1 Q1 (ISA=30 marks)

1.1 15 marks

Convert to MIPS Assembly, then find the performance (total time) of the following C code assuming:
1- ideal pipelining (no stalls and no start up time)
2- all instructions and data accesses are in cache (100% hit).
3- Processor speed = 1 GHz.

```
for(i=1; i<=512; i++) {
    Y[i] = Y[i] + A*X[i];
}
```

(Assume A, X[i], Y[i] are 32 bits)
1.2 15 marks

Convert the above code to MIPS Instructions for Vector Processing, and find the performance in total time assuming the following:-
1- MIPS uses a Vector processor with fully pipelined function units and vector registers of 128 elements.
2- MIPS Vector processor runs at 1 GHz.
3- All instructions are in cache (100% hit), data accesses use interleaved memory for load/store and are fully pipelined with no stalls.
2 Q2 (Advanced Pipelining= 25 marks)

2.1 scheduling=15 marks

The following code runs in DLX architecture, FP ALU op has latency= 3 cycles, FP ALU op to SD latency= 2 cycles and LD latency = 1 cycle.

loop:

LD F0, 0(R1) ; Load X[i]
LD F4, 0(R2) ; Load Y[i]
ADDD F6, F4, F0; X[i]+Y[i]
SD 0(R2), F6
SUBI R1,R1,#8
SUBI R2,R2,#8
BNEQZ R1, loop

Find the following:

- All types of hazards.

- The performance of the above (cycles per loop).
• Use loop unrolling 3 times and schedule the code to improve performance. Find the performance of the code.
2.2 multiple-issue=10 marks

In the above example of 2.1, assume that the DLX uses a superscalar to issue two instructions on each clock (1 Int, 1 FP). Write the code for the superscalar and find the performance in cycles per loop (unroll loop 3 times).
3 Q3 (Advanced Pipelining= 15 marks)

The following code runs in a DLX architecture with scoreboard, FP ADD op has latency= 2 cycles, FP MULTD latency= 8 cycles, LD latency = 1 cycle, and 2 ADD/SUB function units.

LD F2, 0(R1) ; Load X[i]
MultD F4,F0, F2 ; aX[i]
ADDD F10, F4, F8
SUBD F8,F8,F0
SD F8, 0(R1)

• Find the Scoreboard instruction status at the end of code execution.
4 Q4 (Multiprocessor Systems= 30 marks)

4.1 =4

Compare the advantages and disadvantages of write invalidate versus write up-
date for multiprocessor systems.

4.2 =3

Explain how does multiprocessor system with two level cache maintain co-
herency.
Assume a shared memory multiprocessor system that uses the write invalidate snooping coherency protocol. Find the state of the cache block after each of the following operations:-

- Processor read miss to a private block in its cache
- Processor write hit to invalid block in its cache
- Processor write miss to shared block in its cache
- Bus read operation hit to a private block in cache
In a shared memory multiprocessor system assume the following:-
1-the system uses the write invalidate coherency protocol.
2-All processor’s speed = 1 GHz. Processor P1 has R1= 100 and Processor P2 has R3= 200. All other registers =0.
3-Each processor uses a direct mapped cache. The cache size = 512 Kbytes, block size= 8 bytes. The cache speed is the same as processor speed.
4-The bus width is 8 bytes and bus latency and waiting time = 200 ns. Memory latency = 100 ns.

The above system is executing the following events:-

<table>
<thead>
<tr>
<th>step#</th>
<th>P1</th>
<th>P2</th>
<th>OUTCOME in C1 and C2, TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LW R4, 100(R1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>LW R5, 104(R1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SW 100(R1), R7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>LW R16,100(R1)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LW R12, 100(R1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find the outcome in processor caches (C1,C2) and time required to perform each event in the above code (state, processor, bus, memory operations and cost in time).