EE8103 Assignment 3

1. A random variable X undergoes the transformation $Y=a / X$, where a is a real number. Find the density function of Y.
2. A random variable X is uniformly distributed on the interval $(-a, a)$. It is transformed to a new variable Y by the transformation $Y=c X^{2}$. Find and sketch the density function of Y.
3. A Gaussian voltage random variable X has a mean of $\mu=0$, and variance of $\sigma^{2}=9$. The voltage X is applied to a square-law, full-wave diode detector with a transfer characteristic $Y=5 X^{2}$. Find the mean value of the output voltage Y.
4. Consider a probability space (Ω, F, P). Let $\Omega=\left\{\xi_{1}, \ldots, \xi_{5}\right\}=\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$ with $P\left(\xi_{i}\right)=\frac{1}{5}$, $i=1, \ldots, 5$. Define two r.v.'s as follows:

$$
\begin{equation*}
X(\xi)=\xi \quad Y(\xi)=\xi^{2} \tag{1}
\end{equation*}
$$

(a) Show that X and Y are dependent r.v.'s.
(b) Show that X and Y are uncorrelated.
5. Consider the recursion known as a first-order moving average given by

$$
\begin{equation*}
X_{n}=Z_{n}-a Z_{n-1} \quad|a|<1 \tag{2}
\end{equation*}
$$

where X_{n}, Z_{n}, Z_{n-1} are all r.v.'s for $n=. .,-1,0,1, \ldots$. Assume $E\left[Z_{n}\right]=0$ for all $n ; E\left[Z_{n} Z_{j}\right]=0$ for all $n \neq j$; and $E\left[Z_{n}^{2}\right]=\sigma^{2}$ for all n. Compute $R_{n}(k)=E\left[X_{n} X_{n-k}\right]$ for $k=0, \pm 1, \pm 2, \ldots$.
6. The joint probability density function of random variables X and Y is

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
c x y & 0 \leq x \leq 1,0 \leq y \leq 2 \\
0 & \text { o.w. }
\end{array}\right.
$$

What is the value of the constant c ? What is the probability of the event A that $X^{2}+Y^{2} \leq 1$?
7. A point is uniformly distributed within the disk of radius 1 . That is, its density is

$$
f(x, y)=C, \quad 0 \leq x^{2}+y^{2} \leq 1
$$

Find the probability that its distance from the origin is less than $x, 0 \leq x \leq 1$.
8. Suppose that X and Y are independent continuous random variables. Show that

$$
P(X \leq Y)=\int_{-\infty}^{\infty} F_{X}(y) f_{Y}(y) d y
$$

9. Let X and Y be independent random variables with means μ_{X} and μ_{Y} and variances σ_{X}^{2} and σ_{Y}^{2}. Show that

$$
\operatorname{Var}(X Y)=\sigma_{X}^{2} \sigma_{Y}^{2}+\mu_{Y}^{2} \sigma_{X}^{2}+\mu_{X}^{2} \sigma_{Y}^{2}
$$

10. Let X and Y be independent normal random variables, each having parameters μ and σ^{2}. Show that $X+Y$ is independent of $X-Y$.

Hints: Find their joint moment generating function.
11. Let $\phi\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ denote the joint moment characteristic function of random variables $X_{1}, X_{2}, \ldots, X_{n}$.
(a) Explain how the characteristic function of $X_{i}, \phi_{X_{i}}\left(\omega_{i}\right)$, can be obtained from $\phi\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$.
(b) Show that $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if

$$
\phi\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)=\prod_{i=1}^{n} \phi_{X_{i}}\left(\omega_{i}\right)
$$

Note: You can interprete $\phi(\omega)$ as either characteristic function or moment generating function.
12. Let the RV X have a uniform distribution in the interval $(9,11)$. Define the RV $Y=9 / X$, and find the distribution of Y. The example is of a resistor of nominal value 10Ω, with tolerance of $\pm 10 \%$ (its value is represented by X) and Y is the current in the resistor when a 9 -volt battery is applied at its terminals.
13. Considering the case of a saturation amplifier operating on a Gaussian RV. We assume that the input X has a Gaussian density function, with $m=0$ and $\sigma=0.5$. The amplifier, who output is assumed to be Y, follows:

$$
Y=g(X)= \begin{cases}-a & X<-1 \\ a X & -1<X<1 \\ +a & 1<X\end{cases}
$$

Find the distribution and density functions of Y.
14. Let X and Y be independent RVs with Cauchy distributions having parameters α and β, respectively. Use the characteristic function to find the density of their sum Z.

