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Stochastic – random Process – function of time

• Definition: Stochastic Process – A stochastic process X(t) consists of an experiment
with a probability measure P [·] defined on a sample space S and a function that assigns a
time function x(t, s) to each outcome s in the sample space of the experiment.

• Definition: Sample Function: A sample function x(t, s) is the time function associated
with outcome s of an experiment.
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Example 1:

Starting at launch time t=0. let X(t) denote the temperature in degrees Kelvin on the 
surface of a space shuttle. With each launch, we record a temperature sequence x(t,s).
For example, x(8073.68, 2)=207, indicates that the temperature is 207 K at 8073.68 
seconds during the second launch. X(t) is a stochastic process.
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Figure 1: stochastic process representing the temperature on the surface of a space shuttle
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Example 2:

3

Figure 2: stochastic process representing the results 
of die rolls
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Types of Stochastic Processes

• Discrete Value and Continuous Value Processes: X(t) is a discrete value process if
the set of all possible values of X(t) at all times t is a countable set SX ; otherwise, X(t)
is a continuous value process.

• Discrete Time and Continuous Time Process: The stochastic process X(t) is a
discrete time process if X(t) is defined only for a set of time instants, tn = nT , where T

is a constant and n is an integer; otherwise X(t) is a continuous time process.

• Random variables from random processes: consider a sample function x(t, s), each
x(t1, s) is a sample value of a random variable. We use X(t1) for this random variable.
The notation X(t) can refer to either the random process or the random variable that
corresponds to the value of the random process at time t.

• Example: in the experiment of repeatedly rolling a die, let Xn = X(nT ). What is the
pmf of X3?
The random variable X3 is the value of the die roll at time 3. In this case,

PX3(x) =

⎧⎨
⎩

1/6 x = 1, ..., 6

0 o.w.
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Types of Stochastic ProcessesExample 3:
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Figure 3:
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Independent, Identically Distributed (i.i.d) Random Sequences

An i.i.d. random sequence is a random sequence, Xn, in which

· · · , X−2, X−1, X0, X1, X2, · · ·
are i.i.d random variables. An i.i.d random sequence occurs whenever we perform
independent trials of an experiment at a constant rate. An i.i.d random sequence can be either
discrete value or continuous value. In the discrete case, each random variable Xi has pmf
PXi(x) = PX(x), while in the continuous case, each Xi has pdf fXi(x) = fX(x).

Theorem: Let Xn denote an i.i.d random sequence. For a discrete value process, the sample
vector Xn1 , · · · , Xnk

has joint pmf

PXn1 ,··· ,Xnk
(x1, · · · , xk) = PX(x1)PX(x2) · · ·PX(xk) =

k∏
i=1

PX(xi)

Otherwise, for a continuous value process, the joint pdf of Xn1 , · · · , Xnk
is

fXn1 ,··· ,Xnk
(x1, · · · , xk) = fX(x1)fX(x2) · · · fX(xk) =

k∏
i=1

fX(xi)
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i.i.d Random Sequences Example

Example 1:
For a Bernoulli process Xn with success probability p, find the joint pmf of

X1, · · · , Xn.

Solution: For a single sample Xi, we can write the Bernoulli pmf as

PXi
(xi) =

⎧⎨
⎩

pxi(1 − p)1−xi xi ∈ {0, 1}
0 otherwise

When xi ∈ {0, 1} for i = 1, · · · , n, the joint pmf can be written as

PX1,··· ,Xn
(x1, · · · , xn) =

n∏
i=1

pxi(1 − p)1−xi = pk(1 − p)n−k

where k = x1 + · · · + xn. The complete expression for the joint pmf is

PX1,··· ,Xn
(x1, · · · , xn) =

⎧⎨
⎩

px1+···+xn(1 − p)n−(x1+···+xn) xi ∈ {0, 1}, i = 1, 2, · · · , n

0 otherwise
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Expected Value and Correlation

• The Expected Value of Process: The expected value of a stochastic process X(t) is the
deterministic function

μX(t) = E[X(t)]

• Autocovariance: the autocovariance function of the stochastic process X(t) is

CX(t, τ) = Cov[X(t), X(t + τ)]

• Autocorrelation: The autocorrelation function of the stochastic process X(t) is

RX(t, τ) = E[X(t)X(t + τ)]

• Autocovariance and Autocorrelation of a Random Sequence:

CX [m, k] = Cov[Xm, Xm+k] = RX [m, k] − E[Xm]E[Xm+k]

where m and k are integers. the autocorrelation function of the random sequence Xn is

RX [m, k] = E[XmXm+k]
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Example 3:
The input to a digital filter is an i.i.d random sequence · · · , X−1, X0, X1, · · ·

with E[Xi] = 0 and Var[Xi]=1. The output is also a random sequence · · · , Y−1, Y0, Y1, · · · .
The relationship between the input sequence and output sequence is expressed in the formula

Yn = Xn + Xn−1 for all integer n

Find the expected value function E[Yn] and autocovariance function CY (m, k) of the output.

Solution: Because Yi = Xi + Xi−1, we have E[Yi] = E[Xi] + E[Xi−1] = 0. Before
calculating CY [m, k], we observe that Xn being an i.i.d random sequence with E[Xn] = 0
and Var[Xn]=1 implies

CX [m, k] = E[XmXm+k] =

⎧⎨
⎩

1 k = 0

0 otherwise
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For any integer k, we can write

CY [m, k] = E[YmYm+k] = E[(Xm + Xm−1)(Xm+k + Xm+k−1)]

= E[XmXm+k + XmXm+k−1 + Xm−1Xm+k + Xm−1Xm+k−1]

= E[XmXm+k] + E[XmXm+k−1] + E[Xm−1Xm+k] + E[Xm−1Xm+k−1]

= CX [m, k] + CX [m, k − 1] + CX [m − 1, k + 1] + CX [m − 1, k]

We still need to evaluate the above expression for all k. For each value of k, some terms in
the above expression will equal zero since CX [m, k] = 0 for k �= 0.

• When k = 0,

CY [m, 0] = CX [m, 0] + CX [m,−1] + CX [m − 1, 1] + CX [m − 1, 0] = 2.

• When k = 1

CY [m, 1] = CX [m, 1] + CX [m, 0] + CX [m − 1, 2] + CX [m − 1, 1] = 1.

• When k = −1

CY [m,−1] = CX [m,−1] + CX [m,−2] + CX [m − 1, 0] + CX [m − 1,−1] = 1.
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• When k = 2

CY [m, 2] = CX [m, 2] + CX [m, 1] + CX [m − 1, 3] + CX [m − 1, 2] = 0.

A complete expression for the autocovariance is

CY [m, k] =

⎧⎪⎪⎨
⎪⎪⎩

2 k = 0

1 k = ±1

0, otherwise
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