
16th Int. Conference on Parallel and Distributed Systems, August 13-15 2003, pp. 181-186, Reno Nevada USA

181

Heterogeneous Hardware-Software System partitioning using Extended Directed Acyclic Graph

Matthew Jin and Gul N. Khan
Electrical and Computer Engineering,

Ryerson University, 350 Victoria Street,
Toronto, Ontario, Canada, M5B 2K3

jinma,gnkhan@ee.ryerson.ca

ABSTRACT
In this paper, we present a system partitioning technique
in which the input system specification is based on C++
language. The proposed technique processes data and
precedence dependencies simultaneously in one graph
representation DADGP, which is an extension of Directed
Acyclic Graph (DAG). The DADGP (Directed Acyclic
Data dependency Graph with Precedence) based
partitioning technique minimizes the communication
overhead as well as overall system execution time under
real-time deadline. It also tries to minimize the cost of
target system in terms of hardware area.

Keywords: Hardware/Software Co-design, System
partitioning, Mapping and Scheduling.

INTRODUCTION

 In order to meet the market demand, designers now
need to produce complex embedded systems in a shorter
period of time. Therefore, waiting until the final
implementation of the system before understanding the
hardware-software interactions is no longer acceptable.
Hardware-software tradeoffs must be analyzed early in
the design cycle to reduce the design and development
time. However, current hardware-software co-design
techniques cannot effectively handle hardware and
software integration [1].

 Edwards and Forrest addressed the hardware-software
partitioning by finding the bottleneck in the software and
moving that critical region to hardware [2]. Their method
does not take data transfer into consideration, and overall
improvement has not been as good. Mapping and
Implementation-Bin Selection (MIBS) [3] partitioning
method uses Directed Acyclic Graph (DAG) to represent
computational blocks and data dependencies. The Global
Criticality Local Phase (GCLP) algorithm first traverses
the DAG and maps each node to either hardware or
software to minimize execution time and hardware area.
However, the algorithm does not take communication
overhead into account when calculating the objective
function for the execution time. A similar partitioning
algorithm was also proposed by Ondghiri and others [4]
with a variation in the different search technique to
explore hierarchical design space. Their result showed

that the optimal solution exists at some level between the
two extremes of high and low granularity level.

 Most of the partitioning algorithms employed either
dependency or execution graph as an input to generate a
new set of partitioned hardware and software blocks.
These algorithms seem to work in ideal cases, and are not
applicable in most real applications due to restricted
specifications, constraints, and complexity. The
partitioning algorithm presented in this paper has tried to
overcome some of these limitations by using C++ as
system specification language and by considering a
number of new system constraints during partitioning. We
present some improvements in the hardware-software co-
synthesis components. Our partitioning algorithm
processes C++ based system specification to generate
optimal hardware-software partition set. The use of C++
language as a system specification language has allowed
flexible design representation in a unified design
environment. The algorithm converts the system
specification into a Directed Acyclic Data Dependency
Graph with Precedence (DADGP) for further analysis.
The DADGP is then mapped to appropriate software and
hardware modules, and scheduled for further verification.
If the scheduled result is satisfactory under certain
constraints (e.g. improvement in the overall performance),
the hardware mapping is accepted, and the algorithm
continues until all the given constraints (hardware area,
overall execution time, cost) are satisfied.

SYSTEM SPECIFICATION

 Defining a design specification to describe system
level behavior is a challenging problem. It requires high
abstraction as well as fine details to reduce ambiguities
during hardware software co-design. Traditionally, these
specifications were written in plain English to describe its
system constraints and functionalities. However, system
description in English language can bring ambiguities and
misinterpretations among designers creating high Non
Recurring Expenses. A lot of research has been done to
create a unified co-design environment by proposing new
design specification languages [5]. The idea is to capture
the system specification more accurately by augmenting
the HDL and high level programming languages to
describe the entire system. MSC, SDL, PMSC and
SystemC are some examples of theses languages [5, 6].

16th Int. Conference on Parallel and Distributed Systems, August 13-15 2003, pp. 181-186, Reno Nevada USA

182

no

Specification

Profiling

Mapping

LD path search

Scheduling

Valid
Mapping

Cons
Satisfied?

Finish

yes

yes

no

Figure 2

abs

sub

sum

sub

abs

sum

Figure 1b: DADGP Block Matching

Precedence
dependency

edge

Data
dependency

O
ne

E
xecution

 To incorporate the possibility of ever-changing
demand, we use textual representation for specification
and graphical representation for system partitioning and
scheduling. C++ is used as the initial system specification
language and through profiling, it is converted into a
DADGP representation for partitioning and scheduling.
The given system specification is translated into C++ in
the form of modules so that each module can be evaluated,
and mapped to the process space during profiling. For
example, during the block-matching step of MPEG, sum-
of-absolute-differences are calculated to measure the
similarity between the macroblock and its search area. If
one needs to develop an IP block to calculate the sum-of-
absolute-differences, equation 1 is first translated into
C++ specification. The partitioner uses the block
matching C-code with its hardware module information
(Figure 1a) to generate an initial DADGP (Figure 1b).

Figure 1a: Hardware Module Data

∑∑
≤≤

−
nj

yx
i

jiSjiM),(),(
1

……………….equation(1)

M(i,j) is the object, and S(i,j) is the search space matrix.
The block matching C code
for (i=0 ; i<= 16 ; i++) {

for (j=0;j<=16;j++) {
 temp= abs(sub (M(i,j),S(i,j)));
 result=sum(result,temp);

}
}

HARDWARE-SOFTWARE
PARTITIONING

 The system-partitioning
algorithm can be subdivided into
three major components, namely
profiling of C++, LD_path search,
and mapping of LD_path and
Scheduling. LD_path search and its
mapping are repeated until an
adequate solution is reached. The
partitioning system flow chart is
shown in Figure 2.

Following assumptions are made
for our partitioning technique.

• Initial target architecture is
of one processor core

• Each DADGP node is executable with at least one
PE

• All the nodes of DADGP can be implemented in
hardware and software.

• Inter PE communication is estimated by the amount
of data transferred, and the transfer rate is constant.

• Communication overhead is zero between the two
PE if that two nodes are executed by the same PE

• The partitioner has all the necessary information
including: execution time of each node for different
PEs, cost of adding PE, and inter PE communication
overhead, as well as initial system constraints
(required execution time, maximum hardware area).

Profiling
 If one can translate the system specification into
software that fulfills the deadline requirements on the
target platform then that is the optimal solution. However,
in most cases, all software solution is not possible for
real-time embedded systems, and hardware software
partitioning must be performed. It is also vital to execute
the C++ system specification on the actual target platform
to accurately collect the profiling data. The software
profiling is a useful step to check for all software solution.
The profiler translates each module of C++ system
specification into nodes with the following information:

• Execution time of each
module

• Start and completion time
of each module

• Amount of data transfer
• The caller(s) of the

module
• The child(s) of the module
• Module identification
• Execution order

The profiler uses the above
information to generate the
DADGP. The unique
characteristic of DADGP is that
it contains both data and
precedence dependent edges to
represent the system. The data
dependency edge is represented
with an arrow symbol as shown
in Figure 1b. Two nodes are
connected with data dependency edge when they have a
producer-consumer relationship. The precedence
dependency edge is represented by a line to connect two
independent nodes together. The precedence dependency
captures the order of execution between nodes and such
nodes can be executed in parallel if desired. A more
detailed discussion on DADGP is provided as part of the
mapping and scheduling section.

PE component PE0 PE1
sub 6 5
abs 4 8
sum 3 2

16th Int. Conference on Parallel and Distributed Systems, August 13-15 2003, pp. 181-186, Reno Nevada USA

183

Mapping and Scheduling
 DADGP is a super set of DAG with the only difference
of having two types of connecting edges. Our
contribution to DAG is the introduction of precedence
dependency edges to explicitly represent the
independence and the execution orders between nodes.
The DAG representation is not algorithmically friendly to
capture non-parallel executions of independent nodes.
Exposing the independence and introduction of
parallelism between independent nodes are not always the
best decision when optimizing the execution time of a
system due to inter-PE communication overheads. The
incorporation of DADGP to our partitioning method has
allowed us to only expose the necessary parallelism to
capture a wide rage of solutions.

 The Longest Delay path (LD_path) represents the
longest execution route in a DADGP. LD_path depends
on the number of node hops, execution time of each node,
and its corresponding inter PE communication overhead
as given in equation 2.

LD_time = ∑∑
==

+
Q

j
j

N

i
i en

11

 ………..…………equation (2)

where node in ∈ { 1n … Nn } that must be connected with
any type of edges je ∈ E (all edges Q).

LD_path can be found with the following equation.

LD_Path= Max [LD time (kp)] ………...equation (3)

where M is the total number of path in a given graph and
k varies from 1 to M.

p={ in … Nn , je … 1−Ne } is a path from one root to any

ending node.

P={ 1p ... Mp } is a collection of all paths from one root to

any ending node.

 Finding an LD_path in DADGP is similar to finding a
bottleneck in the system. The LD_paths can be used to
improve the overall execution time by mapping one of the
LD_path nodes to hardware. A repeated searching and
mapping of DADGP reduces the search space, and
improves the convergence rate for an optimal solution.
The LD_path searching algorithm is given below:

Assume L = { ...1l Nl }

for (i = 1; i++; i <= N)
 P = Find_path(il)
max = 0;
for (i = 1; i++; i <= M){
 temp = LD_time(ip);
 if (temp > max) then {
 max = temp;
 path = ip ;
 }
}

 Mapping and scheduling of DADGP is the most
sophisticated and important step of our partitioning
algorithm. One of the nodes in the LD-path is mapped to
the optimal hardware. However, to make such critical
decision for a PE to be a dedicated hardware unit or a
software task, following factors are taken into
consideration.

• Parallelism in DADGP nodes
• PE resource limitation
• PE Execution time of nodes
• Inter PE communication
• Hardware area (cost)

 The partitioning algorithm starts by finding the
LD_path in a given DADGP, and the execution time of
LD_path is also calculated. All the nodes in the LD_path
are mapped to appropriate hardware one at a time and
scheduled to calculate the overall system execution time.
A node that allows maximum improvement of system
execution time is finally mapped as hardware, and the
DADGP is updated according to the final mapping
decision. This process is repeated for all the LD_paths as
explained in the partitioning algorithm given below.

Initialize the following:

LD_path = { 1n … An , 1e … Be } /* A = number
of node, B = number of edges*/
Previous_system_EXE = ∞;
while((System_EXE > Required_EXE) AND
(Current_HW_area > Required_HW_area)){

LD_path = Find_LD_path(graph);
//Find the LD_path
 LD_path_EXE = LD_time(LD_path);
// Calculate execution time of LD_path
 Min_EXE = ∞;
 for (i = 1 ; i++ ; i <= A){

G = map(DADGP, in);
/*G is a new DADGP with the node in ∈
LD_path nodes mapped as HW.*/

(EXE, S, G_prime) = schedule(G);
// G_prime = updated G, S = schedule of
// G,EXE = execution time of G

if (EXE < Min_EXE) then{
 Min_EXE = EXE;

graph = G_prime;
 Final_S = S;
 }
 }
if (previous_system_EXE < Min_EXE)
then return(graph);
previous_system_EXE = Min_EXE;
}
return (G, Final_S);

The working of scheduling function schedule (G) is
summarized below:
a) Start scheduling from the root of DADGP

16th Int. Conference on Parallel and Distributed Systems, August 13-15 2003, pp. 181-186, Reno Nevada USA

184

Figure 4a: GDL Scheduled Results

 B C

 A P0

P1

 1 11 13 14

b) Traverse down the tree and schedule the earliest
starting time node

c) If a node is connected with precedence dependency
edge, check to see whether exposing parallelism can
eliminate that edge. If a precedence dependency edge
is eliminated, the structure of the DADGP may
change and some nodes can be disconnected from the
original graph resulting in two separate DADGP. In
this case, the new root of the disconnected DADGP
must be combined to make one DADGP by
connecting it self and the original root to a new
dummy node called “start”.

d) If multiple descendents (or roots) exist, force
schedule all descendents (or roots) by adding
necessary PE if required

e) Update PE resource library and generate the total
execution time by using the following equation:

EXE = LD_path_EXE – in _exe + HW_exe + IPC –

Hidden_node_EXE

where, in _exe = execution time of a node that is

currently in interest, HW_exe = HW execution time

of node in .

IPC = value introduced by mapping node in to

additional HW, hidden_node_EXE = smaller
execution time value between two parallel modules.

 EXPERIMENT RESULTS

 The following example demonstrates the ability of our
partitioning algorithm to consider multiple descendants
indirectly without the added calculation complexity.
Considering GDL algorithm [7], and its complexity, the
scheduling inherits the typical weakness of conventional
list scheduling. The GDL scheduler improved on list
scheduling by quantifying the scheduling effects on the

 P0 P1

A 1 2
B 2 2
C 20 1

Figure 3b: Module Data Table

descendants of a node. However, considering just the first
descendants are not enough to estimate the global effect.
Consider the example shown in Figure 3a and 3b. The
scheduled result from the GDL heuristic is presented in
Figure 4a in the form of a Gantt chart. When node A is
scheduled on P0, the GDL fails to consider the effect of

processor selection for node C. The final scheduling
result suffers from a large inter-PE communication
overhead between A and B. It is however obvious that a
better scheduling result will be to assign all the nodes to
P1 as shown in Figure 4b.

 The DAG of Figure 3a does not have any precedence
dependency edges and therefore there are no parallelisms.
Obtaining the LD_path of Figure 3a is simple because
there is only one path. Assuming that P0 is target
processor and P1 is an additional PE hardware, the initial
DADGP of the system is shown in Figure 5 (note that it is
all software solution given by the profiler). The partitioner
will first move node C to P1 to reduce the total execution
time (C is the Min[EXE]). In the next iteration, node B is
moved to P1 to reduce the inter communication time with
C. In the third iteration, node A is finally moved to P1 to
reduce the inter PE communication with B, and the
optimal scheduling is obtained as shown in Figure 4b.

Figure 5: All Software Solution

 Now we compare our partitioning method with the
partitioning algorithm presented by Yen and Wolf [8].
The example is taken from Hou and Wolf [9] that
contains DAG and a data table as shown in Figure 6. The
period 240 indicates the number of execution cycle of the
DAG and deadline values indicate the finish time
constraint of a node. In partitioning the DAG of Figure 6,
the partitioning algorithm by Yen and Wolf’s suggests
that all nodes be scheduled on HW1 to meet the deadline
constraints of 350 units/cycle. Their solution gives an
execution time of 322 units with a cost of $50. The
overall system execution time is equal to 77280
(240*322) time units. Furthermore, the fastest optimal
solution obtained was to schedule all tasks to HW2 [8].

 A B C
 P0

P1

 2 4 5

Figure 4b: Optimal Scheduling

 A
 1

 B
 2

 C
20

10 11

A B C

10 11

Figure 3a: Without Precedence

16th Int. Conference on Parallel and Distributed Systems, August 13-15 2003, pp. 181-186, Reno Nevada USA

185

A

B

D

C

15

10

14

A

B

D

C

15

10

14

Figure 7

O

ne exe cycle

Second exe cycle

A

B

D

C

15

10

14

A

B

D

C

15

10

14

A

B

D

C

15

10

14

Start

……

(a)

This results in an execution time of 147 units with a cost
of $100 while the overall execution time is equal to 35280
(240*147) time units.

 PE
Tasks SW

Cost=$20
HW1

Cost=$50
HW2

Cost=$100
A 76 42 20
B 460 185 80
C 110 32 22
D 82 63 25

Figure 6: DAG and Data table from Hou & Wolf

 If one needs to design even higher
performance system with tight
deadlines by using the same data as in
Figure 6, our DADGP partitioning
algorithm have advantages over the
existing partitioning algorithms. The
DAG can be easily transformed to
DADGP as given in Figure 7 showing
just two cycles of operation. Initially,
all the nodes are mapped and
scheduled to SW (target processor)
and the execution time of one cycle is
728 time units with a cost of $20. The
overall system execution time is equal
to 174720 (240*728) time units. Our
algorithm starts by mapping nodes that
will optimize overall execution time
and minimize cost. Eventually, the
algorithm will take advantage of the
repeated execution components. It
will then map node A to HW1 from
the 2nd execution cycle. This mapping
will force the scheduler to add
additional HW1 to expose parallelism
as shown in Figure 8a and 8b.

 The scheduling of mapped DADGP
of Figure 8a is shown in Figure 8b,
where the execution of each cycle is
still 322 time units. However the overall system execution
time has improved significantly due to exploring
parallelism. The DADGP algorithm exposes various

combinations of solutions from decreasing order of

execution time and cost, to be selected by the designer
Figure 8: Mapped and Scheduled DADGP

according to their demand. At some point during the
execution of our algorithm, HW2 will be mapped and
scheduled for each parallel execution. In this case, the
overall execution time of the system is equal to 17640
(240/2 * 147) time units. This gives 50% increase in speed
as compared to the optimal solution provided by Yen and

A

B

D

C

Period 240

15

10
14

Deadline= 295
Deadline= 350

A

B

D

C

15

10

14

A

B

D

C

15

10

14

A

B

D

C

15

10

14

Start

A

B

D

C

14

15

10

A

B

D

C

15

10

14

A

B

D

C

15

10

14

(b)

…… ……

16th Int. Conference on Parallel and Distributed Systems, August 13-15 2003, pp. 181-186, Reno Nevada USA

186

Wolf. However, such performance gain comes with an
increase in price, as the cost is now $200 due to the
addition of extra HW2. The main advantage of DADGP
partitioning algorithm is its ability to expose wide range of
solution space, so that the designer can make intelligent
decisions. Ultimately, the algorithm will continuously add
more HW2 modules to (up to 240 units) allow 240
simultaneous executions. This solution will have overall
system execution time of 147 units to execute the DAG
graph (Figure 6) 240 times in one cycle. Nonetheless,
such extreme solutions will never be exposed unless the
constraints allow putting that many hardware.

CONCLUSION AND FUTURE WORK

 In this paper, we have introduced a new way of using
C++ as a specification language for hardware-software
co-design. The proposed approach of system
specification seems to be useful for many applications
that can be described as a cluster of communicating
processes with iterations. The proposed algorithm is able
to explore a variety of partitioning solutions compare to
other research work presented so far. Its ability to fine
step optimize towards the final optimal partition set is a
key in discovering a variety of solutions with diverse
costs. This quality was obtained by simultaneously
manipulating data dependency and precedence
dependency as DADGP. The complexity of the proposed
algorithm is also comparable with existing methods, and
can be easily extended to consider different constraint
conditions.

 Co-synthesis phase of the design is a very fertile
research area, especially when it comes down to
automating the embedded system design. Many people
are skeptical about such design because it would require
emulating human designers, who typically invent new
solutions to the design problems they encounter.
Therefore the proposed algorithm has tackled the co-
synthesis problem from the IP libraries approach. This
approach limits the design space to the amount of library
components. But it is more realistic approach than
building an AI system. To complete the hardware-
software design flow, the proposed co-synthesis
mythology must include automatic hardware software
generation to its implementation platform. Such work is
under investigation with a Rapid Prototyping Platform
(RPP) system consisting of ARM7TDMI processor core
and Xilinx FPGA for multiple hardware implementations.
Furthermore, for more accurate partitioning result, it is
important to provide accurate profiling data to the
partitioner. Therefore, building an accurate and diverse
hardware IP library is also important to make the
automation of architectural synthesis from hardware-
software partitioner a reality.

ACKNOWLEDGEMENTS

This research is supported by a grant from NSERC
Canada. The authors would also like to thank CMC
for providing hardware software co-design CAD tools.

REFERENCES

[1] Lee Garber, David Sims, “In pursuit of Hardware-

Software Codesign”, Computer, vol.31, No.6, pp.
12-14, June 1998.

[2] M. D. Edwards, J. Forrest, “Hardware/software
partitioning for performance enhancement”, Proc.
IEE Colloquium on Partitioning in Hardware
Software Codesign, pp. 2/1-2/5, February 1995.

[3] E.A. Lee, A. Kalavade “The extended partitioning
problem: hardware/software mapping and
implementation-bin selection”, Proc. 6th IEEE
Inter. Workshop on Rapid System Prototyping, pp.
12-18, 1995.

[4] H. Ondghiri, B. Kaminska and J. Rajski, “A
hardware/software partitioning technique with
hierarchical design space exploration”, Proc. IEEE
Conference on Custom Integrated Circuits, pp. 95-
98, 1997.

[5] G.D. Micheli and R.K. Gupta, “Hardware/Software
Co-design”, Proc. IEEE, Vol. 85, No.3, pp. 349-
365, March 1997.

[6] SystemC Inc. See http://www.systemc.com
[7] G.C. Sih and E.A. Lee, “A compile-Time

Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor
Architectures”, IEEE Trans. Parallel and
distributed systems, Vol. 4, No.2, pp. 175-187,
February 1993.

[8] T-Y. Yen and W. Wolf,” Sensitivity-driven co-
synthesis of distributed embedded systems”, Proc.
8th Inter. symposium on System Synthesis, pp. 4-9,
13-15 Sep. 1995.

[9] J. Hou and W. Wolf, ”Process Partitioning for
Distributed Embedded Systems”, 4th Int.
Workshop Hardware-software Codesign, pp. 70-76,
March 1996.

