C Coding Standards

Ken Clowes (kclowes@ee.ryerson.ca)

November 11, 2000

Contents

1 Introduction 1

2 Recommended Organizational and Coding Standards 2

3 Other C programming conventions 6
3.1 The eprintf library 6
3.2 Using asserts o e 6
3.3 Incorrect conventions 7
3.4 Miscellaneous conventions 7

1 Introduction

The source code for programming projects should always be organized and
written with the future tasks of testing, debugging and maintenance (possibly
by others) in mind. These tasks will be easier if the project is well organized
and the source code is written in a clear and consistent fashion. In addi-
tion, the future possibility of porting the program to different environments
(portability) should be addressed at the outset.

This document describes some basic rules for C coding and project orga-
nization. Some general aspects of the portability problem are also addressed.

Many of the standards discussed here are dealt with from a more general
(language-independent) way in General Coding Standards[Clo].

DRAFT November 11, 2000

2 Recommended Organizational and Coding Standards

2 Recommended Organizational and Coding
Standards

Organization: Each project has a separate directory. For example,

Each project directory must have README and Makefile files. The
README file should give a general overview of the project and the
files that implement it.

Documentation-I (public): The “public” documentation of your source
code should inform a reader of who wrote the code and describe what
it does and how to use the interfaces described. The public comments
should provide sufficient information for a reader to use the functions
without having to read the actual C code that implements the func-
tions. It is strongly recommended that you write these public comments
before you write your code. (Writing a function header comment fo-
cuses your mind on what you really want the function to do.)

All source code files (*.c and *.h) should conform to the following gen-
eral commenting standards:

e Identify your work with, for example, a Copyright notice including
your name and userid. For example:

/* Copyright (C) 1999 Jane Smith (jsmith@ryerson.ca) */

e The next comment—the header—briefly describes the purpose of
the file. For example, a file called towers.c might have the fol-
lowing header comment:

/**
* The functions in this file solve the classic
* towers of Hanoi problem.

*/

e Each function (in a .c file) is preceded by a function header com-
ment that briefly describes what the function does as well as in-
dicating the nature of any passed parameters or return value. For
example:

JEL

DRAFT November 11, 2000

2 Recommended Organizational and Coding Standards

‘‘main’’ manages the command line interface to solving
the towers of Hanoi problem. The command line arg
(which must be string representations of numbers)
indicate the number of disks to be moved and the source
and destination tower numbers. (The towers are
identified with the numbers 1, 2 and 3.)

@param argv a pointer to an array of strings where:
There must be exactly 3 arguments where:
-- the fist arg is the number of disks to move
-- the second is the ID-num of the source
—-— the third is the ID-num of the destination
@return always returns an exit code of O.
*/
int main(int argc, char * argv[])

{}

*
*
%k
%k
b3
*
*
* @param argc the number of command line arguments
*
*
*
*
*
*

Notes

The conventions used for the public comments, specifically the /**
(with the extra *) and the tags @param and @return, correspond to
Java commenting standards. In particular, a Java tool called javadoc
can parse these specially formatted comments and the following dec-
laration to produce nicely formatted HTML documentation automat-
ically. While there is no version of javadoc for C code at this time, it
does no harm to use the clear conventions of Java in your C code!.

Documentation-II (private): While the public documentation should be
written so that it does not require the reader to understand or even
look at the implementation, private documentation is meant to help
the reader understand the actual C code implementing a function. The
comments should be written under the assumption that the reader is a
competent C programmer. For example:

i++; /* Increment i by one */

!The doc++ package seems to do this, but I have not yet tested or installed it

DRAFT November 11, 2000

2 Recommended Organizational and Coding Standards

is a useless comment since it is entirely obvious to a C programmer.

Often, no private comments are required at all in well written programs.
The use of descriptive variable and function names is also a great help.
Indeed, Rob Pike states:

Basically, avoid comments. If your code needs a comment to

be understood, it would be better to rewrite it so it’s easier
to understand.

Rob Pike[Pik]

Using descriptive names often eliminates the need for comments, Con-
sider:

foo = foo->bar; /* move "foo" to next item */

The comment would be unnecessary with the more intelligent variable
and field names:

item = item->next;
Avoid “magic numbers”: Numbers should rarely be placed directly in the
source code. (Common exceptions are the numbers 0 (zero), 1 or —1.)
Instead use an enum data type or the #define preprocessor directive.

(It is usually preferable to use an enum for a small number of integers
instead of a #define.)

For example, do not write code like:
double x = 3.14159265358979323846%2.6%2.6;

or

for(i = 32; i < 212; i += 2)

or

if ((j = foo()) == 2)

DRAFT November 11, 2000

2 Recommended Organizational and Coding Standards

instead, use:

#include <math.h> /* This defines the value of PI */

#tdefine RADIUS 2.6
double x = M_PI*RADIUS#*RADIUS;

or

/* Note following temperatures assume Farenheit scale */

#tdefine FREEZING 32
#tdefine BOILING 212
#tdefine TEMP_INCREMENT 2

for(i = FREEZING; i < BOILING; i += TEMP_INCREMENT)

or

typedef enum {FooGood = 0,

FooWarn = 1,

FooBad = 2} FooReturn_t;
if ((j = foo()) == FooBad)

Compile with all warnings turned on: You should compile C source code
will all warnings turned on. Your C code should produce no warnings.

Portability Try to use only POSIX/ANSI compatible library functions.

No gotos You can use all of the ANSI C language except for the goto
statement. (The single exception to this rule involves the study of

“tail-recursion elimination”.)

Header files: Header files should only contain declarations (such as typedefs
or function prototypes) and preprocessor directives (such as constants
and macros). Executable C code (such as a function body) should

never be placed in a header file.

.h protection All .h files must be protected so that they are never included
more than once and that the order of their inclusion is less critical. For

example, the header file foo.h should be structured as:

DRAFT November 11, 2000

3 Other C programming conventions

#ifndef FOO_H
##define FOO_H

/* Body of foo.h with (possibly) other #includes... */

#tendif /* FOO_H */

Line length and avoiding tabs: No source code line should be longer than
80 characters. Use spaces, not tabs, for indentation.

3 Other C programming conventions

3.1 The eprintf library

You may note functions such as eprintf or emalloc sprinkled through the
C code. These functions come from Kernighan and Pike’s[KP99, p. 109-111]
utility library which we have called eprintf.o.

Their use is summarized in Table 1.

K&P name “Almost” like Comments
eprintf(...) | fprintf(stderr, ...) Exits
weprintf(...) | fprintf(stderr, ...) | Prints warning
emalloc(...) malloc(...) Exits on failure
erealloc(...) realloc(...) Exits on failure

Table 1: Summary of eprintf functions

3.2 Using asserts

My view is that asserts should not be used as a lazy programmer’s way
of informing end-users of predictable error conditions in the operation of a
program. Rather, they should be used mainly during the development stage
to help the programmer figure out where things are going wrong.

Despite this, the source code often uses asserts in this “lazy” way.

DRAFT November 11, 2000

3.3 Incorrect conventions

3.3 Incorrect conventions

I use one coding “standard” that is incorrect and may lead to portability
problems. In particular, there are occasions where the following assumptions
are made:

1. A generic pointer void * is the same size as an integer (int) and data
of one type can be cast to the other.

2. A generic pointer void * and a pointer to a function void *() (...)
are the same size and either can be cast to the other.

Both of these assumptions wviolate the formal specifications in the ANSI
C standard. They are, however, very commonly encountered.

Using these conventions makes some of the code easier to write and more
readable. Note that there is NO assumption about the size of these things.
Normally, however, they are all either 16 or 32 bits.

Some of the problems explore ways to avoid these assumptions.

3.4 Miscellaneous conventions

Some of the source code follows some other arbitrary conventions that are a
matter of personal choice. These include:

Addresses of functions: If funcP is a function pointer data type and foo()
is a function, I use funcP = &foo to set funcP to be a pointer to the
function foo(). Other programmers use the shorter and equivalent
form: funcP = foo.

Private header files: If a header file is used only by the programmer im-
plementing a module and does not need to be viewed or included by
programmers using the module, I append the letter ‘P’ to the name of
the header. For example, foo.h would be a public header file, while
fooP.h would be a private (non-distributed) header file.

private and public: In implementing modules that have “static globals”
(i.e. declarations made at the highest level in the source code file
but qualified as “static” to prevent their names being exported to the
linker), I often use the pre-processor statements:

DRAFT November 11, 2000

REFERENCES

#define private static
#define public

This allows me to declare things at the global level as “private” or
“public” which I find closer to the semantics I have in mind.

Underscores for private names: When a name (such as a typedef or a

private variable is used in a module, I usually prepend an underscore

character (‘%) to its “logical” name.

References

[Clo] Ken Clowes. General Coding Standards. file: CodingStdGen. ps.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming.
Addison-Wesley, Reading, Massachusetts, 1999. 267 pages.

[Pik] Rob Pike. Notes on Programming in C. 5 pages.

DRAFT November 11, 2000

