
Digital Camera Design

An Interesting Case Study

1

Overview

1. Introduction to a simple Digital Camera

2. Designer’s Perspective

3. Requirements and Specification

4. Designs and Implementations

Chapter 7, Embedded System Design by Vahid and Givargis

EE8205: Embedded Computer Systems
http://www.ecb.torontomu.ca/~courses/ee8205/

Dr. Gul N. Khan
http://www.ecb.torontomu.ca/~gnkhan

Electrical and Computer Engineering
_________Toronto Metropolitan University__________

Embedded Computer Systems: EE8205 Digital Camera Example

Introduction

• Digital Camera Embedded System

▪ General-purpose processor

▪ Special-purpose processor

Custom or Standard

▪ Memory

▪ Interfacing

• Designing a simple digital camera

▪ General-purpose vs. single-purpose processors

▪ Partitioning of functionality among different types

of processor

2

Embedded Computer Systems: EE8205 Digital Camera Example

A Simple Digital Camera

General Requirements

• Captures images

• Stores images in digital format

▪ No film

▪ Multiple images stored in camera

o Number depends on amount of memory and bits used per image

• Downloads images to Computer System (PC)

Only Recently Possible

• Systems-on-a-chip: Multiple processors & memories on an IC

• High-capacity flash memory

• Simple Description: Real Digital Camera has more features
▪ Variable size images, image deletion, digital stretching, zooming in/out, etc.

3

Embedded Computer Systems: EE8205 Digital Camera Example

A Simple Digital Camera

4

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG Codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital Camera Chip

lens

CCD

• Single-functioned -- always a digital camera

• Tightly-constrained -- Low cost, low power, small, fast

• Reactive and real-time -- only to a small extent

Embedded Computer Systems: EE8205 Digital Camera Example

Design Challenges

Optimizing Design Metrics

• Obvious Design Goal

▪ Construct an implementation with desired functionality

• Key Design Challenge

▪ Simultaneously optimize numerous design metrics

• Design Metric

▪ A measurable feature of a system’s implementation

▪ Optimizing design metrics is a key challenge

5

Embedded Computer Systems: EE8205 Digital Camera Example

Design Challenges

Common Design Metrics

• Unit cost: The monetary cost of manufacturing each copy of
the system, excluding NRE cost

• NRE cost (Non-Recurring Engineering cost): The one-
time monetary cost of designing the system

• Size: the physical space required by the system

• Performance: the execution time or throughput of the system

• Power: the amount of power consumed by the system

• Flexibility: the ability to change the functionality of the
system without incurring heavy NRE cost

6

Embedded Computer Systems: EE8205 Digital Camera Example

Design Challenges

Common Design Metrics

• Time-to-prototype: the time needed to build a working

version of the system

• Time-to-market: the time required to develop a system

to the point that it can be released and sold to

customers

• Maintainability: the ability to modify the system after

its initial release

• Correctness, safety, many more

7

Embedded Computer Systems: EE8205 Digital Camera Example

Design Metric

• Expertise with both software

and hardware is needed to

optimize design metrics

▪ Not just a hardware or

software expert, as is common

▪ A designer must be

comfortable with various

technologies in order to choose

the best for a given application

and constraints

8

SizePerformance

Power

NRE cost

Hardware

Software

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

Improving one may worsen the others

Embedded Computer Systems: EE8205 Digital Camera Example

Time-to-Market

• Time required to develop a

product to the point it can be

sold to customers

• Market window

▪ Period during which the

product would have highest

sales

• Average time-to-market

constraint is about 8 months

• Delays can be costly

9

R
ev

en
u
es

 (
$
)

Time (months)

A demanding design metric

Embedded Computer Systems: EE8205 Digital Camera Example

Losses due to Delayed Market Entry

• Simplified revenue model

▪ Product life = 2W, peak at W

▪ Time of market entry defines a

triangle, representing market

penetration

▪ Triangle area equals revenue

• Loss

▪ The difference between the on-

time and delayed triangle areas

10

On-time Delayed

entry entry

Peak revenue

Peak revenue from

delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
u
es

 (
$
)

Embedded Computer Systems: EE8205 Digital Camera Example

Losses due to Delayed Market Entry

• Area = 1/2 * base * height

On-time = 1/2 * 2W * W

Delayed = 1/2 * (W-D+W)*(W-D)

• Percentage revenue loss =

(D(3W-D)/2W2)*100%

• Try some examples

11

On-time Delayed

entry entry

Peak revenue

Peak revenue from

delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
u
es

 (
$
)

– Lifetime 2W=52 wks, delay D=4 wks

– (4*(3*26 –4)/2*26^2) = 22%

– Lifetime 2W=52 wks, delay D=10 wks

– (10*(3*26 –10)/2*26^2) = 50%

– Delays are costly!

Embedded Computer Systems: EE8205 Digital Camera Example

NRE and Unit Cost Metrics
Costs:

▪ Unit cost: the monetary cost of manufacturing each copy of the system,
excluding NRE cost

▪ NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of
designing the system

▪ total cost = NRE cost + unit cost * # of units

▪ per-product cost = total cost / # of units

= (NRE cost / # of units) + unit cost

12

Example:
– NRE=$2000, unit=$100

– For 10 units

– total cost = $2000 + 10*$100 = $3000

– per-product cost = $2000/10 + $100 = $300

Amortizing NRE cost over the units results in an

additional $200 per unit

Embedded Computer Systems: EE8205 Digital Camera Example

NRE and Unit Cost Metrics

• Compare technologies by costs -- best depends on quantity

▪ Technology A: NRE=$2,000, unit=$100

▪ Technology B: NRE=$30,000, unit=$30

▪ Technology C: NRE=$100,000, unit=$2

13

$0

$40,000

$80,000

$120,000

$160,000

$200,000

0 800 1600 2400

A

B

C

$0

$40

$80

$120

$160

$200

0 800 1600 2400

Number of units (volume)

A

B

C

Number of units (volume)

to
ta

l c
o

st
 (

x1
0

0
0

)

p
e

r
p

ro
d

u
c

t
c

o
st

But, must also consider time-to-market

Embedded Computer Systems: EE8205 Digital Camera Example

The Performance: A Design Metric

• Widely-used measure of system, widely-abused
▪ Clock frequency, instructions per second – not good measures

▪ Digital camera example – a user cares about how fast it processes images, not
clock speed or instructions per second

• Latency (response time)
▪ Time between task start and end

▪ e.g., Camera’s A and B process images in 0.25 seconds

• Throughput
▪ Tasks per second, e.g. Camera A processes 4 images per second

▪ Throughput can be more than latency seems to imply due to concurrency, e.g.
Camera B may process 8 images per second (by capturing a new image while
previous image is being stored).

• Speedup of B over S = B’s performance / A’s performance
▪ Throughput speedup = 8/4 = 2

14

Embedded Computer Systems: EE8205 Digital Camera Example

Digital Camera Designer’s Perspective

Two key Tasks

• Processing images and storing in memory

▪ When shutter pressed:

o Image captured

o Converted to digital form by charge-coupled device (CCD)

o Compressed and archived in internal memory

• Uploading images to PC

▪ Digital camera attached to PC

▪ Special software commands camera to transmit archived

images serially

15

Embedded Computer Systems: EE8205 Digital Camera Example

Charge-Coupled Device (CCD)

• Special sensor that captures an image

• Light-sensitive silicon solid-state device
composed of many cells

16

When exposed to light,

each cell becomes

electrically charged. This

charge can then be

converted to a n-bit value

where 0 represents no

exposure while 2n-1

represents very intense

exposure of that cell to

light.

Some of the columns are

covered with a black strip

of paint. The light-

intensity of these pixels is

used for zero-bias

adjustments for all cells.

Electromechanical shutter

is activated to expose the

cells to light for a brief

moment.

The electronic circuitry,

when commanded,

discharges the cells,

activates electromechanical

shutter, and then reads the

n-bit charge value of each

cell. These values can be

clocked out of the CCD by

ext logic through a parallel

bus interface.

Lens area

Pixel columns

Covered columns

Electronic

circuitry

Electro-

mechanical

shutter
P

ix
el

 r
o
w

s

Embedded Computer Systems: EE8205 Digital Camera Example

Zero-bias Error

• Manufacturing errors cause cells to measure slightly above or
below actual light intensity

• Error typically same across columns, but different across rows

• Some of left most columns blocked by black paint to detect
zero-bias error

▪ Reading of other than 0 in blocked cells is zero-bias error

▪ Each row is corrected by subtracting the average error found in blocked
cells for that row

17

123 157 142 127 131 102 99 235

134 135 157 112 109 106 108 136

135 144 159 108 112 118 109 126

176 183 161 111 186 130 132 133

137 149 154 126 185 146 131 132

121 130 127 146 205 150 130 126

117 151 160 181 250 161 134 125

168 170 171 178 183 179 112 124

136 170 155 140 144 115 112 248 12 14

145 146 168 123 120 117 119 147 12 10

144 153 168 117 121 127 118 135 9 9

176 183 161 111 186 130 132 133 0 0

144 156 161 133 192 153 138 139 7 7

122 131 128 147 206 151 131 127 2 0

121 155 164 185 254 165 138 129 4 4

173 175 176 183 188 184 117 129 5 5

Covered

cells

Before zero-bias adjustment After zero-bias adjustment

-13

-11

-9

0

-7

-1

-4

-5

Zero-bias

adjustment

Embedded Computer Systems: EE8205 Digital Camera Example

Compression

• Store more images

• Transmit image to PC in less time

• JPEG (Joint Photographic Experts Group)

▪ Popular standard format for representing compressed digital images

▪ Provides for a number of different modes of operation

▪ Mode used in this chapter provides high compression ratios using

DCT (discrete cosine transform)

▪ Image data divided into blocks of 8 x 8 pixels

▪ 3 steps performed on each block

DCT, Quantization and Huffman encoding

18

Embedded Computer Systems: EE8205 Digital Camera Example

DCT step

• Transforms original 8 x 8 block into a cosine-frequency
domain
▪ Upper-left corner values represent more of the essence of the image

▪ Lower-right corner values represent finer details

o Can reduce precision of these values and retain reasonable image quality

• FDCT (Forward DCT) formula
▪ C(h) = if (h == 0) then 1/sqrt(2) else 1.0

Auxiliary function used in main function F(u,v)

▪ F(u,v) = ¼ C(u) C(v) Σx=0..7 Σy=0..7 Dxy cos(π(2x + 1)u/16) cos(π(2y + 1)v/16)

Gives encoded pixel at row u, column v

Dxy is original pixel value at row x, column y

• IDCT (Inverse DCT)
▪ Reverses process to obtain original block (not needed for this design)

19

Embedded Computer Systems: EE8205 Digital Camera Example

Quantization Step

• Achieve high compression ratio by reducing image

quality

▪ Reduce bit precision of encoded data

o Fewer bits needed for encoding

o One way is to divide all values by a factor of 2

Simple right shifts can do this

▪ Dequantization would reverse process for decompression

20

1150 39 -43 -10 26 -83 11 41

-81 -3 115 -73 -6 -2 22 -5

14 -11 1 -42 26 -3 17 -38

2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8

36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21

-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5

-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5

0 -8 -2 -2 5 -3 -2 1

6 2 5 -1 1 -3 1 -1

5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3

-1 -2 -1 -2 -1 0 1 -1

After being decoded using DCT After quantization

Divide each cell’s

value by 8

Embedded Computer Systems: EE8205 Digital Camera Example

Huffman Encoding

• Serialize 8 x 8 block of pixels
▪ Values are converted into single list using zigzag pattern

• Perform Huffman encoding
▪ More frequently occurring pixels assigned short binary code

▪ Longer binary codes left for less frequently occurring pixels

• Each pixel in serial list converted to Huffman encoded values

▪ Much shorter list, thus compression

21

Embedded Computer Systems: EE8205 Digital Camera Example

Huffman Encoding Example

Pixel frequencies on left

• Pixel value –1 occurs 15 times

• Pixel value 14 occurs 1 time

Build Huffman tree from bottom up

• Create one leaf node for each pixel
value and assign frequency as node’s
value

• Create an internal node by joining any
two nodes whose sum is a minimal
value. This sum is internal nodes value

• Repeat until complete binary tree

Traverse tree from root to leaf. To
obtain binary code for leaf’s
pixel

• Append 0 for left traversal, 1 for right
traversal

Huffman encoding is reversible

• No code is a prefix of another code

22

14

4

5 3 2

1 0 -2

-1

-10 -5 -3

-

4

-8 -

9
61

4

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

1

0

5

1

15

1

4

6

1

7

8

1

81

5

29

3

5

6

4

1

-1 15x

0 8x

-2 6x

1 5x

2 5x

3 5x

5 5x

-3 4x

-5 3x

-10 2x

144 1x

-9 1x

-8 1x

-4 1x

6 1x

14 1x

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel

frequencie

s

Huffman tree
Huffman

codes

Embedded Computer Systems: EE8205 Digital Camera Example

Archiving

• Record starting address and image size

▪ One can use a linked list structure

• One possible way to archive images. For example, if max
number of images archived is N

▪ Set aside memory for N addresses and N image-size variables

▪ Keep a counter for location of next available address

▪ Initialize addresses and image-size variables to 0

▪ Set global memory address to N x 4

o Assuming addresses, image-size variables occupy N x 4 bytes

▪ First image archived starting at address N x 4

▪ Global memory address updated to N x 4 + (compressed image size)

• Memory requirement based on N, image size, and average
compression ratio

23

Embedded Computer Systems: EE8205 Digital Camera Example

Uploading to a Computer System

When connected to a Computer System and upload

command received

• Read images from the memory

• Transmit serially using UART

(e.g. via a USB port)

• While transmitting

Reset pointers, image-size variables and global

memory pointer accordingly

24

Embedded Computer Systems: EE8205 Digital Camera Example

Requirements Specification

System’s requirements – what system should do

• Nonfunctional Requirements

▪ Constraints on design metrics (e.g. “should use 0.001 watt or less”)

• Functional Requirements

▪ System’s behavior (e.g. “output X should be input Y times 2”)

• Initial specification may be very general and come from
marketing department.

e.g. Short document detailing market need for a low-end digital camera:

▪ Captures and stores at least 50 low-res images and uploads to PC

▪ Costs around $100 with single medium-size IC costing less that $25

▪ Has long as possible battery life

▪ Has expected sales volume of 200,000 if market entry < 6 months

▪ 100,000 if between 6 and 12 months

▪ insignificant sales beyond 12 months

25

Embedded Computer Systems: EE8205 Digital Camera Example

Nonfunctional Requirements

Design metrics of importance based on initial
specification

• Performance: time required to process image

• Size: number of logic gates (2-input NAND gate) in IC

• Power: measure of avg. power consumed while processing

• Energy: battery lifetime (power x time)

Constrained metrics

• Values must be below (sometimes above) certain threshold

Optimization metrics

• Improved as much as possible to improve product

Metric can be both constrained and optimization

26

Embedded Computer Systems: EE8205 Digital Camera Example

Nonfunctional Requirements

Performance
▪ Must process image fast enough to be useful

▪ 1 sec reasonable constraint

Slower would be annoying and Faster not necessary for low-end of market

▪ Therefore, constrained metric

Size
▪ Must use IC that fits in reasonably sized camera

▪ Constrained and optimization metric: 200K gates, but lower is cheaper

Power
▪ Must operate below certain temperature (no-cooling fan) a constrained metric

Energy
▪ Reducing power or time reduces energy

▪ Optimized metric: want battery to last as long as possible

27

Embedded Computer Systems: EE8205 Digital Camera Example

Informal Functional Specification

• Flowchart breaks
functionality down into
simpler functions

• Each function’s details
could then be described
in English

▪ Done earlier in chapter

• Low quality image has
resolution of 64 x 64

• Mapping functions to a
particular processor type
not done at this stage

28

serial output

e.g.

011010...

yes no

CCD

input

Zero-bias

adjust

DCT

Quantize

Archive in

memory

More

8×8

blocks

?

Transmit

serially

yes

no Done

?

Embedded Computer Systems: EE8205 Digital Camera Example

Refined Functional Specification

• Refine informal specification into
one that can actually be executed

• Can use C/C++ code to describe
each function

▪ Called system-level model,
prototype, or simply model

▪ Also is first implementation

• Can provide insight into
operations of system

▪ Profiling can find
computationally intensive
functions

• Can obtain sample output used to
verify correctness of final
implementation

29

image file

10101101

01101010

10010101

101...

CCD.C

CNTRL.

C

UART.C

output file

10101010

10101010

10101010

1010...

CODEC.

C

CCDPP.

C

Executable Model of Digital Camera

Embedded Computer Systems: EE8205 Digital Camera Example

CCD Module
Simulates a Real CCD

▪ CcdInitialize is passed name of image file

▪ CcdCapture reads “image” from file

▪ CcdPopPixel outputs pixels one at a time

30

char CcdPopPixel(void) {

char pixel;

pixel =

buffer[rowIndex][colIndex];

if(++colIndex == SZ_COL) {

colIndex = 0;

if(++rowIndex == SZ_ROW) {

colIndex = -1;

rowIndex = -1;

}

}

return pixel;

}

#include <stdio.h>

#define SZ_ROW 64

#define SZ_COL (64 + 2)

static FILE *imageFileHandle;

static char

buffer[SZ_ROW][SZ_COL];

static unsigned rowIndex,

colIndex;

void CcdInitialize(const char *imageFileName) {

imageFileHandle = fopen(imageFileName, "r");

rowIndex = -1;

colIndex = -1;

}

void CcdCapture(void) {

int pixel;

rewind(imageFileHandle);

for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

for(colIndex=0; colIndex<SZ_COL; colIndex++) {

if(fscanf(imageFileHandle, "%i", &pixel)

== 1) {

buffer[rowIndex][colIndex] = (char)pixel;

}

}

}

rowIndex = 0;

colIndex = 0;

}

Embedded Computer Systems: EE8205 Digital Camera Example

CCDPP (CCD PreProcessing) Module

Performs zero-bias Adjustment

• CcdppCapture uses CcdCapture and

CcdPopPixel to obtain the image

• Performs zero-bias adjustment after each

row read in

31

#define SZ_ROW 64

#define SZ_COL 64

static char

buffer[SZ_ROW][SZ_COL];

static unsigned rowIndex,

colIndex;

void CcdppInitialize() {

rowIndex = -1;

colIndex = -1;

}
void CcdppCapture(void) {

char bias;

CcdCapture();

for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

for(colIndex=0; colIndex<SZ_COL; colIndex++) {

buffer[rowIndex][colIndex] = CcdPopPixel();

}

bias = (CcdPopPixel() + CcdPopPixel()) / 2;

for(colIndex=0; colIndex<SZ_COL; colIndex++) {

buffer[rowIndex][colIndex] -= bias;

}

}

rowIndex = 0;

colIndex = 0;

}

char CcdppPopPixel(void) {

char pixel;

pixel =

buffer[rowIndex][colIndex];

if(++colIndex == SZ_COL) {

colIndex = 0;

if(++rowIndex == SZ_ROW)

{

colIndex = -1;

rowIndex = -1;

}

}

return pixel;

}

Embedded Computer Systems: EE8205 Digital Camera Example

UART Module

Actually a half UART

▪ Only transmits, does not receive

• UartInitialize is passed name of file to output to

• UartSend transmits (writes to output file) bytes at a
time

32

#include <stdio.h>

static FILE *outputFileHandle;

void UartInitialize(const char *outputFileName) {

outputFileHandle = fopen(outputFileName, "w");

}

void UartSend(char d) {

fprintf(outputFileHandle, "%i\n", (int)d);

}

Embedded Computer Systems: EE8205 Digital Camera Example

CODEC Module

• Models FDCT encoding

• ibuffer holds original 8 x 8 block

• obuffer holds encoded 8 x 8 block

• CodecPushPixel called 64 times to fill

ibuffer with original block

• CodecDoFdct called once to

transform 8 x 8 block

▪ Explained in next slide

• CodecPopPixel called 64 times to

retrieve encoded block from obuffer

33

static short ibuffer[8][8],

obuffer[8][8], idx;

void CodecInitialize(void) { idx = 0;

}

void CodecDoFdct(void) {

int x, y;

for(x=0; x<8; x++) {

for(y=0; y<8; y++)

obuffer[x][y] = FDCT(x, y,

ibuffer);

}

idx = 0;

}

void CodecPushPixel(short p) {

if(idx == 64) idx = 0;

ibuffer[idx / 8][idx % 8] = p;

idx++;

}

short CodecPopPixel(void) {

short p;

if(idx == 64) idx = 0;

p = obuffer[idx / 8][idx % 8];

idx++;

return p;

}

Embedded Computer Systems: EE8205 Digital Camera Example

CODEC

Implementing FDCT Formula
C(h) = if (h == 0) then 1/sqrt(2) else 1.0

F(u,v) = ¼ C(u) C(v) Σx=0..7 Σy=0..7 Dxy cos(π(2x + 1)u/16) cos(π(2y + 1)v/16)

Only 64 possible inputs to COS, so table can be used to save performance time

▪ Floating-point values multiplied by 32,678 and rounded to nearest integer

▪ 32,678 chosen in order to store each value in 2 bytes of memory

▪ Fixed-point representation explained more later

FDCT unrolls inner loop of summation, implements outer summation as two consecutive for loops

34

static short ONE_OVER_SQRT_TWO = 23170;
static double COS(int xy, int uv) {

return COS_TABLE[xy][uv] / 32768.0;
}
static double C(int h) {

return h ? 1.0 : ONE_OVER_SQRT_TWO /
32768.0;

}

static const short COS_TABLE[8][8] = {

{ 32768, 32138, 30273, 27245, 23170, 18204, 12539, 6392 },

{ 32768, 27245, 12539, -6392, -23170, -32138, -30273, -18204 },

{ 32768, 18204, -12539, -32138, -23170, 6392, 30273, 27245 },

{ 32768, 6392, -30273, -18204, 23170, 27245, -12539, -32138 },

{ 32768, -6392, -30273, 18204, 23170, -27245, -12539, 32138 },

{ 32768, -18204, -12539, 32138, -23170, -6392, 30273, -27245 },

{ 32768, -27245, 12539, 6392, -23170, 32138, -30273, 18204 },

{ 32768, -32138, 30273, -27245, 23170, -18204, 12539, -6392 }

};

static int FDCT(int u, int v, short img[8][8]) {
double s[8], r = 0; int x;
for(x=0; x<8; x++) {
s[x] = img[x][0] * COS(0, v) + img[x][1] * COS(1, v)
+ img[x][2] * COS(2, v) + img[x][3] * COS(3, v)
+ img[x][4] * COS(4, v) + img[x][5] * COS(5, v)
+ img[x][6] * COS(6, v) + img[x][7] * COS(7, v);

}
for(x=0; x<8; x++) r += s[x] * COS(x, u);
return (short)(r * .25 * C(u) * C(v));
}

Embedded Computer Systems: EE8205 Digital Camera Example

CNTRL (controller) Module
Heart of the system

CntrlInitialize for consistency with other modules only

CntrlCaptureImage uses CCDPP module to input image and place in buffer

CntrlCompressImage breaks the 64 x 64 buffer into 8 x 8 blocks and performs FDCT on each

block using the CODEC module. Also performs quantization on each block

CntrlSendImage transmits encoded image serially using UART module

35

void CntrlSendImage(void) {

for(i=0; i<SZ_ROW; i++)

for(j=0; j<SZ_COL; j++) {

temp = buffer[i][j];

UartSend(((char*)&temp)[0]); // send upper byte

UartSend(((char*)&temp)[1]); // send lower byte
}

}
}

#define SZ_ROW 64

#define SZ_COL 64

#define NUM_ROW_BLOCKS (SZ_ROW / 8)

#define NUM_COL_BLOCKS (SZ_COL / 8)

static short buffer[SZ_ROW][SZ_COL];

static short i, j, k, l, temp;

void CntrlInitialize(void) {}

void CntrlCaptureImage(void) {

CcdppCapture();

for(i=0; i<SZ_ROW; i++)

for(j=0; j<SZ_COL; j++)

buffer[i][j] =

CcdppPopPixel();

}

void CntrlCompressImage(void) {

for(i=0; i<NUM_ROW_BLOCKS; i++)

for(j=0; j<NUM_COL_BLOCKS; j++) {

for(k=0; k<8; k++)

for(l=0; l<8; l++)

CodecPushPixel((char)buffer[i * 8 + k][j * 8 + l]);

CodecDoFdct();/* part 1 - FDCT */

for(k=0; k<8; k++)

for(l=0; l<8; l++) {

buffer[i * 8 + k][j * 8 + l] = CodecPopPixel();

/* part 2 - quantization */

buffer[i*8+k][j*8+l] >>= 6;

}

}

}

Embedded Computer Systems: EE8205 Digital Camera Example

Overall System

• Main initializes all modules, then uses CNTRL module to
capture, compress, and transmit one image

• This system-level model can be used for extensive
experimentation

▪ Bugs much easier to correct here rather than in later models

36

int main(int argc, char *argv[]) {

char *uartOutputFileName = argc > 1 ? argv[1] : "uart_out.txt";

char *imageFileName = argc > 2 ? argv[2] : "image.txt";

/* initialize the modules */

UartInitialize(uartOutputFileName);

CcdInitialize(imageFileName);

CcdppInitialize();

CodecInitialize();

CntrlInitialize();

/* simulate functionality */

CntrlCaptureImage();

CntrlCompressImage();

CntrlSendImage();

}

Embedded Computer Systems: EE8205 Digital Camera Example

The Design

Determine system’s architecture

• Any combination of single-purpose (custom/standard) or general-purpose
processors, Memories and buses

Map functionality to that architecture

• Multiple functions on 1 processor or 1 function on one/more processors

Implementation

• A particular architecture and mapping

• Solution space is set of all implementations

• Low-end general-purpose processor connected to flash memory

▪ All functionality mapped to software running on processor

▪ Usually satisfies power, size, and time-to-market constraints

▪ If timing constraint not satisfied then later implementations could:

Use single-purpose processors for time-critical functions and rewrite
functional specification

37

Embedded Computer Systems: EE8205 Digital Camera Example

First Implementation: One Microcontroller

• Low-end processor could be Intel 8051 microcontroller

• Total IC cost including NRE about $5

• Well below 200 mW power

• Time-to-market about 3 months

• However, one image per second not possible

▪ 12 MHz, 12 cycles per instruction

o Executes one million instructions per second

▪ CcdppCapture has nested loops resulting in 4096 (64 x 64) iterations

o ~100 assembly instructions each iteration

o 409,000 (4096 x 100) instructions per image

o Half of budget for reading image alone

▪ Would be over budget after adding compute-intensive DCT and
Huffman encoding

38

Embedded Computer Systems: EE8205 Digital Camera Example

2nd Implementation

Microcontroller and CCDPP SoC

• CCDPP function implemented on custom single-purpose processor

▪ Improves performance – less microcontroller cycles

▪ Increases NRE cost and time-to-market

▪ Easy to implement

o Simple datapath

o Few states in controller

• Simple UART easy to implement as single-purpose processor also

• EEPROM for program memory and RAM for data memory added as well

39

8051

UART CCDPP

RAMEEPROM

SOC

Embedded Computer Systems: EE8205 Digital Camera Example

Microcontroller

Soft Core: Synthesizable version of 8051

▪ Written in VHDL

▪ Captured at register transfer level (RTL)

• Fetches instruction from ROM

• Decodes using Instruction Decoder

• ALU executes arithmetic operations

▪ Source and destination registers reside

in RAM

• Special data movement instructions

used to load and store externally

• Special program generates VHDL

description of ROM from output of C

compiler/linker

40

To External Memory

Bus

Controller

4K ROM

128

RAM

Instruction

Decoder

ALU

Block diagram of 8051 processor core

Embedded Computer Systems: EE8205 Digital Camera Example

The UART

UART in idle mode until invoked
UART invoked when 8051 executes store

instruction with UART’s enable register as
target address

▪ Memory-mapped communication between
8051 and all single-purpose processors

▪ Lower 8-bits of memory address for RAM

▪ Upper 8-bits of memory address for
memory-mapped I/O devices

• Start state transmits 0 indicating start of byte
transmission then transitions to Data state

• Data state sends 8 bits serially then
transitions to Stop state

• Stop state transmits 1 indicating
transmission done then transitions back to
idle mode

41

invoked

I = 8

I < 8

Idle:

I = 0

Start:

Transmit

LOW

Data:

Transmit

data(I),

then I++

Stop:

Transmi

t HIGH

FSMD description of UART

Embedded Computer Systems: EE8205 Digital Camera Example

CCDPP
• Hardware implementation of zero-bias

operations

• Interacts with external CCD chip
▪ CCD chip resides external to our SOC as

combining CCD with ordinary logic not feasible

• Internal buffer, B, mem-mapped to 8051

• Variables R, C are row, column indices

• GetRow reads in one row from CCD to B
▪ 66 bytes: 64 pixels + 2 blacked-out pixels

• ComputeBias state computes bias for that
row and stores in variable Bias

• FixBias state iterates over same row
subtracting Bias from each element

• NextRow transitions to GetRow for repeat
of process on next row or to Idle state when
all 64 rows completed

42

C = 64

C < 64

R = 64 C =

66

invoked

R < 64

C < 66

Idle:

R=0

C=0

GetRow:

B[R][C]=Pxl

C=C+1

ComputeBias:

Bias=(B[R][11]

+ B[R][10]) / 2

C=0

NextRow:

R++

C=0

FixBias:

B[R][C]=B[R][C]-

Bias

FSMD description of CCDPP

Embedded Computer Systems: EE8205 Digital Camera Example

Connecting SOC Components

Memory-mapped

▪ All single-purpose processors and RAM are connected to 8051’s memory bus

Read

▪ Processor places address on 16-bit address bus

▪ Asserts read control signal for 1 cycle

▪ Reads data from 8-bit data bus 1 cycle later

▪ Device (RAM or SPP) detects asserted read control signal

▪ Checks address

▪ Places and holds requested data on data bus for 1 cycle

Write

▪ Processor places address and data on address and data bus

▪ Asserts write control signal for 1 clock cycle

▪ Device (RAM or SPP) detects asserted write control signal

▪ Checks address bus

▪ Reads and stores data from data bus

43

Embedded Computer Systems: EE8205 Digital Camera Example

Software

System-level model provides majority of code

▪ Module hierarchy, procedure names, and main program unchanged

Code for UART and CCDPP modules must be redesigned

▪ Simply replace with memory assignments

o xdata used to load/store variables over external memory bus

o _at_ specifies memory address to store these variables

o Byte sent to U_TX_REG by processor will invoke UART

o U_STAT_REG used by UART to indicate its ready for next byte

– UART may be much slower than processor

▪ Similar modification for CCDPP code

All other modules untouched

44

static unsigned char xdata U_TX_REG _at_ 65535;

static unsigned char xdata U_STAT_REG _at_ 65534;

void UARTInitialize(void) {}

void UARTSend(unsigned char d) {

while(U_STAT_REG == 1) {

/* busy wait */

}

U_TX_REG = d;

}

Rewritten UART module

#include <stdio.h>

static FILE *outputFileHandle;

void UartInitialize(const char *outputFileName) {

outputFileHandle = fopen(outputFileName, "w");

}

void UartSend(char d) {

fprintf(outputFileHandle, "%i\n", (int)d);

}

Original code from system-level model

Embedded Computer Systems: EE8205 Digital Camera Example

Analysis
Entire SOC tested on VHDL simulator

• Interprets VHDL descriptions and
functionally simulates execution of
system

▪ Recall program code translated to
VHDL description of ROM

• Tests for correct functionality

• Measures clock cycles to process
one image (performance)

Gate-level description obtained by
synthesis

• Synthesis tool like compiler for
SPPs

• Simulate gate-level models to obtain
data for power analysis

▪ Number of times gates switch from
1 to 0 or 0 to 1

• Count number of gates for chip area

45

Power

VHDL

simulator

VHDL VHDL VHDL

Execution time

Synthesis

tool

gates gates gates

Sum gates

Gate level

simulator

Power

equation

Chip area

Obtaining design metrics of interest

Embedded Computer Systems: EE8205 Digital Camera Example

2nd Implementation:

Microcontroller and CCDPP

Analysis of the Implementation

▪ Total execution time for processing one image:

9.1 seconds

▪ Power consumption:

0.033 watt

▪ Energy consumption:

0.30 joule (9.1 s x 0.033 watt)

▪ Total chip area:

98,000 gates

46

Embedded Computer Systems: EE8205 Digital Camera Example

3rd Implementation: Microcontroller

CCDPP/Fixed-Point DCT

• 9.1 seconds still doesn’t meet performance constraint

of 1 second

• DCT operation prime candidate for improvement

▪ Execution of 2nd implementation shows microprocessor

spends most cycles here

▪ Could design custom hardware like we did for CCDPP

More complex so more design effort

▪ Instead, will speed up DCT functionality by modifying

behavior

47

Embedded Computer Systems: EE8205 Digital Camera Example

DCT Floating-point Cost

• Floating-point cost

▪ DCT uses ~260 floating-point operations per pixel transformation

▪ 4096 (64 x 64) pixels per image

▪ 1 million floating-point operations per image

▪ No floating-point support with Intel 8051 controller

o Compiler must emulate

– Generates procedures for each floating-point operation

mult, add

– Each procedure uses tens of integer operations

▪ Thus, > 10 million integer operations per image

▪ Procedures increase code size

• Fixed-point arithmetic can improve on this

48

Embedded Computer Systems: EE8205 Digital Camera Example

Fixed-point Arithmetic

• Integer used to represent a real number

▪ Constant number of integer’s bits represents fractional portion of real number

More bits, more accurate the representation

▪ Remaining bits represent portion of real number before decimal point

• Translating a real constant to a fixed-point representation

▪ Multiply real value by 2 ^ (# of bits used for fractional part)

▪ Round to nearest integer

▪ e.g., represent 3.14 as 8-bit integer with 4 bits for fraction

 2^4 = 16

 3.14 x 16 = 50.24 ≈ 50 = 00110010

 16 (2^4) possible values for fraction, each represents 0.0625 (1/16)

 Last 4 bits (0010) = 2

 2 x 0.0625 = 0.125

 3(0011) + 0.125 = 3.125 ≈ 3.14 (more bits for fraction would increase accuracy)

49

Embedded Computer Systems: EE8205 Digital Camera Example

Fixed-point Arithmetic Operations

Addition

▪ Simply add integer representations

▪ e.g., 3.14 + 2.71 = 5.85

◆ 3.14 → 50 = 00110010

◆ 2.71 → 43 = 00101011

◆ 50 + 43 = 93 = 01011101

◆ 5(0101) + 13(1101) x 0.0625 = 5.8125 ≈ 5.85

Multiply

▪ Multiply integer representations

▪ Shift result right by # of bits in fractional part

▪ E.g., 3.14 * 2.71 = 8.5094

◆ 50 * 43 = 2150 = 100001100110

◆ >> 4 = 10000110

◆ 8(1000) + 6(0110) x 0.0625 = 8.375 ≈ 8.5094

• Range of real values used limited by bit widths of possible resulting values

50

Embedded Computer Systems: EE8205 Digital Camera Example

Fixed-point Implementation of CODEC

• COS_TABLE gives 8-bit fixed-
point representation of cosine
values

• 6 bits used for fractional portion

• Result of multiplications shifted
right by 6

51

void CodecDoFdct(void) {

unsigned short x, y;

for(x=0; x<8; x++)

for(y=0; y<8; y++)

outBuffer[x][y]= F(x,y, inBuffer);

idx = 0;

}

static const char code COS_TABLE[8][8] = {

{ 64, 62, 59, 53, 45, 35, 24, 12 },

{ 64, 53, 24, -12, -45, -62, -59, -35 },

{ 64, 35, -24, -62, -45, 12, 59, 53 },

{ 64, 12, -59, -35, 45, 53, -24, -62 },

{ 64, -12, -59, 35, 45, -53, -24, 62 },

{ 64, -35, -24, 62, -45, -12, 59, -53 },

{ 64, -53, 24, 12, -45, 62, -59, 35 },

{ 64, -62, 59, -53, 45, -35, 24, -12 }

};

static const char ONE_OVER_SQRT_TWO = 5;

static short xdata inBuffer[8][8];

static short outBuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }
static unsigned char C(int h)

{ return h ? 64 : ONE_OVER_SQRT_TWO;}

static int F(int u, int v, short img[8][8]) {

long s[8], r = 0;

unsigned char x, j;

for(x=0; x<8; x++) {

s[x] = 0;

for(j=0; j<8; j++)

s[x] += (img[x][j] * COS_TABLE[j][v]) >> 6;

}

for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u])>> 6;

return (short)((((r * (((16*C(u)) >> 6) *C(v)) >> 6))

>> 6) >> 6);

}

void CodecPushPixel(short p) {

if(idx == 64) idx = 0;

inBuffer[idx / 8][idx % 8] =

p << 6; idx++;

}

Embedded Computer Systems: EE8205 Digital Camera Example

Microcontroller, CCDPP and Fixed-

Point DCT (3rd Imp.)

Analysis of the implementation

▪ Use same analysis techniques as 2nd implementation

▪ Total execution time for processing one image:

1.5 seconds

▪ Power consumption:

0.033 watt (same as 2)

▪ Energy consumption:

0.050 joule (1.5 s x 0.033 watt)

Battery life 6x longer!!

▪ Total chip area:

90,000 gates

8,000 less gates (less memory needed for code)

52

Embedded Computer Systems: EE8205 Digital Camera Example

Last Implementation: Microcontroller

and CCDPP/DCT

• Performance close but not good enough

• Must resort to implementing CODEC in hardware

▪ Single-purpose processor to perform DCT on 8 x 8 block

53

8051

UART CCDPP

RAMEEPROM

SOC
CODEC

Embedded Computer Systems: EE8205 Digital Camera Example

CODEC Design
Four memory mapped registers

• C_DATAI_REG/C_DATAO_REG used
to push/pop 8 x 8 block into and out of
CODEC

• C_CMND_REG to command CODEC

Writing 1 to this register invokes
CODEC

• C_STAT_REG indicates CODEC done
and ready for next block

Polled in software

Direct translation of C code to VHDL
for actual hardware
implementation

Fixed-point version used

CODEC module in software changed
similar to UART/CCDPP in 2nd

implementation

54

static unsigned char xdata C_STAT_REG _at_ 65527;

static unsigned char xdata C_CMND_REG _at_ 65528;

static unsigned char xdata C_DATAI_REG _at_ 65529;

static unsigned char xdata C_DATAO_REG _at_ 65530;

void CodecInitialize(void) {}

void CodecPushPixel(short p)

{ C_DATAO_REG = (char)p; }

short CodecPopPixel(void) {

return ((C_DATAI_REG << 8) | C_DATAI_REG);

}

void CodecDoFdct(void) {

C_CMND_REG = 1;

while(C_STAT_REG == 1) { /* busy wait */ }

}

Rewritten CODEC software

Embedded Computer Systems: EE8205 Digital Camera Example

Microcontroller & CCDPP/DCT SoC

4th Implementation

• Analysis of the Implementation

▪ Total execution time for processing one image:

0.099 seconds (well under 1 sec)

▪ Power consumption:

0.040 watt

Increase over 2 and 3 because SOC has another processor

▪ Energy consumption:

0.00040 joule (0.099s x 0.040 watt)

Battery life 12x longer than previous implementation!!

▪ Total chip area:

128,000 gates

Significant increase over previous implementations

55

Embedded Computer Systems: EE8205 Digital Camera Example

Summary of implementations

3rd Implementation

• Close in performance

• Cheaper

• Less time to build

Last (4th) Implementation

• Great performance and energy consumption

• More expensive and may miss time-to-market window

▪ If DCT designed ourselves then increased NRE cost and time-to-market

▪ If existing DCT purchased then increased IC cost

• Which is better?

56

Implementation 2 Implementation 3 Implementation 4

 Performance (second) 9.1 1.5 0.099

 Power (watt) 0.033 0.033 0.040

 Size (gate) 98,000 90,000 128,000

 Energy (joule) 0.30 0.050 0.0040

Embedded Computer Systems: EE8205 Digital Camera Example

Summary

Digital Camera Case Study

▪ Specifications in English and executable language

▪ Design metrics: performance, power and area

Several Implementations

▪ Microcontroller: too slow

▪ Microcontroller and coprocessor: better, but still too slow

▪ Fixed-point arithmetic: almost fast enough

▪ Additional coprocessor for compression: fast enough, but

expensive and hard to design

▪ Tradeoffs between hw/sw – main lesson of this Case Study

57

	Slide 1: Overview 1. Introduction to a simple Digital Camera 2. Designer’s Perspective 3. Requirements and Specification 4. Designs and Implementations Chapter 7, Embedded System Design by Vahid and Givargis
	Slide 2: Introduction
	Slide 3: A Simple Digital Camera
	Slide 4: A Simple Digital Camera
	Slide 5: Design Challenges
	Slide 6: Design Challenges
	Slide 7: Design Challenges
	Slide 8: Design Metric
	Slide 9: Time-to-Market
	Slide 10: Losses due to Delayed Market Entry
	Slide 11: Losses due to Delayed Market Entry
	Slide 12: NRE and Unit Cost Metrics
	Slide 13: NRE and Unit Cost Metrics
	Slide 14: The Performance: A Design Metric
	Slide 15: Digital Camera Designer’s Perspective
	Slide 16: Charge-Coupled Device (CCD)
	Slide 17: Zero-bias Error
	Slide 18: Compression
	Slide 19: DCT step
	Slide 20: Quantization Step
	Slide 21: Huffman Encoding
	Slide 22: Huffman Encoding Example
	Slide 23: Archiving
	Slide 24: Uploading to a Computer System
	Slide 25: Requirements Specification
	Slide 26: Nonfunctional Requirements
	Slide 27: Nonfunctional Requirements
	Slide 28: Informal Functional Specification
	Slide 29: Refined Functional Specification
	Slide 30: CCD Module
	Slide 31: CCDPP (CCD PreProcessing) Module
	Slide 32: UART Module
	Slide 33: CODEC Module
	Slide 34: CODEC
	Slide 35: CNTRL (controller) Module
	Slide 36: Overall System
	Slide 37: The Design
	Slide 38: First Implementation: One Microcontroller
	Slide 39: 2nd Implementation Microcontroller and CCDPP SoC
	Slide 40: Microcontroller
	Slide 41: The UART
	Slide 42: CCDPP
	Slide 43: Connecting SOC Components
	Slide 44: Software
	Slide 45: Analysis
	Slide 46: 2nd Implementation: Microcontroller and CCDPP
	Slide 47: 3rd Implementation: Microcontroller CCDPP/Fixed-Point DCT
	Slide 48: DCT Floating-point Cost
	Slide 49: Fixed-point Arithmetic
	Slide 50: Fixed-point Arithmetic Operations
	Slide 51: Fixed-point Implementation of CODEC
	Slide 52: Microcontroller, CCDPP and Fixed-Point DCT (3rd Imp.)
	Slide 53: Last Implementation: Microcontroller and CCDPP/DCT
	Slide 54: CODEC Design
	Slide 55: Microcontroller & CCDPP/DCT SoC 4th Implementation
	Slide 56: Summary of implementations
	Slide 57: Summary

