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1. ASSIGNMENT 1

1.1 Assignment 1 Problems

1. Lathi, 6.1-1

Following figure shows Fourier spectra of signals g1(t) and g2(t). Determine the Nyquist

interval and the sampling rate for signals g1(t), g2(t), g2
1(t), g3

2(t), and g1(t)g2(t).

2. Lathi, 6.1-2

Determine the Nyquist sampling rate and the Nyquist sampling interval for the signals:

(a) sinc(100πt);

(b) sinc2(100πt);

(c) sinc(100πt) + sinc(50πt);

(d) sinc(100πt) + 3sinc2(60πt);

(e) sinc(50πt) sinc(100πt).

3. Lathi, 6.1-4

A signal g(t) = sinc2(5πt) is sampled (using uniformly spaced impulses) at a rate of: (i)

5 Hz; (ii) 10 Hz; (iii) 20 Hz. For each of the three case:

(a) Sketch the sampled signal;

(b) Sketch the spectrum of the sampled signal;

(c) Explain whether you can recover the signal g(t) from the sampled signal;
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(d) If the sampled signal is passed through an ideal low-pass filter of bandwidth 5 Hz,

sketch the spectrum of the output signal.

4. Lathi, 6.1-8

Prove that a signal cannot be simultaneously time-limited and band-limited. Hint: show

that contrary assumption leads to contradiction. Assume a signal simultaneously time-

limited and band-limited so that G(ω) = 0 for |ω| > 2πB. In this case G(ω) =

G(ω)rect(ω/4πB′) for B′ > B. This means that g(t) is equal to g(t) ∗ 2B′sinc(2πB′t).

Show that the latter cannot be time-limited.

5. Lathi, 6.2-2

A compact disc (CD) records audio signal digitally by using PCM. Assume the audio

signal bandwidth to be 15 kHz.

(a) What is the Nyquist rate?

(b) If the Nyquist samples are quantized into L = 65, 536 levels and then binary coded,

determine the number of binary digits required to encode a sample.

(c) Determine the number of binary digits per second (bit/s) required to encode the

audio signal.

(d) For practical reasons, signals are sampled at a rate well above the Nyquist rate.

Practical CDs use 44,100 samples per second. If L = 65, 536, determine the number

of bits per second required to encode the signal.

6. Lathi, 6.2-3

A television signal (videl and audio) has a bandwidth of 4.5 MHz. This signal is sampled,

quantized, and binary coded to obtain a PCM signal.

(a) What is the sampling rate if the signal is to be sampled at a rate 20% above the

Nyquist rate.

(b) If the samples are quantized into 1024 levels, determine the number of binary pulses

required to encode each sample.

(c) Determine the binary pulse rate (bits per second) of the binary-coded signal, and

the minimum bandwidth required to transmit this signal.

7. Lathi, 6.2-4

Five telemetry signal, each of bandwidth 1 kHz, are to be transmitted simultaneously

by binary PCM. The maximum tolerable error in sample amplitudes is 0.2% of the peak

signal amplitude. The signals must be sampled at least 20% above the Nyquist rate.
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Framing and synchronizing requires an additional 0.5% extra bits. Determine the min-

imum possible data rate (bits per second) that must be transmitted, and the minimum

bandwidth required to transmit this signal.

8. Lathi, 6.2-6

A message signal m(t) is transmitted by binary PCM. If the SNR (signal-to-quantization-

noise ratio) is required to be at least 47 dB, determine the minimum value of L required,

assuming that m(t) is sinusoidal. Determine the SNR obtained with this minimum L.

9. Sklar, 1.4

Using time averaging, find the average normalized power in the waveform x(t) = 10 cos 10t+

20 cos 20t.

10. Sklar, 1.13

Use the sampling property of the unit impulse function to evaluate the following integrals.

(a)
∫∞
−∞ cos 6t δ(t− 3) dt

(b)
∫∞
−∞ 10δ(t) (1 + t)−1 dt

(c)
∫∞
−∞ 10δ(t + 4) (t2 + 6t + 1) dt

(d)
∫∞
−∞ exp(−t2) δ(t− 2) dt

11. Sklar, 1.14

Find X1(f) ∗X2(f) for the spectra shown below.

12. Sklar, 2.8

Consider an audio signal with spectral components limited to the frequency band 300 to

3300 Hz. Assume that a sampling rate of 8000 samples/s will be used to generate a PCM

signal. Assume that the ratio of peak signal power to average quantization noise power

at the output needs to be 30 dB.
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(a) What is the minimum number of uniform quantization levels needed, and what is

the minimum number of bits per sample needed?

(b) Calculate the system bandwidth (as specified by the main spectral lobe of the signal)

required for the detection of such a PCM signal.

13. Sklar, 2.9

A waveform, x(t) = 10 cos(1000πt+π/3)+20 cos(2000πt+π/6) is to be uniformly sampled

for digital transmission.

(a) What is the maximum allowable time interval between sample values that will ensure

perfect signal reproduction?

(b) If we want to reproduce 1 hour of this waveform, how many sample values need to

be stored?

14. Sklar, 1.15

A signal in the frequency range 300 to 3300 Hz is limited to a peak-to-peak swing of 10

V. It is sampled at 8000 samples/s and the samples are quantized to 64 evenly spaced

levels. Calculate and compare the bandwidths and ratio of peak signal power to rms

quantization noise if the quantized samples are transmitted either as binary pulses or as

four-level pulses. Assume that the system bandwidth is defined by the main spectral lobe

of the signal.

15. Sklar, 1.16

In the compact disc (CD) digital audio system, an analog signal is digitized so that the

ratio of the peak-signal power to the peak-quantization noise power is at least 96 dB. The

sampling rate is 44.1 kilosamples/s.

(a) How many quantization levels of the analog signal are needed for (S/Nq)peak =

96dB?

(b) How many bits per sample are needed for the number of levels found in part (a)?

(c) What is the data rate in bits/s?

16. Haykin, 3.2

In natural sampling, an analog signal g(t) is multiplied by a periodic train of rectangular

pulse c(t), each of unit area. Given that the pulse repetition frequency of this period train

is fs and the duration of each rectangular pulse is T (with fsT << 1), do the following:



1. Assignment 1 5

(a) Find the spectrum of the signal s(t) that results from the use of natural sampling;

you may assume that time t = 0 corresponds to the midpoint of a rectangular pulse

in c(t).

(b) Show that the original signal g(t) may be recovered exactly from its naturally sam-

pled version, provided that the conditions embodied in the sampling theorem are

satisfied.

17. Haykin, 3.8

Twenty-four voice signals are sampled uniformly and then time-division multiplexed. The

sampling operation uses flat-top samples with 1 µs duration. The multiplexing operation

includes provision for synchronization by adding an extra pulse of sufficient amplitude

and also 1 µs duration. The highest frequency component of each voice signal is 3.4 kHz.

(a) Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses

of the multiplexed signal.

(b) Repeat your calculation assuming the use of Nyquist rate sampling.
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1.2 Assignment 1 Solutions

1. Lathi 6.1-1: The bandwidth of g1(t) and g2(t) are 100 kHz and 150 kHz, respectively.

Therefore,

• the Nyquist sampling rates for g1(t) is 200 kHz, sampling interval Ts = 1/200k = 5µs

• the Nyquist sampling rates for g2(t) is 300 kHz, sampling interval Ts = 1/300k =

3.33µs.

• the bandwidth of g2
1(t) is 200 kHz, fNyq = 400 kHz, fNyq = 1/400k = 0.25µs.

• the bandwidth of g3
2(t) is 450 kHz, fNyq = 900 kHz, fNyq = 1/900k = 1.11µs.

• the bandwidth of g1(t) · g2(t) is 250 kHz, fNyq = 500 kHz, fNyq = 1/500k = 2µs.

2. Lathi 6.1-2:

• since

sinc(100πt) → 0.01rect
(

ω

200π

)

the bandwidth of this signal is 100 π rad/s or 50 Hz. The Nyquist rate is 100 Hz

(samples/sec).
•

sinc2(100πt) → 0.01∆
(

ω

400π

)

the bandwidth of this signal is 200 π rad/s or 100 Hz. The Nyquist rate is 200 Hz

(samples/sec).
•

sinc(100πt) + sinc(50πt) → 0.01rect
(

ω

200π

)
+ 0.02rect

(
ω

100π

)

the bandwidth of the first term on the right-hand side is 50 Hz and the second term

is 25 Hz. Clearly the bandwidth of the composite signal is the higher of the two,

that is, 100 Hz. The Nyquist rate is 200 Hz (samples/sec).
•

sinc(100πt) + 3sinc2(60πt) → 0.01rect
(

ω

200π

)
+ 0.05∆

(
ω

240π

)

the bandwidth of the first term is 50 Hz and that of the second term is 60 Hz. The

bandwidth of the sum is the higher of the two, that is, 60 Hz. The Nyquist sampling

rate is 120 Hz.
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•

sinc(50πt) → 0.02rect
(

ω

100π

)
sinc(100πt) → 0.01rect

(
ω

200π

)

The two signals have BW 25 Hz and 50 Hz respectively. The spectrum of the product

of two signals is 1/(2π) times the convolution of their spectra. From width property

of the convolution, the width of the convoluted signals is the sum of the widths of

the signals convolved. Therefore, the BW of the product is 25+50=75 Hz. The

Nyquist rate is 150 Hz.

3. Lathi 6.1-4: The BW of the signal g(t) is 5 Hz (10π rad/s), since the FT as below:

g(t) = sinc2(5πt) → G(ω) = 0.2∆
(

ω

20π

)

Therefore, the Nyquist rate is 10 Hz, and the Nyquist interval is T = 1/10 = 0.1s.

• When fs = 5Hz, the spectrum 1
T
G(ω) repeats every 5 Hz (10π rad/sec). The

successive spectra overlap, and the spectrum G(ω) is not recoverable from Ḡ(ω),

that is, g(t) cannot be recovered from its samples. If the sampled signal is passed

through an ideal lowpass filter of BW 5 Hz, the output spectrum is rect(ω/20π), and

the output signal is 10sinc(20πt), which is not the desired signal sinc2(5πt).

• When fs = 10Hz, the spectrum Ḡ(ω)consists of back-to-back, nonoverlapping rep-

etition of 1
T
G(ω) repeating every 10 Hz. Hence, G(ω) can be recovered from Ḡ(ω)

using an ideal lowpass filter of BW 5 Hz (Fig.1(f)), and the output is 10sinc2(5πt).

• in the last case of oversampling (fs = 20 Hz), with empty band between successive

cycles. Hence, G(ω) can be recovered from Ḡ(ω) using an ideal lowpass filter or even

a practical lowpass filter. The output is 20sinc2(5πt).

4. Lathi 6.1-8: assuming a signal g(t) that is simultaneously time-limited and bandlimited.

Let g(ω) = 0 for |ω| > 2πB. Therefore,

g(ω)rect
(

ω

4πB′

)
= g(ω) for B′ > B.

Therefore, from the time-convolution property

g(t) = g(t) ∗ [2B′sinc(2πB′t)] = 2B′g(t) ∗ sinc(2πB′t).

Because g(t) is time-limited, g(t) = 0 for |t| > T . But g(t) is equal to convolution of

g(t) with sinc(2πB′t) which is not time-limited. It is impossible to obtain a time-limited

signal from the convolution of a time-limited signal with a non-timelimited signal.
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5. Lathi 6.2-2:

(a): the bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

(b): 65536 = 216, so that 16 binary digits are needed to encode each sample.

(c): 30, 000× 16 = 480, 000 bits/s.

(d): 44, 100× 16 = 705, 600 bits/s.

6. Lathi 6.2-3:

(a): The Nyquist rate is 2×4.5×106 = 9 MHz. The actual sampling rate =1.2×9 = 10.8

MHz.

(b): 1024 = 1010, so that 10 bits or binary pulses are needed to encode each sample.

(c): 10.8× 106 × 10 = 108× 106 or 108 Mbits/s.

7. Lathi 6.2-4:

If mp is the peak sample amplitude, then

quantization error ≤ 0.2%×mp =
mp

500

Because the maximum quantization error is

q

2
= 0.5× 2mp

L

• it follows that L ≥ 500. Since L should be a power of 2, we choose L = 512 = 29.

This requires 9-bit binary code per sample. The Nyquist rate is 2×1000 = 2000 Hz.

20% above this rate is 2×1.2 = 2.4 kHz. Thus, each signal has 2400 samples/second,

and each sample is encoded by 9 bits. Therefore, each signal uses 9 × 2.4 = 21.6

kbits/second.

• Five such signals are multiplexed. Hence, we need a total of 5 × 21.6 = 108

Kbits/second data bits.

• Framing and synchronization requires additional 0.5% bits, that is 108, 000×0.005 =

540 bits, yielding a total of 108,540 bits/second.

• The minimum transmission bandwidth is 108.54/2 = 54.27 kHz.

8. Lathi 6.2-6:

Let mp denote the peak amplitude of the sinusoid signal, signal power is E[m2(t)] = m2
p/2.

Let L denote the number of steps, then the stepsize is q = 2mp/L. The noise power is

σ2 = q2/2 = m2
p/(3L

2). The required SNR is 47 dB=50119, which is

E[m2(t)]

σ2
=

3L2

2
≥ 50119
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which implies L ≥ 182.8. Because L is a power of 2, we select L = 256 = 28. The SNR

for this value L is

E[m2(t)]

σ2
=

3L2

2
= 3(256)2(0.5) = 98304 = 49.43dB

9. Sklar 1.14:

X2(f) = k[δ(f − f0) + δ(f + f0)

X1(f) ∗X2(f) = X1(f) ∗ k[δ(f − f0) + δ(f + f0)

2f0f0−f0−2f0

k

2k

0

10. Sklar 2.8:

(a) Let L denote the number of quantization levels. The peak signal power to quantization

noise power is (
S

N

)

peak
= 3L2.

We have 10 log10(3L
2) ≥ 30 (dB), and L can be solved as

L = d18.26e = 19 levels

The number of bits per sample is

N = dlog2 Le = dlog2 19e = 5 bits/sample

(b) Let Tb denote the time duration of a bit. Since the sample rate is 8000 samples/s,

each sample is represented by 5 bits. Therefore, there are 8000× 5 bits each second and

Tb =
1

8000× 5
= 25 µs

the required bandwidth W is

W =
1

Tb

= 40 kHz

11. Sklar 2.9:

(a) The maximum frequency is ωm = 2πfm = 2000 and fm = 2000/(2π) = 318.3 Hz.

Therefore, sampling rate should be

fs ≥ 2fm = 2× 318.3 = 636.6 samples/s
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The sampling interval should satisfy:

Tm =
1

fs

≤ 0.00157 s

(b) 636.6 samples/s × 3600 s = 2.29× 106 samples.

12. Sklar 2.15:

(a) Binary case:

R = 8000 samples/s× 6 bits/sample = 48, 000 bits/s

W =
1

Tb

= R = 48, 000Hz

(
S

N

)

q
= 3L2 = 3(64)2 = 12, 288 ≈ 41dB

(b) Four-level case:

Rs =
48, 000 bits/s

2 bits/symbol
= 24, 000 symbols/s

W =
1

T
= Rs = 24, 000Hz

(
S

N

)

q
= the same as in the binary case ≈ 41dB

13. Sklar 2.16:

(a) Assuming that the L quantization levels are equally spaced and symmetrical about

zero. Then, the maximum possible quantization noise voltage equals 1/2 the q volt interval

between any two neighboring levels. Also, the peak quantization noise power, Nq, can be

expressed as (q/2)2.

The peak signal power, S, can be designated (Vpp/2)2, where Vpp = Vp − (−Vp) is the

peak-to-peak signal voltage, and Vp is the peak voltage.

since there are L quantization levels and (L− 1) intervals (each interval corresponding to

q volts), we can write:

(
S

Nq

)

peak

=
(Vpp/2)2

(q/2)2
=

[q(L− 1)/2]2

(q/2)2
≈ q2L2/4

q2/4
= L2

Thus, we need to compute how many levels, L, will yield a (S/Nq)peak = 96 dB. We

therefore write:

96dB = 10 log10(S/Nq)peak = 10 log10 L2 = 20 log10 L

L = 1096/20 = 63096 levels
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(b) The number of bits that corresponding to 63096 levels is

l = dlog2 Le = dlog2 63096e = 16 bits/sample

(c) R=16 bits/sample × 44.1 k samples/s = 705,600 bits/s

3: see course notes.

4: (a) For each sampling interval, there are 24+1=25 pulses. Therefore, each pulse occupies:

T =
Ts

25
=

1

8000× 25
= 5µs

Therefore, the spacing between successive pulses of the multiplexed signal is 5-1=4 µs.

(b) With Nyquist sampling, each pulse occupies:

T =
Ts

25
=

1

6400× 25
= 6.25µs

Therefore, the spacing between successive pulses of the multiplexed signal is 6.25-1=5.25 µs.



2. ASSIGNMENT 2

2.1 Assignment 2 Problems

1. Lathi, 7.2-1

(a) Find PSDs for polar, on-off, and bipolar signalling, where p(t) is a full-width rect-

angular pulse, that is, p(t) = rect(t/Tb)?

(b) Sketch roughly these PSDs and find their bandwidths. For each case, compare the

bandwidth of the case where p(t) is a half-width rectangular pulse.

2. Lathi, 7.2-2

(a) A random binary data sequence 100110... is transmitted using a Manchester (split-

phase) line code. Sketch the waveform y(t).

(b) Derive Sy(ω), the PSD of a Manchester (split-phase) signal in part (a) assuming 1

and 0 equally likely. Roughly sketch this PSD and find its bandwidth.

3. Lathi, 7.2-3

Derive the PSD for a binary signal using differential code with half-width rectangular

pulses. Determine the PSD Sy(ω).

4. Lathi, 7.3-2

In a certain telemetry system, there are eight analog measurements, each of bandwidth 2

kHz. Samples of these signals are time-division multiplexed, quantized, and binary coded.

The error in sample amplitudes cannot be greater than 1% of the peak amplitude.

(a) Determine L, the number of quantization levels.

(b) Find the transmission bandwidth BT if Nyquist criterion pulses with roll-off factor

r = 0.2 are used. The sampling rate must be at least 25% above the Nyquist rate.

5. Lathi, 7.3-4

The Fourier transform P (ω) of the basic pulse p(t) used in a certain binary communication

system is shown below:
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(a) From the shape of P (ω), explain if this pulse satisfies the Nyquist criterion.

(b) Find p(t) and verify that this pulse does (or does not) satisfy the Nyquist criterion.

(c) If the pulse does satisfy the Nyquist criterion, what is the transmission rate (in bits

per second) and what is the roll-off factor?

6. Lathi, 7.3-5

A pulse p(t) whose spectrum P (ω) is shown below satisfies the Nyquist criterion. If

f1 = 0.8MHz and f2 = 1.2MHz, determine the maximum rate at which binary data can

be transmitted by this pulse using the Nyquist criterion. What is the roll-off factor?

7. Lathi, 7.3-6

Binary data at a rate of 1 Mbits/s is to be transmitted using Nyquist criterion pulses

with P (ω) shown in 7.3-5. The frequencies f1 and f2 (in hertz) of this spectrum are

adjustable. The channel available for the transmission of this data has a bandwidth of

700 kHz. Determine f1 and f2 and the roll-off factor.

8. Sklar, 3.8

(a) What is the theoretical minimum system bandwidth needed for a 10-Mbits/s signal

using 16-level PAM without ISI?

(b) How large can the filter roll-off factor be if the allowable system bandwidth is 1.375

MHz?
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9. Sklar, 3.10

Binary data at 9600 bits/s are transmitted using 8-ary PAM modulation with a system

using a raised cosine roll-off filter characteristic. The system has a frequency response

out to 2.4 kHz.

(a) What is the symbol rate?

(b) What is the roll-off factor of the filter characteristic?

10. Sklar, 3.11

A voice signal in the range 300 to 3300 Hz is sampled at 8000 samples/s. We may

transmit these samples directly as PAM pulses or we may first convert each sample to a

PCM format and use binary (PCM) waveforms for transmission.

(a) What is the minimum system bandwidth required for the detection of PAM with no

ISI and with a filter roll-off characteristic of r = 1?

(b) Using the same filter roll-off characteristic, what is the minimum bandwidth required

for the detection of binary (PCM) waveforms if the samples are quantized to eight

levels?

(c) Repeat part (b) using 128 quantization levels.
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2.2 Assignment 2 Solutions
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3. ASSIGNMENT 3

3.1 Assignment 3 Problems

1. A company has three machines B1, B2, and B3 for making resistors. It has been observed

that 80% of resistors produced by B1 are qualified. The percentage for machines B2 and

B3 are respectively, 90% and 60%. Each hour, machines B1, B2 and B3 produce 3000,

4000, and 3000 resistors, respectively. All of the resistors are mixed together at random

in one bin and packed for shipment.

(a) What is the probability that the company ships a resistor that is qualified?

(b) What is the probability that an acceptable resistor comes from machine B3?

2. Lathi, 10.1-15

A binary source generates digits 1 and 0 randomly with probabilities P (1) = 0.8 and

P (0) = 0.2.

(a) What is the probability that two 1’s and three 0’s will occur in a five-digit sequence?

(b) What is the probability that at least three 1’s will occur in a five-digit sequence?

3. Lathi, 10.1-16

In a binary communication channel, the receiver detects binary pulses with an error

probability Pe. What is the probability that out of 100 received digits, no more than

three digits are in error?

4. Lathi, 10.2-1

For a certain nonsymmetric channel it is given that

Py|x(0|1) = 0.1 and Py|x(1|0) = 0.2

where x is the transmitted digit and y is the received digit. If Px(0) = 0.4, determine

Py(0) and Py(1).
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5. Lathi, 10.2-5

The PDF of a Gaussian RV X is given by

fX(x) =
1

3
√

2π
e−(x−4)2/18

Determine (a) P (X ≥ 4); (b) P (X ≥ 0); (c) P (X ≥ −2);

6. Lathi, 13.5-2

Binary data is transmitted by using a pulse p(t) for 0 and a pulse 3p(t) for 1. Show that

the optimum receiver for this case is a filter matched to p(t) with a detection threshold

of 2Ep. Determine the error probability Pb of this receiver as a function of Eb/N0 if 0 and

1 are equiprobable.

7. Sklar 1.6

Determine which, if any, of the following functions have the properties of autocorrelation

functions. Justify your determinations. [Note: Fourier transform of R(τ) must be a

nonnegative function, why?]

(a) x(τ) =





1 for − 1 ≤ τ ≤ 1

0 otherwise

(b) x(τ) = δ(τ) + sin 2πfoτ

(c) x(τ) = exp(|τ |)
(d) x(τ) = 1− τ for − 1 ≤ τ ≤ 0, 0 elsewhere

8. Sklar 1.7

Determine which, if any, of the following functions have the properties of power spectral

density functions. Justify your determination.

(a) X(f) = δ(f) + cos2(2πf)

(b) X(f) = 10 + δ(f − 10)

(c) X(f) = exp(−2π|f − 10|)
(d) X(f) = exp[−2π(f 2 − 10)]

9. Sklar, 3.4

Assuming that in a binary digital communication system, the signal component out of

the correlator receiver is ai(T ) = +1 or -1 V with equal probability. If the Gaussian noise

at the correlator output has unit variance, find the probability of a bit error.
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10. Sklar, 3.5

A bipolar binary signal, si(t), is a +1 or -1 V pulse during the interval (0, T ). Additive

white Gaussian noise having two-sided power spectral density of 10−3 W/Hz is added to

the signal. If the received signal is detected with a matched filter, determine the maximum

bit rate that can be sent with a bit error probability of Pb ≤ 10−3.

11. Sklar, 3.7

A binary communication system transmits signals si(t), i = 1, 2. The receiver test statistic

z(T ) = ai +n0, where the signal component ai is either a1 = +1 or a2 = −1 and the noise

component n0 is uniformly distributed, yielding the conditional density functions p(z|si)

given by

p(z|s1) =





1
2
−0.2 ≤ z ≤ 1.8

0 otherwise

and

p(z|s2) =





1
2
−1.8 ≤ z ≤ 0.2

0 otherwise

Find the probability of a bit error, Pb, for the case of equally likely signaling and the use

of an optimum decision threshold.

12. Sklar, 3.14

Consider that NRZ binary pulses are transmitted along a cable that attenuates signal

power by 3 dB (from transmitter to receiver). The pulses are coherently detected at the

receiver, and the data rate is 56 kbit/s. Assume Gaussian noise with N0 = 10−6 Watt/Hz.

What is the minimum amount of power needed at the transmitter in order to maintain a

bit-error probability of Pb = 10−3?

13. The purpose of a radar system is basically to detect the presence of a target, and to

extract useful information about the target. Suppose that in such a system, hypothesis

H0 is that there is no target present, so that the received signal x(t) = w(t), where w(t)

is white Gaussian noise with power spectral density N0/2. For hypothesis H1, a target is

present, and x(t) = w(t) + s(t), where s(t) is an echo produced by the target. Assumed

that s(t) is completely known and the probability of the existence of a target is 0.5.

(a) Determine the structure of the optimal receiver.

(b) Determine the pdf of the decision variable and the optimal decision threshold.

(c) Evaluate the probability of false alarm defined as the probability that the receiver

decides a target is present when it is not.
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(d) Evaluate the probability of detection defined as the probability that the receiver

decides a target is present when it is.

14. Two equiprobable messages are transmitted on an AWGN channel with two-sided power

spectral density N0/2. The signals are of the form

s1(t) =
√

Eφ1(t), s2(t) = aφ1(t) +
√

E − a2 φ2(t)

where −√E ≤ a ≤ √
E and

∫ T
0 φ1(t)φ2(t) dt = 0.

(a) Determine the structure of the optimal receiver.

(b) Determine the probability of error of this binary system.
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3.2 Assignment 3 Solutions

Problem 1. a: Let A={qualified resistor}, then we can have

P [A|B1] = 0.8 P [A|B2] = 0.9 P [A|B3] = 0.6 (3.1)

The production figures states that 3000+4000+3000=10,000 resistors per hour are produced.

The fraction from machine B1 is P [B1] = 3000/10000 = 0.3. Similarly, P [B2] = 0.4 and

P [B3] = 0.3. Applying the law of total probability we have

P [A] = P [A|B1]P [B1] + P [A|B2]P [B2] + P [A|B3]P [B3] (3.2)

= (0.8)(0.3) + (0.9)(0.4) + (0.6)(0.3) = 0.78 (3.3)

b: applying Bayes’ Theorem, we have

P [B3|A] =
P [AB3]

P [A]
=

P [A|B3]P [B3]

P [A]
=

0.6× 0.3

0.78
= 0.23. (3.4)

Lathi, 10.1-15: A binary source generates digits 1 and 0 randomly with probabilities P (1) =

0.8 and P (0) = 0.2.

1. What is the probability that two 1’s and three 0’s will occur in a five-digit sequence?

2. What is the probability that at least three 1’s will occur in a five-digit sequence?

Solution: (a) Two 1’s and three 0’s in a sequence of 5 digits can occur in


 5

2


 = 10 ways.

The probability one such sequence is

P = (0.8)2 · (0.2)3 = 0.00512

since the event can occur in 10 ways, its probability is

10× 0.00512 = 0.0512

(b) Three 1’s occur with probability


 5

3


 (0.8)3 · (0.2)2 = 0.2048;

Four 1’s occur with probability


 5

4


 (0.8)4 · (0.2)1 = 0.4096;

Five 1’s occur with probability


 5

5


 (0.8)5 · (0.2)0 = 0.3277;

Hence, the probability of at least three 1’s occurring is

P = 0.2048 + 0.4096 + 0.3277 = 0.9421
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Lathi, 10.1-16: In a binary communication channel, the receiver detects binary pulses with

an error probability Pe. What is the probability that out of 100 received digits, no more than

three digits are in error?

Solution: Prob(no more than 3 error) = P(no error)+P(1 error) +P(2 error) +P(3 error), which

is

P = (1− Pe)
100 +


 100

1


 Pe(1− Pe)

99 +


 100

2


 P 2

e (1− Pe)
98


 100

3


 P 3

e (1− Pe)
97(3.5)

= (1− 100Pe) + 100Pe(1− 99Pe) + 4950P 2
e (1− 98Pe) + 161700P 3

e (1− 97Pe)

Lathi, 10.2-1: Solution: Based on law of total probability,

Py(0) = Px,y(1, 0) + Px,y(0, 0) = Px(1)Py|x(0|1) + Px(0)Py|x(0|0)

which is

Py(0) = 0.6× 0.1 + 0.4[1− Py|x(1|0)] = 0.06 + 0.32 = 0.38

we can have,

Py(1) = 1− Py(0) = 0.62

Lathi, 10.2-5: X is Gaussian with mean µ = 4 and σx = 3, therefore,

1.

P (x ≥ 4) = Q
(

4− µ

σ

)
= Q

(
4− 4

3

)
= Q(0) = 0.5

2.

P (x ≥ 0) = Q
(

0− µ

σ

)
= Q

(
0− 4

3

)
= Q(−4/3) = 1−Q(4/3) = 1− 0.09176 = 0.9083

3.

P (x ≥ −2) = Q
(−2− µ

σ

)
= Q

(−2− 4

3

)
= Q(−2) = 1−Q(2) = 0.9773

Lathi, 13.5-2: The conditional probability density functions of the receiver decision RV are

fY (t)|“1” ∼ N
(
3E,

N0

2
E

)

fY (t)|“0” ∼ N
(
E,

N0

2
E

)
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Therefore, the optimal decision threshold is 2E. The probability of transmission error is

Pb = Q
(

a2 − a1

2σ

)
= Q


 3E − E

2
√

E N0/2


 = Q

(√
2E

N0

)

Sklar, 1.6: Fourier transform of R(τ) must be a nonnegative function because F [R(τ)] = S(f);

and the power spectral density, S(f), must be a nonnegative function.

(a) It satisfies x(τ) = x(−τ), x(0) ≥ x(τ), but the Fourier transform of x(τ) is a positive and

negative going function. Therefore, x(τ) cannot be a valid autocorrelation function.

(b) Since x(τ) 6= x(−τ), therefore, x(τ) cannot be a valid autocorrelation function.

(c) It satisfies x(τ) = x(−τ), but it doesn’t satisfy x(0) ≥ x(τ). Therefore, not a valid

autocorrelation function.

(d) It satisfies x(τ) = x(−τ), x(0) ≥ x(τ), and Fourier transform of x(τ) is 2sinc2fτ , which is

a non-negative function. Therefore, x(τ) is a valid autocorrelation function.

Sklar, 1.7:

(a) X(f) = δ(f) + cos2 2πf . Yes, it can be a PSD function since (i) it is always real; (ii)

PX(f) ≥ 0; (iii) PX(−f) = PX(f).

(b) X(f) = 10+δ(f−10). No, it cannot be a PSD function. It satisfies the first two conditions

(i) it is always real; (ii) PX(f) ≥ 0; but the third condition (iii) PX(−f) 6= PX(f).

(c) X(f) = exp(−2π|f − 10|). No, it cannot be a PSD function. It satisfies the first two

conditions (i) it is always real; (ii) PX(f) ≥ 0; but the third condition (iii) PX(−f) 6= PX(f).

(d) X(f) = exp[−2π(f 2 − 10)]. Yes, it can be a PSD function since (i) it is always real; (ii)

PX(f) ≥ 0; (iii) PX(−f) = PX(f).

Sklar, 3-4: Using equation

Pb = Q
(

a2 − a1

2σ

)
= Q

(
1− (−1)

2

)
= Q(1) = 0.1587

Sklar, 3-5: Using equation:

Pb = Q

(√
2Eb

N0

)

where Eb = A2T , and A = 1 for bipolar signalling. Since

Pb = Q(x) ≤ 10−3
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we need x =
√

2Eb

N0
≥ 3.09. which implies Eb/N0 ≥ 4.77; while N0/2 is given as 10−3, hence,

Eb = T ≥ 4.77× 2× 10−3

and therefore,

R =
1

T
≤ 104.8 bits/s

Sklar, 3-7: The optimal decision threshold is 0, therefore,

Pb = P (z > 0|“0”)P (“0”) + P (z < 0|“0”)P (“0”) (3.6)

= P (s1)
∫ 0

−0.2

1

2
dz + P (s2)

∫ 0.2

0

1

2
dz =

[
1

2
z
]
|0−0.2 =

0.2

2
= 0.1 (3.7)

Sklar, 3-14: Signalling with NRZ pulses represents an example of antipodal signalling. There-

fore, we have

Pb = Q

(√
2Eb

N0

)
= Q




√
2A2T

N0




since Q(3.1) ≈ 10−3, hence √
2A2(1/56000)

10−6
= 3.1

we can solve that A2 = 0.268. Thus if there were no signal power loss, the minimum power

needed would be approximately 268 mW. With a 3-dB loss, 536 mW are needed.

Problem 12: (a) the structure of the optimal receiver is a matched filter (diagram refer lecture

notes).

(b) Let T denote the pulse width of s(t). The energy of s(t) is

E =
∫ T

0
|s(t)|2dt

Then the conditional density of the decision variable y(T ) is

yi(T ) ∼ N(m1, σ
2) when there is a target

y2(T ) ∼ N(m2, σ
2) when no target

where m1 is the pulse energy E and m2 is zero because no target and σ2 = N0

2
E. Decision

threshold, U = E/2. The decision rule is:




u ≥ α a target is present

u < α no target
(3.8)

given 



target present ∼ N(E, σ2)

no target ∼ N(0, σ2)
(3.9)
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where σ2 = N0E
2

.

(c) Probability of false alarm is

P{false alarm} = P{target detected | no target} = P [y(T ) > U | no target] (3.10)

= P [y2(T ) > U ] = Q
(

U

σ

)
= Q


 E/2√

N0E
2


 = Q

(√
E

2N0

)

(d) Probability of detection is

P{detection} = P{target detected | target present} (3.11)

= P [y1(T ) > U |target] = P [y1(T ) > U ] = 1−Q

(√
E

2N0

)

Problem 13 see lecture notes.



4. ASSIGNMENT 4

4.1 Assignment 4 Problems

1. Sklar, 4.7

Find the probability of bit error, PB, for the coherent matched filter detection of the

equally likely binary FSK signals

s1(t) = 0.5 cos 2000πt

and

s2(t) = 0.5 cos 2020πt

where the two-sided AWGN power spectral density is N0/2 = 0.0001. Assume that the

symbol duration is T = 0.01 s.

2. Sklar, 4.8

Find the optimum (minimum probability of error) threshold γ0, for detecting the equally

likely signal s1(t) =
√

2E/T cos ω0t and s2(t) =
√

E/2T cos(ω0t + π) in AWGN, using a

correlator receiver. Assume a reference signal of ψ1(t) =
√

2/T cos ω0t

3. Sklar, 4.9

A system using matched filter detection of equally likely BPSK signal, s1(t)) =
√

2E/T cos ω0t

and s2(t)) =
√

2E/T cos(ω0t + π), operates in AWGN with a received Eb/N0 of 6.8 dB.

Assume that E[z(T )] = ±√E.

(a) Find the minimum probability of bit error, PB, for this signal set and Eb/N0.

(b) If the decision threshold is γ = 0.1
√

E, find PB.

4. Sklar, 4.13

Consider a coherent orthogonal MFSK system with M = 8 having the equally likely

waveforms si(t) = A cos 2πfit, i = 1, · · · ,M, 0 ≤ t ≤ T , where T = 0.2 ms. The received

carrier amplitude, A, is 1 mV, and the two-sided AWGN spectral density, N0/2, is 10−11

W/Hz. Calculate the probability of bit error, PB.
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5. Sklar, 4.14

A bit error probability of PB = 10−3 is required for a system with a data rate of 100 kbits/s

to be transmitted over an AWGN channel using coherently detected MPSK modulation.

The system bandwidth is 50 kHz. Assume that the system frequency transfer function is

a raised cosine with a roll-off characteristic of r = 1 and that a Gray code is used for the

symbol to bit assignment.

(a) What Es/N0 is required for the specified PB?

(b) What Eb/N0 is required?

6. 3.1 Determine whether or not s1(t) and s1(t) are orthogonal over the interval (−1.5T2 <

t < 1.5T2), where s1(t) = cos(2πf1t + φ1) and f2 = 1/T2 for the following cases

(a) f1 = f2 and φ1 = φ2

(b) f1 = 1
3
f2 and φ1 = φ2

(c) f1 = 2f2 and φ1 = φ2

(d) f1 = πf2 and φ1 = φ2

(e) f1 = f2 and φ1 = φ2 + π/2

(f) f1 = f2 and φ1 = φ2 + π

7. 3.2

(a) Show that the three functions illustrated in Figure P3.1 are pairwise orthogonal over

the interval (-2,2).

(b) Determine the value of the constant A, that makes the set of functions in part (a)

an orthonormal set.

(c) Express the following waveform, x(t), in terms of the orthonormal set of part (b)

x(t) =





1 for 0 ≤ t ≤ 2

0 otherwise

8. 3.3 Consider the functions

ψ1(t) = exp(−|t|) ψ2(t) = 1− A exp(−2|t|)

Determine the constant, A, such that ψ1(t) and ψ2(t) are orthogonal over the interval

(−∞,∞).
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4.2 Assignment 4 Solutions

Sklar, 3.1: (a) f1 = f2 and φ1 = φ2

∫ 1.5T2

−1.5T2

s1(t) · s2(t)dt =
∫ 1.5T2

−1.5T2

s2
1(t)dt 6= 0

therefore, not orthogonal.

(b) f1 = 1
3
f2 and φ1 = φ2

Let φ1 = φ2 = 0,
∫ 1.5T2

−1.5T2

s1(t) · s2(t)dt =
1

2

∫ 1.5T2

−1.5T2

cos 2π
(

2

3
f2

)
tdt +

1

2

∫ 1.5T2

−1.5T2

cos 2π
(

4

3
f2

)
tdt (4.1)

=
sin 2π

4/3π(1/T2)
+

sin 4π

8/3π(1/T2)
= 0 (4.2)

therefore, orthogonal.

(c) f1 = 2f2 and φ1 = φ2 Let φ1 = φ2 = 0,

∫ 1.5T2

−1.5T2

s1(t) · s2(t)dt =
1

2

∫ 1.5T2

−1.5T2

(cos 2πf2t + cos 6πf2t)dt = 0

therefore, orthogonal.

(d) f1 = πf2 and φ1 = φ2 Let φ1 = φ2 = 0,

∫ 1.5T2

−1.5T2

s1(t) · s2(t)dt =
1

2

∫ b

a
cos(π − 1)2πf2tdt +

1

2

∫ b

a
cos(π + 1)2πf2tdt 6= 0

therefore, not orthogonal.

(e) f1 = f2 and φ1 = φ2 + π/2

∫ b

a
sin 2πf2t · cos 2πf2tdt = 0

therefore, orthogonal.

(f) f1 = f2 and φ1 = φ2 + π Let φ1 = 0,

∫ b

a
cos2(2πf2t) dt 6= 0

not orthogonal.

Sklar, 3.2 (a):

∫ 2

−2
ψ1(t)ψ2(t)dt =

∫ −1

−2
(−A)(−A)dt +

∫ 0

−1
(A)(−A)dt +

∫ 1

0
(A)(A)dt +

∫ 2

1
(−A)(A)dt

= A2 − A2 + A2 − A2 = 0
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∫ 2

−2
ψ1(t)ψ3(t)dt =

∫ −1

−2
(−A)(−A)dt +

∫ 0

−1
(A)(−A)dt +

∫ 1

0
(A)(−A)dt +

∫ 2

1
(−A)(−A)dt(4.3)

= A2 − A2 − A2 + A2 = 0

∫ 2

−2
ψ2(t)ψ3(t)dt =

∫ 0

−2
(−A)(−A)dt +

∫ 2

0
(A)(−A)dt = 2A2 − 2A2 = 0

(b): ∫ 2

−2
ψ2

3(t)dt =
∫ 0

−2
A2dt = 2A2 + 2A2 = 4A2

To be orthonormal, 4A2 = 1 which implies A = 1/2.

(c): x(t) = ψ2(t)− ψ3(t)

Sklar, 3.3: the correlation between ψ1(t) and ψ2(t) is

R =
∫ 0

−∞
et(1− Ae2t) dt +

∫ ∞

0
e−t(1− Ae−2t) dt

=
∫ 0

−∞
(et − Ae3t) dt +

∫ ∞

0
(e−t − Ae−3t) dt

=

[
et − Ae3t

3

]0

−∞
+

[
−e−t +

Ae−3t

3

]∞

0

= 1− A

3
− [−1 +

A

3
] = 2− 2A

3

In order to make ψ1(t) and ψ2(t) orthogonal, we need R = 0, which solves A = 3.
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5. EXPERIMENT 1: SAMPLING THEORY

1. Objectives:

• In this experiment you will investigate Sampling Theorem.

2. Prelab Assignment:

Given signal x(t) = sinc(t):

1. Find out the Fourier transform of x(t), X(f), sketch them.

2. Find out the Nyquist sampling frequency of x(t).

3. Given sampling rate fs, write down the expression of the Fourier transform of xs(t), Xs(f)

in terms of X(f).

4. Let sampling frequency fs = 1Hz. Sketch the sampled signal xs(t) = x(kTs) and the

Fourier transform of xs(t), Xs(f).

5. Let sampling frequency fs = 2Hz. Repeat 4.

6. Let sampling frequency fs = 0.5Hz. Repeat 4.

7. Let sampling frequency fs = 1.5Hz. Repeat 4.

8. Let sampling frequency fs = 2/3Hz. Repeat 4.

9. Design a Matlab function to calculate the Fourier transform of a sampled signal xs(t),

Xs(f) =
∑

k x(kTs) exp(−j · 2πf · kTs). This is necessary in your experiments.

NOTE: In Matlab and this experiment, sinc(t) is defined as sinc(t) = sin(πt)/(πt). Under this

definition: sinc(2Wt) → 1/(2W ) rect(f/2W ).

3. Procedure:
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1. Design Matlab programs to illustrate items 4-8 in Prelab. You need to plot all the graphs.

2. Compare your results with your sketches in your Prelab assignment and explain them.



6. EXPERIMENT 2: BINARY SIGNALLING FORMATS

1. Objectives:

In this experiment you will investigate how binary information is serially coded for transmission

at baseband frequencies. In particular, you will study:

• line coding methods which are currently used in data communication applications;

• power spectral density functions associated with various line codes;

• causes of signal distortion in a data communications channel;

• effects of intersymbol interference (ISI) and channel noise by observing the eye pattern.

2. Prelab Assignment:

1. Given the binary sequence b = {1, 0, 1, 0, 1, 1}, sketch the waveforms representing the

sequence b using the following line codes:

(a) unipolar NRZ;

(b) polar NRZ;

(c) unipolar RZ;

(d) bipolar RZ;

(e) manchester.

Assume unit pulse amplitude and use binary data rate Rb = 1 kbps.

2. Determine and sketch the power spectral density (PSD) functions corresponding to the

above line codes. Use Rb = 1 kbps. Let f1 > 0 be the location of the first spectral null in

the PSD function. If the transmission bandwidth BT of a line code is determined by f1,

determine BT for the line codes in question 1 as a function of Rb.
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3. Procedure:

A. Binary Signalling Formats: Line Code Waveforms

Binary 1’s and 0’s such as in pulse-code modulation (PCM) systems, may be represented in

various serial bit signalling formats called line codes. In this section you will study signalling

formats and their properties.

A.1 You will use the MATLAB function wave gen to generate waveforms representing a binary

sequence:

wave gen( binary sequence, ’line code name’, Rb )

where Rb is the binary data rate specified in bits per second (bps). If you use the

function wave gen with the first two arguments only, it will default to the binary data

rate set by the variable binary data rate, which is 1,000 bps. Create the following

binary sequence:

À b = [1 0 1 0 1 1];

Generate the waveform representing b, using unipolar NRZ line code with Rb =

1 kbps and display the waveform x.

À x = wave gen(b, ′unipolar nrz′, 1000);

À waveplot(x)

A.2 Repeat step A.1 for the following line codes:

• polar NRZ (’polar nrz’);

• unipolar RZ (’unipolar rz’);

• bipolar RZ (’bipolar rz’);

• manchester (’manchester’).

You may want to simplify your command line by using:

waveplot( wave gen( b, ’line code name’)

Since you will compare waveforms at the same Rb, you can use the function wave gen

with only two arguments.

Q2.1
For the above set of line codes determine which will generate a waveform with

no dc component regardless of binary sequence represented. Why is the absence of a dc

component of any practical significance for the transmission of waveforms?
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A.3 Power spectral density (PSD) functions of line codes: Generate a 1,000 sample

binary sequence:

À b = binary(1000);

Display the PSD function of each line code used in part A.1:

À psd(wave gen(b,′ line code name′));

Let:

fp1: first spectral peak; fn1: first spectral null

fp2: second spectral peak; fn2: second spectral null

such that all f(.) > 0. Record your observations in Table 2.1.

Table (2.1)

Rb = fp1 fn1 fp2 fn2 BT

unipolar NRZ

polar NRZ

unipolar RZ

bipolar NRZ

manchester

Location of the first spectral null determines transmission bandwidth BT .

A.4 To illustrate the dependence of the PSD function on the underlying binary data rate, use

the manchester line code and vary Rb:

À psd(wave gen(b,′ manchester′, Rb))

where Rb ∈ {5 kbps, 10 kbps, 20 kbps}. You may replace manchester by any other line

code used in part A.1. Observe the location of spectral peaks and nulls and relate them

to Rb.

Q2.2
For a baseband data communications channel with usable bandwidth of 10 kHz,

what is the maximum binary data rate for each of the line codes examined in part A.1.
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B. Channel Characteristics

In this part you will simulate characteristics of a communications channel.

CHANNELINPUT OUTPUT

NOISE

Fig 2.1 Channel model

The MATLAB function that represents the channel response is channel which is called with

the following arguments:

channel( input, gain, noise power, bandwidth )

B.1 Create a 10 sample binary sequence b and generate a waveform representing b in polar

NRZ signalling format. Use Rb = 1 kbps.

À b = binary(10);

À x = wave gen(b,′ polar nrz′, 1000);

From your observation in part A, determine the transmission bandwidth BT of x:

BT = Hz

B.2 Consider a baseband data transmission channel with unity gain and additive white Gaus-

sian noise (AWGN) where the noise power is 10−2 W and the channel bandwidth is 4.9 kHz.

Transmit waveform x over this channel. Display the channel input and output waveforms:

À y = channel(x, 1, 0.01, 4900);

À subplot(211), waveplot(x);

À subplot(212), waveplot(y);

If the signalling format is polar NRZ at Rb = 1 kbps, estimate the transmitted sequence

from the display of the channel output waveform.

b̂ =

Compare your estimate with the original sequence b.
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B.3 Effect of channel noise on the transmitted waveform: Gradually increase the

channel noise power while keeping the channel bandwidth at 4.9 kHz and observe changes

in the channel output.

À y = channel(x, 1, sigma, 4900);

À waveplot(y);

where sigma ∈ {0.1, 0.5, 1, 2, 5}. At what noise power level, does the channel output

waveform becomes indistinguishable from noise?

B.4 You can also observe effects of increasing channel noise power by looking at the PSD of

the channel output waveform.

À b = binary(1000);

À x = wave gen(b,′ polar nrz′, 1000);

À clf; subplot(121); psdf(x);

À subplot(122); psdf(channel(x, 1, 0.01, 4900));

À hold on;

À subplot(122); psdf(channel(x, 1, 1, 4900));

À subplot(122); psdf(channel(x, 1, 5, 4900));

Q2.3
Since the channel noise is additive and uncorrelated with the channel input,

determine an expression that will describe the PSD of the channel output in terms of the

input and noise PSD functions.

B.5 Effects of channel bandwidth on transmitted waveform: Distortion observed in

the time display of the channel output is due to finite bandwidth of the channel and due

to noise. To study distortion due to channel bandwidth only, set noise power to zero and

regenerate the channel output waveform:

À hold off; clf;;

À b = binary(10);

À x = wave gen(b,′ polar nrz′, 1000);

À subplot(211), waveplot(x);
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À subplot(212), waveplot(channel(x, 1, 0, 4900));

B.5 Investigate effects of channel bandwidth on the output waveform.

À subplot(212), waveplot(channel(x, 1, 0, bw));

where bw ∈ {3000, 2000, 1000, 500}. Observe the delay in the output waveform due to

filtering characteristics of the channel. Plot the input and output waveforms. Determine

the appropriate sampling instants for the decoding of the waveform for the case bw = 500.

C. Eye Diagram

Effects of channel filtering and noise can be best seen by observing the output waveform in

the form of an “eye diagram”. The eye diagram is generated with multiple sweeps where each

sweep is triggered by a clock signal and the sweep width is slightly larger than the binary data

period Tb = 1/Rb. In this simulation the eye diagram is based on a sweep width of 2Tb.

C.1 Generation of Eye Diagram:

À b = [1 0 0 1 0 1 1 0];

À x = wave gen(b,′ polar nrz′, 1000);

À clf;

À subplot(221), waveplot(x);

À subplot(223), eye diag(x);

The eye diagram for the waveform x represents what you should expect to see for an

undistorted signal. To observe how the eye diagram is generated and to observe effects

of signal distortion as the signal x is transmitted over a finite bandwidth channel with no

noise component:

À y = channel(x, 1, 0, 4000);

À subplot(222), waveplot(y);

À subplot(224), eye diag(y,−1);

If the second argument to the function eye diag is negative, you have to hit the Return

key for the next trace to be displayed. This will assist you to understand how the eye

diagram is generated.



6. Experiment 2: Binary Signalling Formats 47

C.2 Key parameters to be measured with an eye diagram are shown below.
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Fig 2.2 Interpretation of the eye pattern

A time interval over which the waveform can be sampled;

B margin over noise;

C distortion of zero crossings;

D slope: sensitivity to timing error;

E maximum distortion;

t∗ optimum sampling instant measured with respect to the time origin. If the binary data

period is Tb, then the waveform will be sampled at t∗, t∗ + Tb, t∗ + 2Tb, . . . for signal

detection.

Generate the eye diagram from a polar NRZ waveform at the channel output for values

of noise variance s2 and channel bandwidth bw shown in Table 2.2. Record t∗, A and B

for each set of s2 and bw.

À clf;

À b = binary(100));

À x = wave gen(b,′ polar nrz′, 1000);
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Table 2.2

Polar NRZ Line Code

s2 bw t∗ A B

3000

0.01 2000

1000

0.02

0.08 4000

0.10

À eye diag(channel(x, 1, s2, bw));

C.3 Repeat step C.2 for manchester line code and record your results in Table 2.3.

Table 2.3

Manchester Line Code

s2 bw t∗ A B

3000

0.01 2000

1000

0.02

0.08 4000

0.10

Q2.4
When you compare the eye diagrams from C.2 and C.3 for s2 = 0.01 and

bw = 1000, for which line code do you observe a “reasonable” eye diagram? Explain the

difference in terms of the respective line code properties.

C.4 Generate eye diagrams as in step C.2 for polar RZ and unipolar RZ and unipolar NRZ

line codes and observe how the line code dictates the shape and the symmetry of the eye

diagram.



7. EXPERIMENT 3: MATCHED FILTER AND BIT ERROR RATE (BER)

1. Objectives:

In this experiment you will investigate the signal detection process by studying elements of a

receiver and of the decoding process. In particular you will:

• investigate the characteristics of matched filters;

• study performance of various receiver structures based on different receiver filters by

measuring probability of bit error;

• use the eye diagram as an investigative tool to set parameters of the detection process.

2. Prelab Assignment:

1. A matched filter is to be designed to detect the rectangular pulse

r(t) = rect
(t− Tb/2

Tb

)
, with Tb = 1 msec.

(a) Determine the impulse response of the matched filter.

(b) Determine the output of the matched filter if r(t) is the input.

(c) Repeat parts (a) and (b) for a triangular pulse of 10 msec duration.

2. Let Y (t) = X(t) + n(t), represent the waveform at the output of a channel. X(t) is a

polar NRZ waveform with unit pulse amplitude and binary data rate Rb of 1 kbps. n(t)

is a white noise process with PSD function:

Sn(f) = No/2 = 0.5× 10−4 W/Hz.

If Y (t) is applied to a matched-filter receiver:

(a) Determine the rms value of n(t) and the peak signal amplitude at the output of the

matched filter.
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(b) Determine Eb, the average energy of X(t) in a bit period.

(c) Determine the probability of bit error Pe = Q(
√

2Eb/No).

3. If Y (t) in Question 2 is applied to a RC-filter with frequency response:

Hrc(f) =
1

1 + j2πfRC
,

with RC = 1/(2000π),

(a) Determine the peak signal amplitude and rms value of the noise at the filter output;

(b) Determine the probability of bit error Pe, if X(t) were to be detected by a receiver

based on the RC-filter.

3. Procedure:

A. Characteristics of Matched Filters

A.1 Generate a rectangular pulse with unit pulse amplitude and 1 msec pulse duration.

À r = wave gen(1,′ polar nrz′, 1000);

A.2 Display r and the impulse response of a matched filter based on r.

À subplot(311), waveplot(r);

À subplot(312), match(′polar nrz′);

A.3 Observe the matched filter output if r is applied to its input.

À rm = match(′polar nrz′, r);

À subplot(313), waveplot(rm);

Q3.1
Determine the time when the filter output reaches its maximum value. How is

this time related to the waveform r?

A.4 Repeat parts A.1–A.3 for a triangular pulse with 10 msec pulse width and unit peak

amplitude.

À r = wave gen(1,′ triangle′, 100);

À clf; subplot(311), waveplot(r);

À subplot(312), match(′triangle′);
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À rm = match(′triangle′, r);

À subplot(313), waveplot(rm);

Q3.2
If the triangular pulse width is changed to 1 msec, determine the peak amplitude

of the matched filter output?

A.5 Repeat parts A.1–A.3 for a manchester pulse with 10 msec pulse width and unit peak

amplitude. Predict the matched filter impulse response and matched filter output. Verify

your predictions using MATLAB functions.

A.6 Generate a polar NRZ waveform that represents the 5-sample binary sequence [ 1 0 0 1

0 ]. The binary data rate Rb is 1 kbps and the pulse amplitude A is 1 V.

À x5 = wave gen([1 0 0 1 0], ′polar nrz′, 1000);

À clf, subplot(211), waveplot(x5);

Record the waveform x5

A.7 Apply x5 to a matched filter. Record output.

À subplot(212), waveplot(match(′polar nrz′, x5));

Q3.3
Construct the waveform at a matched filter output if the input is a unipolar

NRZ waveform that represents the binary sequence [ 1 0 0 1 0 ].

B. Signal Detection

B.1 Generate a 10-sample binary sequence and a waveform that represents this binary se-

quence in polar NRZ signalling format.

À b10 = binary(10);

À x10 = wave gen(b10,′ polar nrz′, 1000);

À subplot(211), waveplot(x10);

B.2 Apply x10 to a channel with 4.9 kHz bandwidth and AWGN where the noise power is 2

W. Display the channel output waveform y10:

À y10 = channel(x10, 1, 2, 4900);
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À subplot(212), waveplot(y10);

Decode the binary sequence from the waveform y10:

b̂10 =

B.3 Apply y10 to a matched filter. Display the output waveform z10:

À z10 = match(′polar nrz′, y10);

À subplot(212), waveplot(z10);

B.4 Let Tb be the binary data period. Sample the output of the matched filter at k Tb, k =

1, . . . , 10 and apply the following decision rule:

b̂k =

{
0, if sample value > 0;

1, if sample value < 0;

where b̂k is the estimated value of the kth element of the binary sequence b10. Apply this

decision rule on the matched filter output z10:

b̂10 =

Compare your decoded sequence with the original sequence b10:

Q3.4
Comment on whether it is easier to decode the transmitted binary sequence

directly from the channel output y10 or from the matched filter output z10. If sampling

instants other than those specified above are used, the probability of making a decoding

error will be larger. Why?

C. Matched-Filter Receiver

C.1 Generate a 2,000-sample binary sequence b and a polar NRZ waveform based on b:

À b = binary(2000);

À x = wave gen(b,′ polar nrz′);

Apply x to a channel with 4.9 kHz bandwidth and channel noise power of 0.5 W. Let y

be the channel output waveform.

À y = channel(x, 1, 0.5, 4900);
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C.2 Apply y to a matched filter. Display the eye diagram of the matched filter output z.

À z = match(′polar nrz′, y);

À eye diag(z);

From the eye diagram, determine the optimum sampling instants and threshold value

v th for the detector to decode the transmitted binary sequence b. Sampling instants for

the matched filter output are measured with respect to the time origin. For example, if

the binary data period is Tb and the sampling instant parameter is set to ti, then the

detector will sample the signal at ti, ti + Tb, ti + 2Tb, . . . etc.

v th = V.

sampling instant = sec.

Use v th and sampling instant in the detector which will operate on the matched filter

output. Record the resulting probability of bit error Pe (BER) in Table 3.1.

À detect(z, v th, sampling instant, b);

Table 3.1

σ2
n(W ) Pe empirical Pe theoretical

0.5

1.0

1.5

2.0

C.3 Repeat C.1–C.2 for channel noise power of 1, 1.5, and 2 W without displaying the eye

diagram of the matched filter output z. Record Pe results in Table 3.1. Remark: In

Experiment 2 you have observed that the optimum sampling instants and the threshold

value are independent of channel noise power. Therefore, you can use the optimum

sampling instants determined in part C.2 to decode the matched filter output for different

channel noise power levels.

C.4 If different sampling instants other than the optimum values are used, the resulting BER

will be larger. You can observe this by decoding the binary sequence using values for the

sampling instant parameter that are 0.9 and 0.5 times the optimal value used in part

C.3.

Q3.5
Evaluate theoretical probability of bit error values for all cases considered above

and record in Table 3.1. Note that the PSD function of a white noise process can be
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determined as:

Sn(f) =
No

2
=

σ2
n

2× system bandwidth
,

where the system bandwidth in this experiment is 4.9 kHz.

D. Low-Pass Filter Receiver

D.1 Apply a rectangular pulse to a first-order RC-filter of 1 kHz bandwidth. Display the filter

output and measure the peak amplitude Ar:

À r = wave gen(1,′ unipolar nrz′); r lpf = rc(1000, r);

À subplot(211); waveplot(r);

À subplot(212); waveplot(r lpf);

Ar = V.

D.2 Generate 2,000 samples from a zero-mean white noise sequence of 0.5 W power. Apply

the noise sequence to the RC-filter. Record the rms value of the output noise power.

À n = gauss(0, 0.5, 2000);

À meansq(rc(1000, n));

σ2
n = W.

Q3.6
From the results in parts D.1 and D.2, determine the ratio Ar/σn, where Ar is

the peak signal amplitude measured in D.1 and σn is the rms value of the output noise.

If y in part C.1 is applied to a receiver which uses the above RC-filter, determine the

resulting BER.

D.3 Regenerate y from part C.1. Apply y to the RC-filter. Display the eye diagram of the

output waveform z lpf.

À y = channel(x, 1, 0.5, 4900);

À z lpf = rc(1000, y);

À clf, eye diag(z lpf);

D.4 From the eye diagram, determine the optimum sampling instant and threshold value.

Decode the binary sequence form z lpf.

À detect(z lpf, v th, sampling instant, b);

Compare the resulting BER with the BER evaluated in step C.2.
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D.5 Repeat part D.4 for the channel noise power of 1, 1.5, and 2 W. Record results in Table

3.2.

Table 3.2

Pe

σ2
n(W ) BW = 1.0 kHz BW = 0.5 kHz

0.5

1.0

1.5

2.0

D.6 Repeat parts D.3 – D.5 for a first-order RC-filter with 500 Hz bandwidth. Record the

resulting BER values in Table 3.2.

À z lpf = rc(500, y);

À eye diag(z lpf);

À detect(z lpf, v th, sampling instant, b);

Q3.7
Explain why the BER resulting from a low-pass filter of 500 Hz bandwidth is

smaller than the BER resulting from a low-pass filter of 1 kHz bandwidth. Will the BER

be further decreased if a low-pass filter of 100 Hz bandwidth is used?



8. EXPERIMENT 4: DIGITAL MODULATION

1. Objectives:

In this experiment you will apply concepts of baseband digital transmission and analog contin-

uous wave modulation to the study of band-pass digital transmission. You will examine:

• generation of digital modulated waveforms;

• coherent (synchronous) and noncoherent (envelope) detection of modulated signals;

• system performance in the presence of corrupting noise.

2. Prelab Assignment:

1. Consider the binary sequence b = [ 1 0 0 1 0 ]. Let the bit rate Rb be 1 kbps and let the

peak amplitude of all digital modulated waveforms be set to 1 V.

(a) Sketch the ASK waveform representing the binary sequence b using a carrier fre-

quency of 5 kHz.

(b) Sketch the PSK waveform representing the binary sequence b using a carrier fre-

quency of 5 kHz.

(c) Let the mark and space frequencies used by an FSK modulator be set to 3 and 6 kHz,

respectively. Sketch the resulting FSK waveform representing the binary sequence

b.

2. Sketch the power spectral density function for each of the modulated signals in Question

1.

3. If an ASK signal is applied to the input of a coherent detector shown in Fig. 4.1, sketch

the waveforms at the output of each block.

3. Procedure:
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In this experiment, the binary data rate Rb is 1 kbps and peak modulated signal amplitude is

1 V. The bit period Tb = 1/Rb is represented by 100 samples.

A. Generation of Modulated Signals

Amplitude-Shift Keying (ASK)

A.1 Generate a binary sequence with the first 5 bits [ 1 0 0 1 0 ]:

À b = [1 0 0 1 0 binary(45)];

A.2 To generate the ASK signal, sa, with a carrier frequency of 8 kHz:

• generate a unipolar NRZ signal xu, from the sequence b;

• mix xu with the output of an oscillator operating at 8 kHz.

À xu = wave gen(b,′ unipolar nrz′);

À sa = mixer(xu, 8000);

A.3 Display the first 5 bits of xu and sa in the binary sequence b. Compare the two waveforms.

À subplot(211), waveplot(xu, 5);

À subplot(212), waveplot(sa, 5);

Also display and record the respective PSD functions over the frequency interval [ 0, 20

kHz ].

À fr = [0, 20000];

À subplot(211), psd(xu, fr);

À subplot(212), psd(sa, fr);

Phase-Shift Keying (PSK)

A.4 To generate the PSK signal sp, with a carrier frequency of 8 kHz:

• generate a polar NRZ signal xp, from the sequence b;

• mix xp with the output of an oscillator operating at 8 kHz.

À xp = wave gen(b,′ polar nrz′);

À sp = mixer(xp, 8000);
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A.5 Display the first 5 samples of the waveforms xp and sp:

À subplot(211), waveplot(xp, 5);

À subplot(212), waveplot(sp, 5);

What is the phase difference between sp and the carrier sin(2πfct) during the first and

second bit periods?

A.6 Display the PSD functions of xp and sp over the frequency interval [ 0, 20 kHz ]. Record

main characteristics of each PSD function.

À fr = [0, 20000];

À subplot(211), psd(xp, fr);

À subplot(212), psd(sp, fr);

Frequency-Shift Keying (FSK)

A.7 To generate the continuous phase FSK signal sf, with mark and space frequencies of 4

and 8 kHz, respectively:

• generate a polar NRZ signal from the sequence b;

• mix xp apply the polar waveform to the input of a voltage controlled oscillator

(VCO). In this experiment the VCO has the free-running frequency set to 6 kHz and

has frequency sensitivity of -2 kHz/V.

À xf = wave gen(b,′ polar nrz′);

À sf = vcom(xf);

A.8 Display waveforms xf and sf for 0 < t < 5 Tb.

À subplot(211), waveplot(xp, 5);

À subplot(212), waveplot(sf, 5);

Display and record the PSD function of the FSK signal.

À clf;

À psd(sf, fr);

Q4.1
How can you generate an FSK signal from two ASK signals? For a system where

efficient bandwidth utilization is required, which modulation scheme would you prefer?
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B. Coherent and Noncoherent Detection

Coherent Detection

B.1 A coherent detector for ASK and PSK signals is depicted in Fig. 4.1.

S/H

LO

y(t) z(t)

ω

FILTER
MATCHED

bit sync

s  (t)

vTH

b̂
a

sin(    t)c

Fig. 4.1 Coherent Detector

To demodulate the ASK signal sa, first multiply sa by a locally generated carrier which

has the same frequency and phase as the carrier used in generating sa. Display the

waveform ya at the output of the multiplier for the first five bit periods. Also display and

record the corresponding PSD function over the interval fr.

À ya = mixer(sa, 8000);

À clf, subplot(211), waveplot(ya, 5);

À subplot(212), psd(ya, fr);

B.2 Apply ya to a matched filter and record its output for 0 < t < 5 Tb.

À za = match(′unipolar nrz′, ya);

À subplot(212), waveplot(za, 5);

Q4.2
Determine the impulse response of the matched filter. Note that za is similar

to the output of the matched filter for a unipolar NRZ signal. Why?

B.3 The major difficulty in implementing a coherent detector is carrier synchronization. In

order to achieve optimum performance, the local oscillator should have the same phase and

frequency as the incoming carrier. Phase or frequency deviation will result in degradation

of detection performance.

To observe the effect of phase error, demodulate sa using a local oscillator whose output

is sin(2πfc + φ). Here, φ is the phase error measured with respect to the carrier. Record

the peak signal amplitude at the matched filter output for each phase error shown in

Table 4.1.

À phase error = 0;
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À ya = mixer(sa, 8000, phase error));

À za = match(′unipolar nrz′, ya);

À subplot(212), waveplot(za, 5);

Table 4.1

Phase Error Peak Amplitude [V]

0◦

20◦

60◦

80◦

120◦

Q4.3
Recall that the BER resulting from the detection of a signal in the presence of

noise, is a function of peak signal amplitude at the receiver filter output. Determine from

the results displayed in Table 4.1 which phase error will result in smallest BER.

B.4 Demodulate sa with 60◦ and 120◦ phase errors. Decode the matched filter output to

recover the first five bits of the sequence b. Record each decoded sequence and comment

on the difference.

B.5 To observe the effect of frequency deviation in demodulating an ASK signal, demodulate

sa with a local oscillator set to 7,900 Hz. Display and compare the demodulated signals

ya and ya1.

À ya1 = match(′unipolar nrz′, mixer(sa, 7900));

À subplot(211), waveplot(ya, 5);

À subplot(212), waveplot(ya1, 5);

Could the original binary sequence be recovered from ya1? Consider a second case where

the local oscillator frequency is set to 7,985 Hz. Demodulate sa and generate the matched

filter output:

À ya2 = match(′unipolar nrz′, mixer(sa, 7985));

À subplot(211), waveplot(ya, 5), subplot(212), waveplot(ya2, 5);

Determine the frequency of the envelope of the matched filter output.

Q4.4
Consider an ASK signal sa(t) with carrier frequency of fc. If sa(t) is demodulated

by multiplying with the output of a local oscillator set to fo, such that fo 6= fc, the
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envelope of detector matched filter output is modulated by a sinusoid. Determine the

frequency of this modulating signal as a function of fc and fo.

C. System Performance Under Noise

Coherent Detection

C.1 Generate an ASK signal representing a 500-sample binary sequence:

À b = [1 0 0 1 0 binary(495)];

À sa = mixer(wave gen(b,′ unipolar nrz′), 8000);

C.2 Apply sa to a channel with unity gain, channel noise σ2
n = 1 W, and of sufficient band-

width such that no distortion is introduced to the signal. Display the ASK signal sa and

the channel output y for 0 < t < 5Tb.

À y = channel(sa, 1, 1.5, 49000);

À subplot(211), waveplot(sa, 5);

À subplot(212), waveplot(y, 5);

C.3 Use a coherent detector to demodulate y. Display the eye diagram of the matched filter

output.

À zm = match(′unipolar nrz′, mixer(y, 8000));

À clf, eye diag(zm);

From the eye diagram, determine optimum sampling instants and the threshold value.

Apply zm to the decision circuit, and record the resulting probability of bit error.

À detect(zm, vth, sampling instant, b);

Q4.5
Compute the theoretical probability of bit error for the case considered above.

Recall that the PSD function of the channel noise is

Sn(f) =
No

2
=

σ2
n

2× system bandwidth
.

The system bandwidth in this experiment is 50 kHz.


