EE-8217: RECONFIGURABLE COMPUTING SYSTEMS

1. Objectives

This course is designed to offer an introduction in the theory and engineering design principles of the modern Reconfigurable Computing Systems (RCS) – one of the most rapidly growing sectors of the high-performance computer technology. The emphasis is in understanding of the concepts of architecture reconfigurability, programmable logic devices and adaptation of the RCS architecture to the task algorithm and data structure. The course covers hardware basics of the modern RCS – fine and coarse-grained programmable logic devices: Field Programmable Gate Arrays (FPGA) and Coarse-Grained Reconfigurable Arrays (CGRA). The overview of RCS architectures and areas of their application also is provided. Languages and compilers for the RSC are other aspects to be covered in this course. Course gives brief description of RCS application in DSP, Video / Image Processing and Supercomputing applications. Then the RCS development, virtual components design and system integration processes will be discussed including high and low level synthesis, simulation and verification stages.

2. Course Outline

WEEK	LECTURE	PROJECTS
1	Introduction: Course content & organization,	
	Course text and marking scheme. Web site	
2	Definition of RCS : the Reconfigurable Computing	Project 1:
	Systems (RCS) and RCS classification.	Announcement of
	RCS Architectures: Fine-grain and Coarse-grain	projects, project format
	architectures. RCS-supercomputers, Massively	and report organization
	parallel FPGA array, Stream processing RCS,	
	Hybrid RCS and Embedded RCS architectures.	
3	RCS component basis: Field Programmable Gate	Project 1: Selection of
	Array (FPGA) and Coarse-Grained Reconfigurable	project topic
	Arrays (CGRA) architectures. Modern FPGA	
	architectures: DSP functional blocks, embedded	
	processors, block-RAM, Giga-bit serializers, etc.	
4	Languages and Compilers for RCS:	Project 1: Literature
	Algorithmic languages for RCS, Hardware	research of 5 papers
	Description Languages (HDL). High-level of	
	Compilation and low-level design flow	
5	RCS configuration: Application segmentation and	Project 1: Analysis of
	RCS resources partitioning: spatial and temporal.	the state-of-the-art.
	Multiplexing vs. run-time reconfiguration. Spatial	
	and temporal reconfiguration mechanisms in RCS	
6	RCS Applications: DSP, Video/Image processing	Project 1: Submission
	Cryptography and Supercomputing applications.	of the Project report
	Functional restoration over reconfiguration in RCS.	

WEEK	LECTURE	PROJECTS
8	RCS Development:	Project 2: Selection of
	Application and specification analysis. Concept of	project topic
	High-level synthesis of RCS architecture in multi-	
	parametric design space.	
9	RCS development:	Project 2:
	Intellectual Property (IP) cores. Concept of Virtual	Development of the
	Hardware Component (VHC) and Application	block-diagram, symbol
	Specific Virtual Processor (ASVP). Spatial and	and HDL source code
	temporal partitioning of FPGA resources	(Version 1)
10	RCS implementation:	Project 2: Simulation
	Virtual components (VHC) design process: High-	and design verification.
	level synthesis of VHC and optimization, VHC	Corrections in the
	data-path and control unit design, Low-level	HDL-source code
	synthesis, simulation and verification of VHC.	(Version 2).
11	RCS implementation:	Project 2: Hardware
	Component integration in space and in time domain	emulation on the FPGA
	Determination of reconfiguration scheme and	platform. Debugging
	associated loading mechanisms (special & temporal	the design and first run
	partitioning) for the RCS	of the system.
12	RCS verification and debugging	Project 2:
	Synthesis, Simulation and Verification tools.	Demonstration of the
	Virtual instruments & performance analyzers.	complete system
13	Course review & Final Examination	Project 2: Technical
		report submission

3. Course Text

- 1. Maya B. Gokhale and Paul S. Graham, "Reconfigurable Computing. Accelerating computation with Field Programmable Gate Arrays", Springer, 2005, ISBN-10 0-387-26105-2
- 2. Reference text: Clive Maxfield, "The Design Warrior's Guide to FPGAs", ELSEVIER, ISBN 0-7506-7604-3

4. Marking Scheme

Project 1	= 25 %
Project 2	= 25 %
Final Exam	= 50 %

All of the required course specific written reports will be assigned not only on their technical or academic merit, but also on the communication skills of the author as exhibited through these reports.

Instructor: Dr. Lev Kirischian, P.Eng. Office: ENG 432 Telephone: (416) 979-5000 ext. 6076 E-mail: <u>lkirsch@ee.ryerson.ca</u> Web: <u>www.ee.ryerson.ca/~lkirisch</u>