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Designers generally implement embedded controllers for reactive real-time applications as
mixed software-hardware systems. In our formal methodology for specifying, modeling,
automatically synthesizing, and verifying such systems, design takes place within a unified
framework that prejudices neither hardware nor software implementation. After interactive
partitioning, this approach automatically synthesizes the entire design, including hardware-
software interfaces. Maintaining a finite-state machine model throughout, it preserves the formal
properties of the design. It also allows verification of both specification and implementation,
as well as the use of specification refinement through formal verification.

urrent approaches to the hardware-

software codesign problem fall short,

we believe, on one of two counts.

The formal model they define is not
abstract enough for use as an implementation-
independent representation during the system
design process. Otherwise, the model is not suf-
ficently detailed for efficient synthesis as a mix of
hardware and software components.

Our formalism, an extension of classical finite-
state machines called Codesign Finite State
Machine (CFSM), is equally expressive for hard-
ware or software implementations of control-
dominated systems. It is also formally defined,
hence we can directly use it to verify properties
that all implementations will share.!

For our purposes, we take hardware-software
codesign to mean the design of a special-
purpose system composed of a few application-
specific integrated circuits that cooperate with
software procedures on general-purpose proces-
sors. A single, well-defined purpose at a definite
point in time and a generally long lifetime also
characterize such embedded systems. Develop-
ment of these systems cannot proceed by trial
and error after deployment, so designers must
optimize them as completely as possible during
early design phases.

Though restricted, this definition is still too
broad to allow a useful formalization of generally
applicable automated design methodologies.

Embedded controllers serve in everything from
portable compact-disc players to the navigation
control units of battle aircraft. Consequently, we
limit our present focus to relatively small, real-
time control systems composed of software on
one (or few) microcontrollers and some semi-
custom hardware components.

Ignored here as well are large systems requir-
ing the coordination of many boards and hun-
dreds of thousands of lines of code. Nor do we
directly address computation-dominated tasks,
such as robotics and vision, that require, for
example, digital signal processors or powerful
general-purposes computers. Typical applica-
tions of our proposed methodology include auto-
motive electronics (as the accompanying box
describes) and household appliance control
(from elevators to microwave ovens).

Some current approaches to the codesign
problem concern methods to implement soft-
ware programs in hardware. For example,
designers have translated various flavors of
Hoare’s Communicating Sequential Processes
(CSP) into synchronous or asynchronous circuits.
Languages for real-time software specification,
such as Esterel,? StateCharts,? or some modifica-
tion of C* have served directly or indirectly as
hardware description languages. Conversely,
investigators have proposed methods to imple-
ment hardware specifications in software.> Some
research has focused on particular aspects of
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Automotive electronics

One application field deriving the greatest gains from
the coming of age of codesign techniques is automotive
electronics. Here, high production volumes go hand in
hand with a demand for high quality and reliability, low
costs and maintenance needs, and short time-to-market.
The end product—usually a box with some connectors—
must meet stringent physical constraints, such as weight
and size.

The demand for embedded controllers in this applica-
tion has steadily increased for the past few years, both in
terms of the range of applications and the sophistication
of the functions performed. In virtually all vehicles man-
ufactured since the mid 1980s, an electronic device—the
engine control unit (ECU)—controls fuel injection and igni-
tion. Most medium- to high-range cars come equipped
with microcontroller-based dashboards. Also electronical-
ly controlled and monitored are automatic transmissions,
air-conditioning systems and, recently, shock absorbers.
The boom of safety devices, such as air bags and anti-lock
braking systems (ABS), has boosted the demand for in-
vehicle electronics.

The increase in the number and complexity of electron-
ic devices in vehicles is affecting the way designers con-
ceive the entire automobile. For example, a high-range car
equipped with a rich set of options can have over 100 wires
tied to a dashboard (including 30 to 35 wires entering each
front door), for a total length of about 3 miles and a weight
of about 100 pounds (Mercedes S-series and Renault
Safrane). Effectively replacing such a bundle of hard-wired
devices is a local area network implemented, usually, with
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Figure A. An on-board local area network.

a serial bus (see Figure A). This bus replaces the numerous
wires, allocating the functions to CPUs that no longer need
be topologically close to the controlled part, such as a win-
dow or mirror. Compensating for the added cost of the
electronics are savings in material (wires and connectors),
manufacturing time, and reliability of the links.

The complexity of these functions and the precision dic-
tated, for example, by the exhaust emission control laws,
require the use of specialized fast microcontrollers. Such
controllers, like the Motorola MC68332, feature 32-bit archi-
tectures (versus the 8 or 16 bits of older microcontrollers)
along with specialized microprogrammable processors
(time processing units) to handle hard real-time tasks more
easily.

hardware-software cooperation, such as design of interfaces
between hardware and software components® or formal
specification of hardware-software system properties.”

Our basic model, by contrast, is a network of interacting
CFSMs that communicate through a very low-level primitive:
events. A CFSM, or the environment in which the system
operates, emits events that one or more CFSMs or the envi-
ronment can later detect. This scheme assumes a broadcast
communication model, rather than point-to-point channels
as in CSP.

Note that events are quite similar to the valued-token
model used to model computation-intensive applications;®
events can also serve to interface the two domains. CFSMs
also bear some resemblance to behavioral finite-state
machines,® because both are based on finite-state causal reac-
tion. Our model, however, offers a more flexible communi-
cation mechanism, by using events with an arbitrary
propagation time, rather than instantaneous broadcast.

Events directly implement a communication protocol that

does not require an acknowledgment. The receiver waits for
the sender to emit the event, but the sender can proceed
immediately after emission. An implicit one-place buffer
between the sender and each receiver saves the event until
it is detected or overwritten. This approach lends itself to an
efficient hardware implementation with synchronous circuits,
as well as a software implementation, either polling- or inter-
rupt-based. If required, our approach can easily model an
explicit full handshake mechanism in terms of event
exchange.

The notion of communication our proposed model uses
implies that the sender does not remove the event immedi-
ately after emitting it, but only when emitting another one.,
Each CFSM can detect an event at most once any time after
the event’s emission, until another event of the same type
overwrites it. Thus, the event can be correctly received even
with the rather unpredictable reaction times associated with
a software implementation. Correct reception is ensured as
long as either the sender data rate is lower than the receiv-
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Embedded systems

As an example of the application of our methodology,
let’s look at a simplified subsystem of a car dashboard.
The functions considered here are the odometer and the
speedometer. The system is structured as follows: a prox-
imity sensor placed near the wheel shaft sends a pulse to
the dashboard when an indentation goes by it. The dash-
board then

¢ measures the instantaneous speed by counting wheel
pulses in a given time interval;

filters the speed value to improve resolution and
reduce sensitivity to noise;

drives a pulse width-modulated signal proportional to
the value of the filtered speed; accumulates speed puls-
es and every K pulses refreshes the odometer display.

Figure B depicts a data-flow diagram of the system.
Dashed arrows represent pure events. Solid lines repre-
sent data flows. Rectangles represent memories. Ellipses
represent transformations. We can also see the diagram as
an interconnection of CFSMs, where data flows are repre-
sented by valued events, and the memories are implicitly
implemented by the input and output buffers of the CFSMs.
We omit the details of the CFSM behavior for reasons of
space.

The synthesis system we are describing produced various
choices of implementation for each CFSM. Table A describes
the cost of a hardware implemen-
tation of each CFSM (separately
optimized) in terms of square
microns in a 3-um technology. The
delay of this implementation is
almost negligible, and is supposed
to be the same as the clock cycle of
the microcontroller (a reasonable
choice in an embedded system).

The other tables describe the cost b
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Applying our methodology

Table A. Cost of hardware implementation.

Area
CFSM (um?)
AcqSpeed 163,792
OdoAcq 31,088
OdoDisplay 59,392
PWMDriver 31,088
StackFilter 128,064

Table B. Cost of direct software implementation
of hardware function.
Size Time
CFSM (bytes) (cycles)
AcqSpeed 117 130
OdoAcq 59 82
OdoDisplay 120 181
PWMDriver 177 250
StackFilter 104 152

Read
speed

in terms of memory occupation .

the scheduler and I/O drivers, on a -
Motorola 68HC11 microcontroller.
Table B refers to a straightforward
implementation of each CFSM as a

(bytes) and execution time (aver- Raw speed
age clock cycles over a set of 0...255
random inputs) of a software imple- End (;f

mentation of the CFSMs, excluding interval ~~-.__

\
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Figure B. Dashboard flowchart.
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er processing ability, or the designer explicitly introduces
some possibly complex form of synchronization between
the two, using events as basic building blocks.

In our methodology, we use a discrete model of time, in

Applying our methodology
?continued)

Tables C and D refer to two different s-graph-based
implementations of the same behavior. The former uses
multivalued tests (implemented as switch statements,
hence the large size of one case that required a 256-way
jump). The latter uses binary tests on individual bits of
each variable. No method has a clear advantage over
the other in all cases, so both strategies should be part
of the design toolbox.

To evaluate the trade-off between hardware and
software implementations of this subsystem, we can esti-
mate the RAM/ROM occupation of the implementation
in Table D at around 100,000-um (in a 0.5-um technolo-
gy). Hence it is about eight times smaller (neglecting the
microcontroller area, since the microcontroller is sup-
posed to be required by other functions anyway), but
also approximately 100 times slower than the hardware
implementation.

Table C. Cost of multiway s-graph
implementation.

Size Time
CFSM (bytes) (cycles)
AcqgSpeed 62 32
OdoAcq 33 27
OdoDisplay 55 82
PWMDriver 581 77

Table D. Cost of bit test s-graph implementation.

Size Time
CFsM (bytes) (cycles)
AcqSpeed 55 45
OdoAcq 36 34
OdoDisplay 97 107
PWMDriver 94 83
StackFilter 63 40

which each computing element takes a nonzero unbounded
(at least before an implementation is chosen) time to perform
its task. This model is quite realistic for synchronous systems
and lends itself to efficient formal verification techniques.!

The synthesis methodology uses two auxiliary models,
derived from CFSM specifications, to describe a hardware
and a software component. The first model is a standard
logic netlist used by logic synthesis systems. The second
model, which is new, is an abstraction of the basic instruc-
tions of a very simple computer model, called an s-graph
(for software graph).

Since the s-graph is much simpler than a full-blown pro-
gramming or assembly language, it lets us perform opti-
mizations that real compilers and instruction schedulers could
not easily do. They must solve a much more difficult and gen-
eral optimization problem. Our approach then can map the
s-graph into a high-level or assembly language implementa-
tion for a specific microcontroller, compile it, and load it.

Completing the methodology is a validation paradigm
allowing us to verify that a synthesized design satisfies its
specification. We use formal verification to debug both the
specification with respect to high-level properties—safety
constraints—and the implementation with respect to lower-
level properties—timing constraints. It can also help the
designer fix errors and try alternate solutions, by providing
error traces that describe the reason for failing to satisfy a
desired property. Designers can use simulation to comple-
ment verification, thus quickly ruling out special cases that
are considered potentially troublesome by formal verifica-
tion, but that are actually impossible in the specified oper-
ating conditions. (For an example of this approach in action,
see the accompanying Applying our methodology box.)

Codesign finite-state machines

A CFSM, like a standard FSM, transforms a set of inputs
into a set of outputs with only a finite amount of internal
state. The difference between the two models is that the stan-
dard definition of concurrent FSMs implies that all the FSMs
change state exactly at the same time. On the other hand, a
software implementation of a set of FSMs generally inter-
leaves them in time. Hence replacing the synchrony hypoth-
esis (which is often quite satisfactory for synchronous
hardware) in our model is a finite, nonzero, a priori un-
bounded reaction time.

In this article, we describe the set of assumptions that we
chose to add to this basic intuition to obtain a powerful gen-
eral model for control-dominated reactive systems. For a
more extensive treatment, see Chiodo et al.®

Suppose we want to specify a simple safety function of an
automobile: a seat belt alarm. A typical specification a design-
er receives would be: “Five seconds after the key is turned on,
if the belt has not been fastened, an alarm will beep for ten
seconds or until the key is turned off.” We can represent the
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*End=5—
*Alarm = On

*Key = Off or
*Belt = On —

*End=10or
*Belt = On or
*Key = Off —»
*Alarm = Off

Figure 1. Codesign finite-state machine specification of a
simple system.

specification in a reactive finite state form as shown in Figure
1. Input events, such as the fact that the key has been turned
on or that a S-second timer has expired, trigger reactions,
such as the starting of the timer or the beeping of the alarm.

The basic observable entities defining the behavior of the
system that we want to model are events. Sequences of time-
stamped events are timed traces; defining the behavior of
the system are the set of timed traces that can be observed
when it interacts with the environment. Modeling the sys-
tem itself and possibly its environment will be a set of CFSMs
that produce those traces.

Identifying an event are a name (such as, *Key), a value
from a finite set (such as On, Off), and a time of occurrence.
We also refer 1o the event-name, set-of-values pair as an
event type. Some events, such as the user hitting the reset
button, may not have an interesting value.

Each element of a network of CFSMs describes a compo-
nent of the system to be modeled. (For the sake of clarity,
we give the definition here in terms of a flat view, even
though both the methodology and its implementation sup-
port hierarchical decomposition.) A CFSM consists of sets of
input and output event types (the latter with an optional ini-
tial value), and a transition relation (a set of cause-reaction
pairs, in which each cause is a set of event names and val-
ues and each reaction is also a set of events and values).
Triggered by the input events, each transition emits, after an
unbounded nonzero time, the output events. (Response
bounds must be assumed when we want to verify time-
dependent constraints of the system, as we will discuss later.)
The state of the CFSM consists of the set of those event types
that are at the same time input and output for it. The non-
zero reaction time provides the storage capability required
to implement the concept of state.

For example, in Figure 1, the fact that the state event has
value Off and that input event *Key occurs with value On
causes the state event value to become Wait and the value-
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less event *Start to be emitted. We model causality by a rela-
tion rather than a function, because the specification may be
nondeterministic. We can use this to abstract implementation
details in the early phases of a design or during validation, or
to model the unpredictable behavior of the environment.

Defining the behavior of the system is the evolution of the
CFSM network in time, governed by a set of rules that define
valid timed traces of a network of CFSMs. Such rules ensure
that the transitions of each CFSM are atomic; all output events
of a given transition must be emitted (not necessarily at the
same time) before the next transition can occur. Note that a
CFSM may ignore events, if it is not ready to accept them when
they occur. Our methodology requires only that reactions to
successive events with the same name be ordered, thus ensur-
ing that one-place buffers can serve to implement events.

The behavior defined by a CFSM network does not assume
fairness per se, because this would impose too tight a con-
straint on the software implementation. (Loosely speaking,
fairness means that each CFSM that is enabled to react will
do so within a finite amount of time.) However, a suitable
software scheduler may impose fairness in practice.

For showing implementation correctness and performing
design validation, we can also interpret the behavior of a
CFSM network as a (less compact) network of nondeter-
ministic FSMs. Each CESM corresponds to a main FSM, which
represents the desired reactive behavior, surrounded by a
set of FSMs (one for each input and output event type) imple-
menting one-place buffers modeling input (detection) and
output (reaction) delays.

Synthesis of a CFSM network

Figure 2 represents our complete framework for hardware-
software codesign. Before describing the system validation
approach, we need to briefly discuss the design flow through
the synthesis portion of the framework.

Specification language translation. Due to its relatively
low-level view of the world, the CFSM model is not meant to
be used directly by designers. They will conceivably write their
specifications in a higher level language—Esterel, StateCharts,
or a subset of VHDL!'—that directly translates into CFSMs.

These languages or language subsets all share a common
zero-delay hypothesis, also called the perfect synchrony
hypothesis. We assume that the system reacts infinitely fast
o environmental stimuli. This allows us to eliminate all inter-
nal communication between interacting system components,
and produces very fast software implementations, at the
expense of relatively large code size.?

Our CFSM model comes into play after this collapsing of
functions into a single reactive block has produced the
desired level of granularity. We take into account the non-
zero response time typical of a software implementation of
the reaction, and study how an interconnection of such reac-
tive blocks, each represented by a CFSM, behaves. In this
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Figure 2. Codesign framework.

sense our proposed methodology is orthogonal to compila-
tion issues for synchronous languages.

Design partitioning. The second step of the design
process is design partitioning, that is, choosing the software
or hardware implementation for each component of the sys-
tem specification. The CFSM specification is totally imple-
mentation-independent in our approach, a key point that
allows designers to experiment with a number of imple-
mentation options.

This article does not address directly the issue of auto-
mated partitioning; rather it describes a framework where
algorithms to solve it can be transparently embedded.

Hardware synthesis. The third step of the proposed
design process is to implement each CFSM in the chosen
style. The synthesis algorithms we propose are based on
restrictions common to the design of most industrial embed-
ded control systems:

* Each hardware partition is implemented as a fully syn-
chronous circuit.
¢ Each software partition is implemented as a C stand-

alone program (with an operating system skeleton that
includes the scheduler and 1/O drivers) embedded in a
microcontroller.

* All partitions have the same clock.

In the case of hardware synthesis, we map a CFSM into
an abstract hardware description format. We implement!?
each transition function with a combinational circuit, latch-
ing the circuit outputs to ensure the nonzero reaction delay.

At a given point in time, the significant information ele-
ments regarding an event name are its presence or absence,
and its optional value. A straightforward hardware mapping
of this model uses a wire that has value 1 in all the clock
cycles when an event with that name is present and 0 when
itis absent. (That is, if the signal stays at 1 for n cycles, there
are n successive events with the same name.) The value, if
present, is encoded on a bundle of auxiliary wires. Unlike
other communication paradigms used originally for software
specifications—channels or rendezvous—this communica-
tion scheme imposes almost no overhead due to event detec-
tion in hardware.
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 Embedded systems

Software synthesis. We map a CFSM subnetwork into a
software structure that includes a number of procedures and
a simple operating system.

CFSM implementation. A two-step process implements the
reactive behavior:

¢ Implementing and optimizing the desired behavior in a
high-level, technology-independent representation of
the decision process (called s-graph).

» Translating the s-graph into portable C code and using
any available compiler to implement and optimize it in
a specific, microcontroller-dependent instruction set.

The methodology-specific, processor-independent first
step allows a much broader exploration of the design space
than a general-purpose compiler can generally achieve. We
can take advantage of the fact that CFSMs compute a finite
state reaction to a set of events, which is much simpler to
optimize than a generic high-level program. The second step,
conversely, allows us to capitalize on predeveloped, micro-
controller-specific optimizations such as register allocation
or instruction selection and scheduling.

Another major advantage of our proposed approach is a
much tighter control of software cost than generally possible
with a general-purpose compiler. For this discussion, the cost
of a software program is a weighted mixture of code size and
execution speed, as real-time reactive systems usually have
precise memory occupation as well as timing constraints. With
these requirements, the s-graph needs to be detailed enough
to make prediction of code size and execution times easy and
accurate. On the other hand, it must be high-level enough
for easy translation into various dialects of programming lan-
guages for the target microcontrollers (whose interpretation
even of a standardized language such as C may vary widely).

Hence the s-graph is a reduced form of the control-flow
graphs used in compiler technology (see, for example, Aho,
Sethi, and Ullman'?). As such, it is amenable to the standard
set of optimizations done by compilers, plus some specific
ones.

An s-graph is a directed acyclic graph (DAG), containing
Begin, End, Call, Test, and Assign vertices. It is associated
with a set of finite-valued variables, corresponding to the
input and output events of the CFSM it implements.

An s-graph has one source vertex Begin, and one sink ver-
tex End. Each Test vertex ¢ has two children, true(v) and
Jfalse(v). (We use the limit of two children for the sake of
explanation only. The implementation caters to multiway
branching.) Each Begin or Assign vertex v has one child
next(v). Each Call vertex v has two children, sub(v) and
next(v). Any nonroot vertex can have one or more parents.
A label associates each Test vertex with a Boolean-valued
function that determines which child is traversed. It also asso-
ciates each Assign vertex with a CFSM output variable and
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with a function defined on the s-graph variables.

The semantics of the s-graph is simply defined by a tra-
versal from Begin to End. The s-graph execution process vis-
its the next vertex at every step, except for the Call and Test
vertices. Every time it reaches an Assign vertex, it evaluates
the Assign vertex’s associated function and assigns its value
to the labeling variable. Every time it reaches a Test vertex,
it evaluates the function and visits the true or false child. Every
time it reaches a Call vertex, it visits the sub vertex of the Call
vertex, traverses until the End vertex, then visits the next ver-
tex of the last visited parent Call (no recursion is allowed).

Figure 3 shows an example of a simple s-graph, comput-
ing the transition function of Figure 1 (variable S denotes the
CFSM state).

We deal with speed and size requirements at the s-graph
level. The components of the cost function we consider are:

e the total number of vertices, which is related to the pro-
gram code (ROM) size,

¢ the maximum distance between Begin and End vertices,
which is related to the execution time, and

» the number of variables, which is proportional to the
data size (RAM, including CPU registers).

Speed optimization makes the s-graph as flat as possible
without exceeding a bound on the number of vertices.

Driving the software synthesis procedure is a cost estima-
tion done on the s-graph. We use appropriately chosen
benchmarks to obtain a cost (code/data size and time) esti-
mation for the various software constructs corresponding to
s-graph vertices in various combinations.

We can perform local optimization by collapsing groups
of s-graph vertices with one entry point and two exit points
into a single Test vertex, whose label we can obtain by func-
tion composition. We can estimate the potential gain of this
collapsing as the reduction in code size and execution time
due to the use of Boolean operations (used to compute the
function) rather than tests and jumps.

Finally, we can perform more global optimizations across
multiple CFSMs, because composing CFSMs together can
reduce the execution time and RAM occupation, thus elim-
inating the variables used for communication.?

Real-time operating system. The customized operating sys-
tem for each microcontroller consists of a scheduler and dri-
vers for the I/O channels. Hence it is extremely small and
imposes little overhead, compared with standard operating
systems for real-time applications.

To correctly implement the CFSM behavior, the operating
system must satisfy the following constraints:

* Each transition of a task must be performed atomically;
that is, the values of the input event buffers for that task
must not change once it has been started.




Figure 3. An s-graph implementing the seat belt system.

¢ The operating system must reset consumed events
before invoking a task again.

* The operating system must transfer all output events
from a task by setting the signal or variable denoting
the event presence only after it has updated the corre-
sponding value.

This scheme lends itself both to polling and interrupt
implementations of event detection, as it can suspend and
resume an active task at any time. We are still investigating
means of specifying real-time constraints, and scheduling
algorithms used to satisfy them.

Handling the communication mechanism between a task
and the external world—other tasks or external devices—
are two layers of software services:

¢ a general event-driver layer that implements the CFSM
event emission/detection primitives, and

¢ a microcontroller-specific peripheral-driver layer that
interfaces the software tasks with the physical I/O chan-
nels such as parallel I/O ports, serial ports, and analog-
to-digital and digital-to-analog converters.

The latter, which is generally implemented via memory-
mapped peripherals, also constitutes the software side of the
interfacing mechanism we describe later.

Modeling data flow. Although general in terms of expres-
siveness, CFSMs are not specifically designed for computa-
tion-intensive tasks, but only for control-dominated ones.
The idea is that a CFSM specifies the reactive part of the
behavior, whereas standard functions can specify the details
of the algorithms associated with the actions invoked. This
model corresponds to the classic data/control dichotomy
both compilers and high-level synthesis use. Libraries thus
are made available that provide standard components—
adders, counters—already mapped in hardware and soft-
ware. Designers can incorporate netlists in the hardware
implementation and optimize them with it. Similarly, soft-
ware macros can occur as Test and Assign vertex labels in the
s-graph; we must provide cost estimates for them to the s-
graph optimizer.

Interfacing implementation domains. Event emission
and detection are implemented differently in each domain,
so we need an interfacing mechanism.

Conceptually, we can think of an interface mechanism as
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Figure 4. Interface between heterogeneous domains.

a three-layer block (see Figure 4 and Chou, Ortega, and
Borriello®). A carrier here can be, for example, a printed cir-
cuit board track or a bus. Each block acts as a translator
between representations in different domains. For example,
Figure 5a describes the A and B blocks of a hardware-to-
hardware interface (a simple wire). Figure 5b describes the
B block of a software-to-hardware interface. Figure 5c
describes the A block of a hardware-to-software interface.
The software counterparts are embedded in the real-time
operating system (for example, as an interrupt handler or an
output port driver).

System validation

Partially driving the CFSM model was our desire to use
formal verification techniques, which essentially involve
proving mathematically that a certain formally specified prop-
erty is true of a design.

Among the several methods proposed for formal verifica-
tion, which is best suited for the task at hand, was an
approach based on modeling the system as a network of
FSMs. We can formally define the time behavior of a CFSM
in terms of an equivalent FSM network. Any implementation
of the CFSM network exhibits a behavior (allowed sequences
of events) contained in the behavior of its specification.

Verification, for example, involves checking whether an
undesirable behavior, expressed as a timed sequence of
events 6, is consistent with the specification. If ¢ cannot
occur in the specification, neither can it occur in a correctly
derived implementation; the latter defines a subset of behav-
iors of the former. Examples of properties of our seat-belt
system are “The alarm will not be on forever” (untimed) and
“The alarm will not be on for more than 6 seconds” (timed).
After modeling both the system and the properties, we can
perform implementation-independent verification with exist-
ing formal verification tools, such as Kurshan! describes.

Between the abstracted behavior of a specification (an
FSM network in our case) and the actual behavior of a given
implementation there are a number of intermediate models
that we can use as input to a formal verification algorithm.
We can obtain one such intermediate model by composing
the specification (as proposed in Alur, Courcourbetis, and
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Figure 5. Interface types: the A and B blocks of a hard-
ware-to-hardware interface (a); B block of a software-to-
hardware interface (b); and A block of a
hardware-to-software interface (c).

Dill') with an implementation-specific component called a
timing descriptor. The timing descriptor captures informa-
tion about the allowed delays in a given implementation.
Obtained trivially as 1-clock delays are portions of the tim-
ing descriptor related to hardware. For software, computing
the maximum/minimum/average runtime, or giving a prob-
ability distribution, is desirable.

Specification refinement is a novel way of using formal
verification. Initially, the designer specifies a set of proper-
ties that the system should satisfy, along with the descrip-
tion of the system in the form of a network of CFSMs with
unbounded delays. Then, the designer checks the model
with respect to some properties; the results define the infor-
mation required to build the timing descriptor.

One major obstacle in formal verification is that deci-




phering an error trace and determining the exact cause of
the failure is generally difficult. Active research is underway
to efficiently return a set of minimal error traces that can help
the designer pinpoint the cause of the failure.

Another obstacle is the complexity of models (also known
as the state explosion problem). The size of a model can eas-
ily grow, especially when precise timing information must
be considered. As an example, we modeled the seat-belt
system described earlier as an implementation-independent
network of two CFSMs, plus a CFSM that models the unpre-
dictable behavior of the user. There, hardware, software, and
human speeds differ by several orders of magnitude. Even
with an unrealistically coarse base clock of 0.1 seconds, we
have a total of 60,000,000 states. The longest run requires
about 6.5 hours of CPU time on a DEC5000/125 with 64
Mbytes of memory. Dense-time algorithms™ may be one way
to cope with complexity, but more research needs to be done
to make thesé algorithms applicable to problems of real-life
magnitude.

OUR METHODOLOGY FOR DESIGNING hardware-
software systems exhibits the following characteristics:

e Itis well-suited to small control-dominated embedded
systems.

¢ It is based on events as a basic communication primi-
tive. Events are low-level enough to be efficiently imple-
mented both in hardware and software, without
imposing unnecessary overheads, and yet general
enough to allow the construction of more powerful
communication schemes.

* Since both hardware and software can be transparent-
ly derived from the same CFSM specification, we need
not commit ourselves to a particular mix of software-
hardware implementation a priori.

¢ We use an FSM-based model throughout the design
process, thus preserving formal properties. The FSM
model derived from a CFSM is compatible with the input
format of many formal verification algorithms.

* Verification can proceed both at the specification and
implementation levels. In addition, the results of formal
verification can serve as a guide in specification
refinement.

Already in place are many of the tools necessary for a com-
plete synthesis system. In particular, an early version of the
ESTEREL translator and of the synthesis environment
described in Figure 2, including hardware and software syn-
thesis, are functional.

In the future, we plan to explore the possibility of adopt-
ing formal verification methods that do not require an expen-

sive translation of a CFSM into equivalent FSMs. We would
like to exploit different time scales pertaining to different
implementation and environment domains.

We also want to investigate the possibility of automated
constraint-driven partitioning algorithms for mixed hardware-
software systems. [0
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