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ABSTRACT 

The increased use of multi-bit processing elements such as 
digital signal processors, multipliers, multi-bit addressable 
memory cells, and CPU cores has presented new 
opportunities for Field-Programmable Gate Array (FPGA) 
architects to utilize the regularity of multi-bit signals to 
increase the area efficiency of FPGAs. In particular, 
configuration memory sharing has been traditionally used 
to exploit multi-bit regularity for area. We observe that the 
process of creating configuration memory sharing routing 
resources often leads to the use of much sparser switch 
patterns for connecting multi-bit elements to their routing 
tracks. In this work, we empirically evaluate the effect of 
these sparse switch patterns on the area efficiency of 
FPGAs. It is shown that the sparse switch patterns alone 
contribute significantly to the area reduction observed in 
configuration memory sharing FPGAs. In particular, our 
experiments show that, without configuration memory 
sharing, sparse switch patterns can reduce the 
implementation area of multi-bit routing resources by 
10.4% while configuration memory sharing contributes to 
an additional 1.2% in area savings. The observation holds 
over a wide range of connection block flexibility values and 
demonstrates that efficient switch pattern designs can be 
effectively used to increase the area efficiency of FPGA 
routing resources. 

1. INTRODUCTION 

Field-Programmable Gate Arrays (FPGAs) are 
programmable devices that are designed to implement 
digital systems. They are optimized for hardware 
algorithms and have the added advantage of being able to 
change their functionalities in a fraction of second. Being 
both hardware-oriented and programmable, FPGAs provide 
a unique blend of performance and flexibility, which has 
been proven essential in many applications. Typically, only 
25% of FPGA area is actually used to perform computation 
while the remaining 75% is used to connect the computing 

elements together [1][2]. Due to this vast area consumption, 
the design of these interconnects (called routing resources) 
is as important as the design of the computing elements.  
 As the logic capacity of FPGA increases, there has 
been a corresponding increase in the variety of FPGA 
computing elements. From a mere collection of logic 
blocks, FPGAs now can include digital signal processors, 
multipliers, multi-bit addressable memory cells, and even 
processor cores. One of the common characteristics of these 
new computing elements is their multi-bit design, where 
each element is designed to process several bits of data at a 
time. 
 While the input and output pins of a conventional logic 
block carry independent bits of information, the input and 
output pins of a multi-bit processing element are logically 
organized to represent multiple-bit wide data. In this 
organization, pins that represent a datum are often used at 
the same time. Similarly, routing resources are routinely 
used to transport multiple-bit wide data from a common 
source to a common destination. 
 To transport a multi-bit wide datum, one can either 
treat the datum as a set of independent signals and transport 
these signals individually through a set of conventional 
routing resources [3], or view the entire datum as a single 
coherent unit and transport the unit collectively through a 
set of specialized routing resources [4]-[11]. Called multi-
bit routing resources, these specialized routing resources 
can be more area efficient than the conventional routing 
resources [4][10][11]. Their increased area efficiency is 
partly due to the more efficient use of configuration 
memory. In particular, multi-bit routing resources can be 
configured one datum at a time while conventional routing 
resources must be configured one bit at a time. This 
increase in configuration granularity can lead to a 
significant reduction in the amount of memory that is 
required to configure these resources and hence increases 
their area efficiency. 
 The correlated behaviors of multi-bit signals, however, 
can affect the area efficiency of FPGAs in other ways. In 
particular, the sharing of configuration memory requires 
routing resources to be grouped into multi-bit wide groups. 
Connecting two groups together usually consists of 
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connecting each bit in one group to a corresponding bit in 
the other [11]. This one-to-one mapping of routing 
resources often results in a much sparser distribution of 
routing switches than the conventional routing 
architectures. The analytical work in [11] suggests that the 
sparser connection patterns can contribute significantly to 
the increase in area efficiency for multi-bit routing 
resources. The analysis, however, has made several 
simplifying assumptions and the effect has not been 
empirically studies before. In this work, we empirically 
evaluate the effect of the sparse connection patterns on the 
overall area efficiency of the multi-bit routing resources.  
 The remainder of this paper is organized as follows: 
Section 2 describes the routing architectures used in this 
investigation, Section 3 presents the experimental results, 
and Section 4 concludes. 

2. ROUTING ARCHITECTURE 
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Fig. 1.  Multi-Bit Logic Block 

For Logic Block Output Pins: C = ceil (Fc * W)
For Logic Block Input Pins: C = floor (Fc * W)
step = W / P / C 
increment = W / C 
for (i = 0; i < P; i++) { 
  for (j = 0; j < C; j++) { 
    switch_pattern[i][j] = step * i + increment * j
  } 
}  

Fig. 2.  Connection Distribution Algorithm 

To investigate the effect of sparse connection patterns on 
the area efficiency of FPGAs, we mapped a set of datapath 
circuits onto a set of specialized logic blocks. Each block, 
as shown in Figure 1, consists of four logic clusters [2], 
each of which contains four 4-input look-up tables, four d-
type flip flops, ten cluster-level inputs and four cluster-level 
outputs. 
 As in [11], the logic clusters are used to implement the 
adjacent bit-slices of a datapath. This implementation 
creates a large number of inter-logic-block signals that 

share common sources and destinations. In particular, for 
benchmarks used in this work, 48% of all two terminal 
connections that connect the logic blocks together can be 
grouped into 4-bit wide groups, where each group shares a 
common source logic block and a common destination 
logic block [12]. 
 We investigated three architectures for connecting the 
logic blocks to their routing tracks. These architectures 
include the conventional routing architecture, the 
configuration memory sharing routing architecture, and the 
sparse routing architecture. In the conventional routing 
architecture, the logic blocks are connected to the routing 
tracks using the conventional connection patterns as 
proposed in [3]. In particular, all logic block input/output 
signals are treated as independent signals. The algorithm 
shown in Figure 2 is used to distribute the connections as 
uniformly as possible across all routing tracks. Note that, in 
the figure, W is set to be the number of routing tracks that a 
logic block connects to, P is set to be the number of 
input/output pins per logic block, and Fc is set to be the 
percentage of tracks in W that each pin connects to. Each 
entry in the resulting matrix, switch_pattern[i][j], contains 
the index of a routing track that is connected to logic block 
pin i through the jth connection of i. 
 The configuration memory sharing routing architecture 
as proposed in [11], on the other hand, groups a portion of 
the routing tracks (called the multi-bit routing tracks) into 
4-bit wide groups. Similarly, corresponding input/output 
pins from the logic clusters are also grouped into 4-bit wide 
groups. These input/output pins are then connected to the 
routing tracks one group at a time instead of one bit at a 
time. 
 Note that when connecting two groups of signals 
together the sparse diagonal connection pattern as shown in 
Figure 1 is used. The algorithm shown in Figure 2 is again 
used to distribute groups of connections (instead of bits of 
connection) as uniformly as possible across the routing 
tracks. In this case, W is set to be the number of groups of 
routing tracks that a logic block connects to. P is set to be 
the number of input/output pin groups. Fc is set to be the 
percentage of track groups in W that a pin group connects to. 
Finally, each entry in the matrix, switch_pattern[i][j], 
contains the index of a track group that is connected to pin 
group i. 
 To further minimize area, as in [11], at logic block 
outputs, all four switches in every diagonal connection 
pattern share a single set of configuration memory. Within 
each group of multi-bit routing tracks, the corresponding 
switches in the switch blocks also share a single set of 
configuration memory [11]. Finally, the remaining routing 
tracks (called the single-bit routing tracks), are connected to 
the logic block input/output pins using the conventional 
switch patterns. 
 To isolate the effect of the sparse connection patterns 
on the area efficiency of FPGAs, the sparse routing 
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architecture employs the same connection patterns as the 
configuration memory sharing routing architecture. Each 
switch in this architecture, however, is independently 
controlled by its own configuration memory instead of 
being collectively controlled by shared configuration 
memory. 

3. EXPERIMENTAL RESULTS 

We varied Fc values for multi-bit tracks and measured their 
effect on the routing area of the configuration memory 
sharing and the sparse routing architectures. Throughout the 
experiment, Fc values are kept constant for single-bit tracks 
for both architectures as well as the conventional routing 
architecture. In particular, Fc is set to be 0.4 for input pins 
and 0.25 for output pins. These values were determined to 
be the best in [11] for single-bit tracks. The same set of 
benchmark circuits from [11] were used in this work. The 
set consists of 15 datapath circuits from the Pico-Java 
processor [14]. As in [11], we varied the number of multi-
bit tracks employed in both the configuration memory 
sharing and the sparse architectures. For a given number of 
multi-bit tracks, we then searched for the minimum number 
of single-bit tracks that are required to successfully 
implement each circuit.  
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Fig. 3.  # of Track Segments Vs. Fc for the 
Configuration Memory Sharing Architecture 
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Fig. 4.  # of Track Segments Vs. Fc for the Sparse 
Architecture 

 Figure 3 and 4 shows the average number of routing 
track segments that are required to implement a circuit for 
the configuration memory sharing and the sparse routing 
architectures, respectively. In the figure, Fc_ic denotes the 
Fc values for the input pin to multi-bit track connections 
and Fc_oc denotes the Fc values for the output pin to multi-
bit track connections. There are two curves in each figure – 
one shows the average number of single-bit tracks that are 
required to implement a circuit and the other shows the 
average number of multi-bit tracks. As shown, for the 
configuration memory sharing architecture, the utilization 
of the multi-bit tracks increases with the increasing values 
of Fc. In particular, when Fc is set to 0.4 for the input pins 
and 0.25 for the output pins, 2663 multi-bit track segments 
are required to implement a circuit. When Fc is increased to 
1.0 for the input pins and 0.8 for the output pins, only 1985 
multi-bit track segments are required. Note that this 
reduction is largely due to the more efficient use of the 
multi-bit tracks by the multi-bit signals (signals that can be 
grouped into 4-bit wide groups) since the number of single-
bit track segments stays largely the same over all values of 
Fc.  
 Figure 4 shows that when configuration memory 
sharing is removed from the multi-bit tracks, there is a 
substantial reduction in the number of multi-bit track 
segments for small values of Fc. This decrease is due to the 
increase in multi-bit track flexibility. As the values of Fc 
increase, the utilization of the multi-bit tracks increases as 
well. This increase, however, is due to the more efficient 
use of multi-bit tracks by multi-bit signals as well as single-
bit signals (signals that can not be grouped into 4-bit wide 
groups). Consequently, the total number of single-bit track 
segments decreases with increasing values of Fc. 
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Fig. 5.    Routing Area Vs. Fc  

 Figure 5 shows the effect of the utilization and the 
sparseness of multi-bit tracks on routing area. In the figure, 
area is normalized against the routing area of the 
conventional routing architecture. The curve above is for 
the sparse routing architecture while the curve below is for 
the configuration memory sharing routing architecture. As 
shown, the sparse architecture alone gains over 10% routing 
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area savings over the conventional architecture. 
Configuration memory sharing, on the other hand, gains an 
additional 4-5% area savings. 
 In Figure 5, the same routing algorithm is used for 
both the sparse and the configuration memory sharing 
architectures. The algorithm, however, is specialized for 
configuration memory sharing [15]. Since configuration 
memory sharing makes multi-bit tracks very specialized for 
multi-bit signals, this algorithm heavily penalizes the act of 
breaking a multi-bit signal into individual bits and routing 
some of the bits on single-bit tracks and the remaining bits 
on multi-bit tracks [15]. This penalty, however, often 
causes congestion on multi-bit tracks. 
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Fig. 6.  Routing Area Vs. Fc with Routing 
Algorithm Optimized for the Sparse Architecture 

 We removed the penalty for the sparse architecture. 
This modification results in a slight increase in single-bit 
track segment count and significant reduction in multi-bit 
track segment count. The routing area of the sparse 
architecture is further reduced as shown in Figure 6.  
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Fig. 7.  Routing Area Vs. % of Multi-Bit Tracks 

 To determine the best proportion of multi-bit routing 
tracks for the configuration memory sharing and the sparse 
architectures, we repeated the above experiment by fixing 
the percentage of routing tracks [11]. The result is shown in 
Figure 7. As shown the best number of multi-bit tracks as a 
percentage of the total number of tracks is between 50 to 
60% for the configuration memory sharing architecture and 

40 to 50% for the sparse architecture. The best sparse 
architecture achieves 10.4% routing area savings, while the 
best configuration memory sharing architecture achieves an 
additional 1.2%. 

4. CONCLUSION 

This paper evaluates the relative contribution of 
configuration memory sharing and sparse connection 
patterns on the area efficiency of multi-bit routing tracks. It 
is shown that the sparse connection patterns contribute to 
10.4% reduction in routing area while configuration 
memory sharing contributes an additional 1.2%. It is also 
shown that the sparse architectures consume significantly 
less routing tracks than the configuration memory sharing 
architectures. 
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