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ABSTRACT 
In this paper, we present a system partitioning technique 
in which the input system specification is based on C++ 
language.  The proposed technique processes data and 
precedence dependencies simultaneously in one graph 
representation DADGP, which is an extension of Directed 
Acyclic Graph (DAG).  The DADGP (Directed Acyclic 
Data dependency Graph with Precedence) based 
partitioning technique minimizes the communication 
overhead as well as overall system execution time under 
real-time deadline. It also tries to minimize the cost of 
target system in terms of hardware area.  
 
Keywords:  Hardware/Software Co-design, System 
partitioning, Mapping and Scheduling. 
 
INTRODUCTION 
 
     In order to meet the market demand, designers now 
need to produce complex embedded systems in a shorter 
period of time.  Therefore, waiting until the final 
implementation of the system before understanding the 
hardware-software interactions is no longer acceptable.  
Hardware-software tradeoffs must be analyzed early in 
the design cycle to reduce the design and development 
time.  However, current hardware-software co-design 
techniques cannot effectively handle hardware and 
software integration [1].   
 
     Edwards and Forrest addressed the hardware-software 
partitioning by finding the bottleneck in the software and 
moving that critical region to hardware [2].  Their method 
does not take data transfer into consideration, and overall 
improvement has not been as good. Mapping and 
Implementation-Bin Selection (MIBS) [3] partitioning 
method uses Directed Acyclic Graph (DAG) to represent 
computational blocks and data dependencies.  The Global 
Criticality Local Phase (GCLP) algorithm first traverses 
the DAG and maps each node to either hardware or 
software to minimize execution time and hardware area.  
However, the algorithm does not take communication 
overhead into account when calculating the objective 
function for the execution time.  A similar partitioning 
algorithm was also proposed by Ondghiri and others [4] 
with a variation in the different search technique to 
explore hierarchical design space.  Their result showed 

that the optimal solution exists at some level between the 
two extremes of high and low granularity level.  
 
     Most of the partitioning algorithms employed either 
dependency or execution graph as an input to generate a 
new set of partitioned hardware and software blocks.  
These algorithms seem to work in ideal cases, and are not 
applicable in most real applications due to restricted 
specifications, constraints, and complexity.  The 
partitioning algorithm presented in this paper has tried to 
overcome some of these limitations by using C++ as 
system specification language and by considering a 
number of new system constraints during partitioning. We 
present some improvements in the hardware-software co-
synthesis components.  Our partitioning algorithm 
processes C++ based system specification to generate 
optimal hardware-software partition set. The use of C++ 
language as a system specification language has allowed 
flexible design representation in a unified design 
environment. The algorithm converts the system 
specification into a Directed Acyclic Data Dependency 
Graph with Precedence (DADGP) for further analysis.  
The DADGP is then mapped to appropriate software and 
hardware modules, and scheduled for further verification.  
If the scheduled result is satisfactory under certain 
constraints (e.g. improvement in the overall performance), 
the hardware mapping is accepted, and the algorithm 
continues until all the given constraints (hardware area, 
overall execution time, cost) are satisfied.     
 
SYSTEM SPECIFICATION 
 
      Defining a design specification to describe system 
level behavior is a challenging problem.  It requires high 
abstraction as well as fine details to reduce ambiguities 
during hardware software co-design.  Traditionally, these 
specifications were written in plain English to describe its 
system constraints and functionalities.  However, system 
description in English language can bring ambiguities and 
misinterpretations among designers creating high Non 
Recurring Expenses.   A lot of research has been done to 
create a unified co-design environment by proposing new 
design specification languages [5].  The idea is to capture 
the system specification more accurately by augmenting 
the HDL and high level programming languages to 
describe the entire system. MSC, SDL, PMSC and 
SystemC are some examples of theses languages [5, 6].   
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     To incorporate the possibility of ever-changing 
demand, we use textual representation for specification 
and graphical representation for system partitioning and 
scheduling.  C++ is used as the initial system specification 
language and through profiling, it is converted into a 
DADGP representation for partitioning and scheduling. 
The given system specification is translated into C++ in 
the form of modules so that each module can be evaluated, 
and mapped to the process space during profiling.  For 
example, during the block-matching step of MPEG, sum-
of-absolute-differences are calculated to measure the 
similarity between the macroblock and its search area.  If 
one needs to develop an IP block to calculate the sum-of-
absolute-differences, equation 1 is first translated into 
C++ specification. The partitioner uses the block 
matching C-code with its hardware module information 
(Figure 1a) to generate an initial DADGP (Figure 1b).  
 
  
 
 
 
   

Figure 1a: Hardware Module Data 
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M(i,j) is the object, and S(i,j) is the search space matrix. 
The block matching  C code 
for ( i=0 ; i<= 16 ; i++) { 

for (j=0;j<=16;j++) { 
 temp= abs(sub (M(i,j),S(i,j))); 
 result=sum(result,temp); 

} 
} 
 
HARDWARE-SOFTWARE 
PARTITIONING 
 
     The system-partitioning 
algorithm can be subdivided into 
three major components, namely 
profiling of C++, LD_path search, 
and mapping of LD_path and 
Scheduling. LD_path search and its 
mapping are repeated until an 
adequate solution is reached. The 
partitioning system flow chart is 
shown in Figure 2.  
 
Following assumptions are made 
for our partitioning technique. 

• Initial target architecture is 
of one processor core 

• Each DADGP node is executable with at least one 
PE  

• All the nodes of DADGP can be implemented in 
hardware and software. 

•  Inter PE communication is estimated by the amount 
of data transferred, and the transfer rate is constant.  

• Communication overhead is zero between the two 
PE if that two nodes are executed by the same PE 

• The partitioner has all the necessary information 
including: execution time of each node for different 
PEs, cost of adding PE, and inter PE communication 
overhead, as well as initial system constraints 
(required execution time, maximum hardware area). 

 
Profiling 
     If one can translate the system specification into 
software that fulfills the deadline requirements on the 
target platform then that is the optimal solution.  However, 
in most cases, all software solution is not possible for 
real-time embedded systems, and hardware software 
partitioning must be performed.  It is also vital to execute 
the C++ system specification on the actual target platform 
to accurately collect the profiling data.  The software 
profiling is a useful step to check for all software solution.  
The profiler translates each module of C++ system 
specification into nodes with the following information: 
 

• Execution time of each 
module 

• Start and completion time 
of each module 

• Amount of data transfer 
• The caller(s) of the 

module 
• The child(s) of the module 
• Module identification 
• Execution order 

 
The profiler uses the above 
information to generate the 
DADGP. The unique 
characteristic of DADGP is that 
it contains both data and 
precedence dependent edges to 
represent the system.  The data 
dependency edge is represented 
with an arrow symbol as shown 
in Figure 1b.  Two nodes are 
connected with data dependency edge when they have a 
producer-consumer relationship.  The precedence 
dependency edge is represented by a line to connect two 
independent nodes together.  The precedence dependency 
captures the order of execution between nodes and such 
nodes can be executed in parallel if desired.  A more 
detailed discussion on DADGP is provided as part of the 
mapping and scheduling section. 

PE component PE0 PE1 
sub 6 5 
abs 4 8 
sum 3 2 
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Mapping and Scheduling 
     DADGP is a super set of DAG with the only difference 
of having two types of connecting edges.  Our 
contribution to DAG is the introduction of precedence 
dependency edges to explicitly represent the 
independence and the execution orders between nodes.  
The DAG representation is not algorithmically friendly to 
capture non-parallel executions of independent nodes.  
Exposing the independence and introduction of 
parallelism between independent nodes are not always the 
best decision when optimizing the execution time of a 
system due to inter-PE communication overheads.  The 
incorporation of DADGP to our partitioning method has 
allowed us to only expose the necessary parallelism to 
capture a wide rage of solutions.  
 
     The Longest Delay path (LD_path) represents the 
longest execution route in a DADGP.  LD_path depends 
on the number of node hops, execution time of each node, 
and its corresponding inter PE communication overhead 
as given in equation 2. 
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Q
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j
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i en
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 ………..…………equation (2) 

where node in ∈ { 1n … Nn } that must be connected with 
any type of edges je ∈  E (all edges Q).  
 
LD_path can be found with the following equation. 

LD_Path= Max [LD time ( kp )]  ………...equation (3)  

where M is the total number of path in a given graph and 
k varies from 1 to M.   

p={ in … Nn , je … 1−Ne } is a path from one root to any 

ending node.   

P={ 1p ... Mp } is a collection of all paths from one root to 

any ending node. 
 
     Finding an LD_path in DADGP is similar to finding a 
bottleneck in the system.  The LD_paths can be used to 
improve the overall execution time by mapping one of the 
LD_path nodes to hardware.  A repeated searching and 
mapping of DADGP reduces the search space, and 
improves the convergence rate for an optimal solution.  
The LD_path searching algorithm is given below: 
 

Assume L = { ...1l Nl } 

for ( i = 1; i++; i <= N ) 
 P = Find_path( il ) 
max = 0; 
for ( i = 1; i++; i <= M ){ 
 temp = LD_time( ip ); 
 if ( temp > max ) then { 
 max = temp; 
 path = ip ; 
 } 
} 

 
     Mapping and scheduling of DADGP is the most 
sophisticated and important step of our partitioning 
algorithm.  One of the nodes in the LD-path is mapped to 
the optimal hardware.  However, to make such critical 
decision for a PE to be a dedicated hardware unit or a 
software task, following factors are taken into 
consideration.    

• Parallelism in DADGP nodes 
• PE resource limitation 
• PE Execution time of nodes 
• Inter PE communication 
• Hardware area (cost) 

 
     The partitioning algorithm starts by finding the 
LD_path in a given DADGP, and the execution time of 
LD_path is also calculated.  All the nodes in the LD_path 
are mapped to appropriate hardware one at a time and 
scheduled to calculate the overall system execution time.  
A node that allows maximum improvement of system 
execution time is finally mapped as hardware, and the 
DADGP is updated according to the final mapping 
decision.  This process is repeated for all the LD_paths as 
explained in the partitioning algorithm given below. 
 
Initialize the following: 

LD_path = { 1n … An , 1e … Be } /* A = number 
of node, B = number of edges*/ 
Previous_system_EXE = ∞; 
while( (System_EXE > Required_EXE) AND 
(Current_HW_area > Required_HW_area)){ 

LD_path = Find_LD_path(graph); 
//Find the LD_path  
   LD_path_EXE = LD_time(LD_path); 
// Calculate execution time of LD_path 
   Min_EXE = ∞;  
   for ( i = 1 ; i++ ; i <= A ){ 

G = map(DADGP, in );   
/*G is a new DADGP with the node in ∈  
LD_path nodes mapped as HW.*/ 

(EXE, S, G_prime) = schedule(G); 
// G_prime = updated G, S = schedule of  
// G,EXE = execution time of G 

if ( EXE < Min_EXE ) then{ 
  Min_EXE = EXE;      

graph = G_prime;  
  Final_S = S;  
 }  
   }    
if (previous_system_EXE < Min_EXE ) 
then return(graph);  
previous_system_EXE = Min_EXE;   
}     
return (G, Final_S);  
 
The working of scheduling function schedule (G) is 
summarized below: 
a) Start scheduling from the root of DADGP 
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Figure 4a: GDL Scheduled Results 
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b) Traverse down the tree and schedule the earliest 
starting time node 

c) If a node is connected with precedence dependency 
edge, check to see whether exposing parallelism can 
eliminate that edge.  If a precedence dependency edge 
is eliminated, the structure of the DADGP may 
change and some nodes can be disconnected from the 
original graph resulting in two separate DADGP. In 
this case, the new root of the disconnected DADGP 
must be combined to make one DADGP by 
connecting it self and the original root to a new 
dummy node called “start”. 

d) If multiple descendents (or roots) exist, force 
schedule all descendents (or roots) by adding 
necessary PE if required 

e) Update PE resource library and generate the total 
execution time by using the following equation:  

EXE = LD_path_EXE – in _exe + HW_exe  + IPC – 

Hidden_node_EXE  

where, in _exe = execution time of a node that is 

currently in interest, HW_exe = HW execution time 

of node in .   

IPC = value introduced by mapping node in  to 

additional HW, hidden_node_EXE = smaller 
execution time value between two parallel modules. 

 
 EXPERIMENT RESULTS 
 
     The following example demonstrates the ability of our 
partitioning algorithm to consider multiple descendants 
indirectly without the added calculation complexity.  
Considering GDL algorithm [7], and its complexity, the 
scheduling inherits the typical weakness of conventional 
list scheduling.  The GDL scheduler improved on list 
scheduling by quantifying the scheduling effects on the  

 
 P0 P1 

A 1 2 
B 2 2 
C 20 1 

 
Figure 3b: Module Data Table 

 
descendants of a node.  However, considering just the first 
descendants are not enough to estimate the global effect.  
Consider the example shown in Figure 3a and 3b.  The 
scheduled result from the GDL heuristic is presented in 
Figure 4a in the form of a Gantt chart. When node A is 
scheduled on P0, the GDL fails to consider the effect of 

processor selection for node C.  The final scheduling 
result suffers from a large inter-PE communication 
overhead between A and B.  It is however obvious that a 
better scheduling result will be to assign all the nodes to 
P1 as shown in Figure 4b.   
 
     The DAG of Figure 3a does not have any precedence 
dependency edges and therefore there are no parallelisms.  
Obtaining the LD_path of Figure 3a is simple because 
there is only one path.  Assuming that P0 is target 
processor and P1 is an additional PE hardware, the initial 
DADGP of the system is shown in Figure 5 (note that it is 
all software solution given by the profiler). The partitioner 
will first move node C to P1 to reduce the total execution 
time (C is the Min[EXE]).  In the next iteration, node B is 
moved to P1 to reduce the inter communication time with 
C.  In the third iteration, node A is finally moved to P1 to 
reduce the inter PE communication with B, and the 
optimal scheduling is obtained as shown in Figure 4b. 

 
 
 
 
 
 

Figure 5: All Software Solution 
 
     Now we compare our partitioning method with the 
partitioning algorithm presented by Yen and Wolf [8].  
The example is taken from Hou and Wolf [9] that 
contains DAG and a data table as shown in Figure 6.  The 
period 240 indicates the number of execution cycle of the 
DAG and deadline values indicate the finish time 
constraint of a node.  In partitioning the DAG of Figure 6, 
the partitioning algorithm by Yen and Wolf’s suggests 
that all nodes be scheduled on HW1 to meet the deadline 
constraints of 350 units/cycle. Their solution gives an 
execution time of 322 units with a cost of $50.  The 
overall system execution time is equal to 77280 
(240*322) time units.  Furthermore, the fastest optimal 
solution obtained was to schedule all tasks to HW2 [8]. 
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Figure 4b: Optimal Scheduling 
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This results in an execution time of 147 units with a cost 
of $100 while the overall execution time is equal to 35280 
(240*147) time units. 
 

 PE 
Tasks SW 

Cost=$20 
HW1 

Cost=$50 
HW2 

Cost=$100 
A 76 42 20 
B 460 185 80 
C 110 32 22 
D 82 63 25 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: DAG and Data table from Hou & Wolf 
 
     If one needs to design even higher 
performance system with tight 
deadlines by using the same data as in 
Figure 6, our DADGP partitioning 
algorithm have advantages over the 
existing partitioning algorithms.  The 
DAG can be easily transformed to 
DADGP as given in Figure 7 showing 
just two cycles of operation.  Initially, 
all the nodes are mapped and 
scheduled to SW (target processor) 
and the execution time of one cycle is 
728 time units with a cost of $20.  The 
overall system execution time is equal 
to 174720 (240*728) time units.  Our 
algorithm starts by mapping nodes that 
will optimize overall execution time 
and minimize cost.  Eventually, the 
algorithm will take advantage of the 
repeated execution components.  It 
will then map node A to HW1 from 
the 2nd execution cycle.  This mapping 
will force the scheduler to add 
additional HW1 to expose parallelism 
as shown in Figure 8a and 8b. 
   
     The scheduling of mapped DADGP 
of Figure 8a is shown in Figure 8b, 
where the execution of each cycle is 
still 322 time units. However the overall system execution 
time has improved significantly due to exploring 
parallelism.  The DADGP algorithm exposes various 

combinations of solutions from decreasing order of 

execution time and cost, to be selected by the designer  
Figure 8: Mapped and Scheduled DADGP 

 
according to their demand.  At some point during the 
execution of our algorithm, HW2 will be mapped and 
scheduled for each parallel execution.  In this case, the 
overall execution time of the system is equal to 17640 
(240/2 * 147) time units.  This gives 50% increase in speed 
as compared to the optimal solution provided by Yen and 
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Wolf.  However, such performance gain comes with an 
increase in price, as the cost is now $200 due to the 
addition of extra HW2.  The main advantage of DADGP 
partitioning algorithm is its ability to expose wide range of 
solution space, so that the designer can make intelligent 
decisions. Ultimately, the algorithm will continuously add 
more HW2 modules to (up to 240 units) allow 240 
simultaneous executions.  This solution will have overall 
system execution time of 147 units to execute the DAG 
graph (Figure 6) 240 times in one cycle.  Nonetheless, 
such extreme solutions will never be exposed unless the 
constraints allow putting that many hardware.  
 
CONCLUSION AND FUTURE WORK 
 
     In this paper, we have introduced a new way of using 
C++ as a specification language for hardware-software 
co-design.  The proposed approach of system 
specification seems to be useful for many applications 
that can be described as a cluster of communicating 
processes with iterations. The proposed algorithm is able 
to explore a variety of partitioning solutions compare to 
other research work presented so far.  Its ability to fine 
step optimize towards the final optimal partition set is a 
key in discovering a variety of solutions with diverse 
costs.  This quality was obtained by simultaneously 
manipulating data dependency and precedence 
dependency as DADGP.  The complexity of the proposed 
algorithm is also comparable with existing methods, and 
can be easily extended to consider different constraint 
conditions. 
 
     Co-synthesis phase of the design is a very fertile 
research area, especially when it comes down to 
automating the embedded system design.  Many people 
are skeptical about such design because it would require 
emulating human designers, who typically invent new 
solutions to the design problems they encounter.  
Therefore the proposed algorithm has tackled the co-
synthesis problem from the IP libraries approach.  This 
approach limits the design space to the amount of library 
components.  But it is more realistic approach than 
building an AI system. To complete the hardware-
software design flow, the proposed co-synthesis 
mythology must include automatic hardware software 
generation to its implementation platform.  Such work is 
under investigation with a Rapid Prototyping Platform 
(RPP) system consisting of ARM7TDMI processor core 
and Xilinx FPGA for multiple hardware implementations.  
Furthermore, for more accurate partitioning result, it is 
important to provide accurate profiling data to the 
partitioner.  Therefore, building an accurate and diverse 
hardware IP library is also important to make the 
automation of architectural synthesis from hardware-
software partitioner a reality. 
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