General Coding Standards

Ken Clowes (kclowes@ee.ryerson.ca)

November 11, 2000

Contents

1

2

Basic principles

Public Documentation
Private Documentation
Naming conventions
Organization
Formatting

Furthermore...

1 Basic principles

Developing software requires some discipline. One component of this disci-
pline that is often underestimated by beginners is the adherence to some set
of general principles for organizing and writing source code. Many of these
principles are are sufficiently general that they should be applied to all soft-
ware irrespective of the programming language. For example, the principles
described here can be applied to C, Assembler, Matlab, Java, C4++, VHDL,

Maple, tcl, Perl, shell scripts and others.

The source code for programming projects should always be organized
and written with the future tasks of testing, debugging and maintenance

DRAFT November 11, 2000



2 Public Documentation

(possibly by others) in mind. The coding standards described here deal
with the larger issues that make these tasks easier. The most fundamental
principle is consistency—whatever detailed coding standards you adopt, you
should always follow them consistently.

The rest of this document expands on the basic principles outlined below:

Public documentation: Source code should contain specially marked com-
ments that provide sufficient knowledge for a reader to use the software
product without examining the actual implementation.

Private documentation: Private comments explain details of the imple-
mentation. Only someone wishing to modify or understand the imple-
mentation would read these comments.

Naming conventions: Sensible and consistent names should be used.

Organization: The directory hierarchy and standard files (like README files)
should be organized clearly and consistently.

Formatting: Visual clues should be used to indicate the logical organization
of the source code.

2 Public Documentation

Public documentation explains how to use software—i.e. it describes the
interface between the software product and its users; it does not describe
implementation details. We consider two general kinds of software and users:

Programs: One kind of product is a runnable program that anyone can use.
For example, a utility program can be written in a scripting language
or C (with a main function), etc. A user of such program should need
no knowledge of the implementation language; they only need to know
how to invoke the program by reading the “man page” entry.

In these cases, the public comments could, for example, be specially
designed so that a “man page” or HT'ML description could be generated
automatically from the source code public comments.

Libraries: The other kind of software product is a library of useful func-
tions, subroutines or classes that a programmer of the implementation

DRAFT November 11, 2000



3 Private Documentation

language could exploit. In this case the user of the software product is
assumed to be skilled in the source code language.

For example, the source code for a package of Java classes should con-
tain public comments that can be used to automatically generate all
the documentation a user of the package needs to exploit its features.

Some other languages such as C, C++ and elisp also have tools or
conventions that allow the automatic generation of user documentation.

If the language does not have such tools, the programmer should de-
velop their own standards for clearly identifying comments that are
public. For example, one convention that I use for assembly language
programming is to start all lines that are public comments with “;;”.

Public documentation should be accurate, but terse. If more lengthy
descriptions are required, a separate user manual or on-line help interface
should be designed and their existence should be stated in the public docu-
mentation.

It is also recommended that the public documentation of interfaces be
written before actually coding the implementation. Specifying the interface
focuses the mind on the essentials and allows the designer to review the
interface looking for inconsistencies or ambiguities before committing it to
code.

3 Private Documentation

Private comments are meant to be explain implementation details of the
source code.

Since the reader of these comments is assumed to be competent in the
programming language, obvious comments that clutter the code and insult
the reader’s intelligence should be avoided. For example, code like:

i++; /x Increment i */

should be avoided.
Often, no private comments are required at all in well written programs.
The use of descriptive names is also a great help. Indeed, Rob Pike states:

DRAFT November 11, 2000



4 Naming conventions

Basically, avoid comments. If your code needs a comment to
be understood, it would be better to rewrite it so it’s easier to
understand.

Rob Pike[Pik]

Avoiding comments completely, however, is sometimes too drastic a mea-
sure. The programmer should use common sense and consider the needs of
the potential reader. If it is expected that the reader is a seasoned expert in
the language, it may be appropriate to have minimal or even no private com-
ments at all. However, if you think the reader may have only a smattering of
expertise, more detailed private comments are reasonable. I find this to be
especially true for scripting languages. For example, I sometimes write perl
scripts but I am not an expert in the language and I insert private comments
to remind myself what bizarre language feature I am using. Of course, a perl
guru may find such comments superfluous and annoying.

Another situation in which detailed implementation comments are often
appropriate is source code that is meant for pedagogical use by people just
learning the language.

4 Naming conventions

Names of entities such as functions, variables, classes, etc. should be given
meaningful names. As a general principle, the greater the scope of an entity,
the more descriptive its name should be. This is especially important for
names that are public (i.e. known to the user).

Numeric and string constants should be given symbolic names; this is far
preferable than embedding “magic” numbers or messages in the source code.

5 Organization

Projects should be organized in a hierarchical manner. The top-level direc-
tory should have at least a README file and a Makefile (or its equivalent.)
The README file should be a pure text file.
The Makefile’s default target should create the project’s implementation
from source code. Other common targets include:

clean: Removes generated files.

DRAFT November 11, 2000



6 Formatting

install: Installs the software.
test: Tests the software.

archive: Makes an archive of all the source files.

6 Formatting

You say toe-may-toes
I say toe-mah-toes
Let’s call the whole thing off.

—Ira Gershwin (lyrics) and George Gershwin (music)

Source code should be formatted so that visual clues (such as indentation
or vertical white space) aid in understanding the organization and logical
flow of the implementation.

Different organizations and individuals may have specific detailed conven-
tions that they follow and it is not our intention to stipulate any particular
standard (which risks starting religious wars over minor details). However,
as a general principle, I do prefer:

e that tabs be replaced with spaces;
e and that lines be limited to 80 characters or less.

These rules ensure that you can always examine the source code on a
dumb terminal and that you can embed it in an e-mail message easily.

With the emacs editor, there are special editing modes for almost all
programming languages. To avoid tabs and limit line length, you can use the
auto-fill mode and set indent-tabs-mode to nil.

7 Furthermore...

Excellent advice from master programmers on many aspects of the craft
(much more than coding standards) can be found in The Practice of Pro-
gramming|[KP99]

I have written more detailed descriptions of coding standards for C[Clob]
and assembler[Cloa]

DRAFT November 11, 2000



REFERENCES

References

[Cloa] Ken Clowes. Assembly Language Coding Standards.
file:"kclowes/public/CodingStds/CodingStdAsm.ps

[Clob] Ken Clowes. C' Coding Standards. file: CodingStdC.ps.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addi-
son-Wesley, Reading, Massachusetts, 1999. 267 pages.

[Pik] Rob Pike. Notes on Programming in C. 5 pages.

DRAFT November 11, 2000



