press return, the contents of the effidr twill be assigned to
PATH.

Completion

Another greatzsh feature is completion. If you hifAB, zsh will complete all kinds of stdf Like com-
mands or filenames:

% @mplAB
% mmpress _

% Is nic TAB
% Is nicecolors _

% Is / usripr TAB
% Is / usr/princeton/_

% Is -I = comTAB
% Is -l = compress _

If the completion is ambiguous, the editor will beep. If you find this annoying, you can $¢OtH8T-
BEEPoption. Completiorcan &en be ne in the middle of erds. D use this, you will hee b st the
COMPLETEINWORDption:

% <etopt completeinword
% Is / usr/pton TAB
% Is / usr/princeton/_
% <etopt alwaystoend
% Is / usripton TAB
% Is / usr/princeton/_

You can list possible completions by pressiiyg

% Is / vmuTAB —beep—

% Is / vmunix_

% Is / vmunix "D

vmunix vmunix.old
vmunix.new.kernelmap.old vmunix.org

Or, you could just set thAUTOLIST option:

% <etopt autolist

% Is / vmuTAB —beep—

vmunix vmunix.old
vmunix.new.kernelmap.old vmunix.org

% Is / vmunix_

If you like to ®e the types of the files in these listselik Is -F , you can set th&ISTTYPESption.
Together withAUTOLISTyou can uséISTAMBIGUOUS This will only list the possibilities if there is no
unambiguous part to add:

% <etopt listambiguous

% Is / vmuTAB —beep—

% Is / vmunix_ TAB —beep—

vmunix vmunix.old
vmunix.new.kernelmap.old vmunix.org

If you dont want s&eral of these listings to scroll the screen so much AINWAYSLASTPROMP Bption
is useful. If set, you can continue to edit the line you were editing, with the completion listing appearing
beneath it.

-23-

Another interesting option IMENUCOMPLETE This affects the way TAB works. Lets look at the
/vmunix example again:

% stopt menucomplete

% Is / vmuTAB

% Is / vmunix TAB

% Is / vmunix.new.kernelmap.old TAB
% Is / vmunix.old_

Each time you presBAB, it displays the next possible completion. In thigywyou can cycle through the
possible completions until you find the one you want.

The AUTOMENU option males a nice compromise between this method of completion andghlarre
method. Ifyou set this option, pressifigAB once completes the unambiguous part normpilssing the
TAB key repeatedly after an ambiguous completion will cycle through the possible completions.

Another option you could set RECEXACT which causes exact matches to be accepted,ikthere are
other possible completions:

% <etopt recexact

% Is / vmuTAB —beep—

vmunix vmunix.old
vmunix.new.kernelmap.old vmunix.org

% Is / vmunix_ TAB

% Is / vmunix _

To facilitate the typing of pathnames, a slash will be added wheaeirectory is completedSome com-
puters dort’ like the spurious slashes at the end of directory names. In that cage)TOREMOVES-
LASHoption comes to rescue. It will rem®tese slashes when you type a space or return after them.

Thefignorevariable lists suffixes of files to ignore during completion.

% Is f 00TAB —beep—
foofile.c foofile.o

% fignore=(.0\" .bak .junk)
% Is f 00TAB

% Is f oofile.c _

Sincefoofile.o has a suffix that is in tHiggnore list, it was not considered a possible completion of
foo .

Username completion is also supported:

% Is ~ pfal TAB
% Is ~ pfalstad/_

and parameter name completion:

% echo $ORGTAB

% eho SORGANIZATION _
% eho ${ORG TAB

% eho ${ORGANIZATION _

Note that in the last example a space is added after the completion as usual. But if you want to add a colon
or closing brace, you probably domvant this extra spaceSetting theAUTOPARAMKEY Soption will
automatically remee this space if you type a colon or closing brace after such a completion.

There is also option completion:

% <toptnocl TAB
% <etopt noclobber _

and binding completion:

-24-

% bndkey XX’ pu TAB
% bndkey XX’ push-line _

Thecompctl command is used to control completion of thguaments of specific commandBor exam-
ple, to specify that certain commandsga@her commands as arguments, youasapctl -c

% mpctl -c man nohup
% mnupt TAB
% ran uptime _

To gecify that a command should complete filenames, you shoukbuogectl -f . This is the dedult.
It can be combined witkt , as well.

% ompctl -cf echo
% eho upt TAB
% echo uptime _

% ehofo TAB
% eho foo.c

Similarly, use-o to specify options;v to specify variables, antb to specify bindings.

% mmpctl -0 setopt unsetopt
% ompctl -v typeset vared unset export
% ompctl -b bindkey

You can also usek to specify a custom list ofegwords to use in completion. After thk comes either
the name of an array or a literal array toetabmpletions from.

% ftphosts=(ftp.uu.net wuarchive.wustl.edu)
% mpctl -k ftphosts ftp

% ftpwu TAB

% ftp wuarchive.wustl.edu _

% ompctl -k '(cpirazzi subbarao sukthnkr)’ mail finger
% fingercp TAB
% finger cpirazzi _

To better specify the files to complete for a command, usegthegption which takes gnglob pattern as an
argument. Besure to quote the glob patterns as otherwisg whébe expanded when theompctl com-
mand is run.

% Is

letter.tex letter.dvi letter.aux letter.log letter.toc
% ompctl -g '*.tex’ latex

% ompctl -g "*.dvi’ xdvi dvips

% latex| TAB

% latex letter.tex _

% xvil TAB

% >dvi letter.dvi _

Glob patterns can include qualifiers within parentheSesmdir only directories and cd to directories and
symbolic links pointing to them:

% ompctl -g '*(-/)’ cd
% ompctl -g "*(/)’ rmdir

RCS users lik to un commands on files which are not in the current dirgdvatyn the RCS subdirectory
where thg all get,v suffixes. Thg might like to wse

% ompctl -g 'RCS/*(:t:sA\,v/l)' co rlog rcs

-25-

% Is RCS

builtin.c,v lex.c,v zle_main.c,v
% rlog bu TAB

% rlog builtin.c _

The:t modifier keeps only the last part of the pathname andsthe// will replace ay ,v by noth-
ing.

The -s flag is similar to-g , but it uses all expansions, instead of just globbing hkace gpansion,
parameter substitution and command substitution.

% mpctl -s '$(setopt)’ unsetopt
will only complete options which are actually set to be argumenisdetopt

Sometimes a command takes another command agutsi@nt. Yu can tellzsh to complete commands as
the first agument to such a command and then use the completion method of the second cofimaand.
-I flag with a null-string argument is used for this.

% ompctl -1 " nohup exec

% rohup comp TAB

% rohup compress _

% rohup compress fil TAB
% rohup compress filename _

Sometimes you would lé&kto un really complicated commands to find out what the possible completions
are. D do tis, you can specify a shell function to be called that will assign the possible completions to a
variable called reply Note that this variable must be an arrédere’s another (much slower) way to get the
completions foco and friends:

% function getrcs {
> reply=()

> foriin RCS/*

> do

> reply=($reply[*] $(basename $i ,v))
> done

>}

% mpctl -K getrcs co rlog rcs

Some command arguments use a prefix that is not a part of the things to coffipéetell builtin com-
mand takes a signal name after.aTo make auch a prefix be ignored in the completion process, you can
use theP flag.

% ompctl -P - -k signals Kill
% kIl-H TAB
% kIl -HUP _

TeX is usually run on files ending itex , but also sometimes on other files. It is sarhat annoying to
specify that the arguments of TeX should endem and then not be able to complete these other files.
Therefore you can specify thingsdikComplete to files ending itex if available, otherwise complete to
ary filenamé. Thisis done withxored completion:

% ompctl -g *.tex’ + -f tex

The + tells the editor to only takthe next thing into account if the current one ddegeherate an
matches. Iyou have ot changed the default completion, theabexample is in fact equélent to

% mpctl -g *.tex’ + tex

as a lone+ at the end is equélent to specifying the datilt completion after the. This form of comple-
tion is also frequently used if youant to run some command only on a certain type of files, but not neces-
sarily in the current directoryin this case you will &nt to complete both files of this type and directories.

-26-

Depending on your preferences you can use either of

% ompctl -g '*.ps’ + -g *(-/)’ ghostview
% ompctl -g '*.ps *(-/)’ ghostview

where the first one will only complete directories (and symbolic links pointing to directories) if no
postscript file matches the already typed part of the argument.

Extended completion

If you play with completion, you will soon notice that you woulelik pecify what to complete, depend-
ing on what flags you gé o the command and where you are on the command foeexample, a com-
mand could tad& any filename argument after-t flag, a username aftera flag and anjecutable after a
-x flag. Thissection will introduce you to the ways to specify these thirigs.mary people it seems
rather difficult at first, but taking the trouble to understand it cea gau lots of typing in the endEven |
keep being surprised whessh manages to complete a small gereempty prefix to the right file in a lge
directory.

To tell zsh about these kinds of completion, you usgtéaded completion” by specifying thg flag to
compctl. The-x flag takes a list of patterns/flags pairs. The patterns specify when to complete and the
flags specify what. The flags are simply those mentionedealike -f or-g glob pattern

As an example, thg stringl, string2 pattern matches if the cursor is after something that starts with
stringland before something that starts wsthing2 Thestring2is often something that you do noamt
to match anything at all.

% Is

fool barl foo.Z bar.zZ

% ompctl -g "™*.2" -x 'r[-d,---]' -g "*.Z’ -- compress
% ompressf TAB

% mpress fool _

% ompress-df TAB

% ompress -d foo.Z _

In the abwe example, if the cursor is after thd the pattern will match and therefozeh uses theg
*.Z flag that will only complete files ending i . Otherwise, if no pattern matches, it will use the flags
before thex and in this case completeeey file that does not end iZ .

The g[string] pattern matches if the current word starts sgiting. The string itself is not considered to
be part of the completion.

% mpctl -x 's[-]’ -k signals -- kill

% kIl-H TAB

% kIl -HUP _

The tar command takes a tar file as an argument afterfth@ption. Thec| offset string] pattern

matches if the word in positiaffsetrelative o the current word istring. More in particularif offsetis -1,
it matches if the previous wordssring. This suggests

% w@mpctl -f -x 'c[-1,-f] -g ™*.tar’ -- tar

But this is not enoughThe-f option could be the last of a longer string of optio@§..., ..] is just like
c[..., ..], except that it uses glob-kkpattern matching fostring. So

% @mpctl -f -x 'C[-1,-*f]" -g "*.tar’ -- tar

will complete tar files after goption string ending in ah. But we'd like even more. Oldversions of tar

used all options as the first argument, but without the minus sign. This might be inconsistent with option
usage in all other commands, but it is still supported eneersions ofar . So we would also lile to
complete tar files if the first argument ends irf aand we're right behind it.

We @n ‘and’ patterns by putting themxteo each other with a space between théie an ‘or’ these
sets by putting commabetween them.We will also need some mepatterns. p[nun] will match if the

-27-

current argument (the one to be completed) isntineh agument. Wlindex patterrq will match if the
argument in placendexmatches th@attern This gives us

% compet -f x ‘C[-L,] , W[17] p[2] -g "“tar’ - tar

In words: If the previous argument is an option string that endsfin anthe first argument ended in &n
and it is nav the second argument, then complete only filenames enditay in.

All the aboe examples used only one set of patterns with one completion Yag.can use seeral of
these pattern/flag pairs separated by &he first matching pattern will be use8uppose you ha a ve-
sion oftar that supports compressed files by using aoption. Leaing the old tar syntax aside for a
moment, we would lig to @mplete files ending ittar.Z if a-Z option has been used and files ending
in .tar otherwise, all this only after & flag. Again, the-Z can be alone or it can be part of a longer
option string, perhaps the same as that otfthélag. Heres how to do it; note the backslash and the sec-
ondary prompt which are not part of ttempctl command.

% ompctl -f -x 'C[-1,-*Z*f] , R[-*Z*,---] C[-1,-*]' -g *.tar.Z’ - \
> ' C[-1,-*f] -g ™.tar’ -- tar

The first pattern set tells us to match if either the previous argument was an option string includimdy a
ending in arf or there was an option string withZasomevhere and the previous word wasyaption
string ending in affi . If this is the case, we need a compressed tarQiidy if this is not the case the sec-
ond pattern set will be considereBy the way, R[pattern], pattern is just liker[..., ..] except that it
uses pattern matching with shell metacharacters instead of just strings.

You will have roticed the- before the command name. This ends the list of pattern/flag paks df is

usually used just before the command nameybu can also use an extended completion as one part of a
list of xored completions, in which case the appears just before one of thaigns.

Note the difference between using extended completion as part of a list of xored completions as in

% Is

foo bar

% ompctl -x 'rf[-d,---]' -g '*.Z’ -- + -g "*.Z’ compress
% ompress-df TAB

% ompress -d foo _

and specifying something before tixe as in

% ompctl -g "™*.2" -x 'r[-d,---]' -g "*.Z’ -- compress
% ompress-df TAB
% ompress-df_

In the first case, the alternagigob pattern *.Z) will be used if the first part does not generatg @ssi-
ble completions, while in the second case the altemngib pattern will only be used if thg ...] pattern
doesnt match.

Bindings
Each of the editor commands wevbaeen was actually a function bound byaléf to a certaindy. The
real names of the commands are:

expand-or-complete TAB
push-line ESC-Q
run-help ESC-H
accept-and-hold ESC-A
guote-line ESC-

These bindings are arbitrary; you could change them if yamt.wfor example, to bindccept-line to
"z

% bindkey "Z’ accept-line

-28-

Another idea would be to bind the delety o delete-char ; this might be covenient if you uséH for
backspace.

% bndkey "?’ delete-char

Or, you could bindX"H to run-help

% bndkey "X"H’ run-help

Other examples:

% bindkey "X Z' universal-argument

% bndkey '’ magic-space

% bindkey -s T’ 'uptime

:A> bndkey "Q’ push-line-or-edit

universal-argument multiplies the net command by 4.Thus "X"Z"W might delete the last four

words on the line. If you bind space teagic-space , then csh-style historyxpansion is done on the
line wheneer you press the space bar.

Something that often happens is that | am typing a multiline command andediancgror in one of the
previous lines. In this cas@ush-line-or-edit will put the entire multiline construct into the editor
buffer. If there is only a single line, it is egaient topush-line

The-s flag tobindkey specifies that you are binding theykio a gring, not a commandThusbind-
key -s T 'uptime\n’ lets you VMS lwers get the loadwerage wheneer you pressT.

If you have a NeXT keyboard, the one with thp and\ keys very incomeniently placed, the follwing
bindings may come in handy:

% bndkey -s \e/’ "\

% bndkey -s \e=""|’

Now you can typeALT-/ to get a backslash, akd T-= to get a vertical barThis only works insidesh, of
coursebindkey has no effect on theelg mappings insidéalk ormail , etc.

Some people likto ind "S and”Q to editor commands. Just binding these has feztefas the terminal

will catch them and use them forlaontrol. You could unset them as stop and start characietrspdst
people lile to wse these for external commandEhe solution is to set thlOFLOWCONTROLoption.

This will allow you to bind the start and stop characters to editor commands, while retaining their normal
use for external commands.

Parameter Substitution
In zsh, parameters are set ékhis:

% foo=bar
% eho $foo
bar

Spaces before or after theare frowned upon:

% foo = bar
zsh: command not found: foo

Also, set doesnt work for setting parameters:

% <t foo=bar
% <t foo = bar
% eho $foo
%

Note that no error message was printed. This is because both of these commands were pbdettty v

-29-

set builtin assigns its arguments to thesitional parameterg$l, $2, ec.).

% <t foo=bar
% eho $1
foo=bar

% <t foo = bar
% echo $3 $2
bar =

If you're really intent on using the csh syntax, define a functientils:

% =t () {
> eval "$1$2$3"
>}

% <t foo = bar
% <et fuu=brrr

% eho $foo $fuu
bar brrr

But then, of course you cdnise the form oket with options, lile set -F (which turns of filename
generation). Alsotheset command by itself wn't list all the parameters Ekit should. T get around
that you need aase statement:

% =t (){

> case $1in

> - *|+*|") builtin set $* ;;
> *) eval "$1$2$3" ;;

> esac

>}

For the most part, this should maksh users happ
The following sh-style operators are supportezsin

% wset null

% eho ${foo-xxx}
bar

% eho ${null-xxx}
XXX

% wset null

% eho ${null=xxx}
XXX

% echo $null

XXX

% eho ${foo=xxx}
bar

% echo $foo

bar

% wset null

% eho ${null+set}

% eho ${foo+set}
set

Also, csh-style modifiers may be appended to a parameter substitution.

% echo $PWD
/home/learning/pf/zsh/zsh2.00/src
% echo $PWD:h
/home/learning/pf/zsh/zsh2.00

-30-

% eho $PWD:h:h
/home/learning/pf/zsh
% eho $PWD:t
src

% rame=foo.c

% eho $name
foo.c

% eho $name:r
foo

% eho $name:e
c

The equwalent constructs in ksh (which are also supportedsir) are a bit more general and easier to
remember When the shellxpands${foo# pat , it checks to see ipat matches a substring at thegbe
ning of the value ofoo . If so, it remaes that portion offoo , using the shortest possible matcWith
${foo#t# pat}, the longest possible match is remad. ${foo% pat and ${foo%%pat remose the
match from the end. Here are the ksh eglants of the modifiers:

% eho ${PWD%/*}
/home/learning/pf/zsh/zsh2.00
% echo ${PWD%/*/*}
/home/learning/pf/zsh

% echo ${PWD##*/}

src

% echo ${name%.*}

foo

% eho ${name#t*.}

c

zsh also has upper/lowercase modifiers:

% xx=Test
% echo $xx:u
TEST

% echo $xx:
test

and a substitution modifier:

% eho $name:s/foo/bar/

bar.c

% Is

foo.c foo.h foo.o foo.pro
% foriin foo.*; mv $i $i:s/foo/bar/
% Is

bar.c bar.h bar.o bar.pro

There is yet another syntax to modify substituted parameYerscan add certain modifiers in parentheses
after the opening brace like:

${(modifiery paramete}
For example,o sorts the words resulting from the expansion:

% echo ${path}

/usr/bin /usr/bin/X11 /etc
% echo ${(o)path}

/etc /usr/bin /usr/bin/X11

One possible source of confusion is thetfthat inzsh, the result of parameter substitutiomist split into

-31-

words. Thusthis will not work:

% gcs='glob.c exec.c init.c’
% Is $srcs
glob.c exec.c init.c not found

This is considered a feature, notwgb If splitting were done by default, as it is in most other shells, func-
tions like this would not work properly:

$NNHQO){lIs-F $}
$ Il ° fuu bar

fuu not found

bar not found

% Il * fuu bar’
fuu bar not found

Of course, a hackish workaround isitable in sh (anash):

% <etopt shwordsplit

% IO {Is-F" $@"}
% Il * fuu bar

fuu bar not found

If you like the sh behaviougsh can accomodate you:

% Is ${=srcs}
exec.c glob.c init.c
% <etopt shwordsplit
% Is $srcs

exec.c glob.c init.c

Another way to get thésrcs trick to work is to use an array:

% wset srcs

% gcs=(glob.c exec.c init.c)
% Is $srcs

exec.c glob.c init.c

or an alias:

% dias -g SRCS="exec.c glob.c init.c’
% Is SRCS
exec.c glob.c init.c

Another option that modifies parameter expansiddGE XPANDPARAM

% echo foo/$srcs

foo/glob.c exec.c init.c

% <etopt rcexpandparam

% echo foo/$srcs

foo/glob.c foo/exec.c foolinit.c
% echo foo/${"srcs}
foo/glob.c foo/exec.c foolinit.c
% echo foo/$"srcs

foo/glob.c foo/exec.c foolinit.c

Shell Parameters
The shell has mampredefined parameters that may be accessed. Here are some examples:

% deep 10 &

-32-

[1] 3820

% echo $!

3820

% stabc

% echo $#

3

% eho $ARGC

3

% (exit20);echo $?
20

% false; echo $status
1

($? and$status are equiaent.)

% eho $HOST $HOSTTYPE
dendrite sun4

% eho $UID $GID

701 60

% cd /tmp

% cd /home

% eho $PWD $OLDPWD
/home /tmp

% Is $ OLDPWD/.getwd
/tmp/.getwd

"+ and™- are short foSPWDand$OLDPW[respectiely.

% Is ~ -/.getwd
/tmp/.getwd

% Is -d © +/learning
/home/learning

% echo $RANDOM
4880

% echo $RANDOM
11785

% echo $RANDOM
2062

% echo $TTY
/dev/ttyp4

% echo $VERSION
zsh v2.00.03

% eho $USERNAME

pf

Thecdpath variable sets the search path for ttecommand. Ifyou do not specify someavhere in the
path, it is assumed to be the first component.

% dapath=(/usr~"/zsh)

% Is [/ usr

5bin dict lang net sccs sys

5include etc lector nserve services tmp

5lib export lib oed share uch
adm games local old skel ucbinclude
bin geac lost+found openwin spool ucblib
boot hosts macsyma_417 pat src xpg2bin

demo include man princeton stand xpgzinclude

diag kvm mdec
% cd spool
/usr/spool

% cd hin

{usr/bin

% cd func

“ffunc

% o

% cd pub

% pvd
/u/pfalstad/pub

% Is -d / usr/pub
/usr/pub

-33-

pub swap xpg2lib

PATH andpath both set the search path for commantibese tw variables are equélent, except that
one is a string and one is an arrdf/the user modifie®ATH, the shell changegath as well, and vice

Versa.

% FATH=/bin:/usr/bin:tmp:.

% echo $path

/bin /usr/bin /tmp .

% path=(/usr/bin . /usr/local/bin /usr/ucb)
% echo $PATH
{usr/bin:.:/usr/local/bin:/usr/ucb

The same is true @DPATH andcdpath:

% eho $CDPATH
Jusr:/u/pfalstad:/u/pfalstad/zsh

% OPATH=/u/subbarao:/usr/src:tmp
% echo $cdpath

/u/subbarao /usr/src /tmp

In general, predefined parameters with names in a#rdcase are arrays; assignments to thera tadk

form:

name(elem...)

Predefined parameters with names in all uppercase are stifitigare is both an array and a stringrsion
of the same parametfée string version is a colon-separated list, RRG H.

HISTFILE is the name of the history file, where the history i®davhen a shell exits.

% zsh
phoenix% HISTFILE=/tmp/history
phoenix% SAVEHIST=20
phoenix% echo foo
foo
phoenix% date
Fri May 24 05:39:35 EDT 1991
phoenix% uptime

5:39am up 4 days, 20:02, 40 users,
phoenix% exit
% at /tmp/history
HISTFILE=/tmp/history
SAVEHIST=20
echo foo
date
uptime

load average: 2.30, 2.20, 2.00

-34-

exit

% HSTSIZE=3

% hstory
28 rm /tmp/history
29 HISTSIZE=3
30 history

If you hare ®veal incantations ofsh running at the same time, ékvhen using the X winde system, it
might be preferable to append the history of each shell to a file when a shell exits insteadrifrg the
old contents of the fileYou can get this behaviour by setting (hEPENDHISTORYSption.

In zsh, if you say
% Sile
the commandat is normally assumed:

% file
foo!

D

% ait file
foo!

Thus, you can vig a file simply by typing:

% dile
foo!

However, this is not csh or sh compatibl@o correct this, change the value of the paramitét L CMD,
which iscat by default.

% NJLLCMD-=:

% ile

% Is -I f ile

-rw-r--r-- 1 pfalstad 0 May 24 05:41 file

If NULLCMDs unset, the shell reports an error if no command is specifiedghi.

% wset NULLCMD
% file
zsh: redirection with no command

Actually, READNULLCMD is used whener you have a mll command reading input from a single file.
Thus, you can s®EADNULLCMD to more orless rather tharcat . Also, if you seNULLCMD to
: for sh compatibilityyou can still read files witk file if you leave READNULLCMD set tomore.

Prompting
The default prompt forsh is:

phoenix% echo $PROMPT
%m%#

The %nstands for the short form of the current hostname, anébtfetands for &oor a#, depending on
whether the shell is running as root or nesh supports may other control sequences in tRROMPT
variable.

% FROMPT="%/>"
/ulpfalstad/etc/TeX/zsh>

% MROMPT="%">"
“letc/TeX/zsh>

-35-

% HROMPT="%h %>’
6 " /etc/TeX/zsh>

%hrepresents the number of current historgne

% HMROMPT="%h %~ %M>"’
10 “/etc/TeX/zsh apple-gunkies.gnu.ai.mit.edu>

% HMROMPT="%h %~ %m>"’
11 “/etc/TeX/zsh apple-gunkies>

% MROMPT="%h %t>"
12 6:11am>

% HMROMPT="%n %w tty%l>’
pfalstad Fri 24 ttyp0>

PROMPT?2 is used in multiline commands, &lor-loops. The%_escape sequence was made especially
for this prompt. It is replaced by the kind of command that is being entered.

% MROMPT2="% >’
% foriin foo bar
for>

% eho 'hi
quote>

Also available is theRPROMPT parameter If this is set, the shell puts a prompt on tigit side of the
screen.

% APROMPT="%t’
% G814am

% RPROMPT="%"
% “letc/TeX/zsh

% FROMPT="%I| %T %m[%h] ' RPROMPT=" %"

p0 6:15 phoenix[5] “letc/TeX/zsh
These special escape sequences can also be used withapgon toprint

% pint -P %h tty%l

15 ttypl

The POSTEDIT parameter is printed wheves the editor gits. Thiscan be useful for termcap trick3o
highlight the prompt and command line while leaving command output unhighlighted, try this:

% ROSTEDIT="'echotc se'
% MROMPT="%S%% '’

L ogin/logout watching

You can specify login or logoutvents to monitor by setting theatch variable. Normally this is done by
specifying a list of usernames.

% vatch=(pfalstad subbarao sukthnkr egsirer)
Thelog command reports all people logged in that you are watching for.

% log
pfalstad has logged on pO from mickey.

-36-

pfalstad has logged on p5 from mickey.

0,

s/fjt.)lt.)arao has logged on p8 from phoenix.
0,

s/fjt.)lt.)arao has logged off p8 from phoenix.
0,

s/(L)JI;tlhnkr has logged on p8 from dew.

0,

s/(L)JI;tlhnkr has logged off p8 from dew.

If you specify hostnames with @prepended, the shell will watch for all users logging in from the speci-
fied host.

% vatch=(@mickey @phoenix)

% log

djthongs has logged on g2 from phoenix.
pfalstad has logged on pO from mickey.
pfalstad has logged on p5 from mickey.

If you give a ty name with &oprepended, the shell will watch for all users logging in on that tty.

% vatch=(%ttyp0 %console)

% log

root has logged on console from .
pfalstad has logged on pO from mickey.

The format of the reports may also be changed.

% vatch=(pfalstad gettes eps djthongs jcorr bdavis)
% log

jeorr has logged on tf from 128.112.176.3:0.
jeorr has logged on r0 from 128.112.176.3:0.
gettes has logged on p4 from yo0:0.0.
djthongs has logged on pe from grumpy:0.0.
djthongs has logged on g2 from phoenix.
bdavis has logged on qd from BRUNO.

eps has logged on p3 from ¢sx30:0.0.
pfalstad has logged on pO from mickey.
pfalstad has logged on p5 from mickey.

% WTCHFMT="%n on tty%l from %M’

% log

jeorr on ttytf from 128.112.176.3:0.

jeorr on ttyr0 from 128.112.176.3:0.

gettes on ttyp4 from yo:0.0

djthongs on ttype from grumpy:0.0

djthongs on ttyg2 from phoenix.Princeto
bdavis on ttyqd from BRUNO.pppl.gov

eps on ttyp3 from ¢sx30:0.0

pfalstad on ttypO from mickey.Princeton
pfalstad on ttyp5 from mickey.Princeton

% WTCHFMT="%n fm %m’

% log

jeorr fm 128.112.176.3:0

jeorr fm 128.112.176.3:0

gettes fm y0:0.0

djthongs fm grumpy:0.0

djthongs fm phoenix

-37-

bdavis fm BRUNO

eps fm ¢sx30:0.0

pfalstad fm mickey

pfalstad fm mickey

% WTCHFMT="%n %a at %t %w.’

% log

jeorr logged on at 3:15pm Mon 20.
jeorr logged on at 3:16pm Wed 22.
gettes logged on at 6:54pm Wed 22.
djthongs logged on at 7:19am Thu 23.
djthongs logged on at 7:20am Thu 23.
bdavis logged on at 12:40pm Thu 23.
eps logged on at 4:19pm Thu 23.
pfalstad logged on at 3:39am Fri 24.
pfalstad logged on at 3:42am Fri 24.

If you have a.friends file in your home directorya corvenient way to mad& zsh watch for all your
friends is to do this:

% vatch=($(< /.friends))
% eho $watch
subbarao maruchck root sukthnkr

If watch is set tall , then all users logging in or out will be reported.

Options
Some options hee dready been mentioned; here are faore:

Using theAUTOCD option, you can simply type the name of a directang it will become the current
directory.

% cd /

% <etopt autocd
% bin

% pvd

/bin

% ..letc

% pvd

letc

With CDABLEVARSIf the argument tad is the name of a parameter whose value ialia directory it
will become the current directory.

% <etopt cdablevars
% foo=/tmp

% cd foo

tmp

CORRECTurns on spelling correction for commands, andG@RRECTALloption turns on spelling cor
rection for all arguments.

% <etopt correct

% d

zsh: correct ‘sl to ‘Is’ [nyae]? y

% <etopt correctall

% Is x .v1lrd

zsh: correct ‘x.v11r4’ to ‘X.V11R4' [nyae]? n
[usr/princton/src/x.v11r4 not found

% Is / etc/paswd

-38-

zsh: correct to ‘/etc/paswd’ to ‘/etc/passwd’ [nyae]? y
/etc/passwd

If you pressy when the shell asks you if you want to correct a word, it will be corrected. If yourpriéss
will be left alone. Pressinga aborts the command, and pressigrings the line up for editing am, in
case you agree the word is spelled wrong but you ti&e’the correction.

Normally, a quoted expression may contain a newline:

% eho’
> foo
>!

foo

%
With CSHIJUNKIEQUOTESet, this is illgd, as it is in csh.

% <etopt cshjunkiequotes
% Is ’ foo
zsh: unmatched’

GLOBDOTSEets files beginning with a be matched without explicitly specifying the dot.

% Is -d * x*

Mailboxes

% <etopt globdots

% Is -d * x*

.exrc .pnewsexpert .Xserverrc
.mushexpert .xinitrc Mailboxes

HISTIGNOREDUP $revents the current line from beingw&al in the history if it is the same as the re
ous oneHISTIGNORESRCE prevents the current line from beingvaa if it begns with a space.

% MROMPT='%h>"

39> setopt histignoredups
40> echo foo

foo

41> echo foo

foo

41> echo foo

foo

41> echo bar

bar

42> setopt histignorespace
43> echo foo

foo
43> echo fubar
fubar
43> echo fubar
fubar

IGNOREBRACES®&urns of csh-style brace expansion.

% echo x{y{z,a},{b,c}d}e
xyze xyae xbde xcde

% <etopt ignorebraces
% echo x{y{z,a},{b,c}d}e
x{y{z,a}.{b,c}d}e

-30-

IGNOREEOHorces the user to typit orlogout , instead of just pressii@.

% <etopt ignoreeof
% "D
zsh: use 'exit’ to exit.

INTERACTIVECOMMENT#®Irns on interacte mmments; comments begin witha

% <etopt interactivecomments
% date # this is a comment
Fri May 24 06:54:14 EDT 1991

NOBEEPmakes sure the shellves beeps.
NOCLOBBERprevents you from accidentallyverwriting an existing file.

% <etopt noclobber
% at /dev/null >7/.zshrc
zsh: file exists: /u/pfalstad/.zshrc

If you really do vant to clobber a file, you can use tHe operator To make things easier in this case, the
> is stored in the history list as>4 :

% ait /dev/null >! */.zshrc

% @it /etc/motd > "/.zshrc

zsh: file exists: /u/pfalstad/.zshrc
% !

cat /etc/motd >! /.zshrc

% ...

RCQUOTESets you use a more glant method for including single quotes in a singly quoted string:

% eho "don’\"t do that."
"don’t do that."

% echo ™don”t do that."
"dont do that."

% <etopt rcquotes

% echo ™don”t do that."
"don’t do that."

Finally, SUNKEYBOARDHACMins the avard for the strangest optiorif a line ends with , and there are
an odd number of them on the line, the shell will ignore the trailindhis is provided for &yboards
whose RETURN &y is too small, and too close to thekey.

% <etopt sunkeyboardhack
% date’
Fri May 24 06:55:38 EDT 1991

Closing Comments

| (Bas de Bakker) would be hapto receve mil if anyone has antricks or ideas to add to this document,
or if there are some points that could be made cleareweretbmore thoroughlyPlease notify me of an
errors in this document.

Introduction . .
Filename Generation.
Startup Files

Shell Functions.
Directories

Directory Stacks .

Command/Process Substitution .

Redirection
Aliasing
History

Command Line Editing .

Completion .
Extended completion.
Bindings .

Paameter Substitution .

Shell Rirrameters
Prompting
Login/logout watching
Options

Closing Comments

-40-

Table of Contents

© 0 0~ P

BISTHEBRIBNRLRNAEAPR

