A Microprocessor Sumulator: Design
and Implementation

by Ken Clowes

This document describes the basic architecture (design) and implementation of a
microprocessor simulation engine. The primary features of the architecture are not tied to
any specific processor. However, the Motorola MC68HC11 is used for a reference

implementation.
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A Microprocessor Sumulator: Design and Implementation

In the Fall of 2001 | wrote asimple (very partial) ssmulator for the Motorola 6811
microprocessor. My only goal was to give students a feel for object-oriented techniques using
anon-trivial example that connected with their previous knowledge. (The students knew
what a 6811 microprocessor was and how it behaved.)

After presenting the basic design of the simulation engine, | pointed out that some details had
been glossed over. The most obvious limitations were the complete absence of a user
interface and the very limited machine language instructions that could be simulated.

Nonetheless, | felt that the basic design worked well and that it would be interesting to
pursueit. The result isthis project.

It would be disengenuous to claim that "filling in the glossed-over details' was simple. It was
not! Nonetheless, the original design has proved to be basically sound. Alas, nurturing the
idea from conception through childhood and eventual usability has taken more time than |
had anticipated.

This paper describes the basic simulation engine for a processor.

Note: Two important aspects of a useable simulator are not described here:

1. The user interfaces to the underlying simulation engine.
2. How devices are simulated.

These are important topics that deserve their own description. My TODO list includes
writing these descriptions.

The goals set for the project are:

1. Document the complete design and implementation of the basic simulation engine. This
remains one of the main goals and is the reason | am writing this document.

2. Make the implementation portable so that it can run in most computers (e.g. PCs running
Windows, Apples, Unix and Linux boxes) and make the product freely available.

3. Allow for simulation of apure 6811 CPU with any kind of configuration and with no
required access to source code.

4. Allow any kind of device that can be mapped to the memory space of the 6811 system to
be simulated.

5. Provide basic mechanisms so that user interfaces (graphical, text based, batch, etc.) can
be built.

6. Provide awarning mechanism whereby the simulation engine can detect probable
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program bugs such as writes to ROM, stack overflow, etc.

7. Provide at least one user interface so that the simulator can be usefully deployed. (Note
that user interface design is not discussed here; the simulation engine ssmply provides
mechanisms for implementing user interfaces.)

There are many possible approaches to designing a microprocessor simulation architecture,
but the granularity of the model is one of the first things to consider.

The system could be simulated at the internal model level, the external signal level, the
bus-cycle level or the functional level. Let's ook at these possiblities.

The maximum granularity would be achieved by simulating the processor using a model of
itsinternal organization. For example, a VHDL description could be used. However, this
level of detail is clearly overkill for asimulator of aprocessor that is aready available and
known to work. (The internal model simulation would, of course, be appropriate during the
design of the processor itself.) Furthermore, not only is the detail unnecessary, it would
substantially slow down the speed of the simulation. Even more importantly, it would be a
great deal of work to create the model and it is unlikely that the manufacturer would make its
model freely available. In short, itisa"no brainer" to reject thislevel of granularity for the
simulator.

The next level of granularity simulates the processor's external connections. For example,
simulating the 6811 at this level would involve the crystal clock, signals such as AS and the
multiplexed bus. The specifications for these signals are published by the manufacturer and
readily available. Such fine-grained simulation would offer the considerabl e advantage of
plugging the simulator into a general purpose circuit simulator thus allowing the complete
simulation and debugging of the hardware and software components of a complete system.

However, this level of detall will low down simulation and is not required when only the
software and functionally-defined external hardware is being simulated and debugged.
Implementing all aspects of thislevel including setup and hold times, rise and fall times
loading factors and so forth would be onerous.

The coarsest granularity needed for software simulation is the bus cycle. (Y es, assembly
language programmers do consider bus cycles.) Each bus cycle (read, write or idle) is
simulated. This gives ailmost as much power as the external signal level, but will run faster
and be |ess tedious to implement. Furthermore, external hardware whose functionality is
defined can be simulated at this level.

The coarsest granularity possible for a simulator of machine language would be a functional
one. This could offer the fastest performance, but could make the ssmulation of arbitrary
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devices unduly complex. (Actaully, | am not sure about this. | think afunctional approach is
possible with reasonable programming effort; it would offer a considerable performance
boost.)

| have chosen to implement the simulator at the bus cycle level of granularity. Frankly, |
chose this method at the outset and did not even consider other levels of granularity. It was
only after writing this analysis that | became quite interested in examining simulation based
on higher and lower levels of granularity.

In the case of the 6811, moving the simulation to the crystal clock level (instead of the bus
cyclelevel) is probably not too difficult. Basically, the bus cycleis split into four phases and
the appropriate external signals are set or monitored at each phase. Thiskind of crystal-clock
simulation would degrade speed by a small amount. Alas, taking timing parameters
(setup/hold/rise/fall times) and loading factors (resistive and capacitive) would add
considerable complexity.

The functional approach is aso very interesting and might provide a significant performace
boost (maybe afactor of 2 or even an order of magnitude!). With the current approach, every
single bus cycleis ssimulated; thisis prudent, but most bus cycles have no side effects (such
as setting a status bit waiting for this particular cycle). A clever functional-level ssmulator
could detect instructions (or even groups of instructions) that cannot have side effects related
to cycle count. These instructions could be simulated in-line without the overhead of
cycle-by-cycle simulation.

The most important design decision was to limit the project to the pure simulation engine and
defer questions relating to user interface issues to a separate software development stage.
(However, both stages could, and did, procede concurrently.)

The importance of this decision cannot be over emphasized. There were two major
conseguences.

1. Designing the simulation engine was focussed on that single problem leading to (I think)
a better design.
2. Since the design was unhindered by the specifics of any particular kind of user interface,
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| could concentrate on providing mechanisms to support arbitrary user interfaces and
avoid the pitfall of asimulation engine designed primarily for a GUI or aline-oriented
command user interface.

Asacollorary to this decision, there is no code in the engine that communicates directly with
the user or reads user-defined files. The engine deals only with Memory Spaces, Cells and
CPUs. Some of the things the engine does not deal with are:

1. Theengine has no user-friendly mechanism (such as a configuration file) for defining
what addresses are mapped to specific devices (such as RAM, ROM, EEPROM,
internal/external devices, etc.) However, the engine does provide mechanisms that a user
interface can exploit to accomplish these objectives.

2. Any user interface must alow for the initialization of memory from (for example)
Motorola S19 or Intel Hex records. Once again, the engine has absolutely no code to
parse S19 or Intel Hex records; it merely provides an API that athird party can exploit to
furnish these important user interface features.

3. Theengine has absoultely no knowledge of mapping between source code (C, C++,
assembler or whatever) and its machine language image. The engine itself deals only with
machine language (although it does have a simple disassembler.) Y et again, however, the
engine provides mechanisms allowing a user interface to exploit such mappings.

Despite the separation between user interface and basic engine, | was certainly aware of the
potential needs of user interfaces as the basic engine was being implemented. Indeed, there
are some basic mechanisms built into the engine specifically designed for user interfaces.
These include the Warning and CellChange features that will be described later.

| chose the Bus Cycle Simulation model for the simulation engine. This means that every bus
cycle (initiated from the core processor) is simulated. Each bus cycle either READs
something from somewhere, WRITES something somewhere, or twiddles its thumbsin an
IDLE cycle. (Of course, the IDLE cycleis not totally brain-dead; these cycles are used by the
core processor to perform necessary tasks.)

This strategy implies that thereis at |east one object that can initiate bus cycles and that there
are at least one object that can respond to READ and WRITE bus cycles.

| use asingle CPU object to initiate bus cycles. The READ/WRITE cycles communicate with
aMemory System which is composed of one or more MemorySpaces. Each MemorySpace
contains a collection of Cells; it isthe individual Cells within a MemorySpace that
collaborate with READ/WRITE bus cycles.

To summarize, the bus-cycle design implies three basic classes:
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1. A CPU that initiates bus cycles.

2. A Memory System that interacts (indirectly) with READ/WRITE bus cycles.

3. Cedls(composed within aMemory System) that interact directly with READ/WRITE
cycles.

The following sections treat each of these fundamental objects.

The fundamentals of the memory system were designed for any type of processor. In
particular, the abstract design does not assume a specific memory space size or the number of
bits transferred in a bus cycle.

In addition, no assumptions are made about the number of memory spaces used by a
processor. Some processors have only a single memory space (such as the 68hcll or the
68xxx) that is mapped to RAM, ROM, and devices. Other processors (such as many DSP
chipsthat use a Harvard architecture in which the data and program memory spaces are
distinct or the Intel 80x86 family that has separate I/0O and ordinary address spaces) have
more than one memory space.

The design of the memory space abstraction does not limit the number of memory spaces that
aprocessor may support nor does it define the size of memory space cells or the size of a
memory space. (In short, the abstraction allows arbitrary address bus and data bus widths for
each memory space.)

A Memory Space is a concept. It is not an implementation. What it does (not how it doesit) is
important.

A memory space is acollection of cells. Cells are also abstractions; they may be bytes, 16-bit
entities or anything else. The Cell abstraction is examined later; the Memory Space
abstraction makes no assumptions about how the Cell abstraction works.

In Java, the most general way to describe an abstract conceptual design with no
implementation is with an interface. The Memory Space abstraction merely states that a Cell
is associated with each possible address. An abridged version of the interface is given here:

public interface MenorySpace {
Cell getCell (int address);
void setCell (int address, Cell cell);
void init();

}

The interface does not describe how methods like get Cel | (i nt) areimplemented. If the
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address space is big (eg. 32 hits) and (hence) it islikely that it is not fully populated, then
some form of hashed implementation is appropriate. Our target, however, isasimple
processor with amere 64K (16-bit) address space. Consequently, the only implementation of
aMenor ySpace provided isone for 64K Cellswhich are maintained in asimple array. An
abridged version of the source codeis:

public class MenorySpace64K i npl ements MenorySpace
{

private Cell[] cells = new Cel | [ 0x10000];

private static final MenorySpace | NSTANCE = new MenorySpace64K();
public static MenorySpace getlnstance() {return | NSTANCE; }

private MenorySpace64K() {} //private to ensure singleton property
public final Cell getCell (1nt address) {return cells[address];}
public void setCell(int address, Cell cell) {cells[address] = cell;}

}

Note that the tiny 64K addressing space can be easily implemented as asimple array. Note
also that the Menor ySpace64K class isimplemented as a singleton. (Refer to GoF for
definition of what asingleton is.) In this case, thereis NO public constructor; the only way to
get aMenor ySpace64K object iswith Menor ySpace64K. get | nst ance() .

A Cell is mapped to an addressin a Memory Space. Specific cells are obtained using the
Menor ySpace interface. Once a cell has been obtained, its contents can be examined or
modified subject to constraints based on the specific nature of the cell.

The Cell interface allows the contents to be obtained or modified in two different ways:
"get/read" to obtain the contents and "set/write" to change them. Broadly speaking the
"get/set” methods allow the direct manipulation of a cell's content; the "read/write” methods
simulate read (write) bus cycles.

The distinction between "set/write" is particularly clear when referring to ROM cells. By
definition, you cannot write to ROM. (Note that areal processor would not blink when a
write bus-cycle had a ROM cell asits destination; the CPU would consume some bus cycles,
but the READ-ONLY memory location would not be changed.) BUT you have to able to set
the contents of ROM locations. In real life, you would have to burn your desired contents
into aROM. In simulated life, the set method makes it possible to directly change the
contents of a ROM cell; awrite cycle would, of course, have no effect. Note that an
instruction that modifies memory (such asast aa instruction) would initiate a Write cycleto
modify the memory; it would not use the set method. If the destination of the write cycle
were in ROM, the contents would not be changed.
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The (abridged) Cel | interfaceis:

public interface Cel
void wite(int contents);
int read();
int get();
void set(int contents);
void reset();
i nt get Address();
voi d addCel | Changeli st ener ( Cel | ChangelLi st ener 1);
voi d renmoveCel | ChangelLi st ener (Cel | ChangelLi stener 1);

}

NotetheaddCel | ChangelLi st ener () andr enoveCel | ChangelLi st ener ()
methods. The intent isto give user interface implementors a hook so that they can be
informed of the changes to the contents of a cell.

The implementation of cellsisroughly described in the diagram:

interface Cell R 1 Menor y Space
AbstractByteCel | *----- 1 CPU
| | |
RAMByt eCel | ROWByt eCel | UnusedByteCell ...various Special ByteCells

Note that the Cell interface is associated with a MemorySpace. The parent class for all
concete implementations of byte-sized cellsisthe Abst r act Byt eCel | class. Thisclassis
associated with a CPU class that we will discuss later on.

An abridged version of the AbstractByteCell.javaimplementation is:

public class AbstractByteCell inplenments Cell {
int contents;
int nWites;
i nt nReads;
i nt address;
ArrayList listeners = new ArraylList();
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CPU6811 cpu = CPUB811. getlnstance();

public AbstractByteCell (int address, int contents) {
t his. address = address; this.contents = contents;
nWites = 0; nReads = O;

}

public int get() {return contents;}
public int read() {
nReads++;

cpu. i ncrenent ReadCycl es() ;
return contents;

}
public void set(int contents) {this.contents = contents;}
public void wite(int contents)
nNWites++
cpu. i ncrenent WiteCycl es();
set (contents);
public int get Address() {return address;}
public void addCel | ChangeLi st ener ( Cel | ChangeLi stener 1) {}

public void renoveCel | ChangelLi st ener (Cel | ChangeLi stener 1) {}

NOTES:

1. Much of the implementation (for examplethe get / set methods) istrivial.
2. Ther ead/ wri t e methods keep track of the number of times the cell is read(written)

and inform the CPU of the read/write cycles. (The CPU maintains a global count of the
total number of cycles, read cycles and write cycles.)

Why keep track of the number of times an individua cell isread or written to? The short
answer is. "Why not?" It is very easy to do and the penalty in computation and memory
usage istiny. However, it is also afact that the user interfaces to the simulation engine
currently being developed (Summer 2002) make no use of this information.

The question then becomes: "Why track individual cell read/writesif nothing isbeing
done with the information?' Good question! But the answer issimple: "Thisinformation
could be used to perform code coverage analysis (by checking how many memory
locations that correspond to instructions have been read), profiling and other things'. The
mere fact that no current user interface (as of mid-September 2002) exploits this
mechanism does not mean that these capabilities could not be exploited by future user
interface designers.
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3. Theget Addr ess() method impliesthat Cells are aware of their address. The astute
reader may notice a bug here: the address of a Cell isinsufficient to identify it unless the
memory space is known. Fortunately, the only concrete implementation of the ssmulator
framework isfor the 68hcl1 which has only one memory space. (The memory spaceis
implemented as a singleton and, hence, is aways knowable within the package.) If a
processor with more than one address space were to be simulated (e.g. the Intel 80x86
with its separate memory and I/O address spaces), each Cell would have to know both its
address and its memory space.

The CPU itself isthe third major component of the simulation engine. (The other two major
components are the MemorySpace and Cell interfaces and implementations.) Unlike the the
other two majors, the CPU does not (at present) have a higher level abstraction such as a Java
interface or abstract class. Only the CPU6811 isimplemented.

The CPU6811 classisimplemented as a singleton. Clients obtain a reference to the cpu with
code like:

CPU6811 cpu = CPU6811. get | nst ance();
Thus al clients are guaranteed to be working with the same 6811 cpu engine.

The (abridged) source code in CPU6811.javathat ensuresthisis:

public class Sinmb811 {

private static final CPU6811 instance = new CPU6811();

public static CPU6811 getlnstance() {return instance;}

private CPU6811() {} //Private constuctor; clients CANNOI create
i nstance

The implementation of the CPU6811 classis divided into several components including:

1. Registers
2. Statistics
3. Execution

Each of these portionsis discussed in greater detail in the following sections.

Each register is declared as a ssimple primitive data type and given arbitrary initial values as
shown in the following code segment. Note that each bit in the Condition Code register is
given itsown variable.
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0x12;
0x34;
x6000; //Standard starting address at RyersonU

private int AccA
private int AccB
private int =
private int

|
QO Il

w—-T70
T<X0O
Il

private int = 0;

private int = Oxff; /| ?St andard BUFFALO nonitor stack?
private boolean CC Z = fal se

private boolean CC_N = fal se

private boolean CC C = fal se

private boolean CC V = false

private boolean CC H = fal se

private boolean CC | = true;

Each register has its own public get/set methods. For example:

final public int getAccA() {return AccA }
final public void setAccA(int i) {AccA =i;}

The CPU engine maintains statistics on the total number of reads, writes, number of
instructions executed and number of bus cycles simulated with the following variables and
initial values:

private int total Wites = 0;

private int total Reads = 0;

private int total Nlnstructions = 0;

private int nCycles = 0;
The CPU isinformed when aread, write or idle cycle occurs. For example, if the execution
of an instruction performs aread cycle, it must also invoke the following CPU method:

public final void increnent ReadCycl es()

t ot al Reads++;
i ncrement Cycl es() ;

}

Whenever any bus cycle occurs, the CPU must be informed with the
i ncrement Cycl es() method: i.e. this method isinvoked for every E-clock cycle. Thusit
isinvoked often--one million times per simulated second--and must be efficient. The codeis:

public final void increnentCycles()
{
nCycl es++;
Ti mredEvent event = (
if (event !'= null) {
event . doActi on()

Ti medEvent) pendi ngTi medEvents. ti ckAndRenove() ;
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}
Clearly, thei ncr enent Cycl es() method invokesthe methodt i ck AndRenove()
every time. Even without knowing why we do this and what the method does, it is evident
that it must be fast if the simulation engine isto be fast. It isindeed an important element in
the architecture of the simulator; however, the details of what it doesis deferred until later in
this document.

We have now described most of the scaffolding in the CPU6811 class and the associated
Menor ySpace and Cel | classesthat allow the CPU to perform its central job: fetching
and executing instructions stored in its Memory Space.

An abridged (and dlightly inaccurate) version of the CPU's st ep() method, which fetches
and executes a single insruction, is shown below:

public final InstructionEffects step()

Instruction inst = fetchlnstruction();
InstructionEffects effects = inst.execute();
total Nl nstructi ons++;

checkl nterrupts();

return effects;

}
| hope that the code is (almost) self-explanatory: we fetch an instruction, execute it, update
the number of instructions statistic and, when the execution is complete, check if there are
any pending interrupts. (Note that, once again, the ssmulation code mimics what the real
processor does; like the code, the real hardware only checks for interrupts after and
instruction has finished.)

But how is an instruction fetched and then executed? Let's ook at these details. (These are
implementation details that are written as private methods.)

Let's start with another private method: f et chOpCode() :

private final int fetchOpCode()
{return mem get Cel | (CPU6811. PC++) . read();}

This simple method (it's only asingle line of code) relies on many of the archtectural features
of the simulation engine's design. First, memis a private variable in the CPU6811's object
that contains the Memory Space involved in the ssmulation. We then obtain the specific Cell
(or bytein this case) at the address specified by the Program Counter (and we also increment
the PC just like the real hardware in the 6811 CPU.) Finaly, we invoke ther ead() method
on that cell and obtain its contentsasani nt ; in short, we get the first byte of the instruction.
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(Note that this a'so mimics what is going on in the real hardware state machine implemented
in the actual 6811 CPU.)

Let'snow look at how an instruction isfetched with thef et chl nst ruct i on() method:

private final Instruction fetchlnstruction()

{
i nt opCode = fetchCpCode();
switch (opCode) {
[l pre-byte instruction stuff not shown
def aul t:
Instruction i nst = OpCodes. Opcodes[ opCode] ;

} return inst;
The op-code of al 6811 instructionsis one or two bytes long. Over 90% of the instructions
have the op-code encoded into the first byte of the instruction. The other instructions have
their op-code encoded in two bytes: a pre-byte (which must be 0x18, OXCD or 0x1A)
followed by a second byte which completely specifies the instruction and its addressing
mode. For simplicity, the abridged code above and the following discussion assume that only
instructions with a one-byte op-code are simulated. Note, however, that the op-code is not the
whole instruction; most instructions (except for Inherent mode instructions) also require an
operand (encoded in machine language) following the op-code. (The truly curious reader is
invited to examine the real source code to see how instructions with a pre-byte op-code are
handled.)

Once we have an op-code (which will be an integer in the range 0--255), we can retrieve an
| nstructi onfromanarray of | nst ructi ons indexed by the op-code.

But whatisan| nstructi on?

Anlnstructi onisaninterface:

public interface Instruction {
//constants omtted from abri dged code
public int execute();
public String toD sassenbl edString(); //Not discussed here

}

Every Instruction object in the array of instructions (indexed by op-code) implements this
interface. But every one is different! Each oneisareal class (not an interface). In addition,
each one extends an abstract class that implements the interface. This classis
Abstractlnstruction.

Let'shave alook at thisAbstract | nstructi on class.

Before getting into details, let mefirst note that it is the biggest class (measured by lines of
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source code) in the engine package. (It is about 600 lines of code including comments.) The
size of this classis enormous because it allows its sub-classes (the real instructions) to inherit
(use) itslibrary of useful methods.

There are dozens of such utility methods in the abstract class. As a simple example, many
instructions need to read a byte from some address; they can use the inherited r ead8( )
method shown below:

int read8(int address) //Abstractlnstruction method

i nt dat a;

data = (int) nmem getCel | (address).read();
data &= Oxff;

return data

}

(Notethat ther ead() method for acell will increment the number of cycles so the
programmer does have to remember to do this.)

For amore complex example, many instructions need to add two bytes and set theN, Z, V, C
and H bits of the Condition Code register according to the result. Rather than clutter all of
these instructions with the messy details of how thisis done, they can use the inherited
add8() method shown below:

final public int add8(int p, int q) //Abstractlnstruction nmethod

int result = (p + q)&xffff;
set NZ8(result);

Cpu.CC C = (result > Oxff);
cpu.CC V = (result > Oxff) != (((p&0x7f) + (g&x7f)) > Ox7f);
cpu. CC H = ((p&0xf) + (q&0xf) > Oxf);

return (result & Oxff);

}

Every actual instruction extends Abst r act | nst ruct i on (or another derived abstract
class) and fillsin afew details such as what the instruction really does (inthe execut e()
method.) For example, the Abal nh class (which implements the aba inherent mode
instruction that adds Accumulator B to Accumulator A) is shown below:

public class Abal nh extends Abstractlnstruction

private CPU6811 cpu = CPU6811. getlnstance();
final public int execute()

cpu. set AccA(add8(cpu. get AccA(), cpu.getAccB()));
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cpu. i ncrenent Cycl es();
return -1;

}
final int getAddressi ngMode() {return Instruction.|NH;}
final protected String get QSynbolic() {return "ABA";}

}

When a user interacts with the simulation engine to run at full speed, the engine may be busy
for along time. The simulation will stop when a breakpoint or stop instruction is reached or
when the user explicitly terminates the run. Since the user input has to be monitored and a
possibly infinite number of instructions have to be simultaneously simulated, a separate
thread of execution is required for the ssmulator while the main thread continues to monitor
user requests.

The CPU'sgo() method creates and returns the Thread. An abridged version of the source
code is shown below:

public Thread go(int maxNl nstructions)

{
set St at e( RUNNI NG ;
Thread goThread = new Thread ( new Runnabl e() ({
public void run() {doFastSimulation(); }
P

return goThread;

ThedoFast Si mul ati on() (code not shown) callsf ast St ep() inatight loop and
checksif abreakpoint has been hit or the user has requested to stop the ssimulation. The
fast St ep() method code is shown below:

?ublic final int fastStep()
int rc;
Instruction inst = fetchlnstruction();
total Nl nstructi ons++;
rc = inst.execute();
checkl nterrupts();
return rc;

}

When | demonstrated my initial very limited version of the 6811 simulator (which simulated
a half dozen instructions but did incorporate most of the core ideas described in this

Page 16



A Microprocessor Sumulator: Design and Implementation

document) to my colleague Peter Hiscocks, he commented, "Ken, this looks interesting but,
you know, there are over 300 instructionsin the 6811." My initial reaction was"So what...
the design is architecturally sound...I'll worry about the details later..."

However, | soon encountered the abyss: "Oh... If each instruction requires a separate class of
about 15 lines of Java code and there are 300 instructions, | have to write nearly 5000 lines...
Oops!"

| decided to write atext file describing each instruction in one line. Sometypical lines are:

aba inh 1b f

adca immB8 89 t

adca dir8 99 t

adca ext8 b9 t

adca i x8 a9 t

The fields indicate the symbolic assembler, the addressing mode, the machine language
opcode and whether there are more than one addressing modes. | wrote another program (a
Per| script) to read these lines and translate each one into Java source code for the instruction.
The generated source code had to be completed by hand; this meant implementing the
execut e() whichwassimpleto do. (Yes, it was somewhat tedious, but much less so than
writing these 5000 lines of code by hand!)

The treatment of instructions with more than one address mode was different. In these cases,
an abstract version of the instruction was generated and a separate concrete class for each
addressing mode was created.

For example, the | daa instruction generated the following abstract class:

public abstract class LdaaAbstract extends Abstractlnstruction

private CPU6811 cpu = CPU6811. getlnstance();
Einal public int execute() //This nmethod was witten manually
int op = getOperand();
cpu. set AccA(op) ;
set NZ8( op) ;
cpu. set CC V(fal se);
return -1;

%inal protected String get OQpSynbolic() {return "LDAA";}
The automatically generated code for the| daa using the Extended addressing modeis:

public class LdaaExt extends LdaaAbstract ({
private CPU6811 cpu = CPU6811. getlnstance();
final public int getQperand() {return get EXT8Qperand();}
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final int getAddressi ngMbde() {return Instruction. EXT8;}

(Notes: theget Oper and() concete method is used by the ssmulator to obtain the actual
operand; theget Addr essi nghMbde() method is only used by the disassembler.)

With this hierarchy of classes, | only had to customize the execut e() method in the
abstract class rather than in each individual addressing mode instance of the LDAA
instruction. Besides reducing typing (or cutting and pasting), any bugs in the implementation
of execut e() were conveniently encapsulated in one place.

To summarize, the architecture for implementing Instructionsis broadly described in the
following diagram:

interface Instruction

Abstractl nstruction

Clral nh(custom execute) LdaaAbstract(custom execute) ...and many nore...

| | | | |
LdaaDi r LdaaExt Ldaal mnm Ldaal ndX Ldaal ndY (no
cust om zati on)

Some cells are mapped to devices that are time sensitive. For example, when the
Analog-to-Digital subsystem istold to convert 4 analog channels it needs 128 bus-cyclesto
complete the conversions. Thereis aflag bit (Converstion Complete Flag or CCF) that is
cleared when the conversion process begins and set when it is compl eted.

Testing software is often forgotten or pushed to the background during devel opment.
Professors may gripe about this and insist on some sort of testing procedure, but they are
sometimes just as guilty in ignoring this essential aspect of software implementation.

| have certainly been guilty of thissin, justifying the poor testing with the standard excuses,
"Hey, | haveto get thisthing out the door! Let's worry about testing later. Indeed, let the
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users (aka"guineapigs') do the testing for me."

Recently, however, | have discovered the magic of unit testing and the Junit implementation
of thistechnique. My mastery of this technology is still weak (mastery involves knowing
how to use it and, more importantly, practising the discipline of using it), but | have tried to
exploit it while the engine code was being devel oped.

An aphorism that describes unit testing is "Code alittle, test alittle”. In the past, | often
implemented this simple idea by littering code with pr i nt | n debugging statements.
Unfortunately, the litter had to be removed (or commented out) at some later stage;
furthermore, the litter was sometimes only informative (eg. a certain block of code has been
reached with such and such conditions) or, at other times, actually did some verification.

Unit testing is as simple as inserting debugging code, but offers the huge advantage of not
clutterring the implementation code. Y ou never have to delete debugging code from the
implementation and can continue to run the tests no matter how the implementation code
evolves. This gives you automated regression testing.

In addition, unit testing forces the programmer to write tests that actually test something
(instead of simply providing information.) This tends to focus the mind at the problem at
hand and can result in cleaner designs and implementations.

One surprising advantage to unit testing during development involves writing the test code
prior to coding the implementation and even writing tests you expect to fail.

Most of the intellectual portion of the design/implementation of the simulation engineis
found in the abstract object-oriented architecture (the design of its data rather than its
algorithms.) One of the abstractions used in the design whose algorithmic implementation
was atad more complex than most wasthe Del t aLi st . The stepsinits design and
implementation (including the use of unit testing) are summarized here.

Recall that one aspect of the simulation engine's efficiency is the way it can handle bus cycle
timed events. My first decision was to use a delta-time list as both the design and
implementation of this aspect; indeed, the object implementing the basic ideaiscaled a
"DeltaList".

Before implementing code, | realized that the standard implementation of this idea was not
necessarily the best onein all circumstances. (For example, the idea could be implemented
with astandard Priority Queue algorithm instead of alinked list.) Consequently, | tried to
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write the public documentation for the Del t aLi st classso that it did not imply any
particular implementation.

Initially, | wrote atest casefor aDel t aLi st object and implemented it with stubs.
Theinitial test was:

/[l Add a single item check size and del ete when expired
public void testSinpleDeltal() {

Del taLi st deltalist = new DeltaList();

assert Equal s(del taLi st. size(), 0);

//Add an event to fire after 3 ticks

Ti medEvent itenB = new Ti medEvent ( 3);

del taLi st. add(itenB);

assert Equal s(del taList.size(), 1); //List only contains single item
assert Equal s(del taLi st.ti ckAndRenmove(), null);
assert Equal s(del taLi st.ti ckAndRenove(), null);
assert Equal s(del taLi st.ti ckAndRenove(), itenB);

}
Theinitial implementation used stubs. An abridged versioniis:

public class Deltalist {
public DeltaList(){}
public int size() { return 0;}//STUB size is ZERO
public void add(DeltaTined item{} //STUB does NOTHI NG
public DeltaTimed ti ckAndRenmove(){return null} //STUB does NOTH NG

Why, you may ask, go to al the bother of creating test cases that will fail because the
implementation itself (only stubs) guarantee failure? The big advantage: the basic code and
testing framework can be written, compiled and run. (Note that public documentation should
be written at this stage as well.)

Even with this stub implementation, the first test

(assert Equal s(del taLi st. si ze(), 0); ) will actualy pass! The next test
(checking that the size of the list is one after adding an item) is expected to fail. Indeed, this
is exactly what happened. This expected result (including the failure) gives a programmer
confidence that they are doing at least something right and that it is time to start replacing the
stubs with real implementations.

| added implementation and more tests. | concentrated on "boundary condition” tests (where,
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experience has taught me, bugs often occur). Happily, these tests all worked.

| then implemented a test to mimic the example given in the public documentation of the
class. (The details are described in the public documentation for the Del t aLi st class.) An
abridged version of thistest is shown here:

/1 Try out the Mo, Foo Goo exanple in the public docs
public void testSinpleDeltab() {
Del taList dl = new DeltaList();

Ti mredEvent goo7 = new Ti nedEvent
Ti medEvent noo4 = new Ti nedEvent
dl . add(noo4); dl.add(goo7);
assertEquaIs(dI.tlckAndRennve() noo4) ;
assert Equal s(dl . size(), 3);
assertEquaIs(dI.tlckAndREnnve() f 005) ;
assert Equal s(dl . size(), 2);
assertEquaIs(dI.tlckAndReane() nul |);
assert Equal s(dl . size(), 2);
assertEquaIs(dI.tickAndReane(), nul 1) ;
assert Equal s(dl . ti ckAndRenove(), null);
assert Equal s(dl . ti ckAndRenove(), goo7);

/1 assertEquaIs(dI ti ckAndRenove(), goo7);
/1 assertEqual s(dl.tickAndRenove(), bar8);

Ti medEvent foo5 = neM/TlnedEvent(S), dl . add( f 005) ;
Ti mredEvent bar8 = new Ti nedEvent (8); dl.add(bar8);
/Ido 3 ticks... assertEqual s(dl.tickAndRenmove(), null); // 3 times
// now add goo (after 4 addltlona& §|cks) and noo(1 tick later)
(1);

}
Alas, the test failed...oops. What to do when atest you expect to work does not work?

Some of the choices:

1. | could have examined the algorithm source code and figured out (using brain power)
what dumb thing | had coded that caused the bug.

2. | could have added informative debugging infomation to the test (NOT to the
implementation) to help me zero-in on the bug.

3. | could have used a debugger (including an IDE such as Forte or Jouilder).

| decided to add information to the test. The (abridged) test now looked like:

public void testSinpleDelta5() {
[I...(deleted)...sane as before..
//do 3 ticks... assertEqual s(dl.tickAndRenove(), nuI
/I now add goo (after 4 additional ticks) and nno(l i
Ti mredEvent goo7 = new Ti nedEvent (4);
Ti mredEvent npo4 = new TinedEvent(l);
dl . add(noo4); dl.add(goo7);
assert Equal s(dl . ti ckAndRenove(), npo4);
assert Equal s(dl . size(), 3);
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assert Equal s(dl . ti ckAndRenove(), foo05);
assert Equal s(dl . size(), 2);

assert Equal s(dl . ti ckAndRenove(), null);
assert Equal s(dl . size(), 2);

assert Equal s(dl . ti ckAndRermve() nul ) ;
assert Equal s(dl . ti ckAndRenove(), null);
assert Equal s(dl .ti ckAndRenove(), goo7);

/1 assertEqual s(dl.tickAndRenmove(), goo7);
/| assertEqual s(dl.tickAndRenove(), bar8);

}
| could now run the test, redirect st dout to afile and examineit. The output was:

DELTA test npo, foo, bar, goo...
New delta list: []

After adding foo5: [Delta: 5]

After adding bar8: [Delta: 5, Delta: 3]

After 3 ticks: [Delta: 2, Delta: 3]

After adding noo4: [Delta: 1, Delta: 1, [ta: 3]

After adding goo7: [Delta: 1, Delta: 1, Delta: 4, Delta: 1]

All went well until:

After adding goo7: [Delta: 1, Delta: 1, Delta: 4, Delta: 1]
which should have been:

After adding goo7: [Delta: 1, Delta: 1, Delta: 2, Delta: 1]
/] i.e. 3 ticks already so Anpo4 ~f 005 Agoo7 Abar 8

This erroneous list representation caused all subsequent tests to fail.

| now had afairly detailed view of theinternal representation of the deltalist and could focus
on the "dumb code" | had written. For the mobidly curious, only one line had to be added:

[/...and set the delta of the item being added accordi ngly
item setDelta(itemAddTi ne);
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