

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 1

ARM Processors: Embedded CPUs
EE8205: Embedded Computer Systems

http://www.ecb.torontomu.ca/~courses/ee8205/

Dr. Gul N. Khan

http://www.ecb.torontomu.ca/~gnkhan
Electrical, Computer and Biomedical Engineering

 Toronto Metropolitan University

Overview
• ARM CPU Architectures

• ARM Cortex-M3 a small footprint Microcontroller

• ARM Cortex M3/M4 Features and Programming

• ARM9 and ARM11 Applications

• TMS470 – For Automotive Use

Text by M. Wolf: part of Chapters/Sections 2.1, 2.2, 2.3 and 3.1-3.5

Text by Lewis: Chapter 5 and various Embedded Processor Data Sheets

http://www.ecb.torontomu.ca/~gnkhan
http://www.ee.ryerson.ca/

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 2

ARM CPU

ARM7TDMI ARMv4T ARM7TDMI(S)

ARM9 ARM9E ARMv5TE(J) ARM926EJ-S, ARM966E-S

ARM11 ARMv6 (T2) ARM1136(F), 1156T2(F)-S,

1176JZ(F), ARM11 MPCore™

Cortex-A

Cortex-R

Cortex-M

ARMv7-A

ARMv7-R

ARMv7-M

ARMv6-M

Cortex-A5, A7, A8, A9, A15

Cortex-R4(F)

Cortex-M3, M4

Cortex-M1, M0

NEW ! ARMv8-A 64 Bit

Versions, cores and architectures ?

▪ What is the difference between ARM7™ and ARMv7 ?

▪ ARM doesn’t make chips….well maybe a few test chips.

Family Architecture Cores

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 3

4

Cortex-M3

Cortex-M1

SC300

Cortex-A8

Cortex-A9 (MPCore)

ARM7

ARM7TDMI

ARM11 (MPCore)

ARM9

Cortex-M0

2007 2008 2009 2010

Cortex-A5

Cortex-M4

Cortex-A15

Cortex-A9 (Dual)
Up to 2 GHz

~600 to 1 GHz

72 – 150 + MHz

Cortex-R4F

Cortex-R4

Cortex-R5

Microcontroller

Application

Real-time

ARM 7, 9, 11

Up to 2.5 GHz

ARM926EJ-S

Cortex-M0
DesignStart

Cortex-R7

200+ MHz

200+ MHz

50 MHz

2011 2012

MMU

No MMU

All dates are approximate

N
o

t t
o

 s
ca

le

Cortex-M0+

Cortex-A57
Cortex-A53

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 4

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 5

ARMv8 64-bit Architecture

A72 has 3.5 times performance gain over A15. Pair with A53 to get big.Little

Architecture. A73 introduced in 2016.

3GHz on a 10nm SoC & 2.8GHz on a 16nm SoC is achievable with A73.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 6

Cortex A75

Cortex-A75

execute up to 3

instructions per

clock cycle.

A75 boasts

7 execution units,

two load/stores,

two NEON &

FPU, a BPU and

two integer cores.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 7

Latest – Cortex A510, A710 and X2

Armv9 Generation

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 8

ARM Processor Licenses (the public ones)

▪ ARMv8-A ? NVIDIA, Applied Micro, Cavium, AMD, Broadcom,
Calxeda, HiSilicon, Samsung and STMicroelectronics

▪ Cortex-A15 4 ST-Ericson, TI, Samsung, NVidia

▪ Cortex-A9 9 NEC, NVidia, STMicroelectronics, TI, Toshiba …

▪ Cortex-A8 9 Broadcom, Freescale, Matsushita, Samsung,
STMicroelectronics, Texas Instruments, PMC-Sierra

▪ Cortex-A5 3 AMD ---

▪ Cortex-R4(F) 14 Broadcom, Texas Instruments, Toshiba, Inf

▪ Cortex-M4 5 Freescale, NXP, Atmel, ST

▪ Cortex-M3 29 Actel, Broadcom, Energy Micro, Luminary
Micro, NXP, STMicroelectronics, TI, Toshiba, Zilog, …

▪ Cortex-M0 14 Austria-microsystems, Chungbuk Technopark,
NXP, Triad Semiconductor, Melfas

▪ Cortex-M0+ Freescale, NXP

▪ ARM7 172, ARM9 271, ARM11 82

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 9

ARM Instruction Sets

▪ ARM (32 bit) now referred as AArch32

▪ Thumb (16 bit)

▪ Thumb2: Cortex-Mx processors. Cortex-R, A have Thumb2 + ARM.

▪ A64 (64 bit) referred as AArch64

ARM now called AArch32

Thumb-2

Thumb (actually includes all ARM 32 bit instructions)

A64 AArch64

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 10

Tools: Keil MDK™ with µVision

▪ For Cortex-M and Cortex-R processors.

▪ Proprietary IDE µVision

▪ ARM compiler, assembler and linker.

▪ ULINK2, ULINKpro, CMSIS-DAP + more debug adapters.

▪ Many board support packages (BSP) and examples.

▪ MDK Professional: TCP/IP. CAN, USB & Flash middleware.

▪ Serial Wire Viewer and ETM, MTB & ETB Trace supported.

▪ Evaluation version is free from www.keil.com/arm.

▪ Is complete turn-key package: no add-ons needed to buy.

▪ Valuable technical support included for one year. Can be

easily extended.

▪ Keil RTX RTOS included free with source code.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 11

Pipelined Instruction Fetch, Decode & Execute

Fetch

Decode

Execute
Read register(s) from Register Bank,

Shift and ALU operation,

Write register(s) back to Register Bank

Decompress thumb instruction, Decode

ARM instruction

Select registers

16-bit Instruction fetched

from memory
PC

PC - 2

PC - 4

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 12

ARM7 Architecture

• Load/store architecture

• Most instructions are RISCy

Some multi-register operations take multiple cycles

• All instructions can be executed conditionally

ARM7 is a small, low power, 32-bit microprocessor.

Three-stage pipeline, each stage takes one clock cycle

• Instruction fetch from memory

• Instruction decode

• Instruction execution.
▪ Register read

▪ A shift applied to one operand and the ALU operation

▪ Register write

This limits the CPU max clock speed to around 80 MHz on a 0.35-

micron silicon process.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 13

ARM CPU Core Organization

multiply

data out register

instruction

decode

&

control

incrementer

register
bank

address register

barrel
shifter

A[31:0]

D[31:0]

data in register

ALU

control

P
C

PC

A
L
U

b
u
s

A

b
u
s

B

b
u
s

register

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 14

ARM7 Features

Combined Shift and ALU Execution Stage

• A single instruction can specify one of its two source operands for

shifting or rotation before it is passed to the ALU

• Allows very efficient bit manipulation and scaling code

• Eliminates virtually single shift instructions from ARM code.

ARM7 CPU does not have explicit shift instructions.

• A move instruction can apply a shift to its operand

ARM7 uses von-Neumann memory architecture where instructions

and data occupy single address space that can limit the performance

• Instruction fetching (and execution) must stop for instructions that

access memory

• The reduced cost of a single memory outweighs performance in

many embedded applications.

• The pipeline stalls during load and store operations, ARM7 can

continue useful work.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 15

 ARM7 Pipeline Execution

• Latency
Time it takes for an instruction to get through the pipeline.

• Throughput
Number of instructions executed per time period.

Pipelining increases throughput without reducing latency.

add r0,r1,#5

sub r2,r3,r6

cmp r2,#3

fetch

time

decode

fetch

execute

decode

fetch

execute

decode execute

1 2 3

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 16

ARM CPU Features: Modified RISC

Multiple Load and Store Operation
Reduce the penalty of data accesses during a stall in the pipeline

Multiple load/store instructions can move any of the ARM registers

to and from memory and update the memory address register

automatically after the transfer.

• This not only allows one instruction to transfer many words of

data (in a single bus burst), but it also reduces the number of

instructions needed to transfer data.

• Make the ARM code smaller than other 32-bit CPUs

• These instructions can specify an update of the base address

register with a new address after (or even before) the transfer.

RISC CPU architectures would normally use a second instruction (add or

subtract) to form the next address in a sequence.

ARM does it automatically with a single bit in the instruction, again a

useful saving in code size.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 17

ARM CPU (More) Features

All instructions are conditionally executed:

• A very useful feature

• Loads, stores, procedure calls and returns, and all other operations

can execute conditionally after some prior instruction to set the

condition code flags

• Any ALU instruction may set the flags

• This eliminates short forward branches in ARM code

• It also improves code density and avoids flushing the pipeline for

branches and increase execution performance

▪ Most of the architectures have conditional branch instructions

▪ These follow a test or compare instruction to control the flow of

execution through the program

▪ Some architectures also have a conditional move instruction,

allowing data to be conditionally transferred between registers

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 18

Real-timed Debug System Organization
(ARM7TDMI)

EmbeddedICE

Trace por t
analyzer

ARM

core

Embedded

trace
macrocell

EmbeddedICEJTAG TAP
JTAG

port

Trace
por t

host

system

System on chip

data

address

control

controller

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 19

ARM7TDMI and ARM9 Pipeline

The ARM10TDMI pipeline

instruction

fetch

instruction

fetch

Thumb

decompress

ARM

decode

reg

read

reg

writeshift/ALU

reg

writeshift/ALU
r. read

decode

data memory

access

Fetch Decode Execute

Memory WriteFetch Decode Execute

ARM9TDMI:

ARM7TDMI:

branch
prediction

reg

write

r. read

decode

data memory
access

Memory WriteFetch Decode Execute

decode

Issue

multiplier

par tials add

instruction

fetch

data
write

shift/ALU

addr.

calc.

multiply

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 20

ARM Architectures
Core Architecture

Classic ARM Processors
ARM1 v1

ARM2, ARM2as, ARM3 v2, v2a

ARM6, ARM600, ARM610 v3

ARM7TDMI, ARM710T, ARM720T, ARM740T v4T

ARM8, ARM810 v4

ARM9TDMI, ARM920T, ARM940T v4T

ARM9ES v5TE

ARM10TDMI, ARM1020E v5TE

ARM11 v6

.

ARM Cortex Processors
ARM Cortex-M3 v7M
ARM Cortex-M4 v7ME
ARM Cortex-R4, R5, R7 v7R
ARM Cortex-A5, A8, A9, A15 v7A

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 21

ARM Cortex-M4

Latest Cortex-M series CPU that has a combination of efficient signal

processing and low-power.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 22

ARM Cortex-M3

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 23

ARM Cortex-M3

Introduced in 2004, the mainstream ARM processor developed

specifically with microcontroller applications in mind.

Registers

R0 – R15

Barrel Shifter

Sign Extender

Incrementer

MAC

Data Bus

Address
Bus

R15
(pc)

Rn

Rd

Result Bus

ALU

Address Register

Rm

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 24

ARM Cortex-M3

• Implement Thumb-2 instruction subset of ARM Instruction Set.

• Most Thumb-2 instructions are 16-bit wide that are expanded

internally to a full 32-bit ARM instructions.

• ARM CPUs are capable of performing multiple low-level

operations in parallel.

• A hardware sign extender convert 8–16-bit operands to 32-bit

• Load store architecture.

• Barrel shifter allows operand Rm to be shifted first and then ALU

can perform another operation (e.g. add, subtract, mul etc.)

• Barrel shifter can do 5X = X + 22X; -7X = X-23X.

• MAC support Multiply Accumulate Instructions.

• R0-R12 GPR, R13-R15 special purpose registers i.e. SP, PC and LR

(that holds the return address when a subroutine is called.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 25

ARM Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13: Stack Pointer (SP)

R14: Link Register (LR)

R15: Program Counter (PC)

Thumb
Mode:

8 general
purpose
registers

7 “high”
registers

r8-R12 only
accessible
with MOV,
ADD, or
CMP

ARM
Mode:

15 general
purpose
registers

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 26

Barrel Shifting

• Barrel shifter rotates/shift instruction operand prior to inputting the value into the ALU

• Extensively used for signal processing application programs

MUL R1 R2 #2 (LSL R1 R2 #2)
ADD R5, R1, R4 translates to ADD R5, R4, R2, LSL #2

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 27

ARM Cortex-M3 Bus

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 28

ARM
Cortex-M3
Memory

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 29

Bit Banding

• Memory mapped I/O; 4GB memory address space organized in bytes.

• 4GB is very large for small embedded applications.

• Bit-banding happens by taking advantage of this large memory space.

• Uses two different regions of the address space to refer the same physical

data in the memory.

• In primary bit-band region each address corresponds to single data byte.

• In the bit-band alias each address corresponds to 1-bit of the same data.

• It allows the access of a bit of data (read or write) by a single instruction.

• LDR can load a single bit and STR can write a single bit of data.

• Two bit-band alias regions can be used to access individual status and

control bit of I/O devices or to implement a set of 1-bit Boolean flags

that can be used to implement a set of mutex objects.

• Bit-band hardware does not allow interruption of read-modify write.

Bit_band alias address = Bit_band base +128 x word_offset + 4 x bit #

If bit-3 at address 2000100016 is to be modified the bit-band alias is

2200000016 + 12810 x 100016 + 4 x 3 = 2208000C16

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 30

Bit Banding

Address 0x20000000 = SRAM

0x40000000 = Peripheral = external RAM

devices, memory vendor specific, etc.

* One bit is addresses by its own 32-bit

(word) in a separate part of memory (bit-

band region)

* Bit-banding is for 2 predefined memory

regions:

 - first 1MB of SRAM,

 - first 1MB of peripheral region

* To access each bit individually, we need to

access a memory region referred to as the

bit-band alias region.

BIT-BAND REGION: memory address

region which supports bit-band operation

BIT-BAND ALIAS: Access to a bit-band

alias will cause an access (bit-band

operation) on the bit-band region.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 31

Bit Banding

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 32

Bit-Band Mapping

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 33

Bit Banding

Bit Band Word Address =

 Bit Band Alias Base Address + (Byte_Offset * 32) + (Bit Number * 4) (1)

 Byte_Offset = Bit's Bit Band Base Address - Bit Band Base Address (2)

where: Byte_Offset
Bit's Bit Band Base Address - the base address for the targeted SRAM or peripheral register

(The Effective Address of the Port) (= real address)

 Bit Band Base Address: for SRAM = 0x20000000, for Peripherals = 0x40000000

 Bit Band Alias Base Address:

for SRAM = 0x22000000, for Peripherals = 0x42000000

 Bit Number: the bit position of the targeted register (i.e. pin of the port)

Question: Find bit band word address for:

SRAM address 0x2008C000, bit 3.

Use equations (2) and (1):

Byte Offset = 0x2008C000 - 0x20000000

 = 0x0008C000

Bit Band Word Address = 0x22000000 +

(0x0008C000 * 0x20) + (0x3 * 0x4)

 = 0x22000000 + (0x1180000) + 0xC

 = 0x2318000C

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 34

Bit Banding Example

Peripheral address 0x400ABC00, bit 8
Byte offset = 0x400ABC00 - 0x4000000 = 000ABC00

Bit band word address = 0x42000000 + (0x000ABC00 * 0x20) + (0x8 * 0x4)

 = 0x42000000 + 0x01578000 + 20 = 0x43578020

Steps for bit banding:

1. Calculate the Word Address:

2. Define a Pointer to the Address:

#define BIT_ADDR= (*(volatile unsigned long *)0x43578020)

3. Assign a Value to the Port Bit:

int main(void) {

 BIT_ADDR = 1;

...

}

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 35

ARM7: Programming Model

• Word is 32 bits long.

• Word can be divided into four 8-bit bytes.

• ARM addresses can be 32 bits long.

• Address refers to byte.

Address 4 starts at byte 4.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

(PC)

CPSR

31 0

N Z C V

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 36

ARM Cortex Status Registers (xPSR)

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

1

6

1

5

1

0 9 8 0

N C Z V Q

0 or exception #

ICI/IT T ICI/IT

Bits Name Description

31 N Negative (bit 31 of result is 1)

30 C Unsigned Carry

29 Z Zero or Equal

28 V Signed Overflow

Most important
for application
programming

APSR

IPSR

EPSR

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 37

PSR: Program Status Register

Divided into three-bit fields

• Application Program Status Register (APSR)

• Interrupt Program Status Register (IPSR)

• Execution Program Status Register (EPSR)

Q-bit is the sticky saturation bit and supports two rarely used

instructions (SSAT and USAT)
SSAT{cond} Rd, #sat, Rm{, shift}

• EPSR holds the exception number is exception processing.

• ICI/IT bits holds the state information of for IT block instructions or

instructions that are suspended during interrupt processing.

• T bit is always 1 to indicate Thumb instructions.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 38

SSAT: Saturate Instruction

• Consider two numbers 0xFFFF FFFE and 0×0000 0002. A 32-bit mathematical

addition would result in 0×1 0000 0001 which contain 9 hex digits or 33 binary

bits. If the same arithmetic is done in a 32-bit processor ideally the carry flag will

be set and the result in the register will be 0×0000 0001.

• If the operation was done by any comparison instruction this would not cause any

harm but during any addition operation this may lead to unpredictable results if the

code is not designed to handle such operations. Saturate arithmetic says that when

the result crosses the extreme limit the value should be maintained at the respective

maximum/minimum (in our case result will be maintained at 0xFFFF FFFF which

is the largest 32-bit number).

• Saturate instructions are very useful in implementing certain DSP algorithms like

audio processing where we have a cutoff high in the amplitude. For instance the

highest amplitude is expressed by a 32-bit value and if your audio filter gives an

output more than this then you need not programmatically monitor the result.

Rather the value automatically saturates to the max limit.

• Also a new flag field called ‘Q’ has been added to the ARM processor to show us

if there had been any such saturation taken place or the natural result itself was the

maximum

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 39

SSAT or USAT Instructions

op{cond} Rd, #n, Rm {, shift #s}

op = SSAT Saturates a signed value to a signed range.

 USAT Saturates a signed value to an unsigned range.

Cond condition code

Rd Specifies the destination register.

n Specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT

n ranges from 0 to 31 for USAT.

Rm Register containing the value to saturate.

shift #s optional shift applied to Rm before saturating.

These instructions saturate to a signed or unsigned n-bit value.

SSAT instruction applies the specified shift, then saturates to the signed

range −2n-1 ≤ x ≤ 2n-1−1.

The USAT instruction applies the specified shift, then saturates to the unsigned

range 0 ≤ x ≤ 2n−1.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 40

SSAT or USAT Instructions

If the returned result is different from the value to be saturated, it is

called saturation.

If saturation occurs, the instruction sets the Q flag to 1 in the APSR.

Otherwise, it leaves the Q flag unchanged.

Examples

SSAT R7, #16, R7, LSL #4

 ; Logical shift left value in R7 by 4, then

 ; saturate it as a signed 16-bit value and

 ; write it back to R7

USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an

 ; unsigned 7-bit value and write it to R0.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 41

 ARM Operating Modes and Register Usage

Exception vector addresses

CPSR[4:0] Mode Use Registers

10000 User Normal user code user

10001 FIQ Processing fast interrupts _fiq

10010 IRQ Processing standard interrupts _irq

10011 SVC Processing software interrupts (SWIs) _svc

10111 Abort Processing memory faults _abt

11011 Undef Handling undefined instruction traps _und

11111 System Running privileged operating system tasks user

Exception Mode Vector address

Reset SVC 0x00000000

Undefined instruction UND 0x00000004

Software interrupt (SWI) SVC 0x00000008

Prefetch abort (instruction fetch memory fault) Abort 0x0000000C

Data abort (data access memory fault) Abort 0x00000010

IRQ (normal interrupt) IRQ 0x00000018

FIQ (fast interrupt) FIQ 0x0000001C

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 42

 Load/Store Instructions

Load/Store Memory Operation Notes

LDR Rd,<mem> Rd mem32[address]

LDRB Rd,<mem> Rd mem8[address] Zero fills

LDRH Rd,<mem> Rd mem16[address] Zero fills

LDRSB Rd,<mem> Rd mem8[address] Sign extends

LDRSH Rd,<mem> Rd mem16[address] Sign extends

LDRD Rt,Rt2,<mem> Rt2.Rt mem64[address]
Addr. Offset must

be imm.

Load/Store Memory Operation Notes

STR Rd,<mem> Rd → mem32[address]

STRB Rd,<mem> Rd → mem8[address]

STRH Rd,<mem> Rd → mem16[address]

STRD Rt,Rt2,<mem> Rt2.Rt → mem64[address]
Addr. Offset must

be imm.

These instructions will not affect flags in CPSR!

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 43

The ARM Condition Code Field

ARM condition codes

cond

31 28 27 0

Opcode

[31:28]

Mnemonic

extension

Interpretation Status flag state for

execution

0000 EQ Equal / equals zero Z set

0001 NE Not equal Z clear

0010 CS/HS Carry set / unsigned higher or same C set

0011 CC/LO Carry clear / unsigned lower C clear

0100 MI Minus / negative N set

0101 PL Plus / positive or zero N clear

0110 VS Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater than or equal N equals V

1011 LT Signed less than N is not equal to V

1100 GT Signed greater than Z clear and N equals V

1101 LE Signed less than or equal Z set or N is not equal to V

1110 AL Always any

1111 NV Never (do not use!) none

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 44

Branch Instructions

Branch

Instructions
Operation {S} Notes

B{c} label PC PC + imm n/a
“c” is an optional condition

code

BL label
PC PC + imm;

LR rtn adr
n/a Subroutine call

BX reg PC reg n/a
“BX LR” often used as

function return

CBZ Rn,label If Rn=0, PC PC + imm n/a
Cannot append condition

code to CBZ

CBNZ Rn,label If Rn≠0, PC PC + imm n/a
Cannot append condition

code to CBNZ

ITc1c2c3 cond
Each ci is one of T, E, or

empty
n/a

Controls 1-4 instructions in

“IT block”

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 45

Branch Conditions

Branch Interpretation Normal uses

B

BAL

Unconditional

Always

Always take this branch

Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC

BLO

Carry clear

Lower

Arithmetic operation did not give carry-out

Unsigned comparison gave lower

BCS

BHS

Carry set

Higher or same

Arithmetic operation gave carry-out

Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred

BVS Overflow set Signed integer operation; overflow occurred

BGT Greater than Signed integer comparison gave greater than

BGE Greater or equal Signed integer comparison gave greater or equal

BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal

BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 46

ARM Data Processing Instructions

Opcode

[24:21]

Mnemonic Meaning Effect

0000 AND Logical bitwise AND Rd := Rn AND Op2

0001 EOR Logical bit-wise exclusive OR Rd := Rn EOR Op2

0010 SUB Subtract Rd := Rn - Op2

0011 RSB Reverse subtract Rd := Op2 - Rn

0100 ADD Add Rd := Rn + Op2

0101 ADC Add with carry Rd := Rn + Op2 + C

0110 SBC Subtract with carry Rd := Rn - Op2 + C - 1

0111 RSC Reverse subtract with carry Rd := Op2 - Rn + C - 1

1000 TST Test Scc on Rn AND Op2

1001 TEQ Test equivalence Scc on Rn EOR Op2

1010 CMP Compare Scc on Rn - Op2

1011 CMN Compare negated Scc on Rn + Op2

1100 ORR Logical bit-wise OR Rd := Rn OR Op2

1101 MOV Move Rd := Op2

1110 BIC Bit clear Rd := Rn AND NOT Op2

1111 MVN Move negated Rd := NOT Op2

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 47

Bitwise Instructions

Bitwise Instructions Operation {S} <op> Notes

AND Rd, Rn,<op> Rd Rn & <op> NZC

imm. const.

-or-

reg{,<shift>}

ORR Rd, Rn,<op> Rd Rn | <op> NZC

EOR Rd, Rn,<op> Rd Rn ^ <op> NZC

BIC Rd, Rn,<op> Rd Rn & ~<op> NZC

ORN Rd, Rn,<op> Rd Rn | ~<op> NZC

MVN Rd, Rn Rd ~Rn NZC

Shift Instructions

<shift> Meaning Notes

LSL #n Logical shift left by n bits Zero fills; 0 ≤ n ≤ 31

LSR #n Logical shift right by n bits Zero fills; 1 ≤ n ≤ 32

ASR #n Arithmetic shift right by n bits Sign extends; 1 ≤ n ≤ 32

ROR #n Rotate right by n bits 1 ≤ n ≤ 32

RRX Rotate right w/C by 1 bit

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 48

Conditional Execution

ADD instruction with the EQ condition appended.
This instruction will only be executed when the zero flag in the cpsr is set;

ADDEQ r0, r1, r2 ; r0 = r1 + r2 if zero flag is set

while (a!=b) { ; Greatest Common Divisor Algorithm

if (a > b) a -= b; else b -= a;

}

Register r1 represent a and register r2 represent b.

gcd CMP r1, r2

BEQ complete

BLT lessthan

SUB r1, r1, r2

B gcd

lessthan SUB r2, r2, r1

B gcd

complete

...

 This dramatically reduces

the number of instructions

gcd CMP r1, r2

SUBGT r1, r1, r2

SUBLT r2, r2, r1

BNE gcd

complete

...

gcd CMP r1, r2

SUBGT r1, r1, r2

SUBLT r2, r2, r1

BNE gcd

complete

...
Thumb 2 Instructions

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 49

IT (If-Then)

IT (If-Then) instruction makes up to four following instructions (the

IT block) conditional. The conditions can be all the same, or some of

them can be the logical inverse of the others.

IT {x {y {z} } } {cond}
where: x: specifies the condition switch for the second instruction in

the IT block.

y: specifies condition switch for the third instruction in the IT block

z: specifies condition switch for the fourth instruction in the IT block

cond: specifies the condition for first instruction in the IT block

Condition switch for 2nd, 3rd & 4th instruction in the IT block either:

• T Then. Applies the condition cond to the instruction.

• E Else. Applies the inverse condition of cond to the instruction.

The instructions (including branches) in the IT block, except the BKPT instruction,

must specify the condition in the {cond} part of their syntax.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 50

IT (If-Then) instruction

• You do not need to write IT instructions in your code.

• The assembler generates them automatically according to the conditions

specified on the following instructions.

• Writing the IT instructions ensures that you consider the placing of

conditional instructions, and the choice of conditions.

• When assembling to ARM code, the assembler performs the same checks,

but does not generate any IT instructions.

• With the exception of CMP, CMN, and TST, the 16-bit instructions that

normally affect the condition code flags, do not affect them in IT block.

• A BKPT instruction in an IT block is always executed, so it does not need

a condition in the {cond} part of its syntax. The IT block continues from

the next instruction.

• You can use an IT block for unconditional instructions by using the AL.

• Conditional branches inside an IT block have a longer branch range than

those outside the IT block.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 51

IT (If-Then) instruction

The following instructions are not permitted in an IT block:

• IT

• CBZ and CBNZ

• TBB and TBH

• CPS, CPSID and CPSIE

• SETEND.

Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC is only permitted in an

IT block if it is the last instruction in the block.

• You cannot branch to any instruction in an IT block, unless when

returning from an exception handler.

Architectures

• This 16-bit Thumb instruction is available in ARMv6T2 and above.

• In ARM code, IT is a pseudo-instruction that does not generate any code.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 52

IT Examples
 ITTE NE ; IT can be omitted

 ANDNE r0,r0,r1 ; 16-bit AND, not ANDS

 ADDSNE r2,r2,#1 ; 32-bit ADDS (16-bit ADDS doesn’t set flags in IT)

 MOVEQ r2,r3 ; 16-bit MOV

 ITT AL ; emit 2 non-flag setting 16-bit instructions

 ADDAL r0,r0,r1 ; 16-bit ADD, not ADDS

 SUBAL r2,r2,#1 ; 16-bit SUB, not SUB

 ADD r0,r0,r1 ; expands into 32-bit ADD, and is not in IT block

 ITT EQ

 MOVEQ r0,r1

 BEQ dloop ; branch at end of IT block is permitted

 ITT EQ

 MOVEQ r0,r1

 BKPT #1 ; BKPT always executes

 ADDEQ r0,r0,#1

Incorrect example
 IT NE

 ADD r0,r0,r1; syntax error: no condition code used in IT

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 53

if-then statement

 LDR R0,A
 CMP R0,#0
 BNE L1
 LDR R0,=1
 STR R0,B
L1: …

 - or –

 LDR R0,A
 CMP R0,#0
 ITT EQ
 LDREQ R0,=1
 STREQ R0,B

A = 0? B 1

Yes

No

L1:

if (a == 0) b = 1 ;

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 54

if-then-else statement

 LDR R0,A
 LDR R1,B
 CMP R0,R1
 BLE L1
 LDR R0,=1
 B L2
L1: LDR R0,=0
L2: STR R0,C
 …

 - or –

 LDR R0,A
 LDR R1,B
 CMP R0,R1
 ITE GT
 LDRGT R0,=1
 LDRLE R0,=0
 STR R0,C

A :: B?

C 1 C 0

> ≤

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 55

An ITTE Block

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 56

Conditional Execution

• ARM allows non-control flow-based instructions to be appended

with conditional codes.

• It allows for more efficient coding and processor performance.

Conditional Instruction Method

CMP r2, #5 //if (a <= 5)

MOVLE r2, #10 //a = 10;

MOVGT r2, #1 //else a = 1;

Non-Conditional Method
 CMP r2, #5

 BGT t_else

 MOV r2, #10

t_else: MOV r2, #1

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 57

Loops: Variable #Iterations

GCD (a, b) – Greatest Common Divisor

while (a != b) {

 if (a > b) a = a – b ;

 else b = b – a ;

}

 LDR R0,a

 LDR R1,b

top: CMP R0,R1

 BEQ done

 ITE GT

 SUBGT R0,R0,R1

 SUBLE R1,R1,R0

 B top

 done:

 ; R0 = R1 = GCD(a, b)

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 58

ARM Procedure Call Standard

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 59

Interrupt Processing

Hardware interrupt
request occurs: CPU
finishes , suspends or
abandons the current
instruction and then
initiates an exception
response sequence.

Interrupt Complete:
Interrupted code
continues where it
left off as if nothing
happened.

Exception Response Sequence: CPU
stacks the processor state and return
address, enables Handler Mode,
identifies the requesting device, and
transfers control to the corresponding
Interrupt Service Routine.

Exception Handler / ISR:
1. Preserve R4-R11 as needed.
2. Transfer data between queue
and I/O device.
3. Restore R4-R11 as needed.
4. Return to interrupted code.

Exception Return: Unstack
and restore the processor
state and mode.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 60

Exception/Interrupt Handler

Exception: a condition that needs to halt the normal sequential flow of

instruction execution.

Exception Categories: Reset, SVC Supervisor Call (Software

Interrupt), Fault (e.g., undefined op-code) and Interrupts

Each exception has:

• An exception number

• A priority level

• An exception handler routine (such as ISR)

• An entry in the vector table (address of associated ISR)

Exception Response

• Processor state (8 words) stored on stack: CPSR, Return Address, LR,

R12, R3 - R0. Allows a regular C function to be an ISR!

• Processor switched (from Thread Mode) to Handler Mode

 (recorded in xPSR or CPSR).

• PC vector table [exception #]

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 61

Exception Handlers and Return

An exception handler (ISR) is a software routine that is executed

when a specific exception condition occurs.

Most, but not all, exception handlers return to the previous code.

Interrupt Stacking

Old SP

SP

PSR

Return Address

LR

R12

R3

R2

R1

R0

In
cr

ea
si

n
g

A
d

d
re

ss
es

Eights words
pushed onto
stack by
exception
response.

Exception return occurs when in Handler

Mode and one of the following instructions

is executed:

• POP/LDM includes the PC, or

• LDR with PC as the destination, or

• BX with any register as the source

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 62

Interrupt Latency

Tail Chaining

ISR UnstackingStacking

12
Cycles

Latency:
17 Cycles

Input data
read from

device

Abandons any
instruction longer

than 1 cycle

ISR #1 Unstacking ISR #2

12 Cycles 24 Cycles 12 Cycles

12 Cycles 6 Cycles 12 Cycles

With Tail-Chaining

Stacking UnstackingStacking

Stacking ISR #1 ISR #2 Unstacking

Without Tail-Chaining

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 63

Interrupt Latency Reduction

Time from interrupt request to the corresponding interrupt handler begins to

execute.

1. Suspend or Abandon Instruction Execution:

No need to suspend single cycle instruction but multiple cycle ones such as LDM,

STM, PUSH and POP that transfer multiple words to/from memory.

2. Late Arrival Processing:

CPU has begun an interrupt response sequence and another high priority interrupt

arrive during the stacking operation. The CPU will redirect the remainder of the

interrupt response so that it can handle the late arriving (higher priority) interrupt.

3. Tail Chaining:

In most CPUs when two ISRs execute back-to-back, the state information (8 word of

CPU state) is popped off the stack at the end of 1st interrupt only to be pushed back

at the beginning of the 2nd (next) interrupt.

M3 completely eliminates this useless pop-push sequence with a technique called

tail-chaining, lowering the ISR transition time from 24 down to 6 clock cycles.

CPSIE i ; Enable External Interrupts

CPSID i ; Disable External Interrupts

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 64

 Cortex-M3 (Interrupt/Excep.) Vector Table

Exception Type Position Priority Comment

 0 - Initial SP value (loaded on reset)

Reset 1 -3 Power up and warm reset

NMI 2 -2 Non-Maskable Interrupt

Hard Fault 3 -1

Memory Mgmt 4

S

e

t

t

a

b

l

e

Bus Fault 5 Address/Memory-related faults

Usage Fault 6 Undefined instruction

 7-10 Reserved

SVCall 11 Software Interrupt (SVC instruction)

Debug Monitor 12

 13 Reserved

PendSV 14

SysTick 15 System Timer Tick

Interrupts ≥16 External; fed through NVIC

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 65

Nested Vectored Interrupt Controller

Mapped to addresses E000E100-E000ECFF16

It provides ability to:
• Individually Enable/Disable interrupts from specific devices.

• Establishes relative priorities among the various interrupts.

NVIC INTERRUPTS

Bit in the interrupt registers

0-4 GPIO Ports A-E

5,6 UART 0 & 1

7 SSI

8 I2C

9 PWM Fault

10-12 PWM Generator 0-2

13 Reserved

14-17 ADC Sequence 0-3

18 Watchdog Timer

19-24 Timer 0a-2b

25 Analog Comparator

26-27 Reserved

28 System Control

29 Flash Control

30-31 Reserved

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 66

ARM9 CPU Applications
Nokia 500 Navigation

• Runs Windows CE 5.0

• Features a 400MHz ARM9 CPU

• 4.3-inch touch-screen

• GPS

• Bluetooth 2.0, music, and video

playback capabilities

• An integrated FM transmitter

• The Nokia 500 Auto Navigation

system can do voice dialing.

• Built-in FM transmitter can

broadcast phone calls or turn-by-

turn driving directions to a car

radio.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 67

Sony PlayStation 3 (60GB)

• ARM9E Processor

• CPU: Cell Processor

• GPU: RSX

• Memory: 256MB XDR Main RAM,

256MB GDDR3 VRAM

• HDD: 2.5" Serial ATA (60GB)

• I/O: USB 2.0 (x4) -

• Communication: Ethernet, IEEE

802.11 b/g - Bluetooth 2.0 (EDR)

• AV Output: Screen size 480i, 480p,

720p, 1080i, 1080p

• HDMI OUT - (x1 / HDMI NextGen)

• DIGITAL OUT (OPTICAL) (x1)

• BD/DVD/CD Drive

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 68

ARM 11 (v6) CPU Core

• 8-stage pipeline with

branch prediction.

• 16k to 64k instruction

and data L1 cache

• 32-bit RISC processor

with ARM/Thumb

ISA, SIMD, and Java

support

• Optional VFP

coprocessor for high

performance 3D

graphics and DSP.

• Low-power design

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 69

Why ARM 11 (ARMv6)

• The function, performance, speed, power, area, and cost

parameters must be balanced to meet the requirements of

each application.

• ARMv6 offers better ways of optimizing these constraints

across a number of vertical market segments. Delivering

leading performance/power (MIPS/Watt) has been the main

goal of ARMv6 architecture.

• ARMv6 will benefit developers targeting wireless,

networking, automotive and consumer entertainment

markets.

• ARM has worked with architecture licensees and partners

such as Intel, Microsoft, Symbian, and TI in specifying the

requirements for ARMv6.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 70

ARM 11 Applications

Navigation System

iPhone based on

ARM1176JZ

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 71

Target Applications

Next Generation Consumer Devices
From rich single-CPU handheld devices through to embedded

general-purpose computing platforms

Rich Multi-function Networking/enterprise Appliances
High throughput devices

Computer graphics

Imaging

Auto-Infotainment

Navigation
Routing

Recognition

Media-Player, etc.

Wireless Handsets
Open multi-media platforms

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 72

ARM11 MPCore

• Includes one to four ARM11™ micro-architecture

processors.

• 8-stage integer pipeline with branch prediction and

folding.

• 16k to 64k instruction and data L1 cache preprocessor.

• Low-power design

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 73

ARM11 MPCore

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 74

ARMv6 Memory Model

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 75

Power Management Modes - ARM11

• Run Mode
This mode is the normal mode of operation in which all of the

functionality of the ARM11 processor is available. If an ARM1176 or

other IEM-aware core is used, the Energy Management capabilities of the

IEM module are used in Run Mode.

• Standby Mode
This mode disables most of the clocks of the device, while keeping the

device powered up. This reduces the power drawn to the static leakage

current, plus a tiny clock power overhead required to enable the device to

wake up from Standby Mode.

• Shutdown Mode
This mode allows the entire device to power down. All processor state,

including cache and TCM state, must be saved externally.

• Dormant Mode
This mode enables the ARM11 processor core to power down while

leaving the caches and the TCM powered up and maintaining their state.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 76

TMS470 Family MCUs

TMS470 family of automotive micro-controllers:

• Texas Instruments (TI) offers the TMS470 micro-controllers

• Derived from the 16/32-bit ARM7TDMI and other ARM cores

• Licensed by Texas Instruments (TI) from ARM Ltd.

• Launched in 1995

 Typical applications include:

• Industrial systems

• Medical instrumentation

• Consumer electronics

• Data processing and many

other general purpose

embedded applications.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 77

TMS470 ARM based TI Micro-controller

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 78

TMS470: Automotive Application

Automotive C address automotive application needs

including:
• Anti-lock Braking System (ABS)

• Electromechanical Braking

• Electronic Stability Control (ESP)

• Automotive Central Body Controller
▪ Supervises and controls functions related to the car body such as:

lights, windows, door lock and works as a gateway for CAN and

LIN (Local Interconnect Networks) networks.

▪ Load control can either be directly from the DBM or via CAN/LIN

communication with remote ECUs.

▪ The central body controller often incorporates RFID functions like

remote keyless entry and immobilizer.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 79

Automotive Central Body Controller

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 80

Automotive Central Body Controller

Micro-Controller

The C works as gateway for the bus and network interfaces and

controls the various load drivers.

Communication Interfaces

• Allow data exchange between independent electronic modules in

the car, as well as remote sub modules.

• High Speed (up to 1Mbps) CAN (Control Area Network) is a 2-

wire, fault tolerant differential bus.

• It serves as the main vehicle bus type for connecting the various

electronic modules in the car with each other.

• LIN supports low speed (up to 20 kbps) single bus wire networks,

used to communicate with remote sub functions of the

infotainment system.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 81

Automotive Central Body Controller

Load Drivers:

• Main load driver types in a central body controller are lights and relay

drivers.

• The switches and drivers for the exterior lighting are placed on the

controller directly.

• Relays are used to power other electronic modules or loads.

• Current monitoring supervises demand from the distributed loads, other

ECUs and used for charge & load management of the car battery.

RFID Functions - Most common automotive RFID functions are:

• Immobilizer and the remote keyless entry system.

• LF base station IC for encrypted communication with the ignition key

(immobilizer)

• Ultra-Low power sub 1-GHz UHF transceiver for communication with

remote control for locking/ unlocking the doors and the alarm system.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 82

Automotive Instrument Cluster

Display information/status of vehicle systems and drive conditions

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 83

Instrument Cluster

The information/status include gauges for various parameters,

indicators, and status-lights as well as acoustical effects.

• Displays range from small dot matrix up to large color, high

resolution LCD displays

In addition to CAN/LIN interface there are LVDS interfaces.

• LVDS interfaces are used to transfer large amounts of data via a high-

speed serial connection to an external location like a video screen.

The main load types in a Cluster are the stepper motors that operate

the gauges and the various indicator and back light sources.

• The Stepper motor drivers are typically integrated in the C.

• LED drivers are typically multi-channel devices with serial interfaces to

the C or Darlington arrays.

© G.N. Khan ARM Processors/Cores – EE8205: Embedded Computer Systems Page: 84

Instrument Cluster

Depending on the display type, a power supply solution for the display

biasing is required on top of the LED or CCVF drivers for backlighting.

The video information is either sent directly or via a LVDS interface

depending on the size of the display.

Micro-controllers aimed at driver information and cluster system

needs to drive multiple stepper motors and displays.

These devices need to integrate:

• High performance CPU cores

• Multi-Channel DMA Controller

• TFT controllers

• Fast external memory interfaces with adequate system performance to

implement graphic functions such as anti-aliasing, texturing, animation,

chroma-coding, etc.

• The MCU also needs to high enough performance speed to service the

stepper motors in real time.

