
Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

1 of 8 6/18/2006 7:26 PM

Centralized Authentication with Kerberos 5, Part I
Alf Wachsmann

Abstract

Kerberos can solve your account administration woes.

Account administration in a distributed UNIX/Linux environment can become complicated and messy if
done by hand. Large sites use special tools to deal with this problem. In this article, I describe how even
small installations, such as your three-computer network at home, can take advantage of the same tools.

The problem in a distributed environment is that password and shadow files need to be changed individually
on each machine if an account change occurs. Account changes include password changes, addition/removal
of accounts, account name changes (UID/GID changes are a big problem in any case), addition/removal of
login privileges to computers and so on. I also explain how the Kerberos distribution solves the
authentication problem in a distributed computing environment. In Part II, I will describe a solution for the
authorization problem.

The problem of authenticating users to a computer is solved mostly through passwords, although other
methods, including smart cards and biometrics, are available. These passwords had been stored in
/etc/passwd, but now with shadow passwords, they reside in /etc/shadow. Because these files are local to a
computer, it is a big problem keeping them up to date. Directory services such as NIS, NIS+ and LDAP were
invented to solve this problem. These services, however, introduce a new problem: they work over the
network and expose passwords, which are encrypted only weakly.

The authentication protocol implemented by Kerberos combines the advantages of being a networked service
and of eliminating the need to communicate passwords between computers altogether. To do so, Kerberos
requires you to run two dæmons on a secure server. The Key Distribution Center (KDC) dæmon handles all
password verification requests and the generation of Kerberos credentials, called Ticket Granting Tickets
(TGTs). A second dæmon, the Kerberos Administration dæmon, allows you to add, delete and modify
accounts remotely without logging in to the computer running the Kerberos dæmons. It also handles
password change requests from users. With Kerberos, only a password change ever requires transmitting a
strongly encrypted password over the network.

The Kerberos KDC grants a temporary credential, a TGT, to the account during the process of authenticating
the user. Typically, these credentials have a lifetime of 10 or 24 hours. This lifetime can be configured and
should be no longer than 24 hours, in case the TGT is stolen; a thief could use it only for the remaining TGT
lifetime. The credential expiration causes no issues if you are using Kerberos only for authentication, as
described in this article. However, if you are using Kerberized services, you need to train your users to obtain
new credentials after their current ones expire, even though they still are logged in.

Kerberos was invented at MIT. The latest version is Kerberos 5, with its protocol defined in RFC 1510.
Today, two Kerberos implementations are freely available (see the on-line Resources). MIT's Kerberos 5 is
included in Red Hat Linux, whereas Heimdal is included in SuSE's and Debian's Linux distributions.
Kerberos 5 implementations also are included in Microsoft Windows (2000 and later), in Sun's Solaris
(SEAM, Solaris 2.6 and above) and Apple's Mac OS X. I use MIT's Kerberos distribution throughout this
article because it offers simple password quality checking, password aging and password history out of the

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

2 of 8 6/18/2006 7:26 PM

box.

Prerequisites

You have to meet two prerequisites before you can switch authentication over to Kerberos. First, the clocks
on all computers to be included in your Kerberos installation need to be synchronized to the clock of the
machine running the KDC. The simplest way of doing this is to use the Network Time Protocol (NTP) on all
your machines.

The second requirement is harder to meet. All account names, UIDs and GIDs have to be the same on all
your computers. This is necessary because each of these accounts becomes a new and independent Kerberos
account, called a principal. You have to go through all your local /etc/passwd files and check whether this
requirement is met. If not, you need to consolidate your accounts. If you want to add Windows or Mac OS X
clients to your Kerberos installation, you need to look at all the accounts on those machines as well.

If you decide to use the Kerberos package that comes with your Linux distribution, simply install it. If you
want to compile the Kerberos distribution yourself, follow the instructions below.

Building and Installing MIT Kerberos

1) Get the source from one of the URLs listed in the on-line Resources. Get the PGP signature of the source
package and verify the integrity of the downloaded source with:

% gpg --verify krb5-1.3.4.targz.asc

2) Unpack the source with:

% tar zxvf krb5-1.3.4.tar.gz

3) Change into the source directory:

% cd krb5-1.3.4/src

4) Execute:

% ./configure --help

This tells you if you need to use special configure options for your site. /usr/local/ is the default installation
directory. If you need this software in another directory, use a --prefix=/new/path/to/directory flag in the next
step.

5) In almost all cases, the default should be fine:

% ./configure

6) Compile the package with:

% make

I had a problem with one file in the krb5-1.3.4/src/kadmin/testing/util directory, which can be safely ignored.
Restart the compilation with % make -i in this case.

7) Check whether everything compiled correctly with:

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

3 of 8 6/18/2006 7:26 PM

% make check

8) If everything looks okay, install the package with:

% sudo make install

Never compile code as root. Use root privileges only when necessary, as in these installation steps.

9) You now have MIT Krb5 installed in /usr/local/. Some additional directories need to be created by hand
and their permissions set:

% sudo mkdir -p /usr/local/var/krb5kdc
% sudo chown root /usr/local/var/krb5kdc
% sudo chmod 700 /usr/local/var/krb5kdc

If you really need or want to compile your own PAM module, here are the steps to get a working version of
the module shipped by Red Hat. Get the source (see Resources) and upack it with:

% tar zxf pam_krb5-1.3-rc7.tar.gz

% cd pam_krb5-1.3-rc7

Your $PATH environment variable has to have the Kerberos distribution of your choice first, in case you
have more than one distribution on your computer. For example:

% PATH=/usr/local/bin:$PATH

if you have installed your own version in /usr/local. Then execute:

% ./configure

Then compile and install the package with:

% make
% sudo make install

Creating Your Realm

A Kerberos realm is an administrative domain that has its own Kerberos database. Each Kerberos realm has
its own set of Kerberos servers. The name of your realm can be anything, but it should reflect your place in
the DNS world. If the new Kerberos realm is for your entire DNS domain example.com, you should give the
same name (with all capital letters, this is a Kerberos convention) to your Kerberos realm: EXAMPLE.COM.
Or, if your are setting up a new realm for your engineering department in example.com, a realm name of
ENG.EXAMPLE.COM could be chosen.

The first step for creating your own realm is to create a /etc/krb5.conf file that contains all the necessary
information about this realm. The krb5.conf file needs to be on every computer that wants access to your new
Kerberos realm. Here is an example file for the realm EXAMPLE.COM with the KDC and administration
servers running on machine kdc.example.com:

[libdefaults]
 # determines your default realm name
 default_realm = EXAMPLE.COM

[realms]
 EXAMPLE.COM = {

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

4 of 8 6/18/2006 7:26 PM

 # specifies where the servers are and on
 # which ports they listen (88 and 749 are
 # the standard ports)
 kdc = kdc.example.com:88
 admin_server = kdc.example.com:749
 }

[domain_realm]
 # maps your DNS domain name to your Kerberos
 # realm name
 .example.com = EXAMPLE.COM

[logging]
 # determines where each service should write its
 # logging info
 kdc = SYSLOG:INFO:DAEMON
 admin_server = SYSLOG:INFO:DAEMON
 default = SYSLOG:INFO:DAEMON

The next file, /usr/local/var/krb5kdc/kdc.conf, configures the KDC server. It needs to be on only the
computer running the KDC dæmon. Every entry has a reasonable default. Creating an empty file should be
sufficient for most cases:

% sudo touch /usr/local/var/krb5kdc/kdc.conf

The following commands need to be executed on the computer that will become your KDC. The command:

% sudo /usr/local/sbin/kdb5_util create -s

creates an initial Kerberos database for the new realm. It asks you for the database master password for the
new realm and stores it in a file (/usr/local/var/krb5kdc/.k5.EXAMPLE.COM). This command also creates a
first set of principals in your Kerberos 5 account database. You can list them by using:

% sudo /usr/local/sbin/kadmin.local

and then typing listprincs at the kadmin.local: prompt. This prints the list:

K/M@EXAMPLE.COM
kadmin/admin@EXAMPLE.COM
kadmin/changepw@EXAMPLE.COM
kadmin/history@EXAMPLE.COM
krbtgt/EXAMPLE.COM@EXAMPLE.COM

At this time, we are not ready to use the remote version of the kadmin tool.

Before you start creating any principals in your new realm, you should define a policy that determines how
passwords are handled:

kadmin.local: add_policy -maxlife 180days -minlife
↪2days -minlength 8 -minclasses 3
↪-history 10 default

This input defines a default policy used for every principal we create from now on. It determines that the
maximum lifetime for passwords is 180 days. The minimum lifetime is two days. The minimum password
length is eight characters, and these characters have to come from three different classes out of these five
available ones: lowercase, uppercase, numbers, punctuation and others. A history of the last ten passwords is
kept to prevent reuse. If you want to have passwords checked against a dictionary, add a dict_file definition
such as:

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

5 of 8 6/18/2006 7:26 PM

[realms]
 EXAMPLE.COM = {
 dict_file = /usr/share/dict/words
 }

to your kdc.conf file.

You now are ready to create an administration principal for yourself:

kadmin.local: addprinc john/admin

Adjust the name to your account name but keep the /admin. It then asks twice for a new password for this
principal. You can look at the new account with:

kadmin.local: getprinc john/admin

which prints something like:

Principal: john/admin@EXAMPLE.COM
Expiration date: [never]
Last password change: Wed Dec 24 09:55:17 PST 2003
Password expiration date: Mon Jun 21 10:55:17 PDT 2004
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 0 days 00:00:00
Last modified: Wed Dec 24 09:55:17 PST 2003 (root/admin@EXAMPLE.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 2
Key: vno 1, Triple DES cbc mode with HMAC/sha1, no salt
Key: vno 1, DES cbc mode with CRC-32, no salt
Attributes:
Policy: default

Exit the kadmin.local program by typing quit and start the KDC dæmon with:

% sudo /usr/local/sbin/krb5kdc

Get a Kerberos 5 TGT by typing:

% /usr/local/bin/kinit john/admin@EXAMPLE.COM

and look at your TGT with:

% /usr/local/bin/klist
Ticket cache: FILE:/tmp/krb5cc_5828
Default principal: john/admin@EXAMPLE.COM

Valid starting Expires Service principal
12/23/03 14:15:39 12/24/03 14:15:39 krbtgt/EXAMPLE.COM@EXAMPLE.COM

Congratulations! You just completed your first successful Kerberos authentication.

You now need to specify which privileges this administration account should have, which is determined by
entries in the file /usr/local/var/krb5kdc/kadm5.acl. You can give john/admin permissions to administer all
principals, indicated by the wildcard character *, by adding the line:

john/admin@EXAMPLE.COM *

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

6 of 8 6/18/2006 7:26 PM

to this file.

Before you can start using the administration dæmon (kadmind) over the network, you have to create a
keytab file containing the key for one of the kadmin principals created when we initialized our realm:

kadmin.local: ktadd -k /usr/local/var/krb5kdc/
↪kadm5.keytab kadmin/changepw

Now everything is ready for the Kerberos administration dæmon. Start it with:

% sudo /usr/local/sbin/kadmind

This dæmon allows you to administer your Kerberos principals remotely, without logging in to your KDC,
using the kadmin client tool. If you want your Kerberos dæmons to start up automatically at boot time, add
them to your KDC's /etc/rc files.

With the Kerberos TGT obtained above, start the remote administration tool:

% /usr/local/sbin/kadmin
Authenticating as principal john/admin@EXAMPLE.COM
with password.
Password for john/admin@EXAMPLE.COM:

Adding New Accounts

New accounts still need to be added to your shadow file or password map. However, instead of putting the
encrypted password into these places, you have to create a new Kerberos principal and store the password in
the KDC.

Using the kadmin tool:

% /usr/local/sbin/kadmin

add a principal for a regular users with:

kadmin: addprinc john
NOTICE: no policy specified for john@EXAMPLE.COM; assigning "default"
Enter password for principal "john@EXAMPLE.COM":
Re-enter password for principal "john@EXAMPLE.COM":
Principal "john@EXAMPLE.COM" created.

The password you have entered during this principal creation process is the one john needs to enter in order
to obtain a Kerberos TGT or to log in to a computer configured to use your Kerberos 5 realm.

You now either can create principals for all your accounts by hand or use the technique described in the
migration section below.

Adding Slave KDCs

If you plan to use Kerberos in production at your site, you should plan on using additional slave KDCs to
make your installation more fault tolerant. For this, the master KDC needs to have an additional propagation
service installed that sends updated versions of the KDC database to all slave servers. The slave servers need
to have a receiving end for the propagation service installed. See the MIT documentation for how to set this
up.

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

7 of 8 6/18/2006 7:26 PM

Configuring the Clients

The easiest way to enable a computer for Kerberos authentication is to use a pluggable authentication module
(PAM). Because it uses Kerberos API calls, it needs a working /etc/krb5.conf file. So, the first step is to copy
the /etc/krb5.conf file from your KDC (see above) to each client machine.

Kerberos is used not only to authenticate users, it also is used to authenticate computers, to prevent you from
logging in to a machine with a hijacked IP address. For this to work, each computer needs its own Kerberos
principal with the key (the password) stored in a file (a keytab file). Principals for computers have the special
form:

host/<hostname>.example.com@EXAMPLE.COM.

The first step is to create a new principal for each of your client machines. The following commands use the
computer name client1 as an example. Replace the string client1 with the hostname of the client computer.
Log in to every one of your client computers and execute:

% sudo /usr/local/sbin/kadmin
kadmin: addprinc -randkey host/
↪client1.example.com@EXAMPLE.COM

which assigns a random password to the new principal. Then, extract the key into a keytab file with:

kadmin: ktadd host/client1.example.com@EXAMPLE.COM

which creates the file /etc/krb5.keytab. To have write permissions to the /etc/ directory, you need to run the
kadmin command with sudo. Simply creating a new principal would not have required these special
privileges. Watch out for the ownership and file permissions of /etc/krb5.keytab, however; it has to be
readable only by root. Otherwise, the security of this machine is compromised.

Several PAM modules for Kerberos 5 are available and all are called pam_krb5. Most of these do not work
any more due to some API changes in MIT Kerberos 5 version 1.3. Your best choice right now is to use the
PAM module that comes with your Linux distribution. See the section above on how to build a PAM module
for Kerberos 5 from source.

Now, add the new PAM module to your system's authentication stack by editing the file
/etc/pam.d/system-auth (on Red Hat systems). The entries should look similar to these Red Hat 9 entries:

auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_krb5.so use_first_pass
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account [default=bad success=ok user_unknown=ignore
↪service_err=ignore system_err=ignore]
↪/lib/security/$ISA/pam_krb5.so

password required /lib/security/$ISA/pam_cracklib.so
↪retry=3 type=
password sufficient /lib/security/$ISA/pam_unix.so
↪nullok use_authtok md5 shadow
password sufficient /lib/security/$ISA/pam_krb5.so
↪use_authtok
password required /lib/security/$ISA/pam_deny.so

session required /lib/security/$ISA/pam_limits.so

Centralized Authentication with Kerberos 5, Part I http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1050000/10480...

8 of 8 6/18/2006 7:26 PM

session required /lib/security/$ISA/pam_unix.so
session optional /lib/security/$ISA/pam_krb5.so

These changes make every program with the system-auth PAM stack in its PAM configuration file (see the
other files in /etc/pam.d/) use Kerberos for its authentication.

Interoperation with Non-Linux Clients

If you already have a working Windows Active Directory (AD) KDC installation, you can use it as the
master KDC for your Linux/UNIX machines. In this case, you can skip the entire server installation and do
only the above described setup of your clients. Your /etc/krb5.conf file needs to define the Windows KDC
instead of a UNIX KDC. For more information on how to create and copy a keytab file and this scenario in
general, see Resources.

If you have a number of Windows machines in your group, you can use your UNIX KDC for them as well.
This works, however, only if your Windows clients don't belong to a Windows AD domain with Kerberos
already and the account names are the same in Kerberos and Windows. See Resources for details.

Using Mac OS X clients in your Kerberos 5 realm is as easy as configuring the names of your UNIX KDCs
on your Macs. Again, account names have to match.

Migration from Local Passwords or NIS/LDAP to Kerberos

Now that you have a working Kerberos 5 realm and your clients configured, you have to convert all your user
accounts. So far, the passwords for your accounts are stored either in the machine's local /etc/shadow files or
in a NIS/LDAP password map. These passwords are encrypted with a one-way hash function that makes it
impossible, or at least impractical for people without a supercomputer, to crack them or to convert everything
into Kerberos 5 format. A good way to migrate from your current situation to Kerberos is to use
pam_krb5_migrate (see Resources). This stackable PAM module can be installed on a few computers; every
time someone logs on, it creates a new principal for this account in your Kerberos 5 KDC reusing the
account's current password.

After everybody has logged on to these special machines, all your users have a corresponding Kerberos 5
principal. You then can replace the passwords in your local files or your NIS/LDAP password map with a
placeholder, such as krb5. The Kerberos PAM module authenticates your users from now on. At this point,
you also can remove pam_krb5_migrate from the migration systems.

Kerberized Applications

Now that you have Kerberos up and running, you can use services that make use of it. You could install
Kerberized telnet and FTP, but you really should use SSH. You could Kerberize your Apache Web server
and your Mozilla Web browser. Before Kerberos, you would have to type your password when using these
services. With Kerberos, all these applications are using your stored Kerberos credentials and use them
internally to authenticate you for the respective service. This is what many mean by single-sign-on.

Resources for this article: http://www.linuxjournal.com/article/7706.

