
R

MicroBlaze™

Software
Reference
Guide

April 2002



MicroBlaze Software Reference Guide www.xilinx.com April 2002
1-800-255-7778

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, Logi-
BLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze,
QPro, RealPCI, RealPCI 64/66, SelectI/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMART-
Switch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep, XACTstep

Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xil-
inx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate

Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418;

4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827;
5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234; 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701; 5,892,681; 5,892,961;
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;

5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering

or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2002 Xilinx, Inc. All Rights Reserved.

R

http://www.xilinx.com


April 2002 www.xilinx.com MicroBlaze Software Reference Guide
1-800-255-7778

MicroBlaze™ Software Reference Guide
The following table shows the revision history for this document.

Version Revision

10/15/01 1.9 Initial MDK (MicroBlaze Development Kit) release.

1/14/02 2.1 MDK 2.1 release

3/02 2.2 MDK 2.2 release

http://www.xilinx.com


MicroBlaze Software Reference Guide www.xilinx.com April 2002
1-800-255-7778

http://www.xilinx.com


April 2002 www.xilinx.com v
MicroBlaze Software Reference Guide 1-800-255-7778

List of Figures ............................................................................................................................... xiii

List of Tables ..................................................................................................................................  xv

Preface:  Introduction to the MDT
Definitions ...................................................................................................................................  1
MDT Overview ..........................................................................................................................  1
Platform Tailoring Utilities ..................................................................................................  1
Development Tools ..................................................................................................................  1
Debug Tools ................................................................................................................................  2
Device Drivers and Libraries ...............................................................................................  2
Other Documentation Material...........................................................................................  2
Document Organization.........................................................................................................  2

Microprocessor Development Tools Flow

Microprocessor Development Tools (MDT) Flow...........................7
Summary .......................................................................................................................................  7
Overview .......................................................................................................................................  7
Verify Setup.................................................................................................................................  8

MicroBlaze GNU ..................................................................................................................... 8
Xilinx Alliance Software ......................................................................................................... 8

Library Generator......................................................................................................................  9
Program Layout ..........................................................................................................................  9
Running GNU Tools..............................................................................................................  10

Debugging .............................................................................................................................. 10
Compiling with Optimization ............................................................................................. 11
Setting the Stack Size ............................................................................................................ 11
Dumping an Object/Executable File .................................................................................. 11

Platform Generator .................................................................................................................  11
HDL Synthesis..........................................................................................................................  11

iSE XST.................................................................................................................................... 12
Synplicity Synplify ................................................................................................................ 12

Processor Platform Tailoring Utilities

MicroBlaze Library Generator ........................................................15
Summary .....................................................................................................................................  15
Overview .....................................................................................................................................  15
Tool Requirements .................................................................................................................  15

Contents

http://www.xilinx.com


vi www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

Tool Usage ..................................................................................................................................  15
Tool Options..............................................................................................................................  15
Output Files ...............................................................................................................................  16
MSS Attributes .........................................................................................................................  16
Boot and Debug Peripherals ..............................................................................................  17
Drivers ..........................................................................................................................................  17
Interrupts and Interrupt Controller ................................................................................  18
STDIN and STDOUT Peripherals...................................................................................  18

MicroBlaze Platform Generator......................................................19
Summary .....................................................................................................................................  19
Overview .....................................................................................................................................  19
Tool Requirements .................................................................................................................  19
Tool Usage ..................................................................................................................................  19
Tool Options..............................................................................................................................  19
Load Path.....................................................................................................................................  21
Output Files ...............................................................................................................................  21

HDL Directory ....................................................................................................................... 21
Implementation Directory.................................................................................................... 21
Simulation Directory............................................................................................................. 21
Synthesis Directory ............................................................................................................... 22

About Memory Generation ................................................................................................  22
Reserved MHS Attributes ...................................................................................................  23
Current Limitations ................................................................................................................  23

Software Application Development Tools

MicroBlaze GNU Compiler Tools ...................................................27
Summary .....................................................................................................................................  27
Quick Reference.......................................................................................................................  27
Tool Usage ..................................................................................................................................  28
Compiler Options....................................................................................................................  28
Assembler Options .................................................................................................................  29
Linker/Loader Options .........................................................................................................  29
Standard Libraries ..................................................................................................................  30

Division and Mod operations in MicroBlaze .................................................................... 30
Software multiply.................................................................................................................. 31

Psuedo-Ops ................................................................................................................................  31
Operating Instructions..........................................................................................................  31

Entire Gnu Tool Flow ........................................................................................................... 31
Environment Variable ...........................................................................................................  32
Search Paths ...............................................................................................................................  32

On UNIX shells ...................................................................................................................... 32
On Windows command prompt ......................................................................................... 32

Initialization Files ...................................................................................................................  33
Command Line Arguments ................................................................................................  33

http://www.xilinx.com


April 2002 www.xilinx.com vii
MicroBlaze Software Reference Guide 1-800-255-7778

R

Interrupt Handlers ..................................................................................................................  33

Microprocessor Software IDE (XSI) ...............................................35
Summary .....................................................................................................................................  35
Overview .....................................................................................................................................  35
Processes Supported ..............................................................................................................  35
Tools Supported.......................................................................................................................  35
Project Management ..............................................................................................................  35
XSI Interface ..............................................................................................................................  36
Software Platform Management ......................................................................................  36
Source Code Management...................................................................................................  37
Flow Tool Settings ..................................................................................................................  38
Tool Invocation ........................................................................................................................  38

Flow Engine (XMF) ..........................................................................39
Summary .....................................................................................................................................  39
Overview .....................................................................................................................................  39
Tool Requirements .................................................................................................................  39
Tool Usage ..................................................................................................................................  39

Debug Tool Chain

MicroBlaze Debug and Simulation ................................................43
Summary .....................................................................................................................................  43
Overview .....................................................................................................................................  43
Terms and Definitions ..........................................................................................................  43
Software Debug .......................................................................................................................  44

Overview ................................................................................................................................ 44
Using a Simulator .................................................................................................................. 44
Using Hardware .................................................................................................................... 45

Hardware Simulation ............................................................................................................  45
Hardware Simulation Overview......................................................................................... 45
Output Files............................................................................................................................ 46
Setup Script and Signals ....................................................................................................... 46
Requirements ......................................................................................................................... 46

Co-Simulation and Debug ..................................................................................................  46
MicroBlaze System Debug ................................................................................................... 46

Program Monitoring ..............................................................................................................  47

MicroBlaze GNU Debugger.............................................................49
Summary .....................................................................................................................................  49
Overview .....................................................................................................................................  49
Tool Usage ..................................................................................................................................  49
Tool Options..............................................................................................................................  49

http://www.xilinx.com


viii www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

MicroBlaze GDB Targets .....................................................................................................  50
GDB Built-in Simulator......................................................................................................... 50
Remote .................................................................................................................................... 51

GDB Command Reference..................................................................................................  51
Compiling for Debugging...................................................................................................  52

MicroBlaze XMD ..............................................................................53
Summary .....................................................................................................................................  53
Overview .....................................................................................................................................  53
XMD Usage ................................................................................................................................  54
XMD Options ............................................................................................................................  54
Hardware target........................................................................................................................  54

Hardware Target Requirements.......................................................................................... 55
Simulator target........................................................................................................................  55

Simulation Statistics .............................................................................................................. 56
Simulator Target Requirements .......................................................................................... 56

XMD Tcl commands...............................................................................................................  56
xmdterm commands ...............................................................................................................  58

Device Drivers and Libraries

MicroBlaze Libraries .......................................................................61
Summary .....................................................................................................................................  61
Overview .....................................................................................................................................  61
Library Organization .............................................................................................................  61
Library Customization ..........................................................................................................  62

LibXil Standard C Libraries ............................................................63
Summary .....................................................................................................................................  63
Standard C Functions (libc) ................................................................................................  63

List of Standard C Library (libc.a) Files ............................................................................. 63
Input/Output Functions .......................................................................................................  63
Memory Management Functions .....................................................................................  64
Arithmetic Operations ..........................................................................................................  64

Integer Arithmetic ................................................................................................................. 64
Floating Point Arithmetic..................................................................................................... 64

LibXil File .........................................................................................65
Summary .....................................................................................................................................  65
Overview .....................................................................................................................................  65
Module Usage ...........................................................................................................................  65
Module Routines .....................................................................................................................  65
Libgen Support.........................................................................................................................  68

LibXil File Instantiation ........................................................................................................ 68
System Initialization.............................................................................................................. 68

http://www.xilinx.com


April 2002 www.xilinx.com ix
MicroBlaze Software Reference Guide 1-800-255-7778

R

Limitations .................................................................................................................................  68

LibXil Memory File System (MFS)..................................................69
Summary .....................................................................................................................................  69
Overview .....................................................................................................................................  69
MFS Functions ..........................................................................................................................  69

Detailed summary of MFS Functions................................................................................. 70
C-like access...............................................................................................................................  75
LibGen Customization..........................................................................................................  75

LibXil Net..........................................................................................77
Summary .....................................................................................................................................  77
Overview .....................................................................................................................................  77
Protocols Supported ...............................................................................................................  77
Footprint ......................................................................................................................................  77
Library Architecture ...............................................................................................................  78
Protocol Function Description...........................................................................................  78

Media Access Layer (MAC) Drivers................................................................................... 78
Ethernet Drivers .................................................................................................................... 78
ARP (RFC 826) ....................................................................................................................... 79
IP (RFC 791)............................................................................................................................ 79
ICMP (RFC 792) ..................................................................................................................... 79
UDP (RFC 768)....................................................................................................................... 79
TCP (RFC 793)........................................................................................................................ 79
API ........................................................................................................................................... 79

Current Restrictions ...............................................................................................................  79
Functions of LibXilNet .........................................................................................................  80

LibXil Driver .....................................................................................83
Summary .....................................................................................................................................  83
Overview .....................................................................................................................................  83
Avaiable Device Drivers ......................................................................................................  83
Data Types ..................................................................................................................................  84
Driver Usage ..............................................................................................................................  85
Driver Functions ......................................................................................................................  86
General Purpose I/O Driver (gpio) ..................................................................................  88
Interrupt Controller Driver.................................................................................................  90
JTAG UART Driver................................................................................................................  92
SPI Driver ...................................................................................................................................  93
Timebase/ WatchDog Timer Driver................................................................................  98
Timer/Counter Driver .........................................................................................................  100
UART Lite Driver ..................................................................................................................  105
MicroBlaze Interrupt Routines .......................................................................................  108

http://www.xilinx.com


x www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

Software Specification

Microprocessor Software Specification (MSS) Format .............111
Summary ...................................................................................................................................  111
Overview ...................................................................................................................................  111
Microprocessor Software Specification (MSS) Format ........................................  111

Format ................................................................................................................................... 111
MSS example........................................................................................................................ 111

Global Options .......................................................................................................................  112
HW_SPEC_FILE Option..................................................................................................... 112
BOOTSTRAP Option .......................................................................................................... 112
BOOT_PERIPHERAL Option............................................................................................ 113
STDIN Option ...................................................................................................................... 113
STDOUT Option .................................................................................................................. 113
EXECUTABLE Option ........................................................................................................ 113
XMDSTUB Option............................................................................................................... 113
DEBUG_PERIPHERAL Option......................................................................................... 113

Instance Specific Options..................................................................................................  114
DRIVER Option ................................................................................................................... 114
DRIVER_VER Option ......................................................................................................... 114
INT_HANDLER Option..................................................................................................... 114
LIBRARY Option ................................................................................................................. 114

File System Specific Options ...........................................................................................  115
MOUNT Option................................................................................................................... 115
LIBRARY Option ................................................................................................................. 115

MicroBlaze Address Management ...............................................117
Summary ...................................................................................................................................  117
Programs and Memory........................................................................................................  117
Current Address Space Restrictions .............................................................................  117
Memory Speeds and Latencies........................................................................................  118
System Address Space ........................................................................................................  119
Default User Address Space .............................................................................................  120
Advanced User Address Space........................................................................................  120
Object-file Sections ..............................................................................................................  120
Minimal Linker Script ........................................................................................................  122
Linker Script ............................................................................................................................  122

MicroBlaze Application Binary Interface.....................................125
Summary ...................................................................................................................................  125
Data Types ................................................................................................................................  125
Register Usage Conventions ............................................................................................  125
Stack Convention ..................................................................................................................  126
Memory Model .......................................................................................................................  128

Small data area..................................................................................................................... 128
Data area ............................................................................................................................... 128
Common un-initialized area.............................................................................................. 128
Literals or constants ............................................................................................................ 128

http://www.xilinx.com


April 2002 www.xilinx.com xi
MicroBlaze Software Reference Guide 1-800-255-7778

R

Interrupt and Exception Handling ................................................................................  128

MicroBlaze Interrupt Management...............................................131
Summary ...................................................................................................................................  131
Overview ...................................................................................................................................  131
Interrupt Handlers ................................................................................................................  131
The Interrupt Controller Peripheral .............................................................................  131
MicroBlaze Enable Interrupts..........................................................................................  132
System without Interrupt Controller ...........................................................................  132

Single Interrupt Signal........................................................................................................ 132
Procedure.............................................................................................................................. 132
Example MHS File............................................................................................................... 132
Example MSS File snippet.................................................................................................. 133
Example C Program ............................................................................................................ 133

System with an Interrupt Controller ............................................................................  134
System with One or More Interrupt Signals.................................................................... 134
Procedure.............................................................................................................................. 134
Example MHS File Snippet ................................................................................................ 135
Example MSS File Snippet ................................................................................................. 136
Example C Program ............................................................................................................ 136

Breakpoints in Interrupt Handlers................................................................................  137

Microblaze Instruction Set Architecture

MicroBlaze Instruction Set Architecture .....................................141
Summary ...................................................................................................................................  141
Notation .....................................................................................................................................  141
Formats .......................................................................................................................................  141
Instructions ..............................................................................................................................  142

Index ......................................................................................................................................................  197

http://www.xilinx.com


xii www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


April 2002 www.xilinx.com xiii
MicroBlaze Software Reference Guide 1-800-255-7778

Preface:  Introduction to the MDT

Microprocessor Development Tools Flow

Microprocessor Development Tools (MDT) Flow
Figure 1: Library Generation ........................................................................................................  7
Figure 2: Executable Generation..................................................................................................  8
Figure 3: Hardware Flow...............................................................................................................  9

Processor Platform Tailoring Utilities

MicroBlaze Library Generator

MicroBlaze Platform Generator

Software Application Development Tools

MicroBlaze GNU Compiler Tools

Microprocessor Software IDE (XSI)

Flow Engine (XMF)

Debug Tool Chain

MicroBlaze Debug and Simulation

MicroBlaze GNU Debugger

MicroBlaze XMD

Figures

http://www.xilinx.com


xiv www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

Device Drivers and Libraries

MicroBlaze Libraries
Figure 1: Structure of LibXil library .........................................................................................  62

LibXil Standard C Libraries

LibXil File

LibXil Memory File System (MFS)

LibXil Net
Figure 1: Schematic diagram of LibXilNet Architecture.......................................................  78

LibXil Driver

Software Specification

Microprocessor Software Specification (MSS) Format

MicroBlaze Address Management
Figure 1: Sample Address Map................................................................................................  118
Figure 2: Execution Scenarios ..................................................................................................  119
Figure 3: Sectional layout of an object or executable file ...................................................  121

MicroBlaze Application Binary Interface
Figure 1: Stack Convention ......................................................................................................  127
Figure 2: Stack Frame.................................................................................................................  127
Figure 3: Code for passing control to exception and interrupt handlers .........................  129

MicroBlaze Interrupt Management
Figure 1: Interrupt Controller and Peripherals.....................................................................  131

Microblaze Instruction Set Architecture

MicroBlaze Instruction Set Architecture

http://www.xilinx.com


April 2002 www.xilinx.com xv
MicroBlaze Software Reference Guide 1-800-255-7778

Preface:  Introduction to the MDT

Microprocessor Development Tools Flow

Microprocessor Development Tools (MDT) Flow

Processor Platform Tailoring Utilities

MicroBlaze Library Generator

MicroBlaze Platform Generator
Table  1: Predefined Memory Sizes...........................................................................................  22
Table  2: Automatically Expanded Reserved Attributes .......................................................  23

Software Application Development Tools

MicroBlaze GNU Compiler Tools
Table  1: Some commonly used compiler options..................................................................  27
Table  2: Psuedo-Opcodes supported by Assembler .............................................................  31
Table  3: Use of attributes............................................................................................................  34

Microprocessor Software IDE (XSI)
Table  1: Tools supported in XSI................................................................................................  35
Table  2: Program Options for Software Tools........................................................................  37
Table  3: Compiler Options that can be set using XSI ...........................................................  38

Flow Engine (XMF)

Debug Tool Chain

MicroBlaze Debug and Simulation

MicroBlaze GNU Debugger

Tables

http://www.xilinx.com


xvi www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

Table  1: Commonly Used GDB Console Commands ...........................................................  52

MicroBlaze XMD
Table  1: XMD Hardware target signals ...................................................................................  57
Table  2: Assembly level debugging commands ....................................................................  58

Device Drivers and Libraries

MicroBlaze Libraries

LibXil Standard C Libraries

LibXil File
Table  1: Routines Provided by LibXil File Module ..............................................................  65
Table  2: List of peripherals supported by LibXil File...........................................................  68

LibXil Memory File System (MFS)
Table  1: MFS functions at a glance ...........................................................................................  69
Table  2: Attributes for including Memory File System .......................................................  75

LibXil Net
Table  1: mb-size output for libXilNet ......................................................................................  77
Table  2: Functions in LibXilNet ................................................................................................  80

LibXil Driver
Table  1: List of Drivers................................................................................................................  83
Table  2: Global Typedefs ...........................................................................................................  84
Table  3: ..........................................................................................................................................  86

Software Specification

Microprocessor Software Specification (MSS) Format
Table  1: MSS Peripheral Options ...........................................................................................  114
Table  2: MSS FileSys Options .................................................................................................  115

MicroBlaze Address Management
Table  1: Start address for different compilation switches .................................................  120

MicroBlaze Application Binary Interface

http://www.xilinx.com


April 2002 www.xilinx.com xvii
MicroBlaze Software Reference Guide 1-800-255-7778

R

Table  1: Data types in MicroBlaze assembly programs .....................................................  125
Table  2: Register usage conventions ......................................................................................  125
Table  3: Interrupt and Exception Handling ..........................................................................  128

MicroBlaze Interrupt Management

Microblaze Instruction Set Architecture

MicroBlaze Instruction Set Architecture
Table  1: Symbol notation .........................................................................................................  141

http://www.xilinx.com


xviii www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


April 2002 www.xilinx.com 1
MicroBlaze Software Reference Guide 1-800-255-7778

R

Preface

Introduction to the MDT

Definitions
MDK - MicroBlaze Development Kit

MDT - Microprocessor Development Tools

MDT Overview
The Microprocessor Development Tools (MDT) included in the Xilinx MicroBlaze
Development Kit (MDK) offer the embedded system designer a rich set of embedded
processor system design tools. The MDT set of tools consists of

• Processor platform tailoring utilities
• Software application development tools
• A full featured debug tool chain
• Device drivers and libraries

Platform Tailoring Utilities
The MDT includes the Platform Generator and the Library Generator development
platform tailoring utilities.

Using Platform Generator, it is possible to generate the hardware netlist for an entire user
defined processor system. The user may specify the configuration of a MicroBlaze
processor core, its bus interfaces, and the processor peripheral components that are to be
associated with each given bus. Platform Generator tailors each bus components and
generates a custom bus which ties the MicroBlaze processor core to its associated
peripherals.

Library Generator produces customized device drivers and software function libraries for
the given user defined hardware processor system generated by Platform Generator. The
address range information of each specified processor peripheral is used to tailor the
associated device drivers. In turn, standard C function libraries are tailored to work with
the available set of customized device drivers.

Development Tools
Software application development support consists of a complete GNU C Compiler (GCC)
and Binary Utilities (binutils) tool suites. These suites allow users to compile, assemble,
and link their C code or MicroBlaze assembly language programs. The compiler’s code
optimizer and code generator have been customized to achieve the best possible
performance for applications on the MicroBlaze ISA

http://www.xilinx.com


2 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Preface: Introduction to the MDT
R

The Xilinx Software IDE (XSI) provides an integrated Graphical User Interface (GUI) to
create the software specification file for a Microprocessor system. It also provides an editor
and a project management interface to create and edit source code.

The Flow Engine (XMF) is used to schedule tool flow (library generator, compiler tools and
platform generator) through flow files and option files. XMF is an enhancement to the
Xflow utility that is available as part of Xilinx Design Implementation (ISE) tools.

Debug Tools
The MicroBlaze debug tool chain consists of the GNU Debugger (GDB) software debug
application, the XMD debug target interface utility, a hardware board interface, and a
cycle-accurate Instruction Set Simulator (ISS).

The GDB debug utilities allows users to start the execution of a program, to set initial
conditions, to set breakpoints, and to examine the state of the processor and the contents of
memory. GDB communicates with XMD to obtain the current program execution
information. XMD provides memory contents, processors state and cycle count
information to GDB. XMD offers users a choice of two execution targets: a hardware board
or a cycle-accurate Instruction Set Simulator. XMD also provides a Tcl interface that
supports scripting.

Device Drivers and Libraries
The MDT includes a set of device drivers and library functions. The device drivers offer the
user a default software interface to the hardware. Libraries further raise the abstraction
level and offer a convenient reference implementation of frequently required functions.

The Xilinx Libraries include support for I/O operations, math computations, string
manipulation, memory management functions, a stream based file system, a memory
based file system and networking support.

Library Generator aids the user by automatically generating a customized set of device
drivers and libraries for a given user defined processor system.

Other Documentation Material
The entire set of GNU manuals can be found online at:

http://www.gnu.org/manual

Document Organization
This MicroBlaze Software Reference Guide consists of the following documents:

• MDT Flow
• Processor Platform Tailoring Utilities

- MicroBlaze Library Generator
- MicroBlaze Platform Generator

• Software Application Development Tools
- MicroBlaze GNU Compiler Tools (includes GNU Binary Utilities)
- Microprocessor Software IDE (XSI)
- Flow Engine (XMF)

• Debug Tool Chain
- MicroBlaze Debug and Simulation
- MicroBlaze GNU Debugger

http://www.gnu.org/manual
http://www.xilinx.com


April 2002 www.xilinx.com 3
MicroBlaze Software Reference Guide 1-800-255-7778

Document Organization
R

- MicroBlaze XMD
• Device Drivers and Libraries

- MicroBlaze Libraries
- LibXil Standard C Libraries
- LibXil File
- LibXil Memory File System (MFS)
- LibXil Net
- LibXil Driver

• Software Specification
- Microprocessor Software Specification (MSS) Format
- MicroBlaze Address Management
- MicroBlaze Application Binary Interface
- MicroBlaze Interrupt Management

• MicroBlaze Instruction Set Architecture

http://www.xilinx.com


4 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Preface: Introduction to the MDT
R

http://www.xilinx.com


April 2002 www.xilinx.com 5
MicroBlaze Software Reference Guide 1-800-255-7778

R

Microprocessor Development Tools
Flow

http://www.xilinx.com


6 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


Mar. 29, 2002 www.xilinx.com 7
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the Microprocessor Development Tools (MDT) flow for the 32-bit soft
processor, MicroBlaze.

Overview System design consists of tailoring of the software component, and the hardware component of
the embedded processor.

The software component is defined by the MSS (Microprocessor Software Specification) file
(see the Microprocessor Software Specification Format documentation for more information).
The MSS file defines the standard input/output devices, interrupt handler routines, and other
related software features. The MSS file is created by the user.

The hardware component is defined by the MHS (Microprocessor Hardware Specification) file
(see the Microprocessor Hardware Specification Format documentation for more information).
The MHS file defines the bus architecture, the peripherals, one of six configurations of the
MicroBlaze bus interfaces (see the MicroBlaze Bus Interfaces documentation for more
information), connectivity of the system, and the address space. The MHS file is created by the
user.

Figure 1: Library Generation

Software tailoring consists of library generation and executable file generation.

Library generation is done with the Library Generator (libgen) tool. Please refer to the
MicroBlaze Library Generator and MicroBlaze Libraries documentation for more information.
Library Generator will configure the libraries and device drivers with the base addresses of the
peripherals of the embedded processor system from an MSS file. Refer to Figure 1 for a flow
outline.

After the libraries and the device drivers are configured, an executable image can be generated
using the GNU tools. The input into the GNU tools are the libraries/drives that are configured by
Library Generator and the user input file. Refer to Figure 2 for a flow outline.

Xilinx Embedded Processors: MicroBlaze

Mar. 29, 2002

Microprocessor Development Tools
(MDT) Flow

R

X9585

libgen

MSS

Libraries/Drivers
Sources

Libraries/Drivers
mbio.h

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


8 www.xilinx.com Mar. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Development Tools (MDT) Flow
R

Figure 2: Executable Generation

Hardware generation is done with the Platform Generator (platgen) tool. Please refer to the
MicroBlaze Platform Generator documentation for more information. Platform Generator will
construct the system in the form of hardware netlists (HDL and EDIF files) from an MHS file.
Refer to Figure 3 for a flow outline.

Verify Setup The environment variable, MICROBLAZE, needs to be set at the level of the hierarchy where the
directories doc, hw, and bin reside.

MicroBlaze GNU
Ensure that the MicroBlaze GNU tools are in your path.

MicroBlaze on Solaris

Check the executable search path. Your path must include the following:

• ${MICROBLAZE}/bin/gnu

• ${MICROBLAZE}/bin

MicroBlaze on PC

Check the executable search path.

• %MICROBLAZE%\bin\gnu

• %MICROBLAZE%\bin

Xilinx Alliance Software
Set up your system to use the Xilinx Development System. Verify that your system is properly
configured. Consult the release notes and installation notes that came with your software
package for more information.

X9779

mb-gcc
(GNU Compiler/Linker)

Program Sources
(.c, .h)

User Executable
"(.out)"

Libraries/Drivers
mbio.h

http://www.xilinx.com


Microprocessor Development Tools (MDT) Flow

Mar. 29, 2002 www.xilinx.com 9
MicroBlaze Software Reference Guide 1-800-255-7778

R

Figure 3: Hardware Flow

Library
Generator

The Library Generator (libgen) tool will configure the libraries and device drivers with the base
addresses of the peripherals of the embedded processor system. Please see Figure 1 for a
flow outline.

Run the Library Generator as follows:

libgen system.mss

Please see the MicroBlaze Library Generator and MicroBlaze Libraries documentation for
more information.

Program Layout Please see the MicroBlaze Program Layout documentation on details about address space
restrictions.

X9587

platgen

FPGA

HDL Synthesizer

Implementation
Tools

.edf, .v, .vhd

file_name.edf

file_name.bit

MHS

http://www.xilinx.com


10 www.xilinx.com Mar. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Development Tools (MDT) Flow
R

Running GNU
Tools

Given a set of C source files, a MicroBlaze executable is created as follows:

1. To compile and link, run the following:
mb-gcc file1.c file2.c

MicroBlaze compiler searches the MICROBLAZE, for libraries and include files.

If the MICROBLAZE environment variable is not set, use the -L option to point to the
directory containing the libc.a and libm.a libraries.

mb-gcc -L<dir1-name> -I<dir2-name> -B<dir3-name> file1.c file2.c

MicroBlaze compiler will look into dir1-name for libraries and dir2-name for header files and
dir3-name for C runtime libraries.

A MicroBlaze executable file, a.out, is created.

For including any of the math function, include -lm in the command line for mb-gcc.

2. For further information on mb-gcc options, run one of the following:

- mb-gcc --help

- info gcc

The latter will give you the info page of Solaris gcc, on which mb-gcc is based. You can also
refer to the MicroBlaze GNU Compiler Tools documentation for more details on use of
MicroBlaze GNU tools.

Debugging
You can debug your program in software (using a simulator), or on a board which has a Xilinx
FPGA loaded with your hardware bitstream. Refer to the XMD documentation for more
information.

Debugging Using Hardware: software intrusive

Create your application executable using the following command:

mb-gcc -g -xl-mode-xmdstub file1.c file2.c

This command creates the MicroBlaze executable a.out, linked with the C runtime library crt1.o
and starting at physical address 0x400, and with debugging information that can be read by
mb-gdb.

If you want to debug your code using a board, you must run Library Generator and Platform
Generator with the -mode xmdstub option. This initializes the Local Memory (LM) with the
xmdstub executable. Next, load the bitstream representing your design onto your FPGA. Refer
to XMD documentation for more information.

Start xmd server in a new window with the following command:

xmd -t hw

Load the program in mb-gdb using the command:

mb-gdb a.out

Click on the “Run” icon and in the mb-gdb Target Selection dialog, choose

- Target: Remote/TCP
- Hostname: localhost
- Port: 1234

Now, mb-gdb’s Insight GUI can be used to debug the program.

Debugging Using A Simulator: non-intrusive

If you want to debug your code using a simulator, compile programs using the following
command:

mb-gcc -g file1.c file2.c

http://www.xilinx.com


Microprocessor Development Tools (MDT) Flow

Mar. 29, 2002 www.xilinx.com 11
MicroBlaze Software Reference Guide 1-800-255-7778

R

This command creates the MicroBlaze executable file, a.out, with debugging information
that can be accessed by mb-gdb.

Xilinx provides two ways to debug programs in simulation.

1. Cycle-accurate simulator in XMD:

Start xmd server in a new window with the following command:

xmd -t sim

Loading and debugging the program in mb-gdb is done the same way as for xmd in hardware
mode described above.

This is the preferred mechanism to debug user programs in simulation

2. Simple ISA simulatorin mb-gdb:

The xmd server is not needed in this mode. After loading the program in mb-gdb, Click on the
“Run” icon and in the mb-gdb Target Selection dialog, choose “Simulator”.

Use this mechanism only if your program does not attempt to access any peripherals (not even
via a print call).

Compiling with Optimization
Once you are satisfied that your program is correct, recompile your program with optimization
turned on. This will reduce the size of your executable, and reduce the number of cycles it
needs to execute. This is achieved by the following:

mb-gcc -O3 file1.c file2.c

Setting the Stack Size
By default, the MDT tools build the executable with a default stack size of 0x100 (256) bytes.

The stack size can be set at compile time by using:

mb-gcc file1.c file2.c -Wl,defsym -Wl,_STACK_SIZE=0x400

This will set the stack size to 0x400 (1024) bytes.

Dumping an Object/Executable File
The mb-objdump utility lets you see the contents of an object (.o) or executable (.out) file.

To see your symbol table, the size of your file, and the names/sizes of the sections in the file,
run the following:

mb-objdump -x a.out

To see a listing of the (assembly) code in your object or executable file, use

mb-objdump -d a.out

To get a list of other options, use the following command:

mb-objdump --help

Platform
Generator

Hardware generation is done with the Platform Generator (platgen) tool and an MHS file. This
will construct the embedded processor system in the form of hardware netlists (HDL and EDIF
files). Refer to Figure 3 for a flow outline.

Run Platform Generator as follows:

platgen system.mhs

Please refer to the MicroBlaze Platform Generator documentation for more information.

HDL Synthesis Hierarchal EDIF netlists are generated in the default mode. This means that each instance of a
defined peripheral in the MHS file is synthesized. The default mode leaves the top-level HDL

http://www.xilinx.com


12 www.xilinx.com Mar. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Development Tools (MDT) Flow
R

file untouched allowing you to synthesize it in any synthesizer of your choice. Currently,
Platform Generator only supports XST and Synplify.

Platform Generator produces a synthesis vendor specific project file. This is done with -s
option. The -s option builds the synthesis project file for you of the HDL files that were left
untouched in default mode (i.e., not specifying the -flat option).

Platform Generator does not call the synthesizer for you. It just builds the synthesis project file
for you.

If you did specify the -flat option, then skip the synthesis step since the top-level is
synthesized for you.

The -i option disables IO insertion at the top-level, and also generates the HDL component
stub for you of the name system_stub.vhd or system_stub.v. This allows the processor system
to be included as a macro in a top-level HDL design. Otherwise, the output from Platform
Generator is the top-level netlist.

iSE XST
If Platform Generator was run without the -flat option, then a synthesis script file for XST is
written. This script can be executed under XST using the following command:

xst -ifn system.scr

Synplicity Synplify
If Platform Generator was run without the -flat option, then a synthesis project file for Synplify
is written. This project can be executed under Synplify using the following command:

synplify system.prj

http://www.xilinx.com


April 2002 www.xilinx.com 13
MicroBlaze Software Reference Guide 1-800-255-7778

R

Processor Platform Tailoring Utilities

http://www.xilinx.com


14 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


Jan. 10, 2002 www.xilinx.com 15
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the Library Generator utility needed for the generation of libraries for
the 32-bit soft processor, MicroBlaze. It also describes how the user can define peripherals and
associated drivers.

Overview The Library Generator (libgen) is generally the first tool to run to configure libraries and device
drivers. An MSS file is created by the user and given to libgen as input. The MSS file defines the
standard input/output devices, interrupt handler routines, and other related software features.
Libgen configures libraries and drivers with the information in the MSS input file.

Tool
Requirements

The library generator requires a valid MSS file as input. For more information on the MSS file
format, please refer the Microprocessor Software Specification documentation.

Tool Usage The Library Generator is run as follows:

libgen [options] <filename>.mss

Tool Options The following options are supported in this version:

-h, -help (Help)

This option displays the usage menu and quits.

-v, -ver (Display version information)

This option displays the version number of libgen.

-a, -arch (Architecture family)

This option defines the target architecture family. The options are spartan2, spartan2e, virtex,
virtexe or virtex2. The default option is virtex2.

-p, -proj (Specify project directory)

This option specifies the project directory. The default is the current directory. All output files
and directories will be generated in the project directory. This project directory is also called
MICROBLAZE_PROJECT for convenience in the documentation.

-P, -Per_Dir (Specify user peripherals and driver directory)

This option specifies the user peripherals and drivers directory. This is the replacement forthe
XIL_MYPERIPHERALS environment variable in previous versions. Libgen looks for drivers in
the directory <PER_DIR>/drivers/

Please refer to later sections for more information.

-m, -mode

This option allows libgen to be run in one of the following modes:

Xilinx Embedded Processors: MicroBlaze

Jan. 10, 2002

MicroBlaze Library Generator
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


16 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Library Generator
R

-mode executable: This is the default mode. This mode should be used if the user
wants to generate a stand-alone executable program. The EXECUTABLE attribute
in the MSS file is used in this mode. Note that in this mode, on board debug
support is not available. The MSS file should have the line

SET attribute EXECUTABLE = dir/exec_file
where dir is the directory relative to MICROBLAZE_PROJECT directory.

-mode bootstrap: This mode is used when the user wants to use a bootstub
executable to load the user program. The BOOTSTRAP attribute in the MSS file is
used in this mode. This executable is created in the directory specified by the user
in the MSS file. The MSS file should have the line

SET attribute BOOTSTRAP = dir/boot_exec_file

where dir is the directory (relative to MICROBLAZE_PROJECT) the bootstub file
(boot_exec_file) should be created.

-mode xmdstub: This mode is used when user wants to use a debug stub for on-board
debug. The XMDSTUB attribute in the MSS file is used in this mode. This attribute
specifies that an xmdstub executable has to be created for on board debug by
libgen. Libgen generates and overwrites the xmdstub executable if it already
exists. The MSS file should have a line such as

SET attribute XMDSTUB = dir/debug_exec_file

where dir is the directory (relative to MICROBLAZE_PROJECT) the xmdstub file,
debug_exec_file, should be created.

-d, -do_not_warn

This option disables printing of warning messages. By default, all warnings are printed.

Output Files Libgen generates these directories and files in the MICROBLAZE_PROJECT directory:

include

The include directory contains C header files that are needed by drivers. The include file
mbio.h is also created by libgen in this directory. This file defines base addresses of the
peripherals in the system and also defines function prototypes.

lib

The lib directory contains libc.a and libm.a libraries. More information on the libraries can
be found in the Libraries documentation.

libsrc

The libsrc directory contains intermediate files and makefiles that are needed to compile the
libraries and drivers. The directory contains peripheral specific driver files that are copied from
the MicroBlaze and user driver directories. Please refer the Drivers subsection of this document
for more information. Note that this directory is overwritten each time libgen is run.

code

The code directory may be used as a repository for MicroBlaze executables.

MSS Attributes Libgen is sensitive to these attributes in the MSS file (refer Microprocessor Software
Specification documentation):

STDIN: This specifies that the peripheral is the standard input. Only peripherals whose MPD
file specifies attribute INBYTE=true, can be standard input.

STDOUT: This specifies that the peripheral is the standard output. Only peripherals whose MPD
file specifies OUTBYTE=true, can be standard output.

XMDSTUB: This attribute specifies the on board debug executable that needs to be generated.

http://www.xilinx.com


MicroBlaze Library Generator

Jan. 10, 2002 www.xilinx.com 17
MicroBlaze Software Reference Guide 1-800-255-7778

R

BOOTSTRAP: This attribute specifies the bootstub executable that should be generated.

DEBUG_PERIPHERAL: This attribute specifies the peripheral in the MHS file to be the debug
peripheral. This peripheral will be used for on board debug purposes.

BOOT_PERIPHERAL: This attribute specifies the peripheral in the MHS file to be the boot
peripheral. This peripheral will be used for bootstrap purposes.

INT_HANDLER: This attribute defines the interrupt handler function for a peripheral’s interrupt
signal. This attribute is specified along with the interrupt signal (as defined in the MHS file) in
the MSS as shown:

SET attribute INT_HANDLER = my_int_hand, Interrupt_signal

Please refer to the Interrupt Management documentation for more information on setting up
interrupt handlers and handling peripheral interrupts.

DRIVER: This attribute specifies the name of the driver directory to be used for the peripheral
requiring a driver.

DRIVER_VER: This attribute specifies the driver version to be used. This version is specified in
the following format: x.yz.a, where x,y and z are digits, and a is a character. This is
translated to the driver directory searched by libgen as follows:

MICROBLAZE_PROJECT/drivers/<DRIVER>_vx_yz_a
XIL_MYPERIPHERALS/drivers/<DRIVER>_vx_yz_a
MICROBLAZE/drivers/<DRIVER>_vx_yz_a

The XIL_MYPERIPHERALS path is specified using the command line option -P to libgen.

Please refer to the Drivers documentation for more information on device drivers and their
usage.

MOUNT: This attribute specifies the mount name of a file system. Please see the Libraries
documentation for more information.

LIBRARY: This attribute specifies that the file or device is accessed using Xilinx libraries.
Please see the Libraries documentation.

Boot and Debug
Peripherals

These are peripherals that are specifically used to download bootstub and xmdstub. The
attributes BOOT_PERIPHERAL and DEBUG_PERIPHERAL are used for denoting the boot
and debug peripheral instances. Libgen uses these attributes in xmdstub and bootstrap modes.

Drivers Most peripherals require software drivers. The MDK peripherals are shipped with associated
drivers. Refer to the Libraries and Device Drivers documentation for more information.

The attribute DRIVER must be used in the MSS file to specify the driver directory for a
peripheral. There is no default value for this attribute. The driver directory contains C source
and header files and a makefile for the driver. Libgen copies this directory over to the
MICROBLAZE_PROJECT/libsrc directory and runs make for compiling the driver. Refer to
the source codes and makefiles in the drivers directory for more information.

Libgen also creates an include file mbio.h in the MICROBLAZE_PROJECT/include directory.
This header file must be included in the driver source files. This file contains peripheral base
address definitions and interrupt masks for the peripherals. This file also contains function
prototypes and useful defines.

Users can write their own drivers. These drivers must be in a specific directory under
MICROBLAZE_PROJECT/drivers or XIL_MYPERIPHERALS/drivers.The DRIVER
attribute allows the user to specify any name for their drivers.

http://www.xilinx.com


18 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Library Generator
R

Interrupts and
Interrupt
Controller

An interrupt controller peripheral must be instantiated if the MHS file has multiple interrupt
signals defined. The MHS file should also have a PRIORITY attribute associated with each
interrupt signal. In the MSS file, the INT_HANDLER attribute allows an interrupt handler routine
to be associated with the interrupt signal. Libgen uses this attribute to configure the interrupt
controller handler to call the appropriate peripheral handlers on an interrupt. The functionality
of these handler routines is left to the user to implement. If INT_HANDLER attribute is not
specified, libgen uses a default dummy handler routine for the peripheral.

If there is only one interrupt driven peripheral, an interrupt controller need not be used.
However, the peripheral should still have an interrupt handler routine specified. Otherwise a
default one is used.

Please reger to the Interrupt Management documentation for more information.

STDIN and
STDOUT
Peripherals

Peripherals that handle I/O need drivers to access data. Two files, inbyte.c, outbyte.c
are required in the driver directory if the peripheral instance can be both standard input and
standard output. The peripheral instance should be specified as STDIN or STDOUT in the MSS
file. The attributes INBYTE=TRUE and OUTBYTE=TRUE have to be included in the MPD file
for that peripheral.

If the peripheral is an input only or an output only peripheral, then either the inbyte.c or
outbyte.c file must be present, and the corresponding attributes, INBYTE, STDIN or OUTBYTE,
STDOUT need be specified.

http://www.xilinx.com


Mar. 29, 2002 www.xilinx.com 19
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the Platform Generator utility usage for the 32-bit soft processor,
MicroBlaze.

Overview The hardware component is defined by the MHS (Microprocessor Hardware Specification) file
(see the Microprocessor Hardware Specification Format documentation for more information).
The MHS file defines the bus architecture, the peripherals, one of six configurations of the
MicroBlaze bus interfaces (see the MicroBlaze Bus Interfaces documentation for more
information), connectivity of the system, interrupt request priorities, and the address space.
The MHS file is created by the user.

Hardware generation is done with the Platform Generator (platgen) tool and an MHS file. This
will construct the embedded processor system in the form of hardware netlists (HDL and EDIF
files).

Tool
Requirements

Set up your system to use the Xilinx Development System. Verify that your system is properly
configured. Consult the release notes and installation notes that came with your software
package for more information.

Tool Usage Run Platform Generator as follows:

platgen system.mhs

Tool Options The following are the options supported in the current version:

-a (Architecture family)

The -a option allows you to target a specific architecture family. The default family is virtex2.

-flat (Generate a flatten EDIF file)

The -flat option generates a flatten EDIF file. A synthesis project file is not created.

By default, Platform Generator runs in hierarchal mode. In hierarchal mode, Platform
Generates hierarchal EDIF netlists. This means that each instance of a defined peripheral in
the MHS file is synthesized. The default mode leaves the top-level HDL file untouched allowing
you to synthesize it in any synthesizer of your choice. Currently, Platform Generator only
supports XST and Synplify.

-h (Help)

The -h option displays the usage menu and quits.

-i (Do not insert IOs at top-level)

The -i option disables IO insertion at the top-level. This allows processor system to be included
as a macro in a top-level design. Otherwise, the output from Platform Generator is the top-level
design.

Xilinx Embedded Processors: MicroBlaze

Mar. 29, 2002

MicroBlaze Platform Generator
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


20 www.xilinx.com Mar. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Platform Generator
R

-l (Specify the HDL format)

The -l option allows you to specify the HDL format. The default value is vhdl.

Options: [vhdl, verilog]

-p (Specify the Project Directory)

The -p option allows you to specify the project directory path. The default is the current
directory.

-P (Peripheral repository load path)

The -P option allows you to specify the peripheral repository load path.

-mode (Mode)

The -mode option selects the MicroBlaze executable image for memory initialization. The
default is executable.

Options: [bootstrap, executable, xmdstub]

The bootstrap mode is used when the user wants to use a bootstub executable to load the user
program. The BOOTSTRAP attribute in the MSS file is used in this mode.

The executable mode is used when the user wants to generate a stand-alone executable
program. The EXECUTABLE attribute in the MSS file is used in this mode.

The xmdstub mode is used when the user wants to use a debug stub for on-board debug. The
XMDSTUB attribute in the MSS file is used in this mode.

-mss (MSS file location)

The -mss option allows you to specify the path of the MSS file. The MSS is required if you wish
to initialize the generated memories. The MSS file contains location pointers to the
programming information.

-s (Generate synthesis vendor project file)

Platform Generator produces a synthesis vendor specific project file. This is done with -s
option. The -s option builds the synthesis project file for you of the HDL files that were left
untouched in default mode (i.e., not specifying the -flat option). The only supported values are
0, 2, and 4. The default value is 2.

Options: [0, 1, 2, 3, 4]

0 - None

1 - Exemplar - Leonardo

2 - iSE - XST - SCR/PRJ file

3 - Synopsys - FPGA Express

4 - Synplicity - Synplify - PRJ file

-sim (Generate simulation models and a simulation vendor project file)

The -sim option generates simulation models of the peripherals in use and a simulation vendor
project file. The default value is 0.

Options: [0, 1]

0 - None

1 - ModelSim - DO file

-v (Display version)

The -v option displays the version and quits.

http://www.xilinx.com


MicroBlaze Platform Generator

Mar. 29, 2002 www.xilinx.com 21
MicroBlaze Software Reference Guide 1-800-255-7778

R

Load Path By default, OPB peripherals reside at $MICROBLAZE/hw/coregen on an UNIX system or
%MICROBLAZE%\hw\coregen on a PC system. If you want to specify additional directories,
you have two options:

1. Current directory (where Platform Generator was launched; not where the MHS resides)

2. Set the Platform Generator -P option, or the XIL_MYPERIPHERALS environment variable

Platform Generator has a search priority mechanism to locate peripherals.

1. Search current directory

2. Search $XIL_MYPERIPHERALS/opb_peripherals (UNIX) or
%XIL_MYPERIPHERALS%\opb_peripherals (PC)

3. Search $MICROBLAZE/hw/coregen (UNIX) or %MICROBLAZE%\hw\coregen (PC)

Search areas 1 and 2 have the same underlying directory structure. Search area 3 has the
COREgen directory structure.

For search areas 1 and 2, the peripheral name is the name of the root directory. From the root
directory, this is the underlying directory structure:

data
hdl
netlist
simmodels

Output Files Platform Generator produces the following directories and files. From the project directory, this
is the underlying directory structure:

hdl
implementation
simulation
synthesis

HDL Directory
The hdl directory contains the following:

system.vhd

This is the top level HDL file of the processor and its peripherals.

Implementation Directory
The implementation directory contains the following:

system.edn

This is the top level EDIF of the processor and its peripherals. Only created if the -flat
option is given.

peripheral_wrapper.edn

EDIF file of the peripheral. Only created if the -flat option is not given.

microblaze_n.edf

EDIF file of the MicroBlaze core.

Simulation Directory
The simulation directory contains the following:

system.vhd

This is the top level simulation file of the processor and its peripherals. Only created if the
-flat option is given.

peripheral_wrapper.vhd

http://www.xilinx.com


22 www.xilinx.com Mar. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Platform Generator
R

HDL simulation file of the peripheral made by NGD2VHDL or NGD2VER. Only created if the
-flat option is not given.

microblaze_n.vhd

HDL simulation file of the MicroBlaze core.

system.do

Compile script for ModelSim.

Synthesis Directory
The synthesis directory contains the following:

system.{prj|scr}

Synthesis project file.

About Memory
Generation

Platform Generator generates the necessary banks of memory and the initialization files for the
Local Memory (LM) and OPB BRAM.

For the LM (lmb_lmb_bram) and OPB BRAM (opb_bram), the MHS options, C_BASEADDR
and C_HIGHADDR (see the Microprocessor Hardware Specification Format documentation for
more information), define the different depth sizes of memory.

The MicroBlaze processor is a 32-bit machine, therefore, has data and instruction bus widths of
32-bit. Only predefined sizes of Local Memory and OPB BRAM are allowed. Otherwise, MUX
stages have to be introduced to build bigger memories, thus slowing memory access to the
memory banks. For Spartan-II, the maximum allowed memory size is 4 kBytes which uses 8
Select BlockRAM. For Spartan-IIE, the maximum allowed memory size is 8 kBytes which uses
16 Select BlockRAM. For Virtex/VirtexE, the maximum allowed memory size is 16 kBytes
which uses 32 Select BlockRAM. For Virtex-II, it is 64 kBytes which also uses 32 Select
BlockRAMs.

Be sure to check your FPGA resources can adequately accommodate your executable image.
For example, the smallest Spartan-II device, xc2s15, only 4 Select BlockRAMs are available for
a maximum memory size of 2 kBytes. Whereas, the largest Spartan-II device, xc2s200, 14
Select BlockRAMs are available for a maximum memory size of 7 kBytes.

Platform Generator creates four blocks of memory. Each bank of memory is byte addressable
(8 bits wide). Depending on the pre-defined memory size, each bank will contain one or more
Select BlockRAMs.

For example, a memory size of 4 kBytes on a Virtex device, Platform Generator creates four
banks of memory. Each bank is 8 bits wide and 1 kBytes deep. This configuration uses eight
Select BlockRAMs, two Select BlockRAMs for each bank.

Use the -mss option to specify location of the MSS file. The MSS file contains location pointers
to the programming information.

As of MDK 2.2, Platform Generator populates OPB BRAM and LM. One executable file can be
distributed across multiple memories peripherals to cover the size of the program. For each

Table  1: Predefined Memory Sizes

Architecture Memory Size (kBytes)

Spartan-II 2, 4

Spartan-IIE 2, 4, 8

Virtex 2, 4, 8, 16

VirtexE 2, 4, 8, 16

Virtex2 8, 16, 32, 64

http://www.xilinx.com


MicroBlaze Platform Generator

Mar. 29, 2002 www.xilinx.com 23
MicroBlaze Software Reference Guide 1-800-255-7778

R

memory peripheral, Platform Generator will only request the required memory space. For
example, if you define LM with a range of C_HIGHADDR=0x00001FFF and
C_BASEADDR=0x00000000, Platform Generator will only request 8 kBytes of memory space
from the executable file and populate the LM from hex 0 to hex 1FFF. If you define OPB BRAM
with a range of C_HIGHADDR=0xFFFF2FFF and C_BASEADDR=0xFFFF2000, Platform
Generator will request 4 kBytes from the executable file and populate OPB BRAM from the
defined address range.

Reserved MHS
Attributes

Platform Generator does automatic expansion on certain reserved attributes. These attributes
will be populated by Platform Generator if encountered. This can prevent user error if your
peripheral requires certain information on the platform being constructed. The following table
lists the reserved attribute names:

Current
Limitations

The current limitations of the Platform Generator flow are:

1. Only one MicroBlaze can be defined in the MHS file

2. Only one OPB can be defined in the MHS file

3. The OPB bus can be either a) a single D-OPB bus (Configurations 3 and 6 in which no I-
OPB bus is present), or b) a single, unified I&D OPB bus (Configurations 1, 2, 4, and 5).
Option b) requires users to declare an OPB arbiter peripheral in the MHS file. No error
checking will be done to detect a missing OPB arbiter.

4. No error checking will be done to detect the address space requirements of the executable
image.

Table  2: Automatically Expanded Reserved Attributes

Attribute Description

C_FAMILY FPGA Device Family

C_NUM_MASTERS Number of masters

C_NUM_SLAVES Number of slaves

C_NUM_INTR_INPUTS Number of interrupt signals

C_OPB_AWIDTH OPB Address width

C_OPB_DWIDTH OPB Data width

http://www.xilinx.com


24 www.xilinx.com Mar. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Platform Generator
R

http://www.xilinx.com


April 2002 www.xilinx.com 25
MicroBlaze Software Reference Guide 1-800-255-7778

R

Software Application Development
Tools

http://www.xilinx.com


26 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


Jan. 29, 2002 www.xilinx.com 27
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the various options supported by MicroBlaze GNU tools, such as mb-
gcc compiler, mb-as assembler and mb-ld loader/linker. In this document, we discuss only
those options, which have been added or enhanced for MicroBlaze. Standard libraries,
provided as a part of the MicroBlaze GNU tools are also described briefly in this document.

Quick
Reference

Table 1 briefly describes the commonly used compiler options.

Xilinx Embedded Processors: MicroBlaze

Jan. 29, 2002

MicroBlaze GNU Compiler Tools
R

Table  1: Some commonly used compiler options

Options Explanation

-E Preprocess only; Do not compile, assemble and link (Generates .i
file)

-S Compile only; Do not assemble and link (Generates .s file)

-c Compile and Assemble only; Do not link (Generates .o file)

-g Add debugging information for gdb to the final executable

-xl-mode-xmdstub Intrusive hardware debugging on the board.Should be used only
with xmdstub downloaded on to MicroBlaze

-xl-mode-bootstrap Generate code, which can be downloaded using the boot strap
loader

-xl-mode-bootstrap-reset Same as bootstrap mode, but in this case, on reset, the control is
transferred to user program instead of the boot stub.

-xl-mode-executable Default mode for compilation.

-mxl-gp-opt Use small data area anchors. Optimization for performance and
size.

-mxl-soft-mul Use software multiplier. Use this option when hardware multiplier is
not present in the device. By default this option in turned ON.

-mno-xl-soft-mul Do not use software multiplier. Compiler generates “mul”
instructions.

 -Wa,<options> Pass comma-separated <options> on to the assembler

-Wp,<options> Pass comma-separated <options> on to the preprocessor

-Wl,<options> Pass comma-separated <options> on to the linker

-B <directory> Add <directory> to the C-run time library search paths

-L <directory> Add <directory> to library search path

-I <directory> Add <directory> to header search path

 -v Display the programs invoked by the compiler

-o <file> Place the output in <file>

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


28 www.xilinx.com Jan. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze GNU Compiler Tools
R

Tool Usage MicroBlaze GNU C compiler usage:

mb-gcc [options] file...

Compiler
Options

The mb-gcc compiler for Xilinx’s MicroBlaze soft processor introduces some new options as
well as modifications to certain options supported by the gnu compiler tools. The new and
modified options are summarized in this document.

-g

The -g option allows you to perform debugging at the source level. mb-gcc adds appropriate
information to the executable file, which helps in debugging the code. mb-gdb provides
debugging at source, assembly and mixed (both source and assembly) together.

-mxl-soft-mul

In some devices, a hardware multiplier is not present. In such cases, the user has the option to
either build the multiplier in hardware or use the software multiplier library routine provided.
MicroBlaze compiler mb-gcc assumes that the target device does not have a hardware
multiplier and hence every multiply operation is replaced by a call to mulsi3_proc defined in
library libc.a. Appropriate arguments are set before calling this routine.

-mno-xl-soft-mul

Certain devices such as VirtexII have a hardware multiplier integrated on the device. Hence the
compiler can safely generate mul or muli instruction. Using a hardware multiplier gives better
performance, but can be done only on devices with hardware multiplier such as Virtex 2.

-save-temps

This option saves the temporary files created while compiling a C code. The temporaries
generated during the compilation phase are:

- Preprocessor output <filename.i>

- Assembler output <filename.s>

- Linker/Loader output <filename.o>

filename.c is the input C file.

-xl-mode-xmdstub

The mb-gcc compiler links certain initialization files along with the program being compiled. If
the program is being compiled to work along with xmd, crt1.o initialization file is used, which
returns the control of the program to the xmdstub after the execution of the user code is done.
In other cases, crt0.o is linked to the output program, which jumps to halt after the execution of
the program. Hence the option -xl-mode-xmdstub helps the compiler in deciding which
initialization file is to be linked with the current program.

The code start address is set to 0x400 for programs compiled for a system with xmd. This
ensures that the compiled program starts after the xmdstub. If the user intends to modify the
default xmdstub, leading to increase in the size of the xmdstub, users should take care to
change the start address of the text section. This option is described in the Linker Loader
Options subsection.

-save-temps Store intermediate files

--help Display a short listing of options.

-O <n> Specify Optimization level n = 0,1,2,3

Table  1: Some commonly used compiler options

Options Explanation

http://www.xilinx.com


MicroBlaze GNU Compiler Tools

Jan. 29, 2002 www.xilinx.com 29
MicroBlaze Software Reference Guide 1-800-255-7778

R

Notes: -xl-mode-xmdstub is allowed only in hardware debugging mode and with xmdstub loaded
in the memory. For software debugging (even with xmdstub), do not use this option. For more
details on debugging with xmd, please refer to the XMD documentation.

-xl-mode-bootstrap

Certain programs are downloaded using the boot loader onto the device. This option links in
crt2.o as the initialization file and starts the program at address location 0x100, leaving the first
100 words for the boot loader program. On a reset, the control is transferred back to the boot
stub, which waits for loading a new program in the memory.

-xl-mode-bootstrap-reset

Same as the bootstrap mode above, but the reset location is overwritten to jump to the user
code instead of the boot stub. Using this mode, the user does not have to reload the program
on a reset, which is necessary in the previous mode.

-xl-mode-executable

This is the default mode used for compiling programs with mb-gcc. The final executable created
starts from address location 0x0 and links in crt0.o. This option need not be provided on the
command line for mb-gcc.

Notes: mb-gcc will signal fatal error, if more than one mode of execution is supplied on the
command line.

-mxl-gp-opt

If the memory location requires more than 32K, the load/store operation would require two
instructions. MicroBlaze ABI offers two global small data areas, which can contain up to 64K
bytes of data each. Any memory location within these areas can be accessed using the small
data area anchors and a 16-bit immediate value. Hence needing only one instruction for
load/store to the small data area.This optimization can be turned ON with the -mxl-gp-opt
command line parameter. Variables of size lesser than a certain threshold value are stored in
these areas. The value of the pointers is determined during linking. The threshold value can be
changed using the -Gn option discussed below.

-Gn

The compiler stores certain data in the small data area of the code. Any global variable, which
is equal to or lesser than 8 bytes will be stored in the small data area of the read-write or read-
only section. This threshold value of 8 bytes could be changed using the above option in the
command line.

Assembler
Options

Assembler options can be used to aid in assembly level debugging.

-gstabs

The -gstabs option allows you to perform debugging at the assembly level. This should never
be used with the -g compiler debug option. This option stores debugging information in a
different format as compared to the information stored, while debugging with the -g option.
Typically this option should be used along with -save-temps, since the debugger would need to
refer to the assembler output file for debugging.

While using the mb-gcc flow, use -Wa, <option> to pass comma separated options to the
assembler.

Linker/Loader
Options

-defsym _STACK_SIZE=<value>

The total memory allocated for the stack and the heap can be modified by using the above
linker option. The variable STACK_SIZE is the total space allocated for heap as well as the
stack. The variable STACK_SIZE is given the default value of 100 words (i.e 400 bytes). If any
user program is expected to need more than 400 bytes for stack and heap together, it is

http://www.xilinx.com


30 www.xilinx.com Jan. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze GNU Compiler Tools
R

recommended that the user should increase the value of STACK_SIZE using the above option.
This option expects value in bytes.

In certain cases, a program might need a bigger stack. If the stack size required by the program
is greater than the stack size available, the program will try to write in other forbidden section of
the code, leading to wrong execution of the code.

Notes: Minimum stack size of 16 bytes (0x0010) is required for programs linked with the C runtime
routines (crt0.o and crt1.o).

-defsym _TEXT_START_ADDR=<value>

By default, the text section of the output code starts with the base address 0x0. This can be
overridden by using the above options. If the option -defsym _TEXT_START_ADDR=<value> is
supplied to mb-gcc, the text section of the output code will now start from the given <value>.
When the compiler is invoked with -xl-mode-xmdstub, the user program starts at 0x400 by
default. The user does not have to use -defsym _TEXT_START_ADDR, if they wish to use the
default start address set by the compiler.

-N

When the text start address of a particular program is modified using the option described
above, an additional option -N has to be provided to the linker. For more details on this option,
please refer to the GNU documentation.

-WI, <option>

While using the mb-gcc flow, use -Wl, <option> to pass comma separated options to the
assembler. For options with spaces, each part of the option needs to be prefixed by -Wl

The following is an example.

If you were using the “defsym_TEXT_START_ADDR=<value>” option in the mb-gcc command
line, the option has to be given as:

-Wl,-defsym -Wl,_TEXT_START_ADDR=<value>

For more information, type mb-gcc --help or consult the GCC manual (available online at
http://www.gnu.org/manual)

Standard
Libraries

MicroBlaze compiler tools provide a range of libraries for better performance and code size.
These libraries are described in the MicroBlaze Libraries documentation. Certain libraries are
optimized to give a better performance on the MicroBlaze processor. These libraries are
strcmp, strcpy, malloc, memset, memcpy and exit. More details on the libraries provided with
MicroBlaze are available in the libraries documentation.

In addition to the libraries, certain operations like divide are implemented in software.
Multipliers might not be available on all the devices. Keeping this in mind, an option is also
provided to use a software based multiplier instead of a hardware multiplier. To use software
multiplier, use compiler options described in this document.

Division and Mod operations in MicroBlaze
Our devices do not support a divide operation in hardware. A divider in hardware would be
extremely expensive and hence is not a good solution. Hence in addition to standard libraries,
the compiler also generates a procedure for divide. Every divide operation is replaced by a call
to this divsi3_proc. The divisor and the dividend are passed as parameters to the
divsi3_proc and the quotient is returned in the integer return register r3.

Modulo operation is also carried out in similar fashion, except that the remainder is return in
integer return register r3.

http://www.xilinx.com
http://www.gnu.org/manual
http://www.gnu.org/manual


MicroBlaze GNU Compiler Tools

Jan. 29, 2002 www.xilinx.com 31
MicroBlaze Software Reference Guide 1-800-255-7778

R

Software multiply
On devices with no hardware multiplier, such as Virtex and Spartan, multiply operation is done
using a software multiply routine. The compiler will not generate a mul instruction, instead it will
generate code to call a software routine mulsi3_proc to do the multiplication. This multiply
routine is used to multiply two 32 bit integers and get a 32 bit output.

For long long operations, i.e for inputs of size 64 bits, another software routine is provided,
which takes in two 64 bit numbers and returns a 64 bit result.

The compiler assumes no hardware muliplier on the device and always generates a subroutine
call to the multiply routines for multiply operation. If the system is targetted for devices with
hardware multiplier such as Virtex II, invoke the compiler with -mno-xl-soft-mul option on the
command line to mb-gcc.

Psuedo-Ops MicroBlaze supports a certain pseudo-ops making assembly programming easier for assembly
writers. The supported pseudo-ops are listed in Table 2.

Operating
Instructions

The gnu software tools for MicroBlaze can either be used to compile, assemble and link the
input C file in one step by using the mb-gcc command or perform each step separately.

Entire Gnu Tool Flow
The mb-gcc can be used either to generate the final executable file in the elf-format.
Alternatively, one of the two options below could be used to stop the compilation at a stage prior
to the production of the final elf-formatted executable.

Table  2: Psuedo-Opcodes supported by Assembler

Psuedo Opcodes Explanation

nop No operation. Replaced by instruction:

or R0, R0, R0

la Rd, Ra, Imm Replaced by instruction:
addi Rd, Ra, imm; => Rd = Ra + Imm;

not Rd, Ra Replace by instruction: xori Rd, Ra, -1

neg Rd, Ra Replace by instruction: rsub Rd, Ra, R0

sub Rd, Ra, Rb Replace by instruction: rsub Rd, Rb, Ra

lmi Rx, Ra, Imm 1

1.opcode not supported in the current version of the assembler

Replace by (31-x+1) number of instructions:

lwi Rx, Ra, Imm

lwi R(x+1), Ra, Imm + 4

lwi R(x+2), Ra, Imm + 8

...
lwi R31, Ra, Imm + (31-x) * 4

smi Rd, Ra, Imm 1 Replace by (31-x+1) number of instructions:

swi Rx, Ra, Imm

swi R(x+1), Ra, Imm + 4

swi R(x+2), Ra, Imm + 8

...
swi R31, Ra, Imm + (31-x) * 4

http://www.xilinx.com


32 www.xilinx.com Jan. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze GNU Compiler Tools
R

-S: Compile the input file only, without assembling or linking. In this case, the compiler
generates <filename.s>,where input file is <filename.c>.

-c: Compile and assemble the input file, without linking. The compiler generates
<filename.o>, where input file is <filename.c>

Environment
Variable

mb-gcc refers to one environment variable for finding the appropriate initialization files, libraries
and include files.

MICROBLAZE

This environment variable points to the base directory, where MicroBlaze system is installed
and is set during the installation of MicroBlaze software tools.

This variable is represented as $MICROBLAZE on Unix shells and as %MICROBLAZE% on
Windows command prompt.

Search Paths On UNIX shells
MicroBlaze compiler (mb-gcc) searches certain paths for libraries and header files.

Libraries are searched in the following order:

1. Directories passed to the compiler with the -L <dir name> option.

2. Directories passed to the compiler with the -B <dir name> option.

3. ${MICROBLAZE}/lib

Header files are searched in the following order:

1. Directories passed to the compiler with the -I <dir name> option.

2. ${MICROBLAZE}/include

Initialization files are searched in the following order:

1. Directories passed to the compiler with the -B <dir name> option.

2. ${MICROBLAZE}/lib

On Windows command prompt

MicroBlaze compiler (mb-gcc) searches certain paths for libraries and header files.

Libraries are searched in the following order:

1. Directories passed to the compiler with the -L <dir name> option.

2. Directories passed to the compiler with the -B <dir name> option.

3. %MICROBLAZE%\lib

Header files are searched in the following order:

1. Directories passed to the compiler with the -I <dir name> option.

2. %MICROBLAZE%\include

Initialization files are searched in the following order:

1. Directories passed to the compiler with the -B <dir name> option.

http://www.xilinx.com


MicroBlaze GNU Compiler Tools

Jan. 29, 2002 www.xilinx.com 33
MicroBlaze Software Reference Guide 1-800-255-7778

R

2. %MICROBLAZE%\lib

Initialization
Files

The final executable needs certain registers such as the small data area anchors (R2 and R13)
and the stack pointer (R1) to be initialized. These initialization files are distributed with the
MicroBlaze Development Kit. In addition to the precompiled object files, source files are also
distributed in order to help user make their own changes as per their requirements. Initialization
can be done using one of the four C runtime routines:

crt0.o

This initialization file is to be used for programs which are to be executed standalone, i.e without
xmd.

crt1.o

This file is located in the same directory and should be used when the xmd debugger is to be
present in the system.

crt2.o

In case of programs used with the boot-loader, crt2.o is used as the initialization file. The boot
loader is used to load the program at runtime using the boot stub.

crt3.o

The source for crt2.o and crt3.o is the same as the functionality is the same except for the
behavior on a reset. In crt3.o, address location 0x0 is overwritten, such that on a reset, the
control is transferred to the user program instead of the boot stub.

These files are described in detail in the MicroBlaze ABI documentation. The source for
initialization file can be changed as per the requirements of the project. These changed files
have to be then assembled to generate an object file (.o format). To refer to the newly created
object files instead of the standard files, use the -B <directory-name> command line
option while invoking mb-gcc.

Command Line
Arguments

MicroBlaze currently does not support an operating system. Hence command line arguments
cannot be used in programs compiled with MicroBlaze compiler. The command line arguments
argc and argv are initialized to 0 by the C runtime routines.

Interrupt
Handlers

Interrupt handlers need to be compiled in a different manner as compared to the normal sub-
routine calls. In addition to saving non-volatiles, interrupt handlers have to save the volatile
registers which are being used. Interrupt handler should also store the value of the machine
status register (RMSR), when an interrupt occurs.

In order to distinguish an interrupt handler from a sub-routine, mb-gcc looks for an attribute
(interrupt_handler) in the declaration of the code. This attribute is defined as follows:

void int_handler_func () __attribute__ ((interrupt_handler));

Attribute for interrupt handler is to be given only in the prototype and not the definition.

Interrupt handlers might also call other functions, which might use volatile registers which were
not saved by the interrupt handler routine. These functions are defined with save_volatiles
attribute as

void int_call_func () __attribute__((save_volatiles));

For correct code, all the sub-routines called from the interrupt handler routine should be
declared with save_volatiles attribute.

The attributes with their functions are tabulated in Table 3.

Interrupt handlers can also be defined in the MicroBlaze Hardware Specification (MHS) and the
MicroBlaze Software Specification (MSS) file. These definitions would automatically add the

http://www.xilinx.com


34 www.xilinx.com Jan. 29, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze GNU Compiler Tools
R

attributes to the interrupt handler functions. For more information please refer MicroBlaze
Interrupt Management document.

Table  3: Use of attributes

Attributes Functions

interrupt_handler This attribute saves the machine status register and all the
volatiles being used in the function in addition to the non-volatile
registers. rtid is used for returning from the interrupt handler

save_volatiles This attribute is used for sub-routines called from interrupt
handlers. This attribute saves the volatile registers being used
by the current sub-routine in addition to the other non-volatile
registers.

http://www.xilinx.com


Mar. 11, 2002 www.xilinx.com 35
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the Microprocessor Software IDE (XSI) utility used for customizing
software flow of the 32-bit soft processor, MicroBlaze.

Overview Xilinx Software IDE (XSI) provides an integrated GUI for creating the software specification file
for the Microprocessor system. It also provides an editor and a project management interface
to create and edit source code. The IDE offers software tool flow customization options.

Processes
Supported

XSI supports the creation of the MSS file (refer Microprocessor Software Specification
documentation) and software tool flows associated with this software specification. This version
of XSI does not support complete HW/SW tool flows. It only supports customization of SW
libraries, drivers, interrupt handlers and compilation of user programs. It is assumed that a
hardware specification exists in the form of an MHS file.

Tools
Supported

Table 1 describes the tools that are supported in the IDE.

Features

XSI has the following features

1. Creation of Software Specification (MSS) for a given hardware specification (MHS)

2. Support for all the tools described in Table 1.

3. Viewing and editing of C source and header files

4. Project Management

Project
Management

A project consists of the Microprocessor Software Specification (MSS) and the C source and
header files that need to be compiled into an executable. The MSS file also includes a
reference to the MHS file. The project also includes the FPGA architecture family for which the
system is created.

Creating New Project

A New Project is created using the New Project menu option in the Project submenu of the
main menu. The New Project toolbar button can also be used. A new project requires an MHS
file (refer the Microprocessor Hardware Specification documentation) and a project directory
where flow tools create output files and directories. Source and Header files required for user

Xilinx Embedded Processors: MicroBlaze

Mar. 11, 2002

Microprocessor Software IDE (XSI)
R

Table  1: Tools supported in XSI

Tool Function Reference

Library Generator
(libgen)

Customizes software libraries, drivers and
interrupt handlers

The Library Generator
Documentation

GNU Compiler Tools Preprocess, compile, assemble and link
programs

GNU tools
Documentation

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


36 www.xilinx.com Mar. 11, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Software IDE (XSI)
R

application development are created and added as described in the Source Code Management
section. Project options are written into an xmp (Xilinx Microprocessor Project) file.

Opening Existing Project

An existing xmp file should be opened and worked on using the Open Project menu option
(Project submenu of Main menu). New source files and header files can be created and added
as described in the Source Code Management section of this documentation.

A new project can be created or opened only if the current project is closed. XSI does not allow
multiple projects to be open simultaneously.

XSI Interface The figure below shows a screenshot of XSI. The main window is to the right, the project view
window is to the left, and the transcript window is at the bottom.

XSI Main Window

All source and header file editing is performed in the main window of XSI. Any number of
source and header files can be open simultaneously.

Project View Window

The project view window shows system components (processor and peripherals), source and
header files of the project and software specification options.

Transcript Window (Console)

The transcript window is the bottom window when XSI is started. This window acts as a
console for output, warning and error messages from tools invoked.

Software
Platform
Management

In the Project View Window, the system BSP and the program options are displayed as a tree
structure.

http://www.xilinx.com


Mar. 11, 2002 www.xilinx.com 37
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

System BSP Tree

The System BSP tree displays all the peripherals in the system that can be customized for the
software flow.

Double clicking on each peripheral opens a dialog window displaying user settable software
options.

Interrupt Handler Routines - The name of the interrupt handling routine is specified for the
peripheral interrupt signal.

Driver and Driver Version Option - This option sets the driver name and version number used
for the peripheral instance.

Program Options

Table 2 shows the options that are displayed in the Program Options Category.

For more information on the options, please refer Library Generator Documentation and
Microprocessor Software Specification documentation.

Source Code
Management

XSI has an integrated editor for viewing and editing C source and header files of the user
program.

Adding Files to Project

Files can be added to the project by clicking the right mouse button on the Sources or Headers
Tree Item in the Project View Window. The same operation can be accomplished by using the
Project submenu in the Main menu. Multiple files are added by pressing the control key and
using arrow keys (or the mouse) to select in the file selection dialog.

Deleting Files from Project

Any file can be deleted from the project by selecting the file in the Project View window and
pressing the DEL key, or by clicking the right mouse button on the item and choosing Delete
File from Project. Note that the file does not get physically deleted from the system.

Editing Files

Double clicking on the source or header file in the Project View window opens the file for
editing. The editor supports basic editing functions such as cut, paste, copy and
search/replace. It also supports file management and printing functions such as saving,
printing and print previews.

Table  2: Program Options for Software Tools

Option Value Description

Boot Peripheral Instance Name Designates the peripheral instance as Boot peripheral

Debug Peripheral Instance Name Designates the peripheral instance as debug
peripheral. Here the peripheral will be used to
download the debug stub (xmdstub)

STDIN Instance Name Peripheral designated as standard input

STDOUT Instance Name Peripheral designated as standard output

Bootstrap Dir/Filename Specifies the bootstub file to be created

Xmdstub Dir/Filename Specifies the debug stub (xmdstub) to be created

Executable Dir/Filename Name of the executable.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


38 www.xilinx.com Mar. 11, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Software IDE (XSI)
R

Flow Tool
Settings

XSI supports tool flows as shown in Table 1. The Main menu has a Run submenu. In this
submenu, the Set Options pull down menu can be used to set various Tool options.

Set Compiler Options

This menu item allows the user to set various compiler options as shown in Table 3. Each
option is dealt in detail in the GNU Compiler Tools documentation. Only the Microblaze GNU
compiler specific options can be set in this version of XSI.

Set Libgen Options

A libgen options dialog is presented to the user when this menu item is selected. The following
options can be set.

Peripheral Repository Directory - Specifies the directory that contains user peripherals and
associated files for the peripherals such as MPD files, PAO files etc. This repository should also
contain driver directories for the user peripheral. See libgen documentation for more
information.

Tool Invocation After all options for the compiler and library generator are set, the tools can be invoked from the
Run submenu in the Main menu. The main toolbar also contains buttons to invoke these tools.

The current version of XSI does not check for flow dependencies. Hence, the user is
responsible for invoking the tools in the proper order.

When libgen is invoked, an MSS file is created for the software specification. When the user
exits the application, a prompt to save the current project appears. The user can also save the
project in another name by using Save Project As in the Project submenu of the Main menu.

Table  3: Compiler Options that can be set using XSI

Option Tab Option Description

General Options Flow Option Runs the compiler flow till preprocessor,
compile, assemble or link stage.

Compiler Options Optimization
Level

Choose the level of compiler optimization.
Equivalent to -O option in gcc.

Global Pointer
Optimization

This option enables global pointer optimization
in the compiler

Hardware
Multiply

Enables the use of hardware multiplier on Virtex
II.

Debug Options -g option to generate debug symbols or -gstabs
option to generate stabs information.

Directories Search Paths Compiler, Library and Include paths. Equivalent
to -B, -L and -I option to gcc.

Output File Sets the name of the executable file. Equivalent
to -o option of gcc.

Other Program Start
Address

Specifies the start address (in hex) of the text
segment of the executable. This is the address
at which MicroBlaze starts execution.

Stack Size Specifies the stack size in bytes for the program.
This is specified as a hex value.

Pass Options Options can also be passed to the compiler,
assembler and linker. The options have to be
comma separated. For eg. to pass

http://www.xilinx.com


Apr. 04, 2002 www.xilinx.com 39
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the flow engine utility XMF used for MicroBlaze tool flow. The flow
engine is an extension to the Xflow utility available as part of Xilinx ISE tools. Please refer to
the Xilinx tools documentation for more information.

Overview The flow engine can be used to schedule tool flows (library generator, compiler tools, platform
generator) using flow files and option files. XMF is an enhancement to the Xflow utility that is
available as part of Xilinx Design Implementation (ISE) tools.

Tool
Requirements

The flow engine for the embedded flow uses a flow file processor.flw that is provided in the
MDK distribution. The flow file specifies the various tools that are executed in a particular order,
and the control options for the programs. This flow file supports execution of the library
generator, compiler tools and the platform generator. For backend synthesis tool flow, the xflow
utility can be used. Three option files (xmdstub.opt, bootstrap.opt and executable.opt) are
also provided with some common options to the individual tools in the flow. These option files
can be editted to change or add new options to the tools in the tool flow.

Tool Usage The tool is run as follows:

xmf -p <architecture> -processor <option file> -g mode:<mode> <design>

-p Option

Specifies the FPGA architecture. Valid options are virtex, virtexe, spartan2, spartan2e and
virtex2.

-processor Option

Specifies one of xmdstub.opt, bootstrap.opt or executable.opt option files.

Other options that can be used are detailed in the Xflow documentation. Some of the options
that may be useful apart from -processor are -implement, -config, -fit, -assemble and so on
for backend synthesis and configuration tool flow. Please refer the Xflow documentation for
more information.

-g mode:<mode> Option

Specifies the mode corresponding to the option files. Valid options are xmdstub, bootstrap and
executable.

<design> specifies the MSS file that is input to the tool flow.

Xilinx Embedded Processors: MicroBlaze

Apr. 04, 2002

Flow Engine (XMF)
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


40 www.xilinx.com Apr. 04, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Flow Engine (XMF)
R

http://www.xilinx.com


April 2002 www.xilinx.com 41
MicroBlaze Software Reference Guide 1-800-255-7778

R

Debug Tool Chain

http://www.xilinx.com


42 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


Jan. 9, 2002 www.xilinx.com 43
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes debug and simulation options for the 32-bit soft processor,
MicroBlaze.

Overview Debug and simulation are integral parts of developing programs for embedded systems.
MicroBlaze tools offer various options to support both software and hardware debug and
simulation. This document explains the options available based on the functionality needed.

Terms and
Definitions

Software Debug

Software debug is the process of debugging an application program only. It is assumed that the
available hardware is functionally correct. An example of a software debugger is GNU’s GDB.

Hardware Debug

Hardware debug is the process of debugging hardware. Tools available for debugging
hardware design targeted at FPGAs include hardware simulators, such as ModelSim by Model
Technology Incorporated or an in-circuit logic analyzer such as Xilinx’s ChipScope ILA.

Hardware Simulation

Hardware simulation involves exercising a design under test in an execution engine. The
engine simulates the design’s behavior. Designs are usually specified by means of an HDL
model of the hardware.

Co-Simulation

Co-simulation is the process of debugging both hardware and software concurrently through
simulation.

Intrusive Software Debug

Intrusive software debug involves the introduction of a software control and monitoring agent (a
debug stub). The agent provides functions for setting breakpoints, accessing registers and
memory, etc. The agent is compiled along with the application program under test. It should be
noted that the introduction of the agent may cause side effects which can affect the behavior of
the test program.

Non-Intrusive Software Debug

Software Debug is non-intrusive if no software monitoring agent is compiled with the test
program. The monitor does not affect the order of execution of program events.

Instruction Set Simulator (ISS)

An ISS is a software which uses a model of the instruction set of a given processor to execute
the application program under test. The execution time step is that of a single program
instruction. An ISS provides functionally correct program execution data and can be used in
intrusive or in non-intrusive configurations.

Xilinx Embedded Processors: MicroBlaze

Jan. 9, 2002

MicroBlaze Debug and Simulation
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


44 www.xilinx.com Jan. 9, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Debug and Simulation
R

Cycle Accurate ISS

A cycle accurate ISS uses detailed information of the processor’s pipeline behavior to model
the instruction execution and provide cycle count information of the executed instructions. The
execution time step is that of a single clock cycle. Any given processor instruction may take one
or more clock cycles to execute.

Hardware Board

A board contains an FPGA device such as a VirtexE-100, and several other components such
as displays (LCD/LED), connectors (serial/parallel), memory, etc.

MicroBlaze System

A MicroBlaze system is a configuration of the FPGA on a particular board that contains a
customized MicroBlaze processor core. It also contains additional logic, possibly in the form of
IP cores that control one or more components on the board.

Software Debug Overview
The MicroBlaze development tools (MDT) provide options for using an ISS, a Cycle-Accurate
ISS or a hardware board for debugging software.

Simulators provide non-intrusive debugging, while hardware boards allow debugging in an
intrusive manner. If the hardware board is used to debug, a debug stub called xmdstub is used
to control the execution of the test program and provide communication between the debugging
host and the board executing the test program.

For source level debugging, programs should be compiled with -g option. This will add
debugging information for mb-gdb. While initially verifying the functional correctness of a C
program, it is also advisable to not use any mb-gcc optimization option like -O2 or -O3 as mb-
gcc does aggressive code motion optimizations which may make debugging difficult to follow.

Using a Simulator
The test program is compiled using the command:

mb-gcc -g program.c

This command creates a MicroBlaze executable a.outwith the debugging information needed
by mb-gdb.

Simple ISS

This method of debug can be used to determine if the program is functionally correct. An ISS
does not model the behavior of any peripheral, hence the program must not access any
peripherals or any memory beyond the local memory address space. See the Program Layout
documentation on more details on address space restrictions.

There is an ISS integrated in mb-gdb. To use it, load the program a.out in mb-gdb. Select
Target Settings from the File menu. In the mb-gdb Target Selection dialog, choose simulator
and click OK. Now, the program can be downloaded to the ISS and executed in it. See the GNU
Debugger documentation for more information on debugging using mb-gdb.

Cycle Accurate ISS

The MDT includes the Xilinx Microprocessor Debug (XMD) engine that integrates debug and
simulation in both hardware and software. It provides a consistent user interface through mb-
gdb. The cycle accurate ISS is a part of this engine. See the MicroBlaze XMD documentation
for more information.

In order to debug using the cycle accurate ISS, the program should be compiled with mb-gcc
as shown above. XMD is a separate program that must be started in simulator mode using the
following command:

xmd -t sim

http://www.xilinx.com


MicroBlaze Debug and Simulation

Jan. 9, 2002 www.xilinx.com 45
MicroBlaze Software Reference Guide 1-800-255-7778

R

To use the cycle accurate ISS in XMD, load the program a.out in mb-gdb. Select Target
Settings from the File menu. In the mb-gdb Target Selection dialog, choose:

• Target: Remote/TCP

• Hostname: localhost

• Port: 1234

Select Connect to target from the Run menu. This will attempt a connection from mb-gdb to
the XMD engine. If successfully connected, the mb-gdb interface can be used to debug the
program. For further information, refer to the MicroBlaze XMD documentation and MicroBlaze
GNU Debugger documentation.

Please note that the XMD cycle accurate ISS does not simulate peripherals in this release.

Using Hardware
The application program can also be debugged using the hardware board. In this case, an
xmdstub executable must be generated and compiled with the program. To do that, the MSS
file must contain an XMDSTUB attribute that specifies the xmdstub file location. Library
Generator is then run with the -mode xmdstub option.

The Library Generator creates an xmdstub executable in the location specified. Libgen also
configures libraries for the system. Please see the Library Generation documentation for more
information.

The application program is compiled using mb-gcc as follows:

mb-gcc -g -xl-mode-xmdstub program.c

This command creates the test program executable a.out.

Platgen is now run with -mode xmdstub option. The Local Memory (LM) is initialized with the
xmdstub executable and a netlist for the system is created. Please see the Platform Generator
documentation for more information.

Start the XMD engine in hardware mode in a new window with the following command:

xmd -t hw

To use the hardware board through XMD, load the program a.out in mb-gdb. Select Target
Settings from the File menu. In the mb-gdb Target Selection dialog, choose:

• Target: Remote/TCP

• Hostname: localhost

• Port: 1234

Select Connect to target from the Run menu. This will attempt a connection from mb-gdb to
the XMD engine. If successfully connected, the mb-gdb interface can be used to debug the
program. For further information, refer to the MicroBlaze XMD documentation and MicroBlaze
GNU Debugger documentation.

When using the hardware for debugging, any memory mapped peripherals can be accessed as
regular memory. It is assumed that the hardware is functionally correct.

Hardware
Simulation

Hardware Simulation Overview
Hardware simulation models for MicroBlaze are provided as VHDL files that can be used in any
VHDL simulator. For peripherals that are shipped with the MicroBlaze Development Kit (MDK),
the simulation models are generated by Platform Generator (platgen). All simulation files are
created in the simulation subdirectory by platgen.

Platgen generates simulation models for the system when the -sim option is specified. Platgen
generates a hierarchal netlist and simulation models by default. Platgen can also generate a
flattened netlist and simulation models if the -flat option is specified. See the Platform
Generator documentation for more information.

http://www.xilinx.com


46 www.xilinx.com Jan. 9, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Debug and Simulation
R

Output Files

Flatten Mode

In the flatten mode, two HDL simulation files that represent the entire system are generated.
One is an HDL file that represents the system without the processor core (e.g.
mysystem.vhd), and the other is the processor core (e.g. microblaze_3.vhd) simulation
file.

Hierarchical Mode

In the hierarchal mode, multiple simulation HDL files are generated: one for the processor
configuration and one each for the peripherals, bus and memory defined in the system.

Setup Script and Signals
Any HDL simulator can be used to compile and simulate the models generated. Platgen
supports an option to generate a ModelSim specific script file for compilation of the simulation
models.

Important Signals

The signals sys_clk and sys_rst are the system clock and reset signals. These signals can be
controlled as stimuli during a simulation.

Some of the other important signals that the MicroBlaze simulation file includes are:

• register_file - All the register file registers in the processor core.

• rpc_fetch - Register with the program counter value at the fetch stage

• rpc_decode - Register with the program counter value at the decode stage

• rpc_execute - Register with the program counter value at the execute stage

• rimm - Register that holds the value of an imm instruction

• fetch_stage - Instruction opcode at the fetch stage of the pipeline.

• decode_stage - Instruction opcode at the decode stage of the pipeline.

• execute_stage - Instruction opcode at the execute stage of the pipeline.

Requirements

ModelSim Libraries

Unisims and Simprims libraries are required for hardware simulation. These can be obtained
from the Xilinx support web site at http://support.xilinx.com

Co-Simulation
and Debug

MicroBlaze System Debug
Software debug and hardware simulation can be used to find bugs in software and hardware
respectively. Co-simulation support is necessary for debug of both hardware and software
together without assuming correctness of the other. An HDL simulator (e.g. ModelSim) can be
used for this purpose.

Using ModelSim

The simulation files that are generated by Platgen contain simulation files and configuration
files for local memory. If the application program is included in the platgen run, then the memory
configuration files contain the executable information. When the HDL simulator is used as
described above, interaction between the program and hardware can be seen by tracing
important signal waveforms, registers and memory contents. The local memory simulation
model is integrated into the system model and this allows for a powerful co-simulation support.

http://support.xilinx.com
http://www.xilinx.com


MicroBlaze Debug and Simulation

Jan. 9, 2002 www.xilinx.com 47
MicroBlaze Software Reference Guide 1-800-255-7778

R

Program
Monitoring

The Xilinx Microprocessor Debug Terminal (XMD terminal) is a program that provides a simple
text based interface for monitoring a MicroBlaze system. It communicates with a hardware
board running the XMD stub through a JTAG download cable or serial cable. The XMD terminal
program allows a user to load programs into the memory of a MicroBlaze system, execute them
and, probe and modify the contents of memory and registers.

http://www.xilinx.com


48 www.xilinx.com Jan. 9, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Debug and Simulation
R

http://www.xilinx.com


Jan. 11, 2001 www.xilinx.com 49
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the general usage of the Xilinx GNU debugger for MicroBlaze.

Overview MicroBlaze GDB is a powerful yet flexible tool which provides a unified interface for
debugging/verifying a MicroBlaze system during various development phases.

Tool Usage MicroBlaze GDB usage:

mb-gdb [options] [executable-file [core-file or process-id]]

Tool Options The most common options in the MicroBlaze GNU debugger are:

--command=FILE

Execute GDB commands from FILE. Used for debugging in batch/script mode.

--batch

Exit after processing options. Used for debugging in batch/script mode.

--nw

Do not use a GUI interface.

-w

Use a GUI interface. (Default)

Xilinx Embedded Processors: MicroBlaze

Jan. 11, 2001

MicroBlaze GNU Debugger
R

mb-gdb

Built-in1

Simulator

GDB
Remote Protocol

(TCP/IP)

Unified
Debugging
Interface

xmd
Cycle Accurate2

Instruction Set Simulator

Target3
FPGA Board

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


50 www.xilinx.com Jan. 11, 2001
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze GNU Debugger
R

MicroBlaze
GDB Targets

Currently, there are three possible targets that are supported by the MicroBlaze GNU Debugger
and XMD tools - a built-in simulator target and two remote targets (XMD):

xilinx > mb-gdb hello_world.out

From the Run pull-down menu, select Connect to target in the mb-gdb window. In the Target
Selection dialog, you can choose between the Simulator (built-in) and Remote/TCP (for
XMD) targets.

In the target selection dialog, choose:

• Target: Remote/TCP

• Hostname: localhost

• Port: 1234

Click OK and mb-gdb will attempt to make a connection to XMD. If successful, a message will
be printed in the shell window where XMD was started.

At this point, mb-gdb is connected to XMD and controls the debugging. The simple but
powerful GUI can be used to debug the program, probe memory, registers, etc.

GDB Built-in Simulator
The MicroBlaze debugger provides an instruction set simulator, which can be used to debug
programs that do not access any peripherals. This simulator makes certain assumption about
the executable being debugged:

• The size of the application being debugged determines the maximum memory location

http://www.xilinx.com


MicroBlaze GNU Debugger

Jan. 11, 2001 www.xilinx.com 51
MicroBlaze Software Reference Guide 1-800-255-7778

R

which can be accessed by the simulator.

• The simulator assumes that the accesses are made only to the fast local memory (LMB).

When using the command info target, the number of cycles reported by the simulator are
under the assumptions that memory access are done only into local memory (LMB).Any
access to the peripherals will result in the simulator indicating an error.This target does not
require xmd to be started up. This target should be used for basic verification of functional
correctness of programs which do not access any peripherals or OPB or external memory.

Remote

Remote debugging is done through XMD. The XMD server program can be started on a host
computer with the Simulator target or with the Hardware target transparent to mb-gdb. Both
the Cycle-Accurate Instruction Set Simulator and the Hardware interface provide powerful
debugging tools for verifying a complete MicroBlaze system. mb-gdb connects to xmd using
the GDB Remote Protocol over TCP/IP socket connection.

Simulator Target

The XMD simulator is a Cycle-Accurate Instruction Set Simulator of the MicroBlaze system
which presents the simulated MicroBlaze system state to GDB..

Hardware Target

With the hardware target, XMD communicates with an xmdstub program running on a
hardware board through the serial cable or JTAG cable, and presents the running MicroBlaze
system state to GDB.

For more information about XMD refer to the XMD Documentation.

Note

1. The simulators provide a non-intrusive method of debugging a program. Debugging using the
hardware target is intrusive because it needs an xmdstub to be running on the board.

2. If the program has any I/O functions like print() or putnum(), that write output onto the UART or JTAG
Uart, it will be printed on the console/terminal where the xmd server was started. (Refer to the
MicroBlaze Libraries documentation for libraries and I/O functions information).

GDB Command
Reference

For help on using mb-gdb, click on Help->Help Topics in the GUI mode

or type "help" in the console mode.

In the GUI mode, to open a console window, click on View->Console

For a comprehensive online documentation on using GDB, refer to
http://www.gnu.org/manual/gdb/

For information about the mb-gdb Insight GUI, refer to the Red Hat Insight webpage
http://sources.redhat.com/insight

http://www.xilinx.com


52 www.xilinx.com Jan. 11, 2001
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze GNU Debugger
R

Table 1 briefly describes the commonly used mb-gdb console commands. The equivalent GUI

versions can be easily identified in the mb-gdb GUI window icons. Some of the commands like
info target, monitor info, may be available only in the console mode.

Compiling for
Debugging

In order to debug a program, you need to generate debugging information when you compile it.
This debugging information is stored in the object file; it describes the data type of each
variable or function and the correspondence between source line numbers and addresses in
the executable code. The mb-gcc compiler for Xilinx’s MicroBlaze soft processor will include
this information when the appropriate modifier is specified.

The -g option in mb-gcc allows you to perform debugging at the source level. mb-gcc adds
appropriate information to the executable file, which helps in debugging the code. mb-gdb
provides debugging at source, assembly and mixed (both source and assembly) together.
While initially verifying the functional correctness of a C program, it is also advisable to not use
any mb-gcc optimization option like -O2 or -O3 as mb-gcc does aggressive code motion
optimizations which may make debugging difficult to follow. For debugging with xmd in
hardware mode, the mb-gcc option -xl-mode-xmdstubmust be specified. Refer to the XMD
documentation for more information about compiling for specific targets.

Table  1: Commonly Used GDB Console Commands

Command Description

b main Set a breakpoint in function main

r Run the program (for the built-in simulator only)

c Continue after a breakpoint, or

Run the program (for the xmd simulator only)

l View a listing of the program at the current point

n Steps one line (stepping over function calls)

s Step one line (stepping into function calls)

info reg View register values

info target View the number of instructions and cycles executed (for
the built-in simulator only)

monitor info View the number of instructions and cycles executed (for
the xmd simulator only)

p xyz Print the value of xyz data

http://www.xilinx.com


Mar. 22, 2002 www.xilinx.com 53
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes usage of the Xilinx Microprocessor Debug (XMD) tool.

Overview The Xilinx Microprocessor Debug (XMD) Engine is a program that facilitates a unified GDB
interface for debugging programs on a MicroBlaze system as well as a Tcl interface for system
verification. It supports non-intrusive debugging of programs running on the cycle accurate
MicroBlaze simulator or intrusive debugging on a remote hardware board. In the hardware
mode, a small stub program executing on the target MicroBlaze board provides communication
between xmd and the board.

The XMD Engine is used along with MicroBlaze GDB (mb-gdb) for debugging. xmd
implements the GDB Remote Protocol and accepts connections from mb-gdb on a TCP port.
mb-gdb can connect to xmd running on the same computer or any computer on the Internet.
mb-gdb is the user interface for debugging programs either in simulation or in hardware. The
Tcl interface can be used either for low-level debugging as well as running verification test
scripts to test the complete system.

Xilinx Embedded Processors: MicroBlaze

Mar. 22, 2002

MicroBlaze XMD
R

X9792

Tcl/Terminal Interface

cycle-accurate
Instruction Set Simulator

XMD

XMD stub

Target Board

XMD
Protocol

Built-in Simulator
User InterfaceGDB Remote Protocol

(TCP/IP)

JTAG UART

JTAG UART UARTlite

mb-gdb

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


54 www.xilinx.com Mar. 22, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze XMD
R

XMD Usage To start the XMD engine, execute xmd from a shell as follows.

xmd [options]

XMD Options -u [ tcl | gdb ]

Specify the user interface for the current session. With the Tcl interface, xmd starts a Tcl shell
augmented with XMD commands. See the "XMD Commands" section for a list of commands.
With the gdb interface, xmd starts the simulator or connects to the target board and then listens
for TCP connections from mb-gdb. Default interface if the Tcl interface.

-t [ sim | hw ]

Specify the debug target. xmd supports non-intrusive debugging on the MicroBlaze simulator or
intrusive debugging on remote hardware. Use sim for simulator or hw for remote hardware. The
default target is the simulator.

-c [ s | j ]

Specify the xmd communication. Debugging is supported over JTAG (using opb_jtag_uart
peripheral) or serial cable (using opb_uart peripheral). Use s for serial or j for JTAG. Default is
JTAG communication.

-j <FPGA_device_position>

Specify the position of the FPGA device in the JTAG chain that contains the MicroBlaze system
to be debugged. The JTAG chain positions are auto detected and displayed by xmd on startup.

-J <list of BSDL files>

Specify the configuration of the JTAG chain on the target board by providing the BSDL files for
all the devices that make up the JTAG chain in the same order as they occur in the chain.

By default, xmd autodetects the JTAG chain. But if it fails to do so, then this option can be used
to connect to the target board.

-d <time-out>

Specify the time-out delay for xmd communication in seconds.

-p <tcp_port>

Specify the TCP port to accept mb-gdb connections on. The default TCP port is 1234.

-s <serial_port>

Specify the serial port where the remote hardware is connected. The default serial port is
/dev/ttya on Solaris and Com1 on Windows.

-b <baud>

Specify the serial port baud rate in bps. The default value is 19200 bps.

-h

Display help.

-V

Run in Verbose mode. Prints detailed messages about xmd operations.

-v

Display the version number

Hardware target With a hardware target, user programs can be downloaded from mb-gdb directly onto a remote
hardware board and be executed with support of the xmd stub running on the board. A sample
session of XMD with a hardware target is shown below.

http://www.xilinx.com


MicroBlaze XMD

Mar. 22, 2002 www.xilinx.com 55
MicroBlaze Software Reference Guide 1-800-255-7778

R

xilinx > xmd -t hw -u gdb
MicroBlaze XMD Engine
Using Hardware board debugging through XMD stub
Connecting to XMD stub at baud rate: 19200 bps
XMD stub initialized. Version No: 2
Use the following command in GDB to connect:
   target remote <hostname>:1234

Now XMD is connected with the hardware target and is waiting for a connection from mb-gdb.
Refer the MicroBlaze GNU Debugger document to see how to start mb-gdb, make a remote
connection from mb-gdb to xmd, download a program onto the target and debug the program.

To debug a program by downloading on the remote hardware board, the program has to be
compiled with -g -xl-mode-xmdstub options to mb-gcc.

User Program Outputs

If the program has any I/O functions like print() or putnum(), that write output onto the UART or
JTAG Uart, it will be printed on the console/terminal where the xmd was started. (Refer to the
MicroBlaze Libraries documentation for libraries and I/O functions information).

Hardware Target Requirements
To debug programs on the hardware board using XMD, the following requirements have to be
met.

1. xmd uses a JTAG or serial connection to communicate with xmdstub on the board. Hence
a JTAG Uart or a Uart designated as DEBUG_PERIPHERAL in the mss file is needed on
the target MicroBlaze system.

Platform Generator can create a system that includes a JTAG Uart or a Uart, if specified in the
system’s mhs file. For more information on creating a system with a Uart or a JTAG Uart, refer
to the MicroBlaze Hardware Specification Format documentation.

2. xmdstub on the board uses the JTAG Uart or Uart to communicate with the host computer.
Hence, it has to be configured to use the JTAG Uart or Uart in the MicroBlaze system.

Library Generator can configure the xmdstub to use the DEBUG_PERIPHERAL in the
system. When libgen is run with -mode xmdstub option, it will generate a xmdstub
configured for the DEBUG_PERIPHERAL and put it in code/xmdstub.out as specified by
the XMDSTUB attribute in the mss file. For more information, refer to the Library Generator
documentation.

3. xmdstub executable must be included in the MicroBlaze local memory at system startup.
To have the xmdstub included in the MicroBlaze local memory, the xmdstub.out file
should be specified in the user’s mss file as follows:

SET attribute XMDSTUB=code/xmdstub.out

Platform Generator can populate the MicroBlaze LMB when it is run with the -mode xmdstub
option. It will use the executable specified in the XMDSTUB attribute to initialize the MicroBlaze
local memory while generating the system netlist.

4. Any user program that has to be downloaded on the board for debugging should have a
program start address higher than 0x400 and the program should be linked with the startup
code in crt1.o

mb-gcc can compile programs satisfying the above two conditions when it is run with the
option -xl-mode-xmdstub. For source level debugging, programs should also be compiled
with -g option. While initially verifying the functional correctness of a C program, it is advisable
to not use any mb-gcc optimization option like -O2 or -O3 as mb-gcc does aggressive code
motion optimizations which may make debugging difficult to follow.

Simulator target You can use mb-gdb and xmd to debug programs on the cycle-accurate simulator built in XMD.
A sample session of XMD and GDB is shown below.

http://www.xilinx.com


56 www.xilinx.com Mar. 22, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze XMD
R

To startup the XMD engine with the Simulator target, you need to specify the target sim.

xilinx > xmd -t sim
MicroBlaze XMD Engine
Using Simulator
Use the following command in GDB to connect:
   target remote <hostname>:1234

Now XMD is running with the simulator target and waiting for a connection from mb-gdb.

Refer the MicroBlaze GNU Debugger document to see how to start mb-gdb, make a remote
connection from mb-gdb to xmd, download a program onto the target and debug the program.
With xmd and mb-gdb, the debugging user interface is uniform with simulation or hardware
targets.

Simulation Statistics
While mb-gdb is connected to XMD with the simulator target, the statistics of the cycle-
accurate simulator can be viewed from mb-gdb as follows:

• In the mb-gdb GUI menu, select View->Console.

• In the console window, type monitor info

• To reset the simulation statistics, type monitor reset

Simulator Target Requirements
To debug programs on the Cycle-Accurate Instruction Set Simulator using XMD, the following
requirements have to be met.

1. Programs should be compiled for debugging and should be linked with the startup code in
crt0.o

mb-gcc can compile programs with debugging information when it is run with the option -g and
by default, mb-gcc links crt0.o with all programs. (Explicit option: -xl-mode-executable)

2. Programs can have a maximum size of 64Kbytes only.

3. Currently, XMD with simulator target does not support the simulation of OPB peripherals.

XMD Tcl
commands

In the Tcl interface mode, xmd starts a Tcl shell augmented with xmd commands. All xmd Tcl
commands start with an ’x’ and can be listed from xmd by typing "xhelp". These commands
may be used in verification scripts. xmdterm.tcl in the MicroBlaze bin/ directory may be used
as an example. For interactive debugging without mb-gdb, use the commands in the
XMDTERM section below.

xrmem <addr> [num]

Read num bytes or 1 byte from memory address <addr>

xwmem <addr> <value>

Write a 8-bit byte value at the specified memory addr.

xrreg [<reg>]

Read all registers or only register number reg.

xwreg <reg> <value>

Write a 32-bit value into register number reg

xdownload <filename>

Download the given ELF file onto the current target’s memory. Note that NO Bounds checking
is done by xmd, except preventing writes into xmdstub area (address 0x0 to 0x400).

http://www.xilinx.com


MicroBlaze XMD

Mar. 22, 2002 www.xilinx.com 57
MicroBlaze Software Reference Guide 1-800-255-7778

R

xcontinue [<addr>]

Continue execution from the current PC or from the optional address argument. While the
program is running, users could send Break or Reset signals to MicroBlaze by pressing ’b’ for
External Break signal, ’r’ for Processor Reset, ’s’ for System Reset, ’n’ for a Non-maskable
Break signal or ’q’ to quit xmd. Break signal is expecially useful while debugging interrupts, as
this will freeze the running program and let the user see the status and debug it. See below for
more details about signals.

xstep

Single step one MicroBlaze instruction. If the PC is at an IMM instruction the next instruction is
executed as well. During a single step, interrupts are disabled by keeping the BIP flag set. Use
xcontinue with breakpoints to enable interrupts while debugging.

xbreakpoint <addr>

Set a breakpoint at the given address. Note - Breakpoints on instructions immediately following
imm instruction can lead to undefined results.

xremove <addr>

Remove breakpoint at given address.

xlist

List all the breakpoint addresses.

xdisassemble <inst>

Disassemble and display one 32-bit instruction.

xsignal <signal>

Send a signal to a hardware target. This is only supported by the JTAG UART when the debug
signals for Processor Break, Reset and System reset are connected to MicroBlaze and the
OPB bus. Platform Generator automatically connects these signals by default. Supported
signals are listed in the following table.

xstats [options]

Display the simulation statistics for the current session. ’reset’ option can be provided to reset
the simulation statistics.

xhelp

List all xmd Tcl commands.

Table  1: XMD Hardware target signals

Signal Name (value) Description

Processor Break (0x20) Raises the Brk signal on MicroBlaze using the JTAG UART
Ext_Brk signal. It sets the Break-in-Progress (BIP) flag on
MicroBlaze and jumps to addr 0x18. From xmd, this will

allow a user to stop a running program (while in continue)
and examine the processor status.

Non-maskable Break (0x10) Similar to the Break signal but works even while the BIP flag
is already set. Refer the MicroBlaze ISA documentation for

more information about the BIP flag.

System Reset (0x40) Resets the entire system by sending an OPB Rst using the
JTAG UART Debug_SYS_Rst signal.

Processor Reset (0x80) Resets MicroBlaze using the JTAG UART Debug_Rst
signal.

http://www.xilinx.com


58 www.xilinx.com Mar. 22, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze XMD
R

xmdterm
commands

xmdterm.tcl script in the installation directory provides commands for doing assembly level
debugging using the low level xmd commands. xmdterm.tcl is automatically loaded by xmd on
startup. Powerful verification scripts can be written in Tcl based on the xmdterm script. User
scripts with helper commands can be loaded into xmd by using the Tcl command "source
script.tcl". Refer the Tcl documentation at the Tcl Developer site for more information on writing
Tcl scripts and custom commands.

The debugging commands provided by xmdterm.tcl are listed below

Table  2: Assembly level debugging commands

command [options] Description

rrd Read Registers

rwr <reg_num> <word> Write Register

mrd <address> <num_words> Read Memory

mwr <address> <word> Write Memory

dis [<address>] ]<num_words>] Disassemble

con [<addr>] Continue from current PC

stp [<n instrns>] Single Step one Instruction

bps <addr> Set Breakpoint

bpr <addr> Remote Breakpoint

bpl List Breakpoints

dow <filename> Download Elf File

help List all commands

http://www.xilinx.com
http://www.tcl-tk.net
http://www.tcl-tk.net
http://www.tcl-tk.net/
http://www.tcl-tk.net/


April 2002 www.xilinx.com 59
MicroBlaze Software Reference Guide 1-800-255-7778

R

Device Drivers and Libraries

http://www.xilinx.com


60 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


April 4, 2002 www.xilinx.com 61
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the organization of Xilinx Libraries and the interaction of its
components with the user application. Xilinx provides two libraries, one for math functions
(libm) and the other for C language support (LibXil).

Overview The C support library consists of the following components:

• Standard C libraries: newlib libc

• Xilinx file support functions LibXil File

• Xilinx memory file system LibXil Mfs

• Xilinx networking support LibXil Net

• Xilinx device drivers LibXil Driver

Most of the routines in the library are written in C and can be ported to any platform. The Library
Generator (libgen) configures the libraries for a MicroBlaze, using the attributes defined in the
Microprocessor Software Specification (MSS) file.

The math library is an enhancement over the newlib math library libm.a .

Library
Organization

The structure of LibXil is outlined in Figure 1. The user application calls routines implemented
in LibXil and/or libm. In addition to the standard C routines supported by libc.a, Xilinx library
LibXil contains the following modules:

1. Stream based file system and device access (LibXil File)

2. Memory based file system (LibXil Mfs)

3. Networking application support (LibXil Net)

4. Device drivers (LibXil Driver)

Components such as LibXil Mfs can be accessed directly by the user. These routines can also
be accessed through LibXil File.

Some of the library modules interact with drivers. These drivers are provided in the MicroBlaze
Development Kit and are configured by libgen. These drivers form the Driver module of the
LibXil library.

These libraries and include files are created in the current project’s lib and include
directories respectively. The -I and -L options of mb-gcc should be used to add these
directories to its library search paths. Please refer to Microprocessor Software Specification
Documentation and Library Generator documentation for more information.

Xilinx Embedded Processors: MicroBlaze

April 4, 2002

MicroBlaze Libraries
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


62 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Libraries
R

Library
Customization

The standard newlib libc contains dummy functions for most of the operating system specific
function calls such as open, close, read, write etc. These routines are included in the libgloss
component of the standard libc library. The LibXil File module contains routines to overwrite
these dummy functions. The routines interact with file systems such as Xilinx Memory File
System1 and peripheral devices 2 such as UART, UARTLITE and GPIO.

LibXil Net routines provide support for networking applications via the ethernet. This module is
discussed more in details in the LibXil Net document. The module LibXil Net needs some
support from the file system and hence calls other routines from the LibXil File and/or the LibXil
Mfs modules. On the other hand, if an application requires opening files over the network,
routines from the LibXil File module will need the support of the LibXil Net.

This highlights the need of a complete library solution, which is provided by Xilinx Libraries
LibXil.

Libgen is used to tailor the library compilation for a particular project using attributes in the
MSS. These attributes are described in the LibXil File and LibXil Mfs documents.

1. For more information on Memory File System, please refer to the document on LibXil Mfs
2. For more information on Device Drivers, please refer to the document on LibXil Driver

LibXil Mfs

LibXil File

libc

libXil

stdio stdlib timer Other

Devices

LibXil Driver

LibXil Net

User Application

libm

Figure 1: Structure of LibXil library

http://www.xilinx.com


April 1, 2002 www.xilinx.com 63
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the standard C libraries provided with the MicroBlaze Distribution Kit.
These standard libraries are enhancements to the newlib libc and libm libraries to generate
better code for MicroBlaze applications.

Standard C
Functions (libc)

The MicroBlaze libraries provide standard C library functions, while the MicroBlaze drivers
implement functions to access the peripherals.

List of Standard C Library (libc.a) Files
The standard C library libc.a contains the standard C functions compiled for MicroBlaze. For a
list of all the supported functions refer to the following files in MICROBLAZE/include

_ansi.h     fastmath.h  machine/    reent.h     stdlib.h    utime.h
_syslist.h  fcntl.h     malloc.h    regdef.h    string.h    utmp.h
ar.h        float.h     math.h      setjmp.h    sys/
assert.h    grp.h       paths.h     signal.h    termios.h
ctype.h     ieeefp.h    process.h   stdarg.h    time.h
dirent.h    limits.h    pthread.h   stddef.h    unctrl.h
errno.h     locale.h    pwd.h       stdio.h     unistd.h

Programs accessing standard C library functions must be compiled as follows:

mb-gcc <C files>

The libc library is included automatically.

The -lm option should be specified for programs that access libm math functions.

Refer to the MicroBlaze ABI documentation for information on the C Runtime Library.

Input/Output
Functions

The MicroBlaze libraries contains standard C functions for I/O;such as printf and scanf. These
are large and may not be suitable for embedded processors. In addition, the MicroBlaze library
provides the following smaller I/O functions:

void print (char *)

This function prints a string to the peripheral designated as standard output in the MSS file.

void putnum (int)

This function converts an integer to a hexadecimal string and prints it to the peripheral
designated as standard output in the MSS file.

void xil_printf (const *char ctrl1, ...)

This funtion is similar to printf but much smaller in size (only 1KB). It does not have support for
floating point numbers. xil_printf also does not support printing of long long (i.e 64 bit numbers).

The prototypes for these functions are in stdio.h.

Please refer the Microprocessor Software Specification documentation for information on
setting the standard input and standard output devices for a system.

Xilinx Embedded Processors: MicroBlaze

April 1, 2002

LibXil Standard C Libraries
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


64 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Standard C Libraries
R

Memory
Management
Functions

Memory management routines such as malloc, calloc and free can run the gamut of high
functionality (with associated large size) to low functionality (and small size). This version of
MicroBlaze only supports a simple, small malloc, and a dummy free. Hence when memory
is allocated using malloc, this memory can not be reused.

The _STACK_SIZE_ option to mb-gcc specifies the total memory allocated to stack and heap.
The stack is used for function calls, register saves and local variables. All calls to malloc
allocate memory from heap. The stack pointer initially points to the bottom (high end) of
memory, and grows toward low memory while the heap pointer starts at low memory and grows
towards high memory. The size of the heap cannot be increased at runtime. The return value of
malloc must always be checked to ensure that it could actually allocate the memory
requested.

Please note that whereas malloc checks that the memory it allocates does not overwrite the
current stack pointer, updates to the stack pointer do not check if the heap is being overwritten.

Increasing the _STACK_SIZE_ may be one way to solve unexpected program behavior. Refer
to the Linker/Loader Options section of the MicroBlaze GNU Compiler Tools document for more
information on increasing the stack size.

Arithmetic
Operations

Integer Arithmetic
Integer addition and subtraction operations are provided in hardware. By default, integer
multiplication is done in software using the library function mulsi3_proc. Integer
multiplication is done in hardware if the mb-gcc option -mno-xl-soft-mul is specified.

Integer divide and mod operations are done in software using the library functions
divsi3_proc and modsi3_proc.

Double precision multiplication, division and mod functions are carried out by the library
functions muldi3_proc, divdi3_proc and moddi3_proc respectively.

Floating Point Arithmetic
All floating point addition, subtraction, multiplication and division operations are also
implemented using software functions in the C library.

http://www.xilinx.com


April 1, 2002 www.xilinx.com 65
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary Xilinx libraries provide block access to file systems and devices using standard calls such as
open,close, read,write etc. These routines form the LibXil File Module of the Libraries.

A system can be configured to use LibXil File module through the Library Generator (libgen)

Overview The LibXil library provides block access to files and devices through the LibXil File module.
This module provides standard routines such as open, close, read, write etc to access file
systems and devices.

The module LibXil File can also be easily modified to incorporate additional file systems and
devices. LibXil File implements a subset of operating system level functions.

Module Usage A file or a device is opened for read and write using the open call in the library. The library
maintains a list of open files and devices. Read and write commands can be issued to access
blocks of data from the open files and devices.

Module
Routines

LibXil File includes various routines for file and device access as shown in Table 1.

Xilinx Embedded Processors: MicroBlaze

April 1, 2002

LibXil File
R

Table  1: Routines Provided by LibXil File Module

Functions

int open (const char *name, int flags, int mode)

int close (int fd)

int read (int fd, char* buf, int nbytes)

int write (int fd, char* buf, int nbytes)

int lseek (int fd, long offset, int whence)

int chdir (const char *buf)

const char* getcwd (void)

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


66 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil File
R

int open (const char *name, int flags, int mode)

int close (int fd)

int read (int fd, char* buf, int nbytes)

Parameters name refers to the name of the device/file

flags refers to the permissions of the file. This field is not
meaningful for a device.

mode indicates read, write or append mode.

Returns file/device descriptor (fd) assigned by LibXil File

Description The routine registers the device or the file in the local device
table and calls the underlying open function for that particular
file or device.

Includes xilfile.h

mbio.h

Parameters fd refers to the file descriptor assigned by open()

Description Close the file/device associated with fd.

Includes xilfile.h

mbio.h

Parameters fd refers to the file descriptor assigned by open()

buf refers to the destination buffer where the contents of the
stream should be copied

nbytes: Number of bytes to be copied

Returns the number of bytes read.

Description Read nbytes from the file/device pointed by the file descriptor
fd and store it in the destination pointed by buf.

Includes xilfile.h

mbio.h

http://www.xilinx.com


LibXil Filel

April 1, 2002 www.xilinx.com 67
MicroBlaze Software Reference Guide 1-800-255-7778

R

int write (int fd, char* buf, int nbytes)

int lseek (int fd, long offset, int whence)

int chdir (char* newdir)

const char* getcwd (void)

Parameters fd refers to the file descriptor assigned by open()

buf refers to the source buffer

nbytes: Number of bytes to be copied

Returns the number of bytes written to the file.

Description Write nbytes from the buffer, buf to the file pointed by the file
descriptor fd

Includes xilfile.h

mbio.h

Parameters fd: file descriptor returned by open

offset: Number of bytes to seek

whence: Location to seek from. This parameter depends on the
underlying File System being used.

Returns : New file pointer location

Description The lseek() system call moves the file pointer for fd by offset
bytes from whence.

Includes xilfile.h

mbio.h

Parameters newdir: Destination directory

Returns the same value as returned by the underlying file
system. -1 for failure.

Description Change the current directory to newdir

Includes xilfile.h

mbio.h

Parameters Returns the current working directory.

Description Get the absolute path for the current working directory.

Includes xilfile.h

mbio.h

http://www.xilinx.com


68 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil File
R

Libgen Support LibXil File Instantiation
User applications can access underlying file systems and devices or make use of the LibXil
File module to integrate with file systems and devices.

The Libgen attribute LIBRARY indicates that LibXil File module should be compiled into the
project specific Libraries.

To use Memory File System with LibXil File component, the following code is used in the MSS
file.

SELECT FILESYS XilMfs
CSET attribute MOUNT= "/home/"
CSET attribute LIBRARY = XilFile
END

To access a device through Xilfile the following snippet is used in the mss file.

SELECT INSTANCE myuart
CSET attribute DRIVER = drv_uartlite
CSET attribute DRIVER_VER = 1.00.b
CSET attribute LIBRARY = XilFile
END

System Initialization
Libgen generates a file system initialization file (xilfile_init.c) is compiled into the LibXil library.
The file contains configuration information and data structures required by the LibXil File
module, such as the Device tables and the File System table. STDIN, STDOUT and STDERR
devices are also configured for use with the module.

Limitations LibXil File module currently enforces the following restrictions :

• Only one instance of a File System can be mounted. This file system and the mount point
has to be indicated in the Microprocessor Software Specification (MSS) file.

• Files cannot have names starting with /dev, since it is a reserved word to be used only for
accessing devices

• Currently LibXil File has support only for 1 filesystem (LibXil Memory File System) and 3
devices (UART, UARTlite and GPIO). Others can be added easily.

• Only devices can be assigned as STDIN, STDOUT and STDERR

Table  2: List of peripherals supported by LibXil File

Peripheral Name

OPB_UARTLITE
OPB_UART
OPB_GPIO

http://www.xilinx.com


April 1, 2002 www.xilinx.com 69
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the Memory File System (MFS). This file system resides on the
memory and can be accessed throught LibXil File module or directly. Memory File System is
integrated with a system using the Library Generator.

Overview The Memory File System (MFS) component, LibXil MFS, provides users the capability to
manage platform’s memory in the form of file handles. Users can create directories, and can
have files within each directory. The file system can be accessed from the high level C-
language through function calls specific to the file system. Alternatively, the users can also
manage files through the standard C language functions like open provided in XilFile.

MFS Functions This section presents a list of functions provided by the MFS. Table 1 provides the function
names with signature at a glance. C-like access.

Xilinx Embedded Processors: MicroBlaze

April 1, 2002

LibXil Memory File System (MFS)
R

Table  1: MFS functions at a glance

Functions

void mfs_init_fs (void)

int mfs_change_dir (char *newdir)

int mfs_delete_file (char *filename)

int mfs_create_dir (char *newdir)

int mfs_delete_dir (char *newdir)

int mfs_rename_file (char *from_file, char *to_file)

int mfs_exists_file (char *filename)

int mfs_get_current_dir_name (char *dirname)

int mfs_get_usage( int *num_blocks_used, int *num_blocks_free)

int mfs_file_open (char *filename, int mode)

int mfs_file_read (int fd, char *buf, int buflen)

int mfs_file_write (int fd, char *buf, int buflen)

int mfs_file_close(int fd)

int mfs_file_lseek (int fd, int offset, int whence)

int mfs_ls (void)

int mfs_cat (char *filename)

int mfs_copy_stdin_to_file (char *filename)

int mfs_file_copy (char *from_file, char *to_file)

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


70 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Memory File System (MFS)
R

Detailed summary of MFS Functions

int mfs_init_fs (void)

int mfs_change_dir (char *newdir)

int mfs_delete_file (char *filename)

int mfs_create_dir (char *newdir)

Parameters None

Return 1 for success and 0 for failure

Description Initialize the memory file system. This function must be called
before any file system operation.

Includes xilmfs.h

mbio.h

Parameters newdir is the chdir destination.

Return 1 for success and 0 for failure

Description If newdir exists, make it the current directory of MFS. Current
directory is not modified in case of failure.

Includes xilmfs.h

mbio.h

Parameters filename: file to be deleted

Return 1 for success and 0 for failure

Description Delete filename from its directory.

Includes xilmfs.h

mbio.h

Parameters newdir: Directory name to be created

On success, return index of new directory in the file system

On failure, return 0

Description Create a new empty directory called newdir inside the current
directory.

Includes xilmfs.h

mbio.h

http://www.xilinx.com


LibXil Memory File System (MFS)l

April 1, 2002 www.xilinx.com 71
MicroBlaze Software Reference Guide 1-800-255-7778

R

int mfs_delete_dir (char *dirname)

int mfs_rename_file (char *from_file, char *to_file)

int mfs_exists_file (char *filename)

Parameters dirname: Directory to be deleted

On success, return 1

On failure, return 0

Description Delete the directory dirname, if it exists and is empty,

Includes xilmfs.h

mbio.h

Parameters from_file: Original filename

to_file: New file name

On success, return 1

On failure, return 0

Description Rename from_file to to_file. Rename works for directories as
well as files. Function fails if to_file already exists.

Includes xilmfs.h

mbio.h

Parameters filename: file/directory to be checked for existance

Return 0 : if filename doesnot exist

Return 1 : if filename is a file

Return 2 : if filename is a directory

Description Check if the file/directory is present in current directory.

Includes xilmfs.h

mbio.h

http://www.xilinx.com


72 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Memory File System (MFS)
R

int mfs_get_current_dir_name (char *dirname)

int mfs_get_usage ( int *num_blocks_used, int *num_blocks_free)

int mfs_file_open ( char *filename, int mode)

Parameters dirname: Current directory name is returned in this pointer

If Success return 0

If Failure return 1

Description Return the name of the current directory in a pre allocated
buffer, dirname, of at least 16 chars.Note that it does not return
the absolute path name of the current directory, but just the
name of the current directory

Includes xilmfs.h

mbio.h

Parameters num_blocks_used: Number of blocks_used

num_blocks_free : Number of free blocks

If Success return 0

If Failure return 1

Description Get the number of used blocks and the number of free blocks
in the file system through pointers.

Includes xilmfs.h

mbio.h

Parameters filename : file to be opened

mode: Read/Write or Create mode.

Return the index of filename in the array of open files or -1 on
failure.

Description Open file filename with given mode.

The function should be used for files and not directories:
MODE_READ, no error checking is done(if file or directory).
MODE_CREATE creates a file and not a directory.
MODE_WRITE fails if the specified file is a DIR.

Includes xilmfs.h

mbio.h

http://www.xilinx.com


LibXil Memory File System (MFS)l

April 1, 2002 www.xilinx.com 73
MicroBlaze Software Reference Guide 1-800-255-7778

R

int mfs_file_read (int fd, char *buf, int buflen)

int mfs_file_write (int fd, char *buf, int buflen)

int mfs_file_close (int fd)

Parameters fd: File descriptor return by open

buf: Destination buffer for the read

buflen: Length of the buffer

If Success return number of bytes read.

If Failure return 1

Description Read buflen number bytes and place it in buf. fd should be a
valid index in open_files array, pointing to a file, not a directory.
buf should be a pre-allocated buffer of size buflen or more. If
fewer than buflen chars are available then only that many chars
are read.

Includes xilmfs.h

mbio.h

Parameters fd: File descriptor return by open

buf: Source buffer from where data is read

buflen: Length of the buffer

If Success return 1

If Failure return 1

Description Write buflen number of bytes from buf to the file. Rfd should be
a valid index in open_files array. buf should be a pre-allocated
buffer of size buflen or more.

Includes xilmfs.h

mbio.h

Parameters fd: File descriptor return by open

If Success return 1

If Failure return 1

Description Close the file pointed by fd. The filesystem regains the fd and
uses it for new files.

Includes xilmfs.h

mbio.h

http://www.xilinx.com


74 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Memory File System (MFS)
R

int mfs_file_lseek (int fd, int offset, int whence)

int mfs_ls (void)

int mfs_cat (char *filename)

Parameters fd: File descriptor return by open

offset : Number of bytes to seek

whence: File system dependent mode:

If whence is MFS_SEEK_END, the offset can be either 0 or
negative, otherwise offset should be non-negative.

If whence is MFS_SEEK_CURR : the offset is calculated from
the current location

If whence is MFS_SEEK_SET: the offset is calculated from the
start of the file

Return 1 on success and 0 on failure.

Description Seek to a given offset within the file at location fd in open_files
array.

It is an error to seek before beginning of file or after the end of
file.

Includes xilmfs.h

mbio.h

Parameters Return 1 on success and 0 on failure.

Description List contents of current directory on STDOUT.

Includes xilmfs.h

mbio.h

Parameters filename: File to be displayed

Return 1 on success and 0 on failure.

Description Print the file to STDOUT.

Includes xilmfs.h

mbio.h

http://www.xilinx.com


LibXil Memory File System (MFS)l

April 1, 2002 www.xilinx.com 75
MicroBlaze Software Reference Guide 1-800-255-7778

R

int mfs_copy_stdin_to_file (char *filename)

int mfs_file_copy (char *from_file, char *to_file)

C-like access The user can choose not to deal with the details of the file system by using the standard C-like
interface provided by Xil File. It provides the basic C stdio functions like open, close, read,
write, and seek. These functions have identical signature as those in the standard ANSI-C.
Thus any program with file operations performed using these functions can be easily ported to
MFS by interfacing the MFS in conjunction with libXfiles.

LibGen
Customization

Memory file system can be integrated with a system using the following snippet in the mss file.
The memory file system should be instantiated with the name XilMfs

SELECT FILESYS XilMfs
CSET attribute MOUNT = /
CSET attribute LIBRARY = XilFile
END

Parameters filename: Destination file.

Return 1 on success and 0 on failure.

Description Copy from STDIN to named file.

Includes xilmfs.h

mbio.h

Parameters from_file Source file

to_file : Desitnation file

Return 1 on success and 0 on failure.

Description Copy from_file to to_file. It fails if to_file already exists, or if
either could not be opened.

Includes xilmfs.h

mbio.h

Table  2: Attributes for including Memory File System

Attributes Description

MOUNT Mount name for the file system.
LIBRARY Set this attribute to XilFile if the file system is accessed through

XilFile component of MicroBlaze Libraries

http://www.xilinx.com


76 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Memory File System (MFS)
R

http://www.xilinx.com


April 1, 2002 www.xilinx.com 77
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the network library for MicroBlaze, libXilNet. The library includes
functions to support the TCP/P stack and the higher level application programming
interface(APIs).

Overview The MicroBlaze networking library, libXilNet, allows MicroBlaze to connect to the internet.
LibXilNet includes functions for handling the TCP/IP stack protocols. It also provides a simple
set of Application Programming Interface (APIs) functions enabling network programming. This
document describes the various functions of LibXilNet.

Protocols
Supported LibXilNet supports drivers and functions for the Media Access layer and protocols of TCP/IP

stack. The following list enumerates them.

• Media Access Layer Drivers (MAC)

• Ethernet Encapsulation (RFC 894)

• Address Resolution Protocol (ARP - RFC 826)

• Internet Protocol (IP - RFC 791)

• Internet Control Management Protocol (ICMP - RFC 792)

• Transmission Control Protocol (TCP - RFC 793)

• User Datagram Protocol (UDP - RFC 768)

Footprint LibXilNet is a small library which is geared for embedded systems. Table 1 shows the output
from mb-size on libXilNet. It gives the code + data footprint of memory requirements.

The total memory requirements for libXilNet is 7673 ~ 8k bytes.

Xilinx Embedded Processors: MicroBlaze

April 1, 2002

LibXil Net
R

Table  1: mb-size output for libXilNet

text data bss dec filename

704 0 0 704 mac.o

404 0 0 404 eth.o

432 0 0 432 arp.o

1140 4 0 1144 ip.o

200 0 0 200 icmp.o

420 0 0 420 udp.o

1880 13 0 1893 tcp.o

1332 16 1128 2476 packet.o

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


78 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Net
R

Library
Architecture

Figure 1 gives the architecture of libXilNet. Higher Level applications like HTTP server, TFTP
(Trivial File Transfer Protocol), PING etc., uses API functions to use the libXilNet library.

Figure 1: Schematic diagram of LibXilNet Architecture

Protocol
Function
Description

A detailed description of the drivers and the protocols supported is given below.

Media Access Layer (MAC) Drivers
MAC drivers are provided for receiving and sending the ethernet frames over the PHY
interface. The MAC hardware provides the Cyclic Redundancy Check (CRC) on the frames
received/sent on the PHY layer. The 48-bit hardware address needs to be programmed onto
the MAC before it can be used. A MAC initializing function is provided to achieve the same.

Ethernet Drivers
Ethernet drivers performs the encapsulation/removal of ethernet headers on the payload in
accordance with the RFC 894. Based on the type of payload (IP or ARP), the drivers call the
corresponding protocol callback function.

Ethernet
Driver

IPARP

ICMP UDP
TCP

MAC
Driver

From PHY Interface

Incoming Frame

TFTP ApplicationHTTP Server ApplicationPING Application

Demultiplexing based on
frame type in Ethernet Header

Demultiplexing based
on protocol value in
IP Header

LibXilNet Library

API Functions

http://www.xilinx.com


LibXil Netl

April 1, 2002 www.xilinx.com 79
MicroBlaze Software Reference Guide 1-800-255-7778

R

ARP (RFC 826)
Functions are provided for handling ARP requests. An ARP request (for the 48-bit hardware
address) would be responded with the 48-bit ethernet address in the ARP reply. Currently, ARP
request generation for a desired IP address is not supported.

IP (RFC 791)
IPv4 datagrams are used by the level protocols like ICMP, TCP, UDP for receiving/sending data.
A callback function is provided for ethernet drivers which would be invoked whenever there is a
IP datagram as a payload in ethernet frame. Minimal processing of source IP address check is
performed before the corresponding higher level protocol’s (ICMP, TCP, UDP) is called.
Checksum would be calculated on all the outgoing IP datagrams before calling the ethernet
callback function for sending the data. IP address for MicroBlaze needs to be programmed
before using it for communication. An IP address initializing function is provided. Refer to the
table describing the various routines for further details on the function. Currently no IP
fragmentation would be performed on the outgoing datagrams.

ICMP (RFC 792)
ICMP functions handling only the echo requests (ping requests) are provided. Echo requests
would be responded with the appropriate requirements as per the RFC.

UDP (RFC 768)
UDP is a connectionless protocol. The UDP callback function, called from IP layer, would
perform the minimal check of source port and strip off the UDP header. Checksum calculation
would be performed on the outgoing UDP datagram. Currently, only one UDP connection is
supported.

TCP (RFC 793)
TCP is a connection-oriented protocol. Callback functions are provided for sending and
receiving TCP packets. TCP maintains connections as a finite state machine. On receiving a
TCP packet, minimal check of source port correctness is done before taking the necessary
action for the connection based on the current machine state. Checksum is calculated on all
outgoing TCP packets. Currently only one TCP connection is supported.

API
Functions for sending and receiving UDP and TCP packets are provided. High level network
applications need to use these functions for performing data communication. Refer to the table
describing the routines in libXilNet for further details.

Current
Restrictions

Certain restrictions apply to the MicroBlaze libXilNet library software. These are

• Only one connection for TCP and UDP supported currently. This means the applicaiton
cannot open more than one TCP or UDP port at any instance..

• Only one protocol port can operate at any instance - LibXilNet currently supports either a
TCP port or a UDP port based connection at any instance.

• Only server functionalities for ARP - This means ARP requests are not being generated
from MicroBlaze

• No timers in TCP - Since there are no timers used, every "send" over a TCP connection
waits for an "ack" before performing the next "send".

http://www.xilinx.com


80 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Net
R

Functions of
LibXilNet

The following table gives the list of functions in libXilNet and their descriptions.

Table  2: Functions in LibXilNet

Functions Description

int xilnet_recvfrom (unsigned
char* buf, int len)

Receives data(maximum length of len)
from the UDP port in buf and returns the
number of bytes received. This function is
used by the application.

int xilnet_sendto (unsigned
char* buf, int len)

Sends data of length len in buf on the
UDP port and returns the number of bytes
sent. This function is used by the
application.

int xilnet_recv (unsigned char*
buf, int len)

Receives data(maximum length of len)
from the TCP port in bufand returns the
number of bytes received. This function is
used by the application.

int xilnet_send(unsigned char*
buf, int len)

Sends data of length len in buf on the
TCP port and returns the number of bytes
sent. After sending in data, it waits for an
acknowledgement of the data sent before
returning. This function is used by the
application.

void xilnet_reset_peer (void) Resets the connection to the peer for
accetping a new connection. This function
has to be called in the application after the
entire transaction on the connection is over
for enabling future connections to peer.

void xilnet_close (void) Closes the current TCP connection. This
function has to be called from the
application for a smooth termination of the
connection after a connection is done with
the communication.

void xilnet_mac_init (unsigned
char* mac_addr)

This function has to be called in the
application before starting any
communicaton. It sets the 48-bit MAC
address to the value in mac_addr. Note
that each element of mac_addr array has
a byte of the 48-bit MAC address

void xilnet_mac_recv_frame
(unsigned char* frame, int len)

Receives ethernet frame (maximum length
len) on the PHY interface in buffer frame.
This function is called from the ethernet
drivers.

void xilnet_mac_send_frame
(unsigned char* frame, int len)

Sends ethernet frame, frame, of length
len onto the PHY interface. This function
is called from the ethernet drivers.

http://www.xilinx.com


LibXil Netl

April 1, 2002 www.xilinx.com 81
MicroBlaze Software Reference Guide 1-800-255-7778

R

void xilnet_eth_recv_frame
(unsigned char* frame, int len)

Receives ethernet frame from the MAC,
strips ethernet header and calls either ip
or arp callback function based on frame
type. This function is called from
receive/send functions of API. The
function receives frame of maximum length
len in buffer frame.

void xilnet_eth_send_frame
(unsigned char* frame, int len,
void *daddr, unsigned short
type)

Creates ethernet header for payload
frame of length len, with destination
ethernet address daddr, and frame type,
type. Sends the ethernet frame to the
MAC. This function is called from
receive/send (both versions) functions.

int xilnet_arp (unsigned char*
buf, int len)

This is the arp callback function. It gets
called by the ethernet driver for arp frame
type. The arp packet is copied onto the
buf of length len.

void xilnet_arp_reply (unsigned
char* buf, int len)

This function sends the arp reply, present
in buf of length len, for arp requests. It
gets called from the arp callback function
for arp requests.

void xilnet_ip_init (unsigned
char* ip_addr)

This function initializes the ip address for
MicroBlaze to the address represented in
ip_addr as a dotted decimal string. This
function has to be called in the application
before any communication.

int xilnet_ip (unsigned char*
buf, int len)

This is the ip callback function. It gets
called by the ethernet driver for ip frame
type. The ip packet is copied onto the buf
of length len. This function calls in the
appropriate protocol callback function
based on the protocol type.

int xilnet_ip_header (unsigned
char* buf, int len, int proto)

This function fills in the ip header from
start of buf. ip packet is of length len.
proto is used to fill in the protocol field of
ip header. This function is called from the
receive/send (both versions) functions.

int xilnet_ip_calc_chksum
(unsigned char* buf, int len)

This function calculates and fills the
checksum for the ip packet buf of length
len. This function is called from the ip
header creation function.

int xilnet_udp (unsigned char*
buf, int len)

This is the udp callback function. This is
called when ip receives a udp packet. This
function checks for valid udp port and
strips the udp header.

void xilnet_udp_header
(unsigned char* buf, int len)

This function fills in the udp header from
start of buf. udp packet is of length len.
This function is called from the
receivefrom/sendto functions.

Table  2: Functions in LibXilNet

Functions Description

http://www.xilinx.com


82 www.xilinx.com April 1, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Net
R

unsigned short
xilnet_udp_tcp_calc_chksum
(unsigned char* buf, int len,
unsigned char* saddr, unsigned
char* daddr, unsigned short
proto)

This function calculates and fills the
checksum for the udp/tcp packet buf of
length len. source ip address (saddr),
destination ip address(daddr) and
protocol (proto) are used in the checksum
calculation for creating the pseudo header.
This function is called from either udp
header or tcp header creation function.

int xilnet_tcp (unsigned char*
buf, int len)

This is the tcp callback function. This is
called when ip receives a tcp packet. This
function checks for valid tcp port and
strips the tcp header. It maintains a finite
state machine for the connection.

void xilnet_tcp_sendack
(unsigned char* buf, int len)

This function sends an ack for a received
tcp packet. This is called from the tcp
callback function when it receives a
connection termination packet.

void xilnet_tcp_header
(unsigned char* buf, int len,
unsigned char flags)

This function fills in the tcp header from
start of buf. tcp packet is of length len. It
sets the flags in tcp header. This function
is called from the receive/send
functions.

int xilnet_icmp (unsigned char*
buf, int len)

This is the icmp callback function. This is
called when ip receives a icmp echo
request packet (ping request). This
function checks only for a echo request and
sends in a icmp echo reply.

void xilnet_icmp_echo_reply
(unsigned char* buf, int len)

This functions fills in the icmp header from
start of buf. icmp packet is of length len.
It sends the icmp echo reply by calling the
ip, ethernet send functions and resets
the peer for a new connection. This
function is called from the icmp callback
function.

Table  2: Functions in LibXilNet

Functions Description

http://www.xilinx.com


April 4, 2002 www.xilinx.com 83
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the drivers available for various peripheral devices. The drivers
provide mechanism to communicate with the device from the software program.

Overview The drivers provide functions to access peripheral devices. These drivers are automatically
configured by libgen for every project based upon the Microprocessor Software Specification
(MSS) file. These tailored driver files are compiled and archived into LibXil and the sources are
saved in the current project’s libsrc directory.

Avaiable Device
Drivers

Simple device drivers are provided with all Xilinx supplied OPB Peripherals. These drivers are
present in the drivers directory in the installation area. This section describes the functions
available for each device driver. The Library Generator tool automatically configures the
peripheral drivers included in the MSS file. The source code for the configured drivers can be
found in the user project’s libsrc directory. Table 1 shows the driver name and thier latest
available versions.

Xilinx Embedded Processors: MicroBlaze

April 4, 2002

LibXil Driver
R

Table  1: List of Drivers

Peripheral Driver Directory Version

General Purpose I/O drv_gpio v1.00.b

IIC Bus drv_iic v1.00.b

Interrupt Controller drv_intc v1.00.b

JTAG UART drv_jtag_uart v1.00.b

OPB Arbiter drv_opb_arbiter v1.02.b

Serial Port Interface drv_spi v1.00.b

Timebase/Watchdog Timer drv_timebase_wdt v1.00.b

Timer/Counter drv_timer v1.00.b

UART Lite drv_uartlite v1.00.b

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


84 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

Data Types All the driver software use a standard data types which have been defined in a file called
globaltypes.h. Table 2 presents what each data type means. A ‘U’ at the beginning of the data
type means it if of type unsigned. A number at the end of the data type represents the number
of bits needed to store that data type. In this document, a word stands for a 32-bit data, either
signed or unsigned. Similarly, half-word stands for 16-bit and a byte stands for 8-bit data.

Table  2: Global Typedefs

Typedef Data Type

UINT8 unsigned char

UINT16 unsigned short

UINT32 unsigned int

UINT64 unsigned long

INT8 char

INT16 short

INT32 int

INT64 long

BOOL enum {FALSE=0, TRUE=1}

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 85
MicroBlaze Software Reference Guide 1-800-255-7778

R

1Driver Usage A peripheral that is instantiated in the MHS file must have the driver specified in the MSS file
using the DRIVER keyword. For e.g., if the MHS file has the GPIO peripheral instantiated in this
manner:

SELECT SLAVE opb_gpio
CSET attribute INSTANCE = mygpio
CSET attribute HW_VER = 1.00.a
....

Then the MSS file should associate the driver with this instance as:

SELECT INSTANCE mygpio
CSET attribute DRIVER = drv_gpio
CSET attribute DRIVER_VER = 1.00.a
....

Libgen then automatically configures this version of the driver for that peripheral.

The user can then include the files gpio.h and mbio.h to access the driver functions and other
useful definitions such as base address of the peripheral, standard input and output base
addresses and so on. The include files are specified in the sections on each peripheral driver
function.

Please note that MicroBlaze also has interrupt enable routines that are needed if interrupt
handling is required. These are present in the drv_microblaze_v1_00_a directory and can be
accessed by setting the DRIVER and DRIVER_VER attributes.

1. This is the way to include the drivers available in your application.

http://www.xilinx.com


86 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

Driver
Functions

The driver functions that are provided are enumerated below for quick reference.

Table  3:

General Purpose I/O

UINT32 gpio_read_INT32 (UINT32 base_addr)

void gpio_write_INT32 (UINT32 base_addr, UINT32 data)

void gpio_write_ctrl (UINT32 base_addr, UINT32 data)

IIC Bus

The IIC hardware core is a paid peripheral. Please contact Xilinx to obtain the same.

Interrupt Controller

void intc_disable_all_interrupts (UINT32 base_addr)

void intc_disable_interrupt (UINT32 base_addr, UINT32 periph_int_priority_mask)

void intc_enable_interrupt (UINT32 base_addr, UINT32 periph_int_priority_mask)

void intc_interrupt_handler (void)

void intc_start (UINT32 base_addr)

 JTAG UART

Functions are similar to UART Lite peripheral, except the names of the functions are
jtag_uart_<function name> instead of uartlite_<function name>

Serial Port Interface (SPI)

INT8 inbyte (void)

void outbyte (INT8)

void spi_write_control_reg(UINT32 base_addr, INT8 val)

UINT8 spi_read_control_reg(UINT32 base_addr)

void spi_enable_device (UINT32 base_addr)

void spi_disable_device (UINT32 base_addr)

void spi_write_intr_enable_reg(UINT32 base_addr, UINT8 mask)

void spi_read_intr_enable_reg(UINT32 base_addr)

void spi_write_intr_reg (UINT32 base_addr, UINT8 mask)

UINT8 spi_read_intr_reg(UINT32 base_addr)

void spi_clear_all_intr (UINT32 base_addr)

void spi_enable_all_intr(UINT32 base_addr)

void spi_disable_all_intr(UINT32 base_addr)

void spi_reset_fifo(UINT32 base_addr)

INT8 spi_read_byte(UINT32 base_addr)

void spi_write_byte(UINT32 base_addr, INT8 data)

void spi_set_options(UINT32 base_addr, UINT32 options)

UINT32 spi_get_options(UINT32 base_addr)

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 87
MicroBlaze Software Reference Guide 1-800-255-7778

R

void spi_set_slave_select(UINT32 base_addr, UINT32 slave_bit_pos)

UINT32 spi_get_slave_select(UINT32 base_addr)

Timebase Watchdog Timer

void timebase_wdt_disable (UINT32 base_addr)

void timebase_wdt_enable (UINT32 base_addr)

UINT32 timebase_wdt_get_status (UINT32 base_addr)

UINT32 timebase_wdt_get_timebase (UINT32 base_addr)

void timebase_wdt_kick (UINT32 base_addr)

void timebase_wdt_set_status0 (UINT32 base_addr, UINT32 status)

void timebase_wdt_set_status1(UINT32 base_addr, UINT32 status)

Timer/Counter

UINT32 get_elapsed_time (UINT32 base_addr, UINT32 timer_number)

void start_timer (UINT32 base_addr, UINT32 timer_number)

UINT32 timer_get_capture (UINT32 base_addr, UINT32 timer_number)

UINT32 timer_get_csr (UINT32 base_addr, UINT32 timer_number)

UINT32 timer_get_time (UINT32 base_addr, UINT32 timer_number)

void timer_set_compare (UINT32 base_addr, UINT32 timer_number, UINT32
compare_value)

void timer_set_csr (UINT32 base_addr, UINT32 timer_number, UINT32 status_value)

UART Lite

INT8 inbyte (void)

void outbyte (INT8)

void uartlite_disable_intr (UINT32 base_addr)

INT32 uartlite_empty(UINT32 base_addr)

void uartlite_enable_intr (UINT32 base_addr)

INT32 uartlite_full (UINT32 base_addr)

UINT32 uartlite_get_status (UINT32 base_addr)

INT8 uartlite_read_byte (UINT32 base_addr)

INT32 uartlite_is_intr_enabled (UINT32 base_addr)

void uartlite_write_byte (UINT32 base_addr, INT8 ch)

void uartlite_set_control (UINT32 base_addr, UINT32 data)

Table  3:

http://www.xilinx.com


88 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

General
Purpose I/O
Driver (gpio)

Gpio can be used to hook up I/O such as LEDs, seven segment displays and switches on the
development board. The following driver functions are available for the gpio:

UINT32 gpio_read_INT32 (UINT32 base_addr)

void gpio_write_INT32 (UINT32 base_addr, UINT32 data)

void gpio_write_ctrl (UINT32 base_addr, UINT32 data)

Example MHS File Entry

SELECT SLAVE opb_gpio
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = mygpio
CSET attribute C_BASEADDR = 0xFFFF0100
CSET attribute C_HIGHADDR = 0xFFFF01ff
CSET attribute C_AWIDTH   = 32
CSET attribute C_DWIDTH   = 32
CSET attribute C_GPIO_WIDTH = 16
CSET attribute C_ALL_INPUTS = 0
CSET signal GPIO_IO = gpio_io
END

Parameters base_addr: Base address of gpio peripheral

Description Read the GPIO data pins.

Includes gpio.h

mbio.h

Parameters base_addr: Base address of gpio peripheral

data: Word to be written to the GPIO data pins

Description Write data to the GPIO data pins. This write has no effect on
pins that have been programmed as input pins.

Includes gpio.h

mbio.h

Parameters base_addr: Base address of gpio peripheral

data: Word to be written to GPIO_TRI register

Description Write data to the GPIO_TRI register of the gpio. Each I/O pin of
the GPIO is individually programmable as an input or as an
output. Writing a 0 to a bit of the GPIO_TRI register configures
that bit as an output, and writing a 1 to a bit of the GPIO_TRI
register configures that bit as an input.

Includes gpio.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 89
MicroBlaze Software Reference Guide 1-800-255-7778

R

Example MSS File Entry

SELECT INSTANCE mygpio
CSET attribute DRIVER = drv_gpio
CSET attribute DRIVER_VER = 1.00.a
END

Example C Program

#include <gpio.h>
#include <mbio.h>
void main() {
UINT32 gpio_data;
/* Set the gpio as output on low 8 bits (LEDs), and input on high 8 bits

(DIP switches) */
/* Libgen sets up all base addresses in mbio.h The format is <peripheral

instance name (in caps) in mss file>_BASEADDR */
gpio_write_ctrl(MYGPIO_BASEADDR, 0xff00);
/* Read from the DIP switches */
gpio_data = gpio_read_INT32(MYGPIO_BASEADDR);
/* Write this value to the the LEDs */
gpio_data >>= 8;
gpio_write_INT32(MYGPIO_BASEADDR, gpio_data);

}

http://www.xilinx.com


90 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

Interrupt
Controller
Driver

The following driver routines are available for the interrupt controller.

void intc_disable_all_interrupts (UINT32 base_addr)

void intc_disable_interrupt (UINT32 base_addr, UINT32 periph_int_priority_mask)

void intc_enable_interrupt (UINT32 base_addr, UINT32 periph_int_priority_mask)

Parameters base_addr: Base address of the interrupt controller

Description Disable interrupts for all peripherals. This is done by clearing the
Master IRQ Enable bit of the Master Enable Register (MIE).
Interrupts can be enabled again by calling intc_start.

Includes mb_interface.h

Parameters base_addr: Base address of the interrupt controller

periph_int_priority_mask: Peripheral interrupt priority mask

Description Disable interrupts for peripherals whose interrupt priority is set
in the interrupt priority mask. If periph_int_priority_mask has a 1
in bit position i, then the peripheral whose interrupt priority is i+1
has its interrupts disabled. At startup, all peripherals have their
interrupts disabled.

Includes mb_interface.h

Parameters base_addr: Base address of the interrupt controller

periph_int_priority_mask: Peripheral interrupt priority mask

Description Enable interrupts for peripherals whose interrupt priority is set in
the interrupt priority mask. If periph_int_priority_mask has a 1 in
bit position i, then the peripheral whose interrupt priority is i+1
has its interrupts enabled. At startup, all peripherals have their
interrupts disabled.

Includes mb_interface.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 91
MicroBlaze Software Reference Guide 1-800-255-7778

R

void intc_interrupt_handler (void)

void intc_start (UINT32 base_addr)

Parameters None

Description If an interrupt controller is included in the system, then this
routine is made the default interrupt handler and is called
whenever the MicroBlaze IRQ input is raised. It locates the
highest priority interrupting device that has interrupts enabled,
and calls its interrupt handler. On return from the handler, the
interrupt is acknowledged by writing to the Interrupt
Acknowledge Register (IAR). If any lower priority devices have
also raised an interrupt their interrupt handlers are also called,
and their interrupts acknowledged.

Includes None. This routine must not be called directly by the user.

Parameters base_addr: Base address of the interrupt controller

Description Start the interrupt controller. This enables hardware interrupts
by setting the HardWare Interrupt Enable (HIE) bit of the Master
Enable Register (MER). It also sets the Master IRQ Enable
(MIE) bit of the Master Enable Register (MER).

Includes mb_interface.h

http://www.xilinx.com


92 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

JTAG UART
Driver

The driver is similar to the UART lite driver routines except that the function names are changed
to jtag_uart_<function name>. For e.g., instead of uartlite_inbyte, use jtag_uart_inbyte.

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 93
MicroBlaze Software Reference Guide 1-800-255-7778

R

SPI Driver Serial Bus Interface core allows to connect multiple serial devices and facilitates
communication between them. The following functions are available.

INT8 inbyte (void)

void outbyte (INT8 ch)

void spi_write_control_reg(UINT32 base_addr, INT8 val)

UINT8 spi_read_control_reg(UINT32 base_addr)

Parameters None

Description Read a byte from the SPI device. This call will block until a byte
is actually available on the SPI Data Receive Register (DRR) or
the associated FIFO. This function is added to the library only if
a SPI device is configured to be the standard input to the
system. Functions such as scanf call inbyte to read a single
byte. Libgen automatically configures inbyte with the correct
base address.

Includes This function should not be called directly. Use spi_read_byte
to read a character from the SPI device.

Parameters ch: character to be written to the UART Lite

Description Write a byte to the SPI device. This call will block until the byte is
actually written to the SPI Data Transmit Register (DTR) or the
associated FIFO, if any. This function is added to the library only
if a SPI device is configured to be the standard output to the
system. Functions such as printf call outbyte to write a single
byte. Libgen automatically configures outbyte with the correct
base address.

Includes This function should not be called directly. Use spi_write_byte
to write a character to the SPI device.

Parameters base_addr: Base address of the interrupt controller

val: The value to be written.

Description Write the val to the Control Register (CR)

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Read the return the contents of the Control Register

Includes spi.h

mbio.h

http://www.xilinx.com


94 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

void spi_enable_device (UINT32 base_addr)

void spi_disable_device (UINT32 base_addr)

void spi_write_intr_enable_reg(UINT32 base_addr, UINT8 mask)

void spi_read_intr_enable_reg(UINT32 base_addr)

void spi_write_intr_reg (UINT32 base_addr, UINT8 mask)

Parameters base_addr: Base address of the interrupt controller

Description Enable the SPI device to perform data transfer operations

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Disable the SPI Device. It can not perform data transfer now

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

mask: The value to be written.

Description Enable chosen interrupts by writing ’1’ on specific locations in
the bit mask to be written.

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Read and return the current value of the interrupt enable
register to find out which interrupts are currently enabled

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

mask: The value to be written.

Description Write a perticular mask to the Interrupt Register, thus generating
the corresponding interrupt(s) from software

Includes spi.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 95
MicroBlaze Software Reference Guide 1-800-255-7778

R

UINT8 spi_read_intr_reg(UINT32 base_addr)

void spi_clear_all_intr (UINT32 base_addr)

void spi_enable_all_intr(UINT32 base_addr)

void spi_disable_all_intr(UINT32 base_addr)

void spi_reset_fifo(UINT32 base_addr)

Parameters base_addr: Base address of the interrupt controller

Description Read and return the value of the interrupt register to find out
which interrupts are pending.

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Clear all pending interrupts by writing 0 to the interrupt register

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Write that value to the interrupt enable register so that all
interrupts are enabled

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Write that value to the interrupt enable register so that all
interrupts are disabled and the SPI device does not respond to
any interrupts

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Reset receive and transmit FIFOs, if any, attached to the SPI
device

Includes spi.h

mbio.h

http://www.xilinx.com


96 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

INT8 spi_read_byte(UINT32 base_addr)

void spi_write_byte(UINT32 base_addr, INT8 data)

void spi_set_options(UINT32 base_addr, UINT32 options)

Parameters base_addr: Base address of the interrupt controller

Description Read the Data Receive Register (DRR) and return a byte of data
from the SPI device. This function blocks if DDR or the attached
FIFO is empty.

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

data: The data to be sent out by the SPI device.

Description Write the data to the Data Transmit Register (DTR) for
tranmitting it to other device. This function blocks if the attached
FIFO is full or if previous data written to DTR is not yet sent.

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

options: The value corresponding to the option to be set

Description Configure the device in one of the following available option:

XSP_MASTER_OPTION: configure as a master (default is
slave), option value is 1.

XSP_CLK_ACTIVE_LOW_OPTION: configure clock to be
active low (default is active high), option value is 2

XSP_CLK_PHASE_1_OPTION: use clock phase 1 (default is
phase 0), option value is 4

XSP_LOOPBACK_OPTION: enable loopback mode (default is
disabled), option value is 8

For a set of options, option value is sum of the corresponding
option values

Includes spi.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 97
MicroBlaze Software Reference Guide 1-800-255-7778

R

UINT32 spi_get_options(UINT32 base_addr)

void spi_set_slave_select(UINT32 base_addr, UINT32 slave_num)

UINT32 spi_get_slave_select(UINT32 base_addr)

Parameters base_addr: Base address of the interrupt controller

Description Return the current option settings for the SPI device

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

slave_num: The slave to be selected for this device

Description This function should only be used when device is configured as
a master. Select the slave to which the device will communicate.
slave_nm varies from 0 to (number_of_slaves - 1)

Includes spi.h

mbio.h

Parameters base_addr: Base address of the interrupt controller

Description Return the slave currently selected for this master device.
Initially no slave is selected.

Includes spi.h

mbio.h

http://www.xilinx.com


98 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

Timebase/
WatchDog
Timer Driver

The following driver functions are available for the Timebase WDT.

void timebase_wdt_disable (UINT32 base_addr)

void timebase_wdt_enable (UINT32 base_addr)

UINT32 timebase_wdt_get_status (UINT32 base_addr)

UINT32 timebase_wdt_get_timebase (UINT32 base_addr)

Parameters base_addr: Base address of the timebase WDT

Description Disable the watchdog timer. Clear the EWDT1 bit in TCSR0 and
the EWDT2 bit in TCSR1.

Includes timebase_wdt.h

mbio.h

Parameters base_addr: Base address of the timebase WDT

Description Enable the timebase WDT. Write EWDT2 in Control/Status
register TCSR1.

Includes timebase_wdt.h

mbio.h

Parameters base_addr: Base address of the timebase WDT

Description Read the Control/Status Register (TCSR0) of the timebase
WDT. The following masks may be used to decode the returned
value:

TIMEBASE_WDT_WRS : Watchdog reset status

TIMEBASE_WDT_WDS : Watchdog timer state

TIMEBASE_WDT_EWDT1 : Enable Watchdog Timer (Enable 1)

TIMEBASE_WDT_EWDT2 : Enable Watchdog Timer (Enable 2)

Includes timebase_wdt.h

mbio.h

Parameters base_addr: Base address of the timebase WDT

Description Read the Timebase Register (TBR) to return the free-running
counter value of the timebase WDT.

Includes timebase_wdt.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 99
MicroBlaze Software Reference Guide 1-800-255-7778

R

void timebase_wdt_kick (UINT32 base_addr)

void timebase_wdt_set_status0 (UINT32 base_addr, UINT32 status)

void timebase_wdt_set_status1 (UINT32 base_addr, UINT32 status)

Parameters base_addr: Base address of the timebase WDT

Description Kick the WDT. Clear the Watchdog Timer State (WDS) bit of the
Control/Status register TCSR0.

Includes timebase_wdt.h

mbio.h

Parameters base_addr: Base address of the timebase WDT

status: Value to be written to control status register

Description Write to the Control/Status Register (TCSR0) of the timebase
WDT. The following masks may be used to set up the input:

TIMEBASE_WDT_WRS : Watchdog reset status

TIMEBASE_WDT_WDS : Watchdog timer state

TIMEBASE_WDT_EWDT1 : Enable Watchdog Timer (Enable 1)

Includes timebase_wdt.h

mbio.h

Parameters base_addr: Base address of the timebase WDT

status: Value to be written to control status register

Description Write to the Control/Status Register (TCSR1) of the timebase
WDT. The following mask may be used to set up the input:

TIMEBASE_WDT_EWDT2 : Enable Watchdog Timer (Enable 2)

Includes timebase_wdt.h

mbio.h

http://www.xilinx.com


100 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

Timer/Counter
Driver

The following driver functions are available for the timer/counter.

UINT32 get_elapsed_time(UINT32 base_addr, UINT32 timer_number)

void start_timer (UINT32 base_addr, UINT32 timer_number)

UINT32 timer_get_capture (UINT32 base_addr, UINT32 timer_number)

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

Description Get the number of clock ticks since function start_timer was last
called. Used to find the number of clock ticks required to execute
a piece of code. This function will not return the correct value if
the timer has rolled over, i.e., if the code being timed takes more
than 0xFFFFFFFF clock ticks to execute.

Includes timer.h

mbio.h

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

Description Start timing a piece of code. This resets the timer, and enables it
in compare mode. Use function get_elapsed_time to read the
current time, and thus find the number of clock ticks between the
two function calls.

Includes timer.h

mbio.h

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

Description Read the capture register. If the value of timer_number is 0, then
read TCCR0, else read TCCR1.

Includes timer.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 101
MicroBlaze Software Reference Guide 1-800-255-7778

R

UINT32 timer_get_csr (UINT32 base_addr, UINT32 timer_number)

UINT32 timer_get_time (UINT32 base_addr, UINT32 timer_number)

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

Description Read from the control/status register. If timer_number is 0, read
TCSR0, else read TCSR1. The following masks may be used to
decode the status register.

TIMER_ENABLE_ALL : Enable all timers.

TIMER_PWM : Enable Pulse Width Modulation

TIMER_INTERRUPT : Timer Interrupt.

TIMER_ENABLE : Enable Timer

TIMER_ENABLE_INTR  : Enable Interrupts

TIMER_RESET : Reset Timer

TIMER_RELOAD  : Auto Reload/Hold Timer

TIMER_EXT_CAPTURE : Enable External Capture Trigger

TIMER_EXT_COMPARE  : Enable External Compare Signal

TIMER_DOWN_COUNT : Up/Down Count

TIMER_CAPTURE_MODE : Timer Mode

Includes timer.h

mbio.h

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

Description Read the time value from the timer/counter register. If the value
of timer_number is 0, then read TCR0, else read TCR1.

Includes timer.h

mbio.h

http://www.xilinx.com


102 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

void timer_set_compare (UINT32 base_addr, UINT32 timer_number, UINT32
compare_value)

void timer_set_csr (UINT32 base_addr, UINT32 timer_number, UINT32 status_value)

Example MHS File snippet

SELECT SLAVE opb_timer
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = mytimer
CSET attribute C_BASEADDR = 0xFFFF0000
CSET attribute C_HIGHADDR = 0xFFFF00ff
CSET attribute C_AWIDTH   = 32
CSET attribute C_DWIDTH   = 32
CSET signal Interrupt = interrupt, PRIORITY = 1
CSET signal CaptureTrig0 = net_gnd
CSET signal CaptureTrig1 = reset_gpio

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

compare_value: Value to be written to the compare register

Description Write to the compare register. If the value of timer_number is 0,
then write to TCCR0, else write to TCCR1.

Includes timer.h

mbio.h

Parameters base_addr: Base address of the timer/counter

timer_number: Identifies which timer is being accessed. May
be 0 or 1.

status_value: Value to be written to the status register

Description Write to the control/status register. If timer_number is 0, write to
TCSR0, else write to TCSR1. The following masks may be used
when setting up the status value.

TIMER_ENABLE_ALL : Enable all timers.

TIMER_PWM : Enable Pulse Width Modulation

TIMER_INTERRUPT : Timer Interrupt.

TIMER_ENABLE : Enable Timer

TIMER_ENABLE_INTR  : Enable Interrupts

TIMER_RESET : Reset Timer

TIMER_RELOAD  : Auto Reload/Hold Timer

TIMER_EXT_CAPTURE : Enable External Capture Trigger

TIMER_EXT_COMPARE  : Enable External Compare Signal

TIMER_DOWN_COUNT : Up/Down Count

TIMER_CAPTURE_MODE : Timer Mode

Includes timer.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 103
MicroBlaze Software Reference Guide 1-800-255-7778

R

END

Example MSS File snippet

SELECT INSTANCE mytimer
CSET attribute DRIVER = drv_timer
CSET attribute INT_HANDLER = timer_int_handler, Interrupt
END

Example C Program

#include <timer.h>
#include <mbio.h>
#include <mb_interface.h>

/* Use two timers in compare mode to count down from different values.
   Print ’a’ when timer 0 interrupts, and ’b’ when timer 1 interrupts.
*/

#define TIMER_0_INT_VAL 1000000
#define TIMER_1_INT_VAL 2000000

/* Timer interrupt handler */
void
timer_int_handler() {
  unsigned int csr;

  /* Read timer 0 CSR to see if it raised the interrupt */
  csr = timer_get_csr(MYTIMER_BASEADDR, 0);
  if (csr & TIMER_INTERRUPT) {

print("a");
    /* Clear the interrupt */
    timer_set_csr(MYTIMER_BASEADDR, 0, csr);
  } else {
    /* Read timer 1 CSR to see if it raised the interrupt */
    csr = timer_get_csr(MYTIMER_BASEADDR, 1);
    if (csr & TIMER_INTERRUPT) {
      print("b");
      /* Clear the interrupt */
      timer_set_csr(MYTIMER_BASEADDR, 1, csr);
    } else {
      /* Error */
      print("Error\n");
    }
  }
}

void
main() {
int i;

/* Enable microblaze interrupts */
  microblaze_enable_interrupts();

  /* set the number of cycles each timer must count */
  timer_set_compare(MYTIMER_BASEADDR, 0, TIMER_0_INT_VAL);
  timer_set_compare(MYTIMER_BASEADDR, 1, TIMER_1_INT_VAL);

  /* reset the timers, and clear interrupts */
  timer_set_csr(MYTIMER_BASEADDR, 0, TIMER_INTERRUPT | TIMER_RESET );

http://www.xilinx.com


104 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

  timer_set_csr(MYTIMER_BASEADDR, 1, TIMER_INTERRUPT | TIMER_RESET );

  /* start the timers */
  timer_set_csr(MYTIMER_BASEADDR, 0, TIMER_ENABLE | TIMER_ENABLE_INTR |
TIMER_RELOAD | TIMER_DOWN_COUNT);
  timer_set_csr(MYTIMER_BASEADDR, 1, TIMER_ENABLE | TIMER_ENABLE_INTR |
TIMER_RELOAD | TIMER_DOWN_COUNT);

  /* Wait for interrupts to occur */
  for (i=0; i<0xFFFFFF; i++) {
      ;
  }
}

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 105
MicroBlaze Software Reference Guide 1-800-255-7778

R

UART Lite
Driver

The following driver functions are available for the UART Lite.

INT8 inbyte (void)

void outbyte (INT8 ch)

void uartlite_disable_intr (UINT32 base_addr)

INT32 uartlite_empty (UINT32 base_addr)

Parameters None

Description Read a byte from the UART Lite. This call will block until a byte
is actually available on the UART Lite Receive FIFO. This
function is added to the library only if a UART Lite is configured
to be the standard input to the system. Functions such as scanf
call inbyte to read a single byte. Libgen automatically configures
inbyte with the correct base address.

Includes This function should not be called directly. Use
uartlite_read_byte to read a character from the UART Lite.

Parameters ch: character to be written to the UART Lite

Description Write a byte to the UART Lite. This call will block until the byte is
actually written to the UART Lite Transmit FIFO. This function is
added to the library only if a UART Lite is configured to be the
standard output to the system. Functions such as printf call
outbyte to write a single byte. Libgen automatically configures
outbyte with the correct base address.

Includes This function should not be called directly. Use
uartlite_write_byte to write a character to the UART Lite.

Parameters base_addr: Base address of uartlite peripheral

Description Disable interrupts on the UART Lite.

Includes uartlite.h

mbio.h

Parameters base_addr: Base address of uartlite peripheral

Description Check if any data is available on the UART Lite Receive FIFO.
Return nonzero if the UART Lite Receive FIFO is empty. Return
zero if the UART Lite Receive FIFO is not empty, i.e., if there are
characters waiting to be read.

Includes uartlite.h

mbio.h

http://www.xilinx.com


106 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

void uartlite_enable_intr (UINT32 base_addr)

INT32 uartlite_full (UINT32 base_addr)

UINT32 uartlite_get_status (UINT32 base_addr)

INT8 uartlite_read_byte (UINT32 base_addr)

Parameters base_addr: Base address of uartlite peripheral

Description Enable interrupts on the UART Lite.

Includes uartlite.h

mbio.h

Parameters base_addr: Base address of uartlite peripheral

Description Check if the UART Lite Transmit FIFO is full. Return nonzero if
the UART Lite Transmit FIFO is full. Return zero if the UART Lite
Transmit FIFO is not full, i.e., characters can continue to be
transmitted to the UART Lite.

Includes uartlite.h

mbio.h

Parameters base_addr: Base address of uartlite peripheral

Description Read and return the UART Lite Status register. The status
register contains the following bits:

UARTLITE_PAR_ERROR : 1 if Parity error occured

UARTLITE_FRAME_ERROR : 1 if Frame error occured

UARTLITE_OVERRUN_ERROR : 1 if Overrun error occured

UARTLITE_INTR_ENABLED : 1 if interrupts are enabled

UARTLITE_TX_FIFO_FULL : 1 if the transmit FIFO is full

UARTLITE_TX_FIFO_EMPTY : 1 if the transmit FIFO is empty

UARTLITE_RX_FIFO_FULL : 1 if the receive FIFO is full

UARTLITE_RX_FIFO_VALID_DATA : 1 if the receive FIFO has
valid data

Includes uartlite.h

mbio.h

Parameters base_addr: Base address of uartlite peripheral

Description Read a byte from the UART Lite. This call will block until a byte
is actually available on the UART Lite Receive FIFO.

Includes uartlite.h

mbio.h

http://www.xilinx.com


LibXil Driver

April 4, 2002 www.xilinx.com 107
MicroBlaze Software Reference Guide 1-800-255-7778

R

INT32 uartlite_is_intr_enabled (UINT32 base_addr)

void uartlite_write_byte (UINT32 base_addr, INT8 ch)

void uartlite_set_control (UINT32 base_addr, UINT32 data)

Parameters base_addr: Base address of uartlite peripheral

Description Check if interrupts are enabled on the UART Lite. Return
nonzero if interrupts are enabled on the UART Lite. Return zero
if interrupts are not enabled on the UART Lite.

Includes uartlite.h

mbio.h

Parameters base_addr: Base address of uartlite peripheral

ch: character to be written to the UART Lite

Description Write a byte to the UART Lite. This call will block until the byte is
actually written to the UART Lite Transmit FIFO.

Includes uartlite.h

mbio.h

Parameters base_addr: Base address of uartlite peripheral

data: word to be written to the control register

Description Write a word to the UART Lite control register. The following
masks may be used to write to the control register:

UARTLITE_INTR_ENABLE : Enable interrupts on the UART
Lite

UARTLITE_RST_RX_FIFO : Reset/Clear the receive FIFO

UARTLITE_RST_TX_FIFO : Reset/Clear the transmit FIFO

Includes uartlite.h

mbio.h

http://www.xilinx.com


108 www.xilinx.com April 4, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

LibXil Driver
R

MicroBlaze
Interrupt
Routines

The following routines are available to support interrupts on the MicroBlaze. These routines
should be used to disable or enable interrupts on MicroBlaze. These routines are included by
libgen in the same manner as the drivers, using the DRIVER and DRIVER_VER attributes.
Please refer to the Interrupt Management documentation for the use of these routines.

void microblaze_disable_interrupts (void)

void microblaze_enable_interrupts (void)

Parameters None

Description Disable interrupts on the MicroBlaze. This clears the interrupt
enable bit of the MSR.

Includes mb_interface.h

Parameters None

Description Enable interrupts on the MicroBlaze. Interrupts are disabled
when the system starts up. Therefore this function must be
called if the MicroBlaze is expected to handle interrupts. This
sets the interrupt enable bit of the MSR.

Includes mb_interface.h

http://www.xilinx.com


April 2002 www.xilinx.com 109
MicroBlaze Software Reference Guide 1-800-255-7778

R

Software Specification

http://www.xilinx.com


110 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


Jan. 8, 2002 www.xilinx.com 111
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the Microprocessor Software Specification (MSS) format for the 32-
bit soft processor, MicroBlaze.

Overview The MSS file specifies the software configuration of the platform. The MSS file defines the
standard input/output devices, interrupt handler routines, and other related software features.
The MSS file is created by the user. Please also refer to the Microprocessor Hardware
Specification documentation for more information on the related MHS file.

Microprocessor
Software
Specification
(MSS) Format

An MSS file is supplied by the user as an input to the Library Generator. The MSS file contains
directives for customizing the microblaze executable and the software flow.

The MSS file has a dependency on the MHS file. This dependency has to be specified in the
MSS file as SET attribute HW_SPEC_FILE = <file_name.mhs>. Hence, a hardware platform
has to be defined in order to configure the software flow. Refer the Microprocessor Hardware
Specification documentation for more information on hardware configuration.

Keywords
The MSS file consists of SET statements that assign values to global attributes. It also consists
of CSET statements that assign values to instance specific attributes. An instance of a
peripheral is selected using the SELECT statement. Every CSET statement between the
SELECT and the END statement refers to the selected instance. The MSS syntax is not case
sensitive. However, attribute and instance names are case sensitive.

Format
The format for assigning global attributes:

SET ATTRIBUTE name = value

The format for selecting a peripheral instance:

SELECT INSTANCE instance_name

The format for selecting a file system:

SELECT FILESYS filesys_name

The format for instance specific assignment statements:

CSET ATTRIBUTE name = value

The format for ending a peripheral instance definition:

END

Comments can be specified anywhere in the file. A # character denotes the beginning of a
comment and all characters after the # till the end of the line are ignored. White spaces are also
ignored.

MSS example
An example MSS file is given below:

SET attribute HW_SPEC_FILE = system.mhs

Xilinx Embedded Processors: MicroBlaze

Jan. 8, 2002

Microprocessor Software Specification
(MSS) Format

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


112 www.xilinx.com Jan. 8, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Software Specification (MSS) Format
R

SET attribute BOOT_PERIPHERAL = my_jtag
SET attribute DEBUG_PERIPHERAL = my_jtag
SET attribute XMDSTUB = code/xmdstub.out
SET attribute BOOTSTRAP = code/bootstub.out
SET attribute EXECUTABLE = code/hello_world.out
SET attribute STDIN = my_uartlite
SET attribute STDOUT = my_uartlite

SELECT INSTANCE my_microblaze
CSET attribute DRIVER = drv_microblaze
CSET attribute DRIVER_VER = 1.00.a
END

SELECT INSTANCE my_intc
CSET attribute DRIVER = drv_intc
CSET attribute DRIVER_VER = 1.00.a
END

SELECT INSTANCE my_uartlite
CSET attribute DRIVER_VER = 1.00.a
CSET attribute DRIVER = uartlite
CSET attribute LIBRARY = XilFile
CSET attribute INT_HANDLER = my_uartlite_hndl, Interrupt
END

SELECT INSTANCE my_timebase_wdt
CSET attribute DRIVER_VER = 1.00.a
CSET attribute DRIVER = drv_timebase_wdt
CSET attribute INT_HANDLER=my_timebase_hndl, Timebase_Interrupt
CSET attribute INT_HANDLER=my_timebase_hndl, WDT_Interrupt
END

SELECT FILESYS XilMfs
CSET attribute MOUNT = /home/mine
CSET attribute LIBRARY = XilFile
END

Global Options These options are specified with a SET keyword. These options define the software
specification and are not specific to a peripheral instance.

HW_SPEC_FILE Option
This option points to the MHS file. The path can be a relative path from the
<USER_PROJECT> directory or can be an absolute path. This option is mandatory.

Format

SET attribute HW_SPEC_FILE = system.mhs

BOOTSTRAP Option
The bootstrap image is set using the BOOTSTRAP option.

Format

SET attribute BOOTSTRAP = code/bootstub.out

Library Generator creates this executable in the <USER_PROJECT>/code directory. Please
see the Library Generator document for more information.

The path to the file is a relative path from the <USER_PROJECT> directory.

http://www.xilinx.com


Microprocessor Software Specification (MSS) Format

Jan. 8, 2002 www.xilinx.com 113
MicroBlaze Software Reference Guide 1-800-255-7778

R

BOOT_PERIPHERAL Option
Identify boot peripheral with the BOOT_PERIPHERAL option.

Format

SET attribute BOOT_PERIPHERAL = <instance_name>

STDIN Option
Identify standard input device with the STDIN option.

Format

SET attribute STDIN = <instance_name>

STDOUT Option
Identify standard output device with the STDOUT option.

Format

SET attribute STDOUT = <instance_name>

EXECUTABLE Option
The executable image is set using the EXECUTABLE option.

Format

SET attribute EXECUTABLE = code/a.out

Currently, the executable programming information is used only for initializing the LMB memory.

Hardware designers have the option of defining the system before an executable file is
completed. In the MSS file, you can simply leave the value to EXECUTABLE blank.

Format

SET attribute EXECUTABLE = “”

XMDSTUB Option
The on-board debug image is set using the XMDSTUB option.

Format

SET attribute XMDSTUB = code/xmdstub.out

Library Generator creates this executable in the <USER_PROJECT>/code directory.

Please see the Library Generator document for more information.

The path to the file is a relative path from the <USER_PROJECT> directory.

DEBUG_PERIPHERAL Option
The peripheral that is used to handle the xmdstub should be specified in the
DEBUG_PERIPHERAL option:

SET attribute DEBUG_PERIPHERAL = <instance_name>

http://www.xilinx.com


114 www.xilinx.com Jan. 8, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Software Specification (MSS) Format
R

Instance
Specific
Options

Peripheral instances defined in the MSS are allowed the following list of options:

DRIVER Option
This option is needed for peripherals that have drivers associated with them.

Format

CSET attribute DRIVER = drv_uartlite

Library Generator copies the driver directory specified to <USER_PROJECT>/libsrc directory
and creates the driver using the makefile specified. Please see the Library Generator
document for more information.

DRIVER_VER Option
The driver version is set using the DRIVER_VER option.

Format

CSET attribute DRIVER_VER = 1.00.a

The version is specified as a literal of the form 1.00.a.

INT_HANDLER Option
This option defines the interrupt handler software routine for an interrupt signal of the
peripheral.

Format

CSET attribute INT_HANDLER = my_int_handl, Interrupt

The interrupt signal which is handled by the interrupt handler is specified after the attribute as
shown above. This signal should match the signal name specified in the MHS file for that
peripheral instance.

LIBRARY Option
This option specifies that the peripheral is also accessed through high level routines in Xilinx
libraries such as LibXil File and LibXil Mfs.

Format

CSET attribute LIBRARY = XilFile

This attribute should be used only for UARTLITE, JTAG_UART and GPIO peripherals. This
option enables customization of Xilinx Libraries for block access such as device open, read,
write, seek, etc.

Table  1: MSS Peripheral Options

Option Values Default Definition

DRIVER Must be
specified

Driver directory name

DRIVER_VER 1.00.a No Version Driver version

INT_HANDLER name of
interrupt
handler

default_int_h
andler

Interrupt handler function

LIBRARY library name none The peripheral is accessed as a
block peripheral through Xilinx
library calls

http://www.xilinx.com


Microprocessor Software Specification (MSS) Format

Jan. 8, 2002 www.xilinx.com 115
MicroBlaze Software Reference Guide 1-800-255-7778

R

File System
Specific
Options

A supported file system can be selected by using the SELECT FILESYS command in the
MSS.:

MOUNT Option
This option defines the mount name for the file system instance. Every file system instance
should have a unique mount name. The name is a directory name.

Format

CSET attribute MOUNT = /home/

The above command specifies that the mount name for the file system instance is /home/.

LIBRARY Option
This option specifies that the file system is accessed through high level routines in Xilinx
libraries such as LibXil File.

Format

CSET attribute LIBRARY = XilFile

This option enables customization of Xilinx Libraries for block access through generic file open,
read, write, seek, etc., irrespective of the file system implementation.

Table  2: MSS FileSys Options

Option Values Default Definition

MOUNT string None Specifies the mount name

LIBRARY library name none The file system is accessed as
through a Xilinx library.

http://www.xilinx.com


116 www.xilinx.com Jan. 8, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

Microprocessor Software Specification (MSS) Format
R

http://www.xilinx.com


Jan. 10, 2002 www.xilinx.com 117
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes the MicroBlaze program address management techniques. For
advanced address space management, a discussion on linker scripts is also included in this
document.

Programs and
Memory

MicroBlaze users can write either C or Assembly programs, and use the MicroBlaze
Development Kit to transform their source code into bit patterns stored in the physical memory
of a MicroBlaze System. User programs typically access local/on-chip memory, external
memory and memory mapped peripherals. Memory requirements for user programs are
specified in terms of how much memory is required for storing the instructions, and how much
memory is required for storing the data associated with the program.

MicroBlaze address space is divided between the system address space and the user address
space. In certain examples, users would need advanced address space management, which
can be done with the help of linker script, described in this document.

Current
Address Space
Restrictions

Memory and Peripherals Overview

MicroBlaze uses 32-bit addresses, and as a result it can address memory in the range zero
through 0xFFFFFFFF. MicroBlaze can access memory either through its Local Memory Bus
(LMB) port or through the On-chip Peripheral Bus (OPB). The LMB is designed to be a fast
access, on-chip block RAM (BRAM) memories only bus. The OPB represents a general
purpose bus interface to on-chip or off-chip memories as well as other non-memory
peripherals.

LMB vs OPB Address Space

Currently, the ninth address bit is used to distinguish between LMB and OPB addresses. OPB
addresses can be used for on-chip memory, external memory, on-chip memory mapped
peripherals or off-chip memory mapped peripherals.

Notation: MicroBlaze is a 32-bit big endian processor

              Bit0 Bit1 Bit2 ... Bit31

         LMB addresses look like this:

              xxxx xxxx 0xxx xxxx xxxx xxxx xxxx xxxx

         OPB addresses look like this:

              xxxx xxxx 1xxx xxxx xxxx xxxx xxxx xxxx

In hex notation, OPB addresses are 0xXX800000-0xXXffffff, representing 256 address
ranges with 23 bits of address space per range (2^23 addresses per range).

BRAM Size Limits

The amount of BRAM memory that can be assigned to the LMB address space or to each
instance of an OPB mapped BRAM peripheral is limited. The largest supported BRAM memory
size for Virtex/VirtexE is 16 kilobytes and for Virtex2 it is 64 kilobytes. It is important to
understand that these limits apply to each separately decoded on-chip memory region only.
The total amount of on-chip memory available to a MicroBlaze system may exceed these limits.
The total amount of memory available in form of BRAMs is also FPGA device specific. Smaller

Xilinx Embedded Processors: MicroBlaze

Jan. 10, 2002

MicroBlaze Address Management
R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


118 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Address Management
R

devices of a given device family provide less BRAM than larger devices in the same device
family.

Figure 1: Sample Address Map

Special Addresses

Every MicroBlaze system must have user writable memory present in addresses 0x00000000
through 0x00000018. These memory locations contain the addresses MicroBlaze jumps to
after a reset, interrupt, or exception event occurs. It follows that the LMB address space must
start at memory location zero. Please refer to the MicroBlaze Application Binary Interface (ABI)
documentation for further details.

OPB Address Range Details

Within the OPB address space, the user can arbitrarily assign address space to on/off-chip
memory peripherals and to on/off-chip non-memory peripherals. The OPB address space may
contain holes representing regions that are not associated with any OPB peripheral. Special
linker scripts and directives may be required to control the assignment of object file sections to
address space regions.

Address Map

Figure 1 shows a possible address map for a MicroBlaze System. The actual address map is
defined in the MicroBlaze Hardware Specification (MHS) file. It contains an address map
specifying the addresses of LMB memory, OPB memory, External memory and peripherals.

The address range grows from 0. At the lowest range is the LMB memory. This is followed by
the OPB memory, External Memory and the Peripherals. Some addresses in this address
space have predefined meaning. The processor jumps to address 0x0 on reset, to address 0x8
on exception, and to address 0x10 on interrupt.

Memory Speeds
and Latencies

MicroBlaze requires 2 clock cycles to access on-chip Block RAM connected to the LMB for
write and 2 clock cycles for read. On chip memory connected to the OPB bus requires 3 cycles
for write and 4 cycles for read. External memory access is further limited by off-chip memory
access delays for read access, resulting in 5-7 clock cycles for read. Furthermore, memory
accesses over the OPB bus may incur further latencies due to bus arbitration overheads. As a

On Chip OPB

LMB Memory

External OPB

Peripherals

ADDRESS SPACE MAP

(Address End)

Increasing addresses

Represents Holes
in Address Range

0 (Address Start)

Memory

Memory

http://www.xilinx.com


MicroBlaze Address Management

Jan. 10, 2002 www.xilinx.com 119
MicroBlaze Software Reference Guide 1-800-255-7778

R

result, instructions or data that need to be accessed quickly should be stored in LMB memory
when possible.

For more information on memory access times, see the MicroBlaze Hardware Reference
documentation.

System
Address Space

MicroBlaze programs can be executed in different scenarios. Each scenario needs a different
set of system address space. The system address space is occupied by the xmdstub or the
bootstub, when debug or boot support is required. System address space is also need by the
C-runtime routines.

System with only an executable [No debug, No Bootstrap]

The scenario is depicted in Figure 2(a). The C-runtime file crt0.o is linked with the user
program. The system file, crt0.o starts at address location 0x0, immediately followed by user’s
program.

System with debugging support

With systems requiring debug support, xmdstub has to be downloaded at address location
0x0. The C-runtime file crt1.o is bundled with the user program and is place at a default
location. This scenario is shown in Figure 2(b).

System with bootstrap support

The user can also bootstrap their program by using the bootstub. This bootstub occupies the
system address space starting at address location 0x0. In addition to this system space, every
user program is pre-pended with another C-runtime routine crt2.o or crt3.o depending on the
compilation switch used. This scenario is shown in Figure 2(c).

Figure 2: Execution Scenarios

crt0.o

main program

crt1.o

main program

xmd -stbxmdstub

(a) (b)

crt2.o / crt3.o

main program

xmd -stbbootstub

(c)

http://www.xilinx.com


120 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Address Management
R

Default User
Address Space

The default usage of the compiler mb-gcc will place the users program immediately after the
system address space. The user does not have to give any additional options in order to make
space for the system files. The default start address for user programs is described in Table 1

If the user needs to start the program at a location other than the default start address or if non-
contiguous address space is required, advanced address space management is required.

Advanced User
Address Space

Different Base Address, Contiguous User Address Space

The user program can run from any memory [ i.e LMB memory or OPB memory]. By default,
the compiler will place the user program at location defined in Table 1. To execute program from
OPB memory or any address location other than default, users would have to provide the
compiler mb-gcc with additional option.

The option required is

-Wl,-defsym -Wl,_TEXT_START_ADDR=<start_address>

where <start_address> is the new base address required for the user program.

Different Base Address, Non-contiguous User Address Space

The users can place different components of their program on different memories. For
example, on MicroBlaze systems with holes non-contiguous LMB and OPB memories, users
can keep their code on LMB memory and the data on OPB memory. The users can also create
systems which have contiguous address space for LMB and OPB memory, but having holes in
the OPB address space.

All such user program need creation of a non-contiguous executables. To facilitate creation of
non-contiguous executable, linker scripts have to be modified. The default linker script provided
with the MicroBlaze Distribution Kit will place all user code and data in one contiguous address
space.

Linker scripts are defined in later sections in this document.

For more details on linker options see the MicroBlaze GNU Compiler documentation.

Object-file
Sections

The sections of an executable file are created by concatenating the corresponding sections in
an object (.o) file. The various sections in the object file are given in Figure 3.:

.text

This section contains executable code. This section has the x (executable), r (read-only) and i
(initialized) flags.

.rodata

This section contains read-only data of size more than 8 bytes (default). The size of the data put
into this section can be changed with an mb-gcc -G option. All data in this section is accessed
using absolute addresses. This section has the r (read-only) and the i (initialized) flags. For
more details refer to the MicroBlaze ABI documentation.

.sdata2

Table  1: Start address for different compilation switches

Compile Option Start Address

-xl-mode-executable 0x0
-xl-mode-xmdstub 0x400
-xl-mode-bootstrap 0x100
-xl-mode-bootstrap-reset 0x100

http://www.xilinx.com


MicroBlaze Address Management

Jan. 10, 2002 www.xilinx.com 121
MicroBlaze Software Reference Guide 1-800-255-7778

R

This section contains small read-only data (size less than 8 bytes). The size of the data going
into this section can be changed with an mb-gcc -G option. All data in this section is accessed
with reference to the read-only small data anchor. This ensures that all data in the .sdata2
section can be accessed using a single instruction (A preceding imm instruction will never be
necessary). This section has the r (read-only) and the i (initialized) flags. For more details refer
to the MicroBlaze ABI documentation.

.data

This section contains read-write data of size more than 8 bytes (default). The size of the data
going into this section can be changed with an mb-gcc -G option. All data in this section is
accesses using absolute addresses. This section has the w (read-write) and the i (initialized)
flags.

.sdata

This section contains small read-write data of size less than 8 bytes (default). The size of the
data going into this section can be changed with an mb-gcc -G option. All data in this section is
accessed with reference to the read-write small data anchor. This ensures that all data in the
.sdata section using a single instruction. (A preceding imm instruction will never be necessary).
This section has the w (read-write) and the i (initialized) flags.

.sbss

This section contains small un-initialized data of size less than 8 bytes (default). The size of the
data going into this section can be changed with an mb-gcc -G option. This section has the w
(read-write) flag.

.bss

This section contains un-initialized data of size more than 8 bytes (default). The size of the data
going into this section can be changed with an mb-gcc -G option. All data in this section is
accessed using absolute addresses. The stack and the heap are also allocated to this section.
This section has the w (read-write) flag.

The linker script describes the mapping between all the sections in all the input object files, and
the output executable file.

If your address map specifies that the LMB, OPB and External Memory occupy
contiguous areas of memory, you can use the default (built-in) linker script to generate
your executable. This is done by invoking mb-gcc as follows:

mb-gcc file1.c file2.c

Sectional Layout of an Object or an Executable File

.text

.rodata

.sdata2

.data

.sdata

.sbss

.bss

Text Section

Read-Only Data Section

Small Read-Only Data Section

Read-Write Data Section

Small Read-Write Data Section

Small Un-initialized Data Section

Un-initialized Data Section

Figure 3: Sectional layout of an object or executable file

http://www.xilinx.com


122 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Address Management
R

Note that using the built-in linker script implies that you have no control over which parts of your
program are mapped to the different kinds of memory.

Minimal Linker
Script

If your LMB, OPB and External Memory do not occupy contiguous areas of memory, you can
use a minimal linker script to define your memory layout. Here is a minimal linker script that
describes the memory regions only, and uses the default (built-in) linker script for everything
else.

/*
* Define the memory layout, specifying the start address and size of the
* different memory regions. The ILMB will contain only executable code (x),
* the DLMB will contain only initialized data (i), and the DOPB will contain
* all other writable data (w). Note that all sections of all your input
* object files must map into one of these memory regions. Other memory types
* that may be specified are "r" for read-only data.
*/
MEMORY
  {
    ILMB (x) : ORIGIN = 0x0, LENGTH = 0x1000
    DLMB (i) : ORIGIN = 0x2000, LENGTH = 0x1000
    DOPB (w) : ORIGIN = 0x8000, LENGTH = 0x30000
  }

This script specifies that the ILMB memory will contain all object file sections that have the x
flag, the DLMB will contain all object file sections that have the i flag and the DOPB will contain
all object file sections that have the w flag. An object file section that has both the x and the i
flag (.e.g., the .text section) will be loaded into ILMB memory because this is specified first in
the linker script. Refer to the Object-file Sections section of this document for more information
on object file sections, and the flags that are set in each.

Your source files can now be compiled by specifying the minimal linker script as though it were
a regular file, e.g.,

mb-gcc <minimal linker script> file1.c file2.c

Remember to specify the minimal linker script as the first source file.

If you want more control over the layout of your memory, e.g., if you want to split up your .text
section between ILMB and IOPB, or if you want your stack and heap in DLMB and the rest of
the .bss section in DOPB, you will need to write a full-fledged linker script.

Linker Script You will need to use a linker script if you want to control how your program is targeted to LMB,
OPB or External Memory. Remember that LMB memory is faster than both OPB and External
Memory, and you may want to keep that portion of your code that is accessed the most
frequently in LMB memory, and that which is accessed the least frequently in External Memory.

You will need to provide a linker script to mb-gcc using the following command:

mb-gcc -Wl,-T -Wl,<linker script> file1.c file2.c -save-temps

This tells mb-gcc to use your linker script only, and to not use the default (built-in) linker script.

The Linker Script defines the layout and the start address of each of the sections for the output
executable file. Here is a sample linker script.

/*
* Define the memory layout, specifying the start address and size of the
* different memory regions.
*/
MEMORY
  {
    LMB : ORIGIN = 0x0, LENGTH = 0x1000
    OPB : ORIGIN = 0x8000, LENGTH = 0x5000

http://www.xilinx.com


MicroBlaze Address Management

Jan. 10, 2002 www.xilinx.com 123
MicroBlaze Software Reference Guide 1-800-255-7778

R

  }

/*
* Specify the default entry point to the program
*/
ENTRY(_start)

/*
* Define the sections, and where they are mapped in memory
*/
SECTIONS
{

/*
* Specify that the .text section from all input object files will be placed
* in LMB memory into the output file section .text Note that mb-gdb expects
* the executable to have a section called .text
*/
.text : {
/* Uncomment the following line to add specific files in the opb_text */
/* region */
   /*    *(EXCLUDE_FILE(file1.o).text) */
   /* Comment out the following line to have multiple text sections */

   *(.text)
  } >LMB

  /* Define space for the stack and heap */
  /* Note that variables _heap must be set to the beginning of this area */
  /* and _stack set to the end of this area */

  . = ALIGN(4);
  _heap = .;
  .bss : {
    _STACK_SIZE = 0x400;
    . += _STACK_SIZE;
    . = ALIGN(4);
  } >LMB
  _stack = .;

  /*                     */
  /* Start of OPB memory */
  /*                     */

  .opb_text : {
    /* Uncomment the following line to add an executable section into */

 /* opb memory */
    /*    file1.o(.text) */
  } >OPB

. = ALIGN(4);
  .rodata : {
    *(.rodata)
  } >OPB

/* Alignments by 8 to ensure that _SDA2_BASE_ on a word boundary */
. = ALIGN(8);

  _ssrw = .;
  .sdata2 : {
    *(.sdata2)

http://www.xilinx.com


124 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Address Management
R

  } >OPB
  . = ALIGN(8);
  _essrw = .;
  _ssrw_size = _essrw - _ssrw;
_SDA2_BASE_ = _ssrw + (_ssrw_size / 2 );

  . = ALIGN(4);
  .data : {
    *(.data)
  } >OPB

  /* Alignments by 8 to ensure that _SDA_BASE_ on a word boundary */
  /* Note that .sdata and .sbss must be contiguous */

  . = ALIGN(8);
  _ssro = .;
  .sdata : {
    *(.sdata)
  } >OPB
  . = ALIGN(4);
  .sbss : {
    *(.sbss)
  } >OPB
  . = ALIGN(8);
  _essro = .;
  _ssro_size = _essro - _ssro;
_SDA_BASE_ = _ssro + (_ssro_size / 2 );

  . = ALIGN(4);
  .opb_bss : {
    *(.bss) *(COMMON)
  } > OPB
  . = ALIGN(4);
  _end = .;
}

Note that if you choose to write a linker script, you must do the following to ensure that your
program will work correctly:

• Allocate space in the .bss section for stack and heap. Set the _heap variable to the
beginning of this area, and the _stack variable to the end of this area. See the .bss section
in the script above for an example.

• Ensure that the _SDA2_BASE_ variable points to the center of the .sdata2 area, and that
_SDA2_BASE_ is aligned on a word boundary.

• Ensure that the .sdata and the .sbss sections are contiguous, that the _SDA_BASE_
variable points to the center of this section, and that _SDA_BASE_ is aligned on a word
boundary.

• If you are not using the rom monitor, ensure that crt0 is always loaded into memory
address zero. mb-gcc ensures that this is the first file specified to the loader, but the loader
script needs to ensure that it gets loaded at address zero. See the .text section in the
example above to see how this is done.

For more details on the linker scripts, refer to the GNU loader documentation in the binutil
online manual (http://www.gnu.org/manual).

http://www.xilinx.com
http://www.gnu.org/manual


Jan. 9 , 2002 www.xilinx.com 125
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes MicroBlaze Application Binary Interface (ABI), which is important for
developing software in assembly language for the soft processor. The MicroBlaze Gnu compiler
follows the conventions described in this document. Hence any code written by assembly
programmers should also follow the same conventions to be compatible with the compiler
generated code. Interrupt and Exception handling is also explained briefly in the document.

Data Types The data types used by MicroBlaze assembly programs are shown in Table 1. Data types such
as data8, data16, and data32 are used in place of the usual byte, halfword, and word.

Register Usage
Conventions

The register usage convention for MicroBlaze is given in Table 2

Xilinx Embedded Processors: MicroBlaze

Jan. 9 , 2002

MicroBlaze Application Binary Interface
R

Table  1: Data types in MicroBlaze assembly programs

MicroBlaze data types
(for assembly programs)

Corresponding
ANSI C data types

Size (bytes)

data8 char 1
data16 short 2
data32 int 4
data32 long int 4
data32 enum 4

data16/data32 pointer1

1. Pointers to small data areas, which can be accessed by global pointers are
data16.

2/4

Table  2: Register usage conventions

Register Type Purpose

R0 Dedicated Value 0
R1 Dedicated Stack Pointer
R2 Dedicated Read-only small data area anchor
R3-R4 Volatile Return Values
R5-R10 Volatile Passing parameters/Temporaries
R11-R12 Volatile Temporaries
R13 Dedicated Read-write small data area anchor
R14 Dedicated Return address for Interrupt
R15 Dedicated Return address for Sub-routine
R16 Dedicated Return address for Trap (Debugger)
R17 Dedicated Return Address for Exceptions
R18 Dedicated Reserved for Assembler

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


126 www.xilinx.com Jan. 9 , 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Application Binary Interface
R

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers
are classified as volatile, non-volatile and dedicated.

• The volatile registers are used as temporaries and do not retain values across the function
calls. Registers R3 through R12 are volatile, of which R3 and R4 are used for returning
values to the caller function, if any. Registers R5 through R10 are used for passing
parameters between sub-routines.

• Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers. The callee function is expected to save those non-volatile
registers, which are being used. These are typically saved to the stack during the prologue
and then reloaded during the epilogue.

• Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

- Registers R14 through R17 are used for storing return address from interrupts, sub-
routines, traps and exceptions in that order. Sub-routines are called using the branch
and link instruction, which saves the current Program Counter (PC) onto register R15.

- Small data area pointers are used for accessing certain memory locations with 16 bit
immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to
access the constants such as literals. The other SDA anchor R13 (Read-Write) is
used for accessing the values in the small data read-write section.

- Register R1 is used to store the value of the stack pointer and is updated on entry and
exit from functions.

- Register R18 is used as a temporary register for assembler operations.

• MicroBlaze has certain special registers such as program counter (rpc) and machine
status register (rmsr). These registers are not mapped directly to the register file and
hence the usage of these registers is different from the general purpose registers. The
value from rmsr and rpc can be transferred to general purpose registers by using mts and
mfs instructions (For more details refer to Instruction Set Architecture document).

Stack
Convention

The stack conventions used by MicroBlaze are detailed in Figure 1

The shaded area in Figure 1 denotes a part of the caller function’s stack frame, while the un-
shaded area indicates the callee function’s frame. The ABI conventions of the stack frame
define the protocol for passing parameters, preserving non-volatile register values and
allocating space for the local variables in a function. Functions which contain calls to other sub-
routines are called as non-leaf functions, These non-leaf functions have to create a new stack
frame area for its own use. When the program starts executing, the stack pointer will have the
maximum value. As functions are called, the stack pointer is decremented by the number of
words required by every function for its stack frame. The stack pointer of a caller function will
always have a higher value as compared to the callee function.

R19-R31 Non-Volatile Must be saved across function calls
RPC Special Program counter
RMSR Special Machine Status Register

Table  2: Register usage conventions

Register Type Purpose

http://www.xilinx.com


MicroBlaze Application Binary Interface

Jan. 9 , 2002 www.xilinx.com 127
MicroBlaze Software Reference Guide 1-800-255-7778

R

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 2. After the call from Func 1 to Func
2, the value of stack pointer (SP) is decremented. This value of SP is again decremented to
accommodate the stack frame for Func3. On return from Func 3 the value of stack pointer is
increased to its original value in the function, Func 2.

Details of how stack is maintained are shown in Figure 2.

Figure 2: Stack Frame

Figure 1: Stack Convention

High Address

Function Parameters for current Procedure

(Arg n ..Arg1)

(Optional: Maximum number of arguments
required for any called procedure from the
current procedure. n = 6)

Old Stack Pointer Link Register (R15)

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used
by the current procedure are saved)

Local Variables for Current Procedure

(Optional: Present only if Locals defined in the
procedure)

Functional Parameters (Arg n .. Arg 1)
(Optional: Maximum number of arguments
required for any called procedure from the
current release)

New Stack Pointer Link Register

Low Address

X9584

High Memory

Low Memory

SP

Func 1

SP

Func 1

Func 2

SP

Func 1

Func 2

Func 3
SP

Func 1

Func 2

http://www.xilinx.com


128 www.xilinx.com Jan. 9 , 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Application Binary Interface
R

Memory Model The memory model for MicroBlaze classifies the data into four different parts:

Small data area
Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving a command line option
to the compiler. Details about this option are discussed in the MicroBlaze Compiler Tools
document. 64K bytes of memory is allocated for the each small data areas. Small data area
is accessed using the read-write small data area anchor (R13) and a 16-bit offset.
Allocating small variables to this area reduces the requirement of adding Imm instructions
to the code for accessing global variables. Any variable in the small data area can also be
accessed using an absolute address.

Data area
Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending
on the command line option given to the compiler.

Common un-initialized area
Un-initialized global variables are allocated to the comm area and can be accessed either
using the absolute address or using the read-write small data area anchorR13.

Literals or constants
Constants are placed into the read-only small data area and are accessed using the read-
only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual values
of the SDA anchors will be decided by the linker, in the final linking stages. For more information
on the various sections of the memory please refer to the MicroBlaze Program Layout
document. The compiler generates appropriate sections, depending on the command line
options. Please refer to the MicroBlaze GNU Compiler Tools document for more information
about these options.

Interrupt and
Exception
Handling

MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in Table 3. When the device is powered ON or on a reset, execution starts at 0x0. If an
exception occurs, MicroBlaze jumps to address location 0x8, while in case of an interrupt, the
control is passed to address location 0x10. At these locations, code is written to jump to the
appropriate handlers.

The code expected at these locations is as shown in Figure 3. In case of programs compiled
without the -xl-mode-xmdstub compiler option, the crt0.o initialization file is passed by the
mb-gcc compiler to the mb-ld linker for linking. This file sets the appropriate addresses of the
exception handlers.

In case of programs compiled with the -xl-mode-xmdstub compiler option, the crt1.o
initialization file is linked to the output program. This program has to be run with the xmdstub
already loaded in the memory at address location 0x0. Hence at run-time, the initialization code

Table  3: Interrupt and Exception Handling

On Hardware jumps to Software Labels

Start / Reset 0x0 _start
Exception 0x8 _exception_handler
Interrupt 0x10 _interrupt_handler

http://www.xilinx.com


MicroBlaze Application Binary Interface

Jan. 9 , 2002 www.xilinx.com 129
MicroBlaze Software Reference Guide 1-800-255-7778

R

in crt1.o writes the appropriate instructions to location 0x8 through 0x14 depending on the
address of the exception and interrupt handlers.

Figure 3: Code for passing control to exception and interrupt handlers

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits. The exception handler code starts with the label
_exception_handler, while the interrupt handler code starts with the label
_interrupt_handler.

In the current MicroBlaze system, there are dummy routines for interrupt or exception handling,
which can be changed by the user. In order to override these routines and link user’s interrupt
and exception handlers, the user has to define the interrupt handler code with an attribute
interrupt_handler. For more details about the use and syntax of interrupt handler attribute,
please refer to the MicroBlaze GNU Compiler Tools document.

0x00: bri     _start1
0x04: nop
0x08: imm <high bits of address(exception handler)>
0x0c: bri     _exception_handler
0x10: imm <high bits of address(interrupt handler)>
0x14: bri     _interrupt_handler

http://www.xilinx.com


130 www.xilinx.com Jan. 9 , 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Application Binary Interface
R

http://www.xilinx.com


Jan. 10, 2002 www.xilinx.com 131
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document describes interrupt management for the MicroBlaze soft processor.

Overview Interrupt Management involves writing interrupt handler routines for peripherals and setting up
the MHS and MSS files appropriately. MicroBlaze is capable of handling upto 32 interrupting
devices. An interrupt controller peripheral is required for handling more than one interrupt
signal. The mechanism of interrupt management is different if an interrupt controller is present
than when it is not. This document describes both these management procedures.

Interrupt
Handlers

Users are expected to write their own interrupt handlers (or Interrupt Service Routines) for any
peripherals that raise interrupts. These routines can be written in C just like any other function.
The interrupt handler function can have any name with the signature void func (void).

Interrupt handler routines have to be tagged with int_handler attribute or save_volatile
attributes so that mb-gcc can identify these routines as handler routines. Refer to the Interrupt
Handlers section in the GNU Compiler Tools documentation for more information on these
attributes.

Libgen tags these routines automatically when the recommended interrupt management
procedures as described below are followed. Please note that library functions, like printf,
cannot be called from within the interrupt handlers. If any user defined function is required to be
called from the interrupt handler functions, this function must be tagged with the save_volatile
attribute.

The Interrupt
Controller
Peripheral

An interrupt controller peripheral should be used for handling multiple interrupts. In this case,
the user is resposible for writing interrupt handlers for the peripheral interrupt signals only. The
interrupt handler for the interrupt controller peripheral is automatically generated by libgen. This
handler ensures that interrupts from the peripherals are handled by individual interrupt
handlers in the order of their priority. Figure 1 shows peripheral interrupt signals with priorities
1 through 4 connected to the interrupt controller input.

Xilinx Embedded Processors: MicroBlaze

Jan. 10, 2002

MicroBlaze Interrupt Management
R

MicroBlaze

Interrupt

Controller

Peripheral 1

Peripheral 2

Peripheral 3

Peripheral 4

Interrupt Signal

Priority 1
interrupt

Priority 2
interrupt

Priority 4
interrupt

Priority 3
interrupt

Figure 1: Interrupt Controller and Peripherals

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


132 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Interrupt Management
R

The interrupt signal output of the controller is connected to the interrupt input of MicroBlaze. In
the MSS file, each peripheral interrupt signal must be associated with interrupt handler routines
(also called Interrupt Service Routines). Libgen automatically creates a vector table with the
peripheral interrupt handler routines listed in the order of priority. When any peripheral raises
an interrupt the default handler for the interrupt controller is called. This handler then queries
the interrupt controller to find out which peripheral raised the interrupt and then calls the
peripheral specific interrupt handler. For a system where the interrupt controller is not present
and only one interrupt signal is connected, the peripheral’s interrupt handler (written by the
user) gets called when an interrupt occurs.

MicroBlaze
Enable
Interrupts

The functions microblaze_enable_interrupts and microblaze_disable_interrupts are used to
enable and disable interrupts on MicroBlaze. These functions are described in the Drivers
document since they are included by libgen in the same manner that peripheral drivers are
included. The include file mb_interface.h present in the MICROBLAZE_PROJECT/include
directory contains the definition of these functions.

System without
Interrupt
Controller

Single Interrupt Signal
An interrupt controller is not required if there is a single interrupting peripheral and its interrupt
signal is level sensitive. Note that a single peripheral may raise multiple interrupts. In this case,
an interrupt controller is required.

Procedure
To set up a system without an interrupt controller that handles only one level sensitive interrupt
signal, the following steps must be taken:

1. The MHS and MSS file must be set up as follows:

- The interrupt signal of the peripheral must be connected to the interrupt input of the
MicroBlaze in the MHS file.

- The peripheral must be given an instance name using the INSTANCE keyword in the
MHS file. Libgen creates a definition in mbio.h (MICROBLAZE_PROJECT/include)
for <INSTANCE_NAME>_BASEADDR mapped to the base address of this peripheral.

2. The interrupt handler routine that handles the signal should be written. The base address
of the peripheral instance is accessed as <INSTANCE_NAME>_BASEADDR.

3. The handler function is then designated to be an interrupt handler for the signal using the
INT_HANDLER keyword in the MSS file (Refer the Microprocessor Software Specification
documentation). The peripheral instance is first selected in the MSS file, and then the
INT_HANDLER attribute is given the function name.

4. Libgen and mb-gcc are executed. This has the following implications:

- the function is marked as an interrupt handler using the mb-gcc interrupt_handler
attribute. All volatile registers used by this function are saved. Also, this function will
return using the rtid instruction, rather than the normal rtsd instruction. Furthermore,
this function will also be given the name _interrupt_handler by mb-gcc. By default,
MicroBlaze turns off interrupts from the time an interrupt is recognized until the
corresponding rtid instruction is executed.

- the startup code (crt0, crt1, crt2 or crt3) places the address of _interrupt_handler as
the target address that MicroBlaze jumps to when an interrupt occurs. Therefore
control will go to the interrupt handler when an interrupt occurs.

Example MHS File
SELECT SLAVE opb_uartlite
CSET attribute INSTANCE = myuart
CSET attribute HW_VER = 1.00.a

http://www.xilinx.com


MicroBlaze Interrupt Managementl

Jan. 10, 2002 www.xilinx.com 133
MicroBlaze Software Reference Guide 1-800-255-7778

R

CSET attribute C_BASEADDR   = 0xFFFF8000
CSET attribute C_HIGHADDR   = 0xFFFF80ff
CSET attribute C_DATA_BITS  = 8
CSET attribute C_CLK_FREQ   = 40000000
CSET attribute C_BAUDRATE   = 19200
CSET attribute C_USE_PARITY = 0
CSET signal RX = rx
CSET signal TX = tx
CSET signal Interrupt = interrupt, PRIORITY = 1
END

SELECT MASTER microblaze
CSET attribute CONFIGURATION = DOPB_ILMB_DLMB
CSET attribute HW_VER = 1.00.a
CSET signal Clk = sys_clk
CSET signal Reset = sys_reset
CSET signal Interrupt = interrupt
CSET attribute C_LM_BASEADDR = 0x00000000
CSET attribute C_LM_HIGHADDR = 0x00001fff
END

Example MSS File snippet
SELECT INSTANCE myuart
CSET attribute DRIVER = drv_uartlite
CSET attribute INT_HANDLER = uart_int_handler, Interrupt
END

Example C Program
#include <uartlite.h>
#include <mb_interface.h>
#include <mbio.h>

/*
 * Interrupt service routine for the uartlite.  It reads characters from
* the UART until there are no more characters to read. If it finds a space
 * in the input, or if the internal buffer is filled, it prints the string
 * read so far.
 */

#define MAXCHARS 100
char strread[MAXCHARS+1];
int charposn = 0;

/* UART Lite interrupt handler */
void uart_int_handler() {
        char c;

 int i;
        while (!uartlite_empty(MYUART_BASEADDR)) {
          /* read a character, and print it out */
          c = uartlite_inbyte(MYUART_BASEADDR);
          strread[charposn++] = c;
          if (charposn == MAXCHARS || c == ’ ’) {

for (i = 0; i < charposn; i++)
uartlite_outbyte(MYUART_BASEADDR, strread[i]);

charposn = 0;
          }
        }
}

http://www.xilinx.com


134 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Interrupt Management
R

void
main() {

  /* Enable microblaze interrupts */
  microblaze_enable_interrupts();

  /* Enable interrupts on the UART Lite */
  uartlite_enable_intr(MYUART_BASEADDR);

  /* Wait for interrupts to occur */
  while (1)
      ;

}

System with an
Interrupt
Controller

System with One or More Interrupt Signals
An Interrupt Controller peripheral (intc) should be present if more than one interrupt can be
raised. When an interrupt is raised, the interrupt handler for the Interrupt Controller
(intc_interrupt_handler) is called. The intc_interrupt_handler function then accesses the
interrupt controller to find the highest priority device that raised an interrupt. This is done via the
_interrupt_vector_table created automatically in MICROBLAZE_PROJECT/libsrc/intc by
libgen. On return from the peripheral interrupt handler, intc_interrupt_handler acknowledges
the interrupt. It then handles any lower priority interrupts, if they exist.

Procedure
To set up a system with a one or more interrupting devices and an interrupt controller, the
following steps must be taken:

1. The MHS and MSS files must be set up as follows:

- The interrupt signals of all the peripherals must be assigned to an interrupt bus in the
MHS file. A priority must be given to each of these signals using the PRIORITY
keyword. The interrupt bus must be connected to the input of intc. The interrupt signal
output of intc is then connected to the interrupt input of MicroBlaze.

- The peripherals must be given instance names using the INSTANCE keyword in the
MHS file. Libgen creates a definition in mbio.h for <INSTANCE_NAME>_BASEADDR
mapped to the base address of each peripheral for use in the user program. Libgen
also creates an interrupt mask for each interrupt signal using the priorities as
<INSTANCE_NAME>_<INTERRUPT_SIGNAL_NAME>_MASK. This can be used to
enable or disable interrupts.

2. The interrupt handler functions for each interruptible peripheral must be written.

3. Each handler function is then designated to be the handler for an interrupt signal using the
INT_HANDLER keyword in the MSS file. Note that intc interrupt signal must not be given
an INT_HANDLER keyword. If the INT_HANDLER keyword is not present for a particular
peripheral, a default dummy interrupt handler is used.

4. Libgen and mb-gcc is run to achieve the following:

- intc_interrupt_handler function is marked as the main interrupt handler by mb-gcc
using the interrupt_handler attribute. All volatile registers used by this function are
saved. Also, this function will return using the rtid instruction, rather than the normal
rtsd instruction. Furthermore, this function will also be given the name
_interrupt_handler. By default, MicroBlaze turns off interrupts from the time an
interrupt is recognized until the corresponding rtid instruction is executed.

http://www.xilinx.com


MicroBlaze Interrupt Managementl

Jan. 10, 2002 www.xilinx.com 135
MicroBlaze Software Reference Guide 1-800-255-7778

R

- each peripheral handler function is marked using save_volatiles attribute by libgen. All
volatile registers used by this function are saved. Since this is not the main interrupt
handler, it will return using the normal rtsd instruction.

- an interrupt vector table is generated and compiled automatically by libgen. This table
is accessed by intc_interrupt_handler to call peripheral interrupt handlers in order of
priority.

- the startup code (crt0, crt1, crt2 or crt3) places the address of _interrupt_handler as
the target address that MicroBlaze jumps to when an interrupt occurs. Therefore
control will go to the intc interrupt handler when an interrupt occurs.

Example MHS File Snippet
SELECT SLAVE opb_timer
CSET attribute INSTANCE = mytimer
CSET attribute HW_VER = 1.00.a
CSET attribute C_BASEADDR = 0xFFFF0000
CSET attribute C_HIGHADDR = 0xFFFF00ff
CSET attribute C_AWIDTH   = 32
CSET attribute C_DWIDTH   = 32
CSET signal Interrupt = int_bus, PRIORITY=2
CSET signal CaptureTrig0 = net_gnd
END

SELECT SLAVE opb_uartlite
CSET attribute INSTANCE = myuart
cset attribute HW_VER = 1.00.a
CSET attribute C_BASEADDR  = 0xFFFF8000
CSET attribute C_HIGHADDR = 0xFFFF80FF
CSET attribute C_DATA_BITS  = 8
CSET attribute C_CLK_FREQ   = 30000000
CSET attribute C_BAUDRATE   = 19200
CSET attribute C_USE_PARITY = 0
CSET signal RX = rx
CSET signal TX = tx
CSET signal Interrupt = int_bus, PRIORITY=1
END

SELECT SLAVE opb_intc
CSET attribute INSTANCE = myintc
CSET attribute HW_VER = 1.00.a
CSET attribute C_BASEADDR = 0xFFFF1000
CSET attribute C_HIGHADDR = 0xFFFF10ff
CSET attribute C_NUM_INTR_INPUTS = 2
CSET attribute C_KIND_OF_INTR = 1
CSET attribute C_KIND_OF_EDGE = 1
CSET signal Irq = interrupt
CSET signal Int = int_bus
END

SELECT MASTER microblaze
CSET attribute INSTANCE = microblaze
CSET attribute HW_VER = 1.00.a
CSET attribute CONFIGURATION = DOPB_ILMB_DLMB
CSET signal Interrupt = interrupt
CSET attribute C_LM_BASEADDR = 0x00000000
CSET attribute C_LM_HIGHADDR = 0x00000fff
END

http://www.xilinx.com


136 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Interrupt Management
R

Example MSS File Snippet
SELECT INSTANCE mytimer
CSET attribute DRIVER = drv_timer
CSET attribute DRIVER_VER = 1.00.a
CSET attribute INT_HANDLER = timer_int_handler, Interrupt
END

SELECT INSTANCE myuart
CSET attribute DRIVER = drv_uartlite
CSET attribute DRIVER_VER = 1.00.a
CSET attribute INT_HANDLER = uart_int_handler, Interrupt
END

SELECT INSTANCE myintc
CSET attribute DRIVER_VER = 1.00.a
CSET attribute DRIVER = drv_intc
END

SELECT INSTANCE microblaze
CSET attribute DRIVER_VER = 1.00.a
CSET attribute DRIVER = drv_microblaze
END

Example C Program
/*
 * This program uses the Timebase to calculate the number of cycles
 * required by a piece of code. It reads the TimeBase Register at the
 * start and end of the code segment.  It also uses an interrupt handler
 * to count the number of times the TimeBase rolls over.
 */
#include <timebase_wdt.h>
#include <mbio.h>
#include <mb_interface.h>
#include <intc.h>

unsigned int num_rollovers = 0;

/* Interrupt handler for the Timebase */
void timebase_int_handler() {
        num_rollovers++;
}

void
main() {
  int i;
  int j = 1;
  int timebase;
  int rollovers;

  /* Enable microblaze interrupts */
  microblaze_enable_interrupts();

  /* Start the interrupt controller */
  intc_start(MY_INTC_BASEADDR);

  /* print the current value of the timebase */
  print("Timebase value at start ");
  putnum(timebase_wdt_get_timebase(MY_TIMEBASE_BASEADDR));

http://www.xilinx.com


MicroBlaze Interrupt Managementl

Jan. 10, 2002 www.xilinx.com 137
MicroBlaze Software Reference Guide 1-800-255-7778

R

  /* Enable interrupts for the timebase */
intc_enable_interrupt(MY_INTC_BASEADDR,

MY_TIMEBASE_TIMEBASE_INTERRUPT_MASK);

  /* Piece of code to be timed */
  for (i=0xffffff; i>0; i--) {
        j = j*i;
  }

  /* Save the number of rollovers and the elapsed time */
  timebase = timebase_wdt_get_timebase(MY_TIMEBASE_BASEADDR);
  rollovers = num_rollovers;

  /* Print the elapsed time */
  print("Timebase value at end ");
  putnum(timebase);

  /* Print the number of rollovers */
  print("Number of timebase rollovers ");
  putnum(rollovers);
}

Breakpoints in
Interrupt
Handlers

Certain precautions must be taken when debugging programs that have interrupt handler
routines. These are enumerated below.

1. Breakpoints can be present in the interrupt handlers when interrupts are not enabled by the
user in the interrupt handler routines. In this case, there must not be any breakpoints in
other parts of the code.

2. Breakpoints can be present outside the interrupt handler routines. It is acceptable for
interrupts to occur when xmd is servicing a breakpoint. Please note that a sufficient delay
must be given to xmd (using the -d option) so that xmd waits until interrupts are serviced.

3. There should never be breakpoints in both interrupt handler routines and other user code.

http://www.xilinx.com


138 www.xilinx.com Jan. 10, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Interrupt Management
R

http://www.xilinx.com


April 2002 www.xilinx.com 139
MicroBlaze Software Reference Guide 1-800-255-7778

R

Microblaze Instruction Set Architecture

http://www.xilinx.com


140 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com


Mar. 18, 2002 www.xilinx.com 141
MicroBlaze Software Reference Guide 1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary This document provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation The symbols used throughout this document are defined in Table 1.

Formats MicroBlaze uses two instruction formats: Type A and Type B.

Xilinx Embedded Processors: MicroBlaze

Mar. 18, 2002

MicroBlaze Instruction Set Architecture
R

Table  1: Symbol notation

Symbol Meaning

+ Add

- Subtract

× Multiply

∧ Bitwise logical AND

∨ Bitwise logical OR

⊕ Bitwise logical XOR

x Bitwise logical complement of x

← Assignment

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

≠ Not equal comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

sext(x) Sign-extend x

Mem(x) Memory location at address x

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


142 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and
one source registers, and a source 16-bit immediate value.

Instructions MicroBlaze instructions are described next. Instructions are listed in alphabetical order. For
each instruction we provide the mnemonic, encoding, a description of it, pseudocode of the
instruction semantics, and the registers that the instruction alters.

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Opcode Destination Reg Source Reg A Immediate Value

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 143
MicroBlaze Software Reference Guide 1-800-255-7778

R

add Arithmetic Add

Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic addk. Bit 4
of the instruction (labeled as C in the figure) is set to a one for the mnemonic addc. Both bits are
set to a one for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then
the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addc, addkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (add, addk), the content of the
carry flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then
(rD) ← (rA) + (rB)

else
(rD) ← (rA) + (rB) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

Note

The C bit in the instruction opcode is not the same as the carry bit in the MSR register.

add rD, rA, rB Add

addc rD, rA, rB Add with Carry

addk rD, rA, rB Add and Keep Carry

addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


144 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

addi Arithmetic Add Immediate

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits,
is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic addik. Bit 4
of the instruction (labeled as C in the figure) is set to a one for the mnemonic addic. Both bits
are set to a one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic),
then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addic, addikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (addi, addik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C = 0 then
(rD) ← (rA) + sext(IMM)

else
(rD) ← (rA) + sext(IMM) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR register.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

addi rD, rA, IMM Add Immediate

addic rD, rA, IMM Add Immediate with Carry

addik rD, rA, IMM Add Immediate and Keep Carry

addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 145
MicroBlaze Software Reference Guide 1-800-255-7778

R

and Logical AND

Description

The contents of register rA are ANDed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) ← (rA) ∧ (rB)

Registers Altered

• rD

Latency

1 cycle

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


146 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

andi Logial AND with Immediate

Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits;
the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an IMM instruction. See IMM instruction for details on using 32-bit immediate
values.

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 147
MicroBlaze Software Reference Guide 1-800-255-7778

R

andn Logical AND NOT

Description

The contents of register rA are ANDed with the logical complement of the contents of register
rB; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ (rB)

Registers Altered

• rD

Latency

1 cycle

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


148 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

andni Logical AND NOT with Immediate

Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ (sext(IMM))

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 149
MicroBlaze Software Reference Guide 1-800-255-7778

R

beq Branch if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

beq rA, rB Branch if Equal

beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


150 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

beqi Branch Immediate if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

beqi rA, IMM Branch Immediate if Equal

beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 151
MicroBlaze Software Reference Guide 1-800-255-7778

R

bge Branch if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bge rA, rB Branch if Greater or Equal

bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


152 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

bgei Branch Immediate if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

bgei rA, IMM Branch Immediate if Greater or Equal

bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 153
MicroBlaze Software Reference Guide 1-800-255-7778

R

bgt Branch if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bgt rA, rB Branch if Greater Than

bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


154 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

bgti Branch Immediate if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

bgti rA, IMM Branch Immediate if Greater Than

bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 155
MicroBlaze Software Reference Guide 1-800-255-7778

R

ble Branch if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

ble rA, rB Branch if Less or Equal

bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


156 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

blei Branch Immediate if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

blei rA, IMM Branch Immediate if Less or Equal

bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 157
MicroBlaze Software Reference Guide 1-800-255-7778

R

blt Branch if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

blt rA, rB Branch if Less Than

bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


158 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

blti Branch Immediate if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

blti rA, IMM Branch Immediate if Less Than

bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 159
MicroBlaze Software Reference Guide 1-800-255-7778

R

bne Branch if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bne rA, rB Branch if Not Equal

bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


160 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

bnei Branch Immediate if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (i.e. in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

bnei rA, IMM Branch Immediate if Not Equal

bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 161
MicroBlaze Software Reference Guide 1-800-255-7778

R

br Unconditional Branch

Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch
is to an absolute value and the target is the value in rB, otherwise, it is a relative branch and the
target will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there
is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the
instruction following the branch (i.e. in the branch delay slot) is allowed to complete execution
before executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)

if D = 1 then
allow following instruction to complete execution

Registers Altered

• rD
• PC

Latency

2 cycles (if the D bit is set)

3 cycles (if the D bit is not set)

Note

The instructions brl and bral are not available.

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


162 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

bri Unconditional Branch Immediate

Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in IMM, otherwise, it is a relative
branch and the target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether
there is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the
instruction following the branch (i.e. in the branch delay slot) is allowed to complete execution
before executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)

if D = 1 then
allow following instruction to complete execution

Registers Altered

• rD
• PC

Latency

2 cycles (if the D bit is set)

3 cycles (if the D bit is not set)

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 163
MicroBlaze Software Reference Guide 1-800-255-7778

R

brk Break

Description

Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD) ← PC
PC ← (rB)
MSR[BIP] ← 1

Registers Altered

• rD
• PC
• MSR[BIP]

Latency

3 cycles

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


164 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

brki Break Immediate

Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD) ← PC
PC ← sext(IMM)
MSR[BIP] ← 1

Registers Altered

• rD
• PC
• MSR[BIP]

Latency

3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 165
MicroBlaze Software Reference Guide 1-800-255-7778

R

imm Immediate

Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it
can be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions
have only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly.
However, 32-bit immediate values can be used in MicroBlaze. By default, Type B Instructions
will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate
operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. The imm instruction locks the 16-bit IMM value temporarily for the next instruction.
A Type B instruction that immediately follows the imm instruction will then form a 32-bit
immediate value from the 16-bit IMM value of the imm instruction (upper 16 bits) and its own
16-bit immediate value field (lower 16 bits). If no Type B instruction follows the IMM instruction,
the locked value gets unlocked and becomes useless.

Latency

1 cycle

Note

The imm instruction and the Type B instruction following it are atomic, hence no interrupts are
allowed between them.

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM

0 6 11 16 31

http://www.xilinx.com


166 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

lbu Load Byte Unsigned

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
registers rA and rB. The data is placed in the least significant byte of register rD and the other
three bytes in rD are cleared.

Pseudocode

Addr ← (rA) + (rB)
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered

• rD

Latency

2 cycles

lbu rD, rA, rB

1 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 167
MicroBlaze Software Reference Guide 1-800-255-7778

R

lbui Load Byte Unsigned Immediate

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register
rA with the value in IMM, sign-extended to 32 bits. The data is placed in the least significant
byte of register rD and the other three bytes in rD are cleared.

Pseudocode

Addr ← (rA) + sext(IMM)
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

lbui rD, rA, IMM

1 1 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


168 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

lhu Load Halfword Unsigned

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding
the contents of registers rA and rB. The data is placed in the least significant halfword of
register rD and the most significant halfword in rD is cleared.

Pseudocode

Addr ← (rA) + (rB)
Addr[31] ← 0
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered

• rD

Latency

2 cycles

lhu rD, rA, rB

1 1 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 169
MicroBlaze Software Reference Guide 1-800-255-7778

R

lhui Load Halfword Unsigned Immediate

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding
the contents of register rA and the value in IMM, sign-extended to 32 bits. The data is placed in
the least significant halfword of register rD and the most significant halfword in rD is cleared.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[31] ← 0
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

lhui rD, rA, IMM

1 1 1 0 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


170 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

lw Load Word

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in register rD.

Pseudocode

Addr ← (rA) + (rB)
Addr[30:31] ← 00
(rD) ← Mem(Addr)

Registers Altered

• rD

Latency

2 cycles

lw rD, rA, rB

1 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 171
MicroBlaze Software Reference Guide 1-800-255-7778

R

lwi Load Word Immediate

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of register rA and the value IMM, sign-extended to 32 bits. The data is placed in
register rD.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[30:31] ← 00
(rD) ← Mem(Addr)

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

lwi rD, rA, IMM

1 1 1 0 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


172 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

mfs Move From Special Purpose Register

Description

Copies the contents of the special purpose register rS into register rD.

Pseudocode

(rD) ← (rS)

Registers Altered

• rD

Latency

1 cycle

Note

To refer to special purpose registers in assembly language, use rpc for PC and rmsr for MSR.

mfs rD, rS

1 0 0 1 0 1 rD 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 173
MicroBlaze Software Reference Guide 1-800-255-7778

R

mts Move To Special Purpose Register

Description

Copies the contents of register rD into the MSR register.

Pseudocode

(rS) ← (rA)

Registers Altered

• rS

Latency

1 cycle

Notes

You can not write to the PC using the MTS instruction.

When writing to MSR using MTS, the value written will take effect one clock cycle after
executing the MTS instruction.

To refer to special purpose registers in assembly language, use rpc for PC and rmsr for MSR.

mts rS, rA

1 0 0 1 0 1 0 0 0 0 0 rA 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com


174 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

mul Multiply

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
by 32-bit multiplication that will produce a 64-bit result. The least significant word of this value
is placed in rD.

Pseudocode

(rD) ← (rA) × (rB)

Registers Altered

• rD

Latency

3 cycles

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 175
MicroBlaze Software Reference Guide 1-800-255-7778

R

muli Multiply Immediate

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The
least significant word of this value is placed in rD.

Pseudocode

(rD) ← (rA) × sext(IMM)

Registers Altered

• rD

Latency

3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


176 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

or Logical OR

Description

The contents of register rA are ORed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) ← (rA) ∨ (rB)

Registers Altered

• rD

Latency

1 cycle

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 177
MicroBlaze Software Reference Guide 1-800-255-7778

R

ori Logical OR with Immediate

Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode

(rD) ← (rA) ∨ (IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


178 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

rsub Arithmetic Reverse Subtract

Description

The contents of register rA is subtracted from the contents of register rB and the result is placed
into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic rsubk. Bit 4
of the instruction (labeled as C in the figure) is set to a one for the mnemonic rsubc. Both bits
are set to a one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc),
then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (rsubc, rsubkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode

if C = 0 then
(rD) ← (rB) + (rA) + 1

else
(rD) ← (rB) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is
no Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsub rD, rA, rB Subtract

rsubc rD, rA, rB Subtract with Carry

rsubk rD, rA, rB Subtract and Keep Carry

rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 179
MicroBlaze Software Reference Guide 1-800-255-7778

R

rsubi Arithmetic Reverse Subtract Immediate

Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits, and
the result is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic rsubik. Bit 4
of the instruction (labeled as C in the figure) is set to a one for the mnemonic rsubic. Both bits
are set to a one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi,
rsubic), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (rsubic, rsubikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsubi, rsubik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode

if C = 0 then
(rD) ← sext(IMM) + (rA) + 1

else
(rD) ← sext(IMM) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is
no Borrow, and when the Carry is cleared, it means that there is a Borrow.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

rsubi rD, rA, IMM Subtract Immediate

rsubic rD, rA, IMM Subtract Immediate with Carry

rsubik rD, rA, IMM Subtract Immediate and Keep Carry

rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


180 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

rtbd Return from Break
rn from Interrupt

Description

Return from break will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP flag in the
MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed
before the branch target. That delay slot instruction has breaks disabled.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[BIP] ← 0

Registers Altered

• PC
• MSR[BIP]

Latency

2 cycles

rtbd rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 181
MicroBlaze Software Reference Guide 1-800-255-7778

R

rtid Return from Interrupt
rn from Interrupt

Description

Return from interrupt will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed
before the branch target. That delay slot instruction has interrupts disabled.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[IE] ← 1

Registers Altered

• PC
• MSR[IE]

Latency

2 cycles

rtid rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com


182 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

rtsd Return from Subroutine

Description

Return from subroutine will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution

Registers Altered

• PC

Latency

2 cycles

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 183
MicroBlaze Software Reference Guide 1-800-255-7778

R

sb Store Byte

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Mem(Addr) ← (rD)[24:31]

Registers Altered

• None

Latency

2 cycles

sb rD, rA, rB

1 1 0 1 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


184 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

sbi Store Byte Immediate

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Mem(Addr) ← (rD)[24:31]

Registers Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

sbi rD, rA, IMM

1 1 1 1 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 185
MicroBlaze Software Reference Guide 1-800-255-7778

R

sext16 Sign Extend Halfword

Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered

• rD

Latency

1 cycle

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com


186 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

sext8 Sign Extend Byte

Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into
bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered

• rD

Latency

1 cycle

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 187
MicroBlaze Software Reference Guide 1-800-255-7778

R

sh Store Halfword

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Addr[31] ← 0
Mem(Addr) ← (rD)[16:31]

Registers Altered

• None

Latency

2 cycles

sh rD, rA, rB

1 1 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


188 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

shi Store Halfword Immediate

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of register rA and the value IMM, sign-
extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[31] ← 0
Mem(Addr) ← (rD)[16:31]

Registers Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

shi rD, rA, IMM

1 1 1 1 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 189
MicroBlaze Software Reference Guide 1-800-255-7778

R

sra Shift Right Arithmetic

Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD.
The most significant bit of rA (i.e. the sign bit) placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com


190 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

src Shift Right with Carry

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag
is shifted in the shift chain and placed in the most significant bit of rD. The least significant bit
coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 191
MicroBlaze Software Reference Guide 1-800-255-7778

R

srl Shift Right Logical

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero
is shifted in the shift chain and placed in the most significant bit of rD. The least significant bit
coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD
• MSR[C]

Latency

1 cycle

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com


192 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

sw Store Word

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Addr[30:31] ← 00
Mem(Addr) ← (rD)[0:31]

Registers Altered

• None

Latency

2 cycles

sw rD, rA, rB

1 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 193
MicroBlaze Software Reference Guide 1-800-255-7778

R

swi Store Word Immediate

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and the value IMM, sign-extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[30:31] ← 00
Mem(Addr) ← (rD)[0:31]

Register Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

swi rD, rA, IMM

1 1 1 1 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


194 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

xor Logical Exclusive OR

Description

The contents of register rA are XORed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) ← (rA) ⊕ (rB)

Registers Altered

• rD

Latency

1 cycle

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com


MicroBlaze Instruction Set Architecture

Mar. 18, 2002 www.xilinx.com 195
MicroBlaze Software Reference Guide 1-800-255-7778

R

xori Logical Exclusive OR with Immediate

Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register rA are XORed with the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ⊕ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See imm instruction for details on using 32-bit immediate
values.

xori rA, rD, IMM

1 0 1 0 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com


196 www.xilinx.com Mar. 18, 2002
1-800-255-7778 MicroBlaze Software Reference Guide

MicroBlaze Instruction Set Architecture
R

http://www.xilinx.com


April 2002 www.xilinx.com 197
MicroBlaze Software Reference Guide 1-800-255-7778

Symbols
.bss 121
.data 121
.rodata 120
.sbss 121
.sdata 121
.sdata2 120
.text 120

A
ABI 125
Address Space 117
Application Binary Interface 125
Assembler options 29

B
Black Boxes 113, 114, 115
Bootstrap mode 16
BRAM 117

C
compiler options 52

D
Data area 128
data16 125
data32 125
data8 125
debugging 53
device drivers 15
Division 30

E
Environment Variables 32
Executable mode 16, 29

I
Instruction Set Architecture 141
Instruction Set Simulator 56

J
JTAG download cable 47

L
Libraries 61
libraries 15
Library Generator 15
Linker options 29
Linker Script 122
Loader options 29
Local Memory Bus (LMB) 117

M
MICROBLAZE environment

variable 32
Microprocessor Software Specifica-

tion (MSS) format 111
Minimal Linker Script 122
Mod 30
MSS file 15
Multiplication 31

O
On-chip Peripheral Bus (OPB) 117

P
Platform Generator 19, 21

R
Register 125
register-immediate

instructions 142
register-register instructions 142

S
Scalable Datapath 113, 114, 115
SDA 126
Sections 120
Simulation models 20
Small data area 126, 128
stack convention 126
Synthesis files 20

X
XMD 53
XMD stub 47
XMD terminal 47
Xmdstub mode 16, 28

Index

http://www.xilinx.com


198 www.xilinx.com April 2002
1-800-255-7778 MicroBlaze Software Reference Guide

R

http://www.xilinx.com

	Contents
	Figures
	Tables
	Introduction to the MDT
	Definitions
	MDT Overview
	Platform Tailoring Utilities
	Development Tools
	Debug Tools
	Device Drivers and Libraries
	Other Documentation Material
	Document Organization

	Microprocessor Development Tools Flow
	Microprocessor Development Tools (MDT) Flow
	Summary
	Overview
	Verify Setup
	MicroBlaze GNU
	MicroBlaze on Solaris
	MicroBlaze on PC

	Xilinx Alliance Software

	Library Generator
	Program Layout
	Running GNU Tools
	Debugging
	Debugging Using Hardware: software intrusive
	Debugging Using A Simulator: non-intrusive

	Compiling with Optimization
	Setting the Stack Size
	Dumping an Object/Executable File

	Platform Generator
	HDL Synthesis
	iSE XST
	Synplicity Synplify



	Processor Platform Tailoring Utilities
	MicroBlaze Library Generator
	Summary
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	-h, -help (Help)
	-v, -ver (Display version information)
	-a, -arch (Architecture family)
	-p, -proj (Specify project directory)
	-P, -Per_Dir (Specify user peripherals and driver directory)
	-m, -mode

	Output Files
	include
	lib
	libsrc
	code

	MSS Attributes
	Boot and Debug Peripherals
	Drivers
	Interrupts and Interrupt Controller
	STDIN and STDOUT Peripherals

	MicroBlaze Platform Generator
	Summary
	Overview
	Tool Requirements
	Tool Usage
	Tool Options
	-a (Architecture family)
	-flat (Generate a flatten EDIF file)
	-h (Help)
	-i (Do not insert IOs at top-level)
	-l (Specify the HDL format)
	-p (Specify the Project Directory)
	-P (Peripheral repository load path)
	-mode (Mode)
	-mss (MSS file location)
	-s (Generate synthesis vendor project file)
	-sim (Generate simulation models and a simulation vendor project file)
	-v (Display version)

	Load Path
	Output Files
	HDL Directory
	Implementation Directory
	Simulation Directory
	Synthesis Directory

	About Memory Generation
	Reserved MHS Attributes
	Current Limitations


	Software Application Development Tools
	MicroBlaze GNU Compiler Tools
	Summary
	Quick Reference
	Tool Usage
	Compiler Options
	-g
	-mxl-soft-mul
	-mno-xl-soft-mul
	-save-temps
	-xl-mode-xmdstub
	-xl-mode-bootstrap
	-xl-mode-bootstrap-reset
	-xl-mode-executable
	-mxl-gp-opt
	-Gn

	Assembler Options
	-gstabs

	Linker/Loader Options
	-defsym _STACK_SIZE=<value>
	-defsym _TEXT_START_ADDR=<value>
	-N
	-WI, <option>

	Standard Libraries
	Division and Mod operations in MicroBlaze
	Software multiply

	Psuedo-Ops
	Operating Instructions
	Entire Gnu Tool Flow

	Environment Variable
	Search Paths
	On UNIX shells
	On Windows command prompt

	Initialization Files
	crt0.o
	crt1.o
	crt2.o
	crt3.o

	Command Line Arguments
	Interrupt Handlers

	Microprocessor Software IDE (XSI)
	Summary
	Overview
	Processes Supported
	Tools Supported
	Features

	Project Management
	Creating New Project
	Opening Existing Project

	XSI Interface
	XSI Main Window
	Project View Window
	Transcript Window (Console)

	Software Platform Management
	System BSP Tree
	Program Options

	Source Code Management
	Adding Files to Project
	Deleting Files from Project
	Editing Files

	Flow Tool Settings
	Set Compiler Options
	Set Libgen Options

	Tool Invocation

	Flow Engine (XMF)
	Summary
	Overview
	Tool Requirements
	Tool Usage


	Debug Tool Chain
	MicroBlaze Debug and Simulation
	Summary
	Overview
	Terms and Definitions
	Software Debug
	Hardware Debug
	Hardware Simulation
	Co-Simulation
	Intrusive Software Debug
	Non-Intrusive Software Debug
	Instruction Set Simulator (ISS)
	Cycle Accurate ISS
	Hardware Board
	MicroBlaze System

	Software Debug
	Overview
	Using a Simulator
	Simple ISS
	Cycle Accurate ISS

	Using Hardware

	Hardware Simulation
	Hardware Simulation Overview
	Output Files
	Flatten Mode
	Hierarchical Mode

	Setup Script and Signals
	Important Signals

	Requirements
	ModelSim Libraries


	Co-Simulation and Debug
	MicroBlaze System Debug
	Using ModelSim


	Program Monitoring

	MicroBlaze GNU Debugger
	Summary
	Overview
	Tool Usage
	Tool Options
	--command=FILE
	--batch
	--nw
	-w

	MicroBlaze GDB Targets
	GDB Built-in Simulator
	Remote
	Remote debugging is done through XMD. The XMD server program can be started on a host computer wi...
	Simulator Target
	Hardware Target


	GDB Command Reference
	Compiling for Debugging

	MicroBlaze XMD
	Summary
	Overview
	XMD Usage
	XMD Options
	-u [ tcl | gdb ]
	-t [ sim | hw ]
	-c [ s | j ]
	-j <FPGA_device_position>
	-J <list of BSDL files>
	-d <time-out>
	-p <tcp_port>
	-s <serial_port>
	-b <baud>
	-h
	-V
	-v

	Hardware target
	User Program Outputs
	Hardware Target Requirements

	Simulator target
	Simulation Statistics
	Simulator Target Requirements

	XMD Tcl commands
	xrmem <addr> [num]
	xwmem <addr> <value>
	xrreg [<reg>]
	xwreg <reg> <value>
	xdownload <filename>
	xcontinue [<addr>]
	xstep
	xbreakpoint <addr>
	xremove <addr>
	xlist
	xdisassemble <inst>
	xsignal <signal>
	xstats [options]
	xhelp

	xmdterm commands


	Device Drivers and Libraries
	MicroBlaze Libraries
	Summary
	Overview
	Library Organization
	Library Customization

	LibXil Standard C Libraries
	Summary
	Standard C Functions (libc)
	List of Standard C Library (libc.a) Files

	Input/Output Functions
	Memory Management Functions
	Arithmetic Operations
	Integer Arithmetic
	Floating Point Arithmetic


	LibXil File
	Summary
	Overview
	Module Usage
	Module Routines
	int open (const char *name, int flags, int mode)
	int close (int fd)
	int read (int fd, char* buf, int nbytes)
	int write (int fd, char* buf, int nbytes)
	int lseek (int fd, long offset, int whence)
	int chdir (char* newdir)
	const char* getcwd (void)

	Libgen Support
	LibXil File Instantiation
	System Initialization

	Limitations

	LibXil Memory File System (MFS)
	Summary
	Overview
	MFS Functions
	Detailed summary of MFS Functions
	int mfs_init_fs (void)
	int mfs_change_dir (char *newdir)
	int mfs_delete_file (char *filename)
	int mfs_create_dir (char *newdir)
	int mfs_delete_dir (char *dirname)
	int mfs_rename_file (char *from_file, char *to_file)
	int mfs_exists_file (char *filename)
	int mfs_get_current_dir_name (char *dirname)
	int mfs_get_usage ( int *num_blocks_used, int *num_blocks_free)
	int mfs_file_open ( char *filename, int mode)
	int mfs_file_read (int fd, char *buf, int buflen)
	int mfs_file_write (int fd, char *buf, int buflen)
	int mfs_file_close (int fd)
	int mfs_file_lseek (int fd, int offset, int whence)
	int mfs_ls (void)
	int mfs_cat (char *filename)
	int mfs_copy_stdin_to_file (char *filename)
	int mfs_file_copy (char *from_file, char *to_file)


	C-like access
	LibGen Customization

	LibXil Net
	Summary
	Overview
	Protocols Supported
	Footprint
	Library Architecture
	Protocol Function Description
	Media Access Layer (MAC) Drivers
	Ethernet Drivers
	ARP (RFC 826)
	IP (RFC 791)
	ICMP (RFC 792)
	UDP (RFC 768)
	TCP (RFC 793)
	API

	Current Restrictions
	Functions of LibXilNet

	LibXil Driver
	Summary
	Overview
	Avaiable Device Drivers
	Data Types
	Driver Usage
	Driver Functions
	General Purpose I/O Driver (gpio)
	UINT32 gpio_read_INT32 (UINT32 base_addr)
	void gpio_write_INT32 (UINT32 base_addr, UINT32 data)
	void gpio_write_ctrl (UINT32 base_addr, UINT32 data)
	Example MHS File Entry
	Example MSS File Entry
	Example C Program

	Interrupt Controller Driver
	void intc_disable_all_interrupts (UINT32 base_addr)
	void intc_disable_interrupt (UINT32 base_addr, UINT32 periph_int_priority_mask)
	void intc_enable_interrupt (UINT32 base_addr, UINT32 periph_int_priority_mask)
	void intc_interrupt_handler (void)
	void intc_start (UINT32 base_addr)

	JTAG UART Driver
	SPI Driver
	INT8 inbyte (void)
	void outbyte (INT8 ch)
	void spi_write_control_reg(UINT32 base_addr, INT8 val)
	UINT8 spi_read_control_reg(UINT32 base_addr)
	void spi_enable_device (UINT32 base_addr)
	void spi_disable_device (UINT32 base_addr)
	void spi_write_intr_enable_reg(UINT32 base_addr, UINT8 mask)
	void spi_read_intr_enable_reg(UINT32 base_addr)
	void spi_write_intr_reg (UINT32 base_addr, UINT8 mask)
	UINT8 spi_read_intr_reg(UINT32 base_addr)
	void spi_clear_all_intr (UINT32 base_addr)
	void spi_enable_all_intr(UINT32 base_addr)
	void spi_disable_all_intr(UINT32 base_addr)
	void spi_reset_fifo(UINT32 base_addr)
	INT8 spi_read_byte(UINT32 base_addr)
	void spi_write_byte(UINT32 base_addr, INT8 data)
	void spi_set_options(UINT32 base_addr, UINT32 options)
	UINT32 spi_get_options(UINT32 base_addr)
	void spi_set_slave_select(UINT32 base_addr, UINT32 slave_num)
	UINT32 spi_get_slave_select(UINT32 base_addr)

	Timebase/ WatchDog Timer Driver
	void timebase_wdt_disable (UINT32 base_addr)
	void timebase_wdt_enable (UINT32 base_addr)
	UINT32 timebase_wdt_get_status (UINT32 base_addr)
	UINT32 timebase_wdt_get_timebase (UINT32 base_addr)
	void timebase_wdt_kick (UINT32 base_addr)
	void timebase_wdt_set_status0 (UINT32 base_addr, UINT32 status)
	void timebase_wdt_set_status1 (UINT32 base_addr, UINT32 status)

	Timer/Counter Driver
	UINT32 get_elapsed_time(UINT32 base_addr, UINT32 timer_number)
	void start_timer (UINT32 base_addr, UINT32 timer_number)
	UINT32 timer_get_capture (UINT32 base_addr, UINT32 timer_number)
	UINT32 timer_get_csr (UINT32 base_addr, UINT32 timer_number)
	UINT32 timer_get_time (UINT32 base_addr, UINT32 timer_number)
	void timer_set_compare (UINT32 base_addr, UINT32 timer_number, UINT32 compare_value)
	void timer_set_csr (UINT32 base_addr, UINT32 timer_number, UINT32 status_value)
	Example MHS File snippet
	Example MSS File snippet
	Example C Program

	UART Lite Driver
	INT8 inbyte (void)
	void outbyte (INT8 ch)
	void uartlite_disable_intr (UINT32 base_addr)
	INT32 uartlite_empty (UINT32 base_addr)
	void uartlite_enable_intr (UINT32 base_addr)
	INT32 uartlite_full (UINT32 base_addr)
	UINT32 uartlite_get_status (UINT32 base_addr)
	INT8 uartlite_read_byte (UINT32 base_addr)
	INT32 uartlite_is_intr_enabled (UINT32 base_addr)
	void uartlite_write_byte (UINT32 base_addr, INT8 ch)
	void uartlite_set_control (UINT32 base_addr, UINT32 data)

	MicroBlaze Interrupt Routines
	void microblaze_disable_interrupts (void)
	void microblaze_enable_interrupts (void)



	Software Specification
	Microprocessor Software Specification (MSS) Format
	Summary
	Overview
	Microprocessor Software Specification (MSS) Format
	Format
	MSS example

	Global Options
	HW_SPEC_FILE Option
	BOOTSTRAP Option
	BOOT_PERIPHERAL Option
	STDIN Option
	STDOUT Option
	EXECUTABLE Option
	XMDSTUB Option
	DEBUG_PERIPHERAL Option

	Instance Specific Options
	DRIVER Option
	DRIVER_VER Option
	INT_HANDLER Option
	LIBRARY Option

	File System Specific Options
	MOUNT Option
	LIBRARY Option


	MicroBlaze Address Management
	Summary
	Programs and Memory
	Current Address Space Restrictions
	Memory and Peripherals Overview
	BRAM Size Limits
	Special Addresses
	OPB Address Range Details
	Address Map

	Memory Speeds and Latencies
	System Address Space
	System with only an executable [No debug, No Bootstrap]
	System with debugging support
	System with bootstrap support

	Default User Address Space
	Advanced User Address Space
	Different Base Address, Contiguous User Address Space
	Different Base Address, Non-contiguous User Address Space

	Object-file Sections
	Minimal Linker Script
	Linker Script

	MicroBlaze Application Binary Interface
	Summary
	Data Types
	Register Usage Conventions
	Stack Convention
	Memory Model
	Small data area
	Data area
	Common un-initialized area
	Literals or constants

	Interrupt and Exception Handling

	MicroBlaze Interrupt Management
	Summary
	Overview
	Interrupt Handlers
	The Interrupt Controller Peripheral
	MicroBlaze Enable Interrupts
	System without Interrupt Controller
	Single Interrupt Signal
	Procedure
	Example MHS File
	Example MSS File snippet
	Example C Program

	System with an Interrupt Controller
	System with One or More Interrupt Signals
	Procedure
	Example MHS File Snippet
	Example MSS File Snippet
	Example C Program

	Breakpoints in Interrupt Handlers


	Microblaze Instruction Set Architecture
	MicroBlaze Instruction Set Architecture
	Summary
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	1 cycle
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Note

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency

	lbui
	Description
	Loads a byte (8 bits) from the memory location that results from adding the contents of register ...
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	or
	Description
	Pseudocode
	Registers Altered
	Latency

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency

	sb
	Description
	Pseudocode
	Registers Altered
	Latency

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note




	Index

