
THE EFFECT OF SPARSE SWITCH PATTERNS ON
THE AREA EFFICIENCY OF MULTI-BIT ROUTING RESOURCES IN

FIELD-PROGRAMMABLE GATE ARRAYS

Ping Chen and Andy Ye

Department of Electrical and Computer Engineering
Ryerson University

350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
Email: pepe_chen@hotmail.com, aye@ee.ryerson.ca

ABSTRACT

The increased use of multi-bit processing elements such as
digital signal processors, multipliers, multi-bit addressable
memory cells, and CPU cores has presented new
opportunities for Field-Programmable Gate Array (FPGA)
architects to utilize the regularity of multi-bit signals to
increase the area efficiency of FPGAs. In particular,
configuration memory sharing has been traditionally used
to exploit multi-bit regularity for area. We observe that the
process of creating configuration memory sharing routing
resources often leads to the use of much sparser switch
patterns for connecting multi-bit elements to their routing
tracks. In this work, we empirically evaluate the effect of
these sparse switch patterns on the area efficiency of
FPGAs. It is shown that the sparse switch patterns alone
contribute significantly to the area reduction observed in
configuration memory sharing FPGAs. In particular, our
experiments show that, without configuration memory
sharing, sparse switch patterns can reduce the
implementation area of multi-bit routing resources by
10.4% while configuration memory sharing contributes to
an additional 1.2% in area savings. The observation holds
over a wide range of connection block flexibility values and
demonstrates that efficient switch pattern designs can be
effectively used to increase the area efficiency of FPGA
routing resources.

1. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are
programmable devices that are designed to implement
digital systems. They are optimized for hardware
algorithms and have the added advantage of being able to
change their functionalities in a fraction of second. Being
both hardware-oriented and programmable, FPGAs provide
a unique blend of performance and flexibility, which has
been proven essential in many applications. Typically, only
25% of FPGA area is actually used to perform computation
while the remaining 75% is used to connect the computing

elements together [1][2]. Due to this vast area consumption,
the design of these interconnects (called routing resources)
is as important as the design of the computing elements.
 As the logic capacity of FPGA increases, there has
been a corresponding increase in the variety of FPGA
computing elements. From a mere collection of logic
blocks, FPGAs now can include digital signal processors,
multipliers, multi-bit addressable memory cells, and even
processor cores. One of the common characteristics of these
new computing elements is their multi-bit design, where
each element is designed to process several bits of data at a
time.
 While the input and output pins of a conventional logic
block carry independent bits of information, the input and
output pins of a multi-bit processing element are logically
organized to represent multiple-bit wide data. In this
organization, pins that represent a datum are often used at
the same time. Similarly, routing resources are routinely
used to transport multiple-bit wide data from a common
source to a common destination.
 To transport a multi-bit wide datum, one can either
treat the datum as a set of independent signals and transport
these signals individually through a set of conventional
routing resources [3], or view the entire datum as a single
coherent unit and transport the unit collectively through a
set of specialized routing resources [4]-[11]. Called multi-
bit routing resources, these specialized routing resources
can be more area efficient than the conventional routing
resources [4][10][11]. Their increased area efficiency is
partly due to the more efficient use of configuration
memory. In particular, multi-bit routing resources can be
configured one datum at a time while conventional routing
resources must be configured one bit at a time. This
increase in configuration granularity can lead to a
significant reduction in the amount of memory that is
required to configure these resources and hence increases
their area efficiency.
 The correlated behaviors of multi-bit signals, however,
can affect the area efficiency of FPGAs in other ways. In
particular, the sharing of configuration memory requires
routing resources to be grouped into multi-bit wide groups.
Connecting two groups together usually consists of

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
427

connecting each bit in one group to a corresponding bit in
the other [11]. This one-to-one mapping of routing
resources often results in a much sparser distribution of
routing switches than the conventional routing
architectures. The analytical work in [11] suggests that the
sparser connection patterns can contribute significantly to
the increase in area efficiency for multi-bit routing
resources. The analysis, however, has made several
simplifying assumptions and the effect has not been
empirically studies before. In this work, we empirically
evaluate the effect of the sparse connection patterns on the
overall area efficiency of the multi-bit routing resources.
 The remainder of this paper is organized as follows:
Section 2 describes the routing architectures used in this
investigation, Section 3 presents the experimental results,
and Section 4 concludes.

2. ROUTING ARCHITECTURE

Lo
gi

c
C

lu
st

er
 0

Lo
gi

c
C

lu
st

er
 1

Lo
gi

c
C

lu
st

er
 2

Lo
gi

c
C

lu
st

er
 3

A Group of 4
Multi-Bit
Routing Tracks

A Group of 4
Logic Block

Input/Output pins

The Diagonal
Sparse Connection

Pattern That
Connects the Two
Groups Together

Two Single-Bit
Routing Tracks

Fig. 1. Multi-Bit Logic Block

For Logic Block Output Pins: C = ceil (Fc * W)
For Logic Block Input Pins: C = floor (Fc * W)
step = W / P / C
increment = W / C
for (i = 0; i < P; i++) {
 for (j = 0; j < C; j++) {
 switch_pattern[i][j] = step * i + increment * j
 }
}

Fig. 2. Connection Distribution Algorithm

To investigate the effect of sparse connection patterns on
the area efficiency of FPGAs, we mapped a set of datapath
circuits onto a set of specialized logic blocks. Each block,
as shown in Figure 1, consists of four logic clusters [2],
each of which contains four 4-input look-up tables, four d-
type flip flops, ten cluster-level inputs and four cluster-level
outputs.
 As in [11], the logic clusters are used to implement the
adjacent bit-slices of a datapath. This implementation
creates a large number of inter-logic-block signals that

share common sources and destinations. In particular, for
benchmarks used in this work, 48% of all two terminal
connections that connect the logic blocks together can be
grouped into 4-bit wide groups, where each group shares a
common source logic block and a common destination
logic block [12].
 We investigated three architectures for connecting the
logic blocks to their routing tracks. These architectures
include the conventional routing architecture, the
configuration memory sharing routing architecture, and the
sparse routing architecture. In the conventional routing
architecture, the logic blocks are connected to the routing
tracks using the conventional connection patterns as
proposed in [3]. In particular, all logic block input/output
signals are treated as independent signals. The algorithm
shown in Figure 2 is used to distribute the connections as
uniformly as possible across all routing tracks. Note that, in
the figure, W is set to be the number of routing tracks that a
logic block connects to, P is set to be the number of
input/output pins per logic block, and Fc is set to be the
percentage of tracks in W that each pin connects to. Each
entry in the resulting matrix, switch_pattern[i][j], contains
the index of a routing track that is connected to logic block
pin i through the jth connection of i.
 The configuration memory sharing routing architecture
as proposed in [11], on the other hand, groups a portion of
the routing tracks (called the multi-bit routing tracks) into
4-bit wide groups. Similarly, corresponding input/output
pins from the logic clusters are also grouped into 4-bit wide
groups. These input/output pins are then connected to the
routing tracks one group at a time instead of one bit at a
time.
 Note that when connecting two groups of signals
together the sparse diagonal connection pattern as shown in
Figure 1 is used. The algorithm shown in Figure 2 is again
used to distribute groups of connections (instead of bits of
connection) as uniformly as possible across the routing
tracks. In this case, W is set to be the number of groups of
routing tracks that a logic block connects to. P is set to be
the number of input/output pin groups. Fc is set to be the
percentage of track groups in W that a pin group connects to.
Finally, each entry in the matrix, switch_pattern[i][j],
contains the index of a track group that is connected to pin
group i.
 To further minimize area, as in [11], at logic block
outputs, all four switches in every diagonal connection
pattern share a single set of configuration memory. Within
each group of multi-bit routing tracks, the corresponding
switches in the switch blocks also share a single set of
configuration memory [11]. Finally, the remaining routing
tracks (called the single-bit routing tracks), are connected to
the logic block input/output pins using the conventional
switch patterns.
 To isolate the effect of the sparse connection patterns
on the area efficiency of FPGAs, the sparse routing

428

architecture employs the same connection patterns as the
configuration memory sharing routing architecture. Each
switch in this architecture, however, is independently
controlled by its own configuration memory instead of
being collectively controlled by shared configuration
memory.

3. EXPERIMENTAL RESULTS

We varied Fc values for multi-bit tracks and measured their
effect on the routing area of the configuration memory
sharing and the sparse routing architectures. Throughout the
experiment, Fc values are kept constant for single-bit tracks
for both architectures as well as the conventional routing
architecture. In particular, Fc is set to be 0.4 for input pins
and 0.25 for output pins. These values were determined to
be the best in [11] for single-bit tracks. The same set of
benchmark circuits from [11] were used in this work. The
set consists of 15 datapath circuits from the Pico-Java
processor [14]. As in [11], we varied the number of multi-
bit tracks employed in both the configuration memory
sharing and the sparse architectures. For a given number of
multi-bit tracks, we then searched for the minimum number
of single-bit tracks that are required to successfully
implement each circuit.

1980

2080

2180

2280

2380

2480

2580

2680

2780

0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8
Fc_ic/Fc_oc

A
ve

ra
ge

 R
ou

tin
g

Tr
ac

ks
 P

er
 C

irc
ui

t

SB MB

Fig. 3. # of Track Segments Vs. Fc for the
Configuration Memory Sharing Architecture

1980

2080

2180

2280

2380

2480

2580

2680

2780

0.4/0.25 0.5/0.3 0.6/0.4 0.7/0.5 0.8/0.6 1.0/0.8
Fc_ic/Fc_oc

A
ve

ra
ge

 R
ou

tin
g

Tr
ac

ks
 P

er
 C

irc
ui

t

SB MB

Fig. 4. # of Track Segments Vs. Fc for the Sparse
Architecture

 Figure 3 and 4 shows the average number of routing
track segments that are required to implement a circuit for
the configuration memory sharing and the sparse routing
architectures, respectively. In the figure, Fc_ic denotes the
Fc values for the input pin to multi-bit track connections
and Fc_oc denotes the Fc values for the output pin to multi-
bit track connections. There are two curves in each figure –
one shows the average number of single-bit tracks that are
required to implement a circuit and the other shows the
average number of multi-bit tracks. As shown, for the
configuration memory sharing architecture, the utilization
of the multi-bit tracks increases with the increasing values
of Fc. In particular, when Fc is set to 0.4 for the input pins
and 0.25 for the output pins, 2663 multi-bit track segments
are required to implement a circuit. When Fc is increased to
1.0 for the input pins and 0.8 for the output pins, only 1985
multi-bit track segments are required. Note that this
reduction is largely due to the more efficient use of the
multi-bit tracks by the multi-bit signals (signals that can be
grouped into 4-bit wide groups) since the number of single-
bit track segments stays largely the same over all values of
Fc.
 Figure 4 shows that when configuration memory
sharing is removed from the multi-bit tracks, there is a
substantial reduction in the number of multi-bit track
segments for small values of Fc. This decrease is due to the
increase in multi-bit track flexibility. As the values of Fc
increase, the utilization of the multi-bit tracks increases as
well. This increase, however, is due to the more efficient
use of multi-bit tracks by multi-bit signals as well as single-
bit signals (signals that can not be grouped into 4-bit wide
groups). Consequently, the total number of single-bit track
segments decreases with increasing values of Fc.

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

Con
ven

tio
na

l

0.4
/0.25

0.5
/0.3

0.6/0.
4

0.7
/0.5

0.8
/0.6

1.0/0.
8

Fc_ic/Fc_oc

N
or

m
al

iz
ed

 R
ou

tin
g

A
re

a

SPARSE CMS

Fig. 5. Routing Area Vs. Fc

 Figure 5 shows the effect of the utilization and the
sparseness of multi-bit tracks on routing area. In the figure,
area is normalized against the routing area of the
conventional routing architecture. The curve above is for
the sparse routing architecture while the curve below is for
the configuration memory sharing routing architecture. As
shown, the sparse architecture alone gains over 10% routing

429

area savings over the conventional architecture.
Configuration memory sharing, on the other hand, gains an
additional 4-5% area savings.
 In Figure 5, the same routing algorithm is used for
both the sparse and the configuration memory sharing
architectures. The algorithm, however, is specialized for
configuration memory sharing [15]. Since configuration
memory sharing makes multi-bit tracks very specialized for
multi-bit signals, this algorithm heavily penalizes the act of
breaking a multi-bit signal into individual bits and routing
some of the bits on single-bit tracks and the remaining bits
on multi-bit tracks [15]. This penalty, however, often
causes congestion on multi-bit tracks.

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

Con
ve

nti
on

al

0.4
/0.

25
0.5

/0.
3

0.6
/0.

4
0.7

/0.
5

0.8
/0.

6
1.0

/0.
8

Fc_ic/Fc_oc

N
or

m
al

iz
ed

 R
ou

tin
g

A
re

a

SPARSE SPARSE_Optimized CMS

Fig. 6. Routing Area Vs. Fc with Routing
Algorithm Optimized for the Sparse Architecture

 We removed the penalty for the sparse architecture.
This modification results in a slight increase in single-bit
track segment count and significant reduction in multi-bit
track segment count. The routing area of the sparse
architecture is further reduced as shown in Figure 6.

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

102.0%

104.0%

10-20% 20-30% 30-40% 40-50% 50-60% 60-70%
Percentage of Multi-bit Tracks

N
or

m
al

iz
ed

 R
ou

tin
g

A
re

a

CMS Fc_in/Fc_out=0.6/0.4
SPARSE Fc_in/Fc_out=0.7/0.5

Fig. 7. Routing Area Vs. % of Multi-Bit Tracks

 To determine the best proportion of multi-bit routing
tracks for the configuration memory sharing and the sparse
architectures, we repeated the above experiment by fixing
the percentage of routing tracks [11]. The result is shown in
Figure 7. As shown the best number of multi-bit tracks as a
percentage of the total number of tracks is between 50 to
60% for the configuration memory sharing architecture and

40 to 50% for the sparse architecture. The best sparse
architecture achieves 10.4% routing area savings, while the
best configuration memory sharing architecture achieves an
additional 1.2%.

4. CONCLUSION

This paper evaluates the relative contribution of
configuration memory sharing and sparse connection
patterns on the area efficiency of multi-bit routing tracks. It
is shown that the sparse connection patterns contribute to
10.4% reduction in routing area while configuration
memory sharing contributes an additional 1.2%. It is also
shown that the sparse architectures consume significantly
less routing tracks than the configuration memory sharing
architectures.

5. REFERENCES

[1] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli,
“Architecture of Field-Programmable Gate Arrays,” Proc. IEEE, vol.
81, no. 7, pp. 1013-1029, Jul. 1993.
[2] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size on
Deep-Submicron FPGA Performance and Density,” in TVLSI, vol.
12, no. 3, pp. 288-298, Mar. 2004.
[3] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs, 1999, Kluwer Academic Publishers.
[4] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA
Architecture Optimized for Datapaths,” J VLSID, vol. 4, no. 4,
pp.329–343, Apr. 1996.
[5] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD –
Reconfigurable Pipelined Datapath,” FPL, 1996, pp.126–135.
[6] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor,” FCCM, 1997, pp.12–21.
[7] A. Marshall, et. al, “A Reconfigurable Arithmetic Array for
Multimedia Applications,” FPGA, 1999, pp.135–143.
[8] A. Alsolaim, et. al, “Architecture and Application of a
Dynamically Reconfigurable Hardware Array for Future Mobile
Communication Systems,” FCCM, 2000, pp.205–214.
[9] S. Goldstein, et. al, “PipeRench: A Reconfigurable Architecture
and Compiler,” IEEE Computer, vol. 33. no. 4, pp.70–77, Apr. 2000.
[10] K. Leijten-Nowak and J. van Meerbergen, “An FPGA
Architecture with Enhanced Datapath Functionality,” FPGA, 2003,
pp.195–204.
[11] A. Ye and J. Rose, “Using Bus-Based Connections to Improve
Field-Programmable Gate Array Density for Implementing Datapath
Circuits,” TVLSI, vol. 15, no. 5, pp.462–473, May 2006.
[12] A. Ye, J. Rose, and D. Lewis, “Synthesizing Datapath Circuits
for FPGAs with Emphasis on Area Minimization,” ICFPT, 2002, pp.
219-226.
[13] A. Ye and J. Rose, “Measuring and Utilising the Correlation
Between Signal Connectivity and Signal Positioning for FPGAs
Containing Multi-Bit Building Blocks,” IEECDT, vol. 153, no. 3,
pp.146-156, May 2006.
[14] Pico-Java Processor Design Documentation, Sun Microsystems,
1999.
[15] A. Ye, “Field-Programmable Gate Array Architectures and
Algorithms Optimized for Implementing Datapath Circuits,” Ph.D.
Thesis, University of Toronto, Nov. 2004.

430

