
The Ultragizmo Lab Board

91

8 The Ultragizmo Lab Board

This chapter provides detailed information about the various components on the University of
Toronto Ultragizmo board.

The board itself is a printed circuit board, measures 12.5 x 7.0 inches, and runs at 16.67 MHz.
Figure 42 shows where individual components are physically located on the board while Figure 2
(on page 2) is a functional block diagram of the board showing how the components are logically
connected to each other.

The central processing unit on the board is the Motorola MC68306 16-bit integrated
processor. This integrated processor contains an M68000 processor core plus several peripheral
devices including a serial I/O controller and an interrupt controller. The M68000 has an
asynchronous bus structure with a 16-bit data bus and a 32-bit address bus. Only the lower 24 bits
of the address bus are connected to the external I/O of the MC68306 Chip. It has a powerful
instruction set and versatile addressing modes. Chapter 6 describes how to write, assemble, and
execute a program for the M68000, while the course textbook gives details about the instructions
and addressing modes. A PC-based simulator for the M68000 is available in the directory
ugsparc:/cad2/ultragizmo/MLabs/68000sim.

The system’s main memory consists of 10 Mbytes of dynamic RAM (DRAM). The monitor
program is stored in 2 Mbytes of flash ROM. The monitor program is a stripped-down operating
system for the Ultragizmo board and provides commands for helping the programmer to debug
incorrectly functioning programs. Chapter 7 summarizes the monitor commands available while
Section 2.2 gives a tutorial and more details for each command.

All M68000 peripherals are memory-mapped. In other words, there are no special instructions
for communicating between the M68000 and the various peripheral chips that control, for
example, the serial and parallel ports. Instead, each peripheral chip is assigned a range of
addresses and the M68000 communicates with that peripheral by reading and writing to the
addresses assigned to that peripheral’s registers.

The Ultragizmo board has two RS-232-C serial ports. Both are connected to a PC workstation.
One serial port (CONSOLE) provides keyboard and screen I/O services for the board and another
port (REMOTE) is used to download programs from the PC to the board. The serial ports are
controlled by the Dual Asynchronous Receiver/Transmitter unit (DUART) of the MC68306 chip,
which in turn is controlled by an M68000 program. Section 8.1 provides details on how to
program the DUART to use the serial ports.

Interrupt controller of the MC68306 manages interrupts to the M68000 from the board’s
various communications devices. The M68000 has seven interrupt priority levels, which can be
vectored or autovectored depending on the configuration of the interrupt controller. Section 8.2
describes the interrupt structure of the board as well as provides details on how to program the
interrupt controller.

There are a total of 16 I/O lines (plus 5 control lines) available at a parallel interface/timer
(PIT) to provide for parallel data transfer. The programmer can use the PIT to interface the
M68000 with external hardware, such as a mouse or motorized LEGO kits. The PIT is controlled
by the CFPGA. Section 8.3 provides details on how to access the PIT while Section 9.2,
Section 9.3, and Chapter 10 describe how to use the PIT to control a mouse, a hex keypad or a
LEGO board, respectively. A second PIT can be configured using the SFPGA. A procedure for

The Ultragizmo Lab Board

92 Lab Manual for the UofT Ultragizmo BoardFigure 42 - Placement of Components on Ultragizmo Board

M
IC

SPKM68000_BUS

SFPGA_CON60 SFPGA_LOGIC
T

E
S

T
S

F
P

G
A

_C
O

N
40

SF
P

G
A

_D
IG

IT
A

L
P

IT

MIC (AC)

(D
C

, d
ef

au
lt)

The Ultragizmo Lab Board

93

doing this is given in Section 8.3.3.

There is a completely buffered version of the main CPU bus available at a cable connector
(M68000_BUS) so the user may add any additional peripheral controllers (or memory) needed
for a given application. Section 8.4 provides the details on how to do this.

The SFPGA is an Altera 10K70 FPGA which can be used for prototyping purposes. Pins of
the SFPGA are connected directly to the M68000 address and data buses. The SFPGA is also
connected to and can be used to control a COder-DECoder (CODEC) for audio I/O, 16 Light
Emitting Diodes (LED), four HEX displays (HEX1, HEX2) and 1Mbyte of SRAM modules. A
Cypress ICD2053B programmable clock generator is used to provide clock signals for the
SFPGA. External signals also can be connected to the SFPGA through four I/O connectors
(SFPGA_CON40, SFPGA_CON60, SFPGA_DIGITAL, SFPGA_LOGIC). Section 8.5
describes the SFPGA and gives the pin assignments for the various connectors on the board.
Section 8.6 describes the operation of the CODEC. Section 8.7 describes the operation of the
programmable clock.

Finally, a word about accessing the 32-bit memory space of the M68000. The Ultragizmo
board executes a program in supervisor mode. Hence, an M68000 program can use any of the
M68000 instructions and access the entire 32-bit address space. This 4-Gbyte address space is
divided among the various components on the board. Table 4 shows how the 32-bit address space
is allocated. The user RAM (memory used to store your programs) starts at 0x8001. The text and
data of a program can stretch from there to the top of the available physical memory, which is
$009fffff for 10Mbyte of RAM.

Memory Addresses Board Component
0x00000000 - 0x000003ff Exception Vectors

0x00000400 - 0x00004fff Monitor Variables

0x00005000 - 0x00008000 Stack Pointer location on reset

0x00008001 - 0x009fffff User usable RAM

0x00a00000 - 0x00bfffff Off Board Memory

0x00c00000 - 0x00cfffff I/O Peripherals

0x00d00000 - 0x00dfffff Flash ROM Programming

0x00e00000 - 0x00ffffff Flash ROM

0x01000000 - 0xffffefff Not used

0xfffff000 - 0xfffff7df MC68306 Internal Registers

0xfffff7e0 - 0xfffff7ff MC68306 DUART

0xfffff800 - 0xfffffff7 MC68306 Internal Registers

0xfffffff8 - 0xfffffffb MC68306 Interrupt Controller

0xfffffffc - 0xffffffff MC68306 Internal Registers

Table 4 - Memory Map of the Ultragizmo Board

The Ultragizmo Lab Board

94 Lab Manual for the UofT Ultragizmo Board

8.1 DUART and Serial I/O
Besides the M68000 processor core, the MC68306 chip contains several subcomponents that

it uses to communicate with the outside world. One of those subcomponents is the Dual
Asynchronous Receiver/Transmitter unit, commonly referred to as the DUART. The DUART
connects the M68000 to two serial RS-232-C ports (RS-232 for short). The RS-232 ports, in turn,
are connected to the PC workstation, which is used by us to communicate with the M68000.
Communicating using an RS-232 port is called serial I/O. This is because communication is done
1 bit at a time and each port can both receive (input) and send (output) data from and to the
outside world. However, the M68000 does not receive data 1 bit at a time from an RS-232 port;
that is the job of the DUART. Instead, an RS-232 port sends a serial (1-bit) data stream from the
outside world to the DUART which then converts this into a parallel, byte-wide (8-bits) datum
that is sent on the data bus to the M68000. The same process is used in reverse for sending a serial
data stream to the outside world.

The DUART has two ports, named A and B. Each port controls one of the RS-232 ports.
Figure 2 on page 2 shows the connections between the DUART and the RS-232 ports. Port A
(REMOTE) on the DUART controls the RS-232 port that is used for downloading M68000
programs from the PC while Port B (CONSOLE) controls the RS-232 port that provides keyboard
and screen I/O for the board.

All communication between the DUART and the M68000 uses byte transfers. This is because
the DUART is an 8-bit bus device that is attached to the low-order byte of the data bus.
Communication with the DUART is done by writing or reading any of the registers in the
DUART. The Ultragizmo board uses memory-mapped I/O so accessing the DUART’s register is
done by accessing the appropriate memory location. Table 5 lists the DUART registers and gives
the addresses of the registers for each DUART port. Note that a “register” is sometimes used
differently depending on whether it is being read or written. For example, the register at address
0xfffff7e7 is a receiving buffer when it is being read and a transmitting buffer when it is being
written. Internally the DUART has separate receive and transmit buffer registers; it determines
which is being accessed by looking at the read-write (R/W) line coming from the M68000 in
addition to the address lines.

8.1.1 Communicating with the Terminal (Using Port B on DUART)

Port B on the DUART is connected to the PC for keyboard and screen I/O and is the port that
is used most often by programmers. Hence, we will explain how to use the DUART to
communicate with the PC through port B; the same procedure will allow you to communicate
through the other RS-232 ports. The monitor program automatically initializes Port B on the
DUART to the settings necessary to communicate with the PC, so no initialization code is needed.
Initialization code will be needed to use the other ports; a description of the required code is given
later in Section 8.1.3.

Characters written to Port B of the DUART by the M68000 appear on the CONPORT
window, while reading from Port B lets the M68000 determine which keys were pressed. Writing
a character on the screen is done by writing to the transmitter buffer B (TBB) at address
0xfffff7f7. Reading from this same address will read the receiving buffer for Port B (RBB) and
produce the most recently pressed key on the PC keyboard while the CONPORT window is in
focus. The CONPORT window understands characters encoded in ASCII, so writing the byte

The Ultragizmo Lab Board

95

0x41 to 0xfffff7f7 would print the character ‘A’ on the screen while reading the byte 0x37 means
that the ‘7’ key was pressed. Table D.2 of Computer Organization by Hamacher, Vranesic and
Zaky, 1996, 4th edition lists all the ASCII character encodings.

The M68000 can process characters at a much faster rate than the DUART can. For example,
if the M68000 were to continually send characters to the screen, not all the characters would be
displayed because the screen would display one character in the time it takes the M68000 to send
several. These subsequent characters would be overwritten in the transmit buffer and thus be lost
before the first character had finished being displayed.

One way to avoid this is to have the M68000 check the DUART’s Status Register for Port B
(SRB at address 0xfffff7f3) to see when the screen has finished displaying a character and is ready
to display another character. Table 6 shows the format of the Status Register (see Chapter 6 in the
MC68306 User’s Manual to find out what the other bits are used for). Bit 2 of the status register
is set to 0 when the transmitter buffer (TBB) is full; data written to the transmitter buffer by the
processor has not yet been sent out to the serial port. This bit is set to 1 when the DUART has

DUART READ (name) WRITE (name)

0xfffff7e
1

Mode Register A (MR1A, MR2A) Mode Register A (MR1A, MR2A)

0xfffff7e
3

Status Register A (SRA) Clock-Select Register A (CSRA)

0xfffff7e
5

Reserved Command Register A (CRA)

0xfffff7e
7

Receiver Buffer A (RBA) Transmitter Buffer A (TBA)

0xfffff7e
9

Input Port Change Register (IPCR) Auxiliary Control Register (ACR)

0xfffff7e
b

Interrupt Status Register (ISR) Interrupt Mask Register (IMR)

0xfffff7e
d

Current MSB of Counter (CUR) Counter/Timer Upper Register (CTUR)

0xfffff7ef Current LSB of Counter (CLR) Counter/Timer Lower Register (CTLR)

0xfffff7f1 Mode Register B (MR1B, MR2B) Mode Register B (MR1B, MR2B)

0xfffff7f3 Status Register B (SRB) Clock-Select Register B (CSRB)

0xfffff7f5 *Reserved* Command Register B (CRB)

0xfffff7f7 Receiver Buffer B (RBB) Transmitter Buffer B (TBB)

0xfffff7f9 Interrupt Vector Register (IVR) Interrupt Vector Register (IVR)

0xfffff7fb Input Port (unlatched) Output Port Config. Register (OPCR)

0xfffff7fd Start Counter Command (STC) Set Output Port Register (SOPR)

0xfffff7ff Stop Counter Command (SPC) Reset Output Port Register (ROPR)

Table 5 - Register Addresses for DUART

The Ultragizmo Lab Board

96 Lab Manual for the UofT Ultragizmo Board

room in the transmitter buffer to accept another byte of data from the processor.

A similar problem occurs for reading characters from the keyboard; bit 0 of SRB is used to
solve the problem. This bit is a 1 whenever there is data in the receiver buffer (RBB) that has not
yet been read by the processor. When the receiver buffer is read, this bit is cleared automatically
by the DUART.

Following is a simple example showing how to use the status register and transmitter/receiver
register to echo typed characters onto the terminal:

SRB equ $fffff7f3
RBB equ $fffff7f7
TBB equ $fffff7f7

org $20000

TSTRX btst.b #0,SRB Character received?
beq TSTRX
move.b RBB,d0

TSTTX btst.b #2,SRB Transmitter ready?
beq TSTTX
move.b d0,TBB
bra TSTRX

The above code is available in /cad2/ultragizmo/MLabs/duart_poll.s on the ugsparc system.
Using the status register in this way to control the flow of bytes between the M68000 and the
terminal is called polled I/O because the processor uses a tight loop to continually poll the
DUART until the DUART is ready.

In addition to writing characters on the screen, it is also possible to clear the screen and move
the screen cursor to a desired position to do “formatted printing.” This is done by writing special
escape sequences to the terminal. Some of these sequences are shown in Table 7. Each character
in a sequence is to be written using its ASCII encoding. The spaces in the character sequences are
for readability only; do not send them. For example, to clear the screen, write the four bytes 0x1b,
0x5b, 0x32, and 0x4a to register TBA using polled I/O. To move the cursor to a particular spot,
say the 3rd row and 10th column, use the second control sequence. Remember to write the ASCII
encoding of these numbers to the screen and not their binary representation! Refer to a VT-52 or

7 6 5 4 3 2 1 0

Status Register (SR) TxRdy RxRdy
=0 no

=1 yes

Interrupt Mask Register
(IMR)

RxRdy
B

TxRdy
B

RxRdyA TxRdyA
=0 disabled

=1 enabled

Interrupt Status Register
(ISR)

RxRdy
B

TxRdy
B

RxRdyA TxRdyA
=0 didn’t occur

=1 occurred

Table 6 - Status and Interrupt Registers on the DUART

The Ultragizmo Lab Board

97

VT-100 manual for more information on the control characters.

Reading and writing Port A of the DUART can be done in a manner similar to the above;
initialization of the DUART is explained in Section 8.1.3 on page 98.

8.1.2 DUART Autovectored Interrupts at Level 4

Obviously, using polled I/O can be a waste of a processor’s compute power. Rather than
having the M68000 processor constantly checking to see if the I/O device is ready, the I/O device
could interrupt the M68000 when it is ready and the M68000 could perform some other task while
waiting for the I/O device’s interrupt signal. This type of I/O is called interrupt-driven. For
example, the DUART can generate an interrupt to inform the M68000 that it is ready to transmit
another character or that it has received a new character. The DUART can generate four different
interrupts, two for each port:

Section 8.2 provides a general explanation on setting up and processing interrupts. This
section provides some specific details for enabling, disabling, and clearing interrupts from the
DUART on interrupt level 4.

By default, an autovectored interrupt from the DUART is signaled at interrupt level 4.
Interrupts from the DUART are enabled and disabled using the Interrupt Mask Register (IMR). To
enable interrupts, appropriate bits in the IMR must be set to 1. To disable interrupts, those bits
must be set to 0. Four bits in the IMR enable and disable the four different interrupts a DUART
can generate. Bits 0 and 1 of the IMR control the generation of the TxRdyA and RxRdyA
interrupts, respectively, while bits 4 and 5 control the TxRdyB and RxRdyB interrupts,
respectively (see Table 6).

In addition to enabling interrupts by setting the DUART’s interrupt mask correctly, the
Interrupt Vector Register (IVR) must be filled with the correct interrupt vector number. For the
default autovectored interrupt at level 4, this is done by setting IVR to 28, the interrupt vector

Esc [H Move the cursor to the home position (line 1, column 1).

Esc [Pl ; Pc H Move the cursor to line Pl and column Pc. Pl and Pc are
ASCII decimal strings.

Esc [2 K Erase the current line.

Esc [2 J Erase the entire display

Table 7 - Terminal Control Sequences

Interrupt Meaning

RxRdyA new character received on channel A

TxRdyA ready to transmit character on channel A

RxRdyB new character received on channel B

TxRdyB ready to transmit character on channel B

The Ultragizmo Lab Board

98 Lab Manual for the UofT Ultragizmo Board

number for level 4 autovectored interrupts.

Once a DUART interrupt has been signaled, an interrupt service routine executing on the
M68000 can determine what type of interrupt has occurred by examining the DUART’s interrupt
status register (ISR). Four bits in the ISR corresponding to those in the IMR indicate which
particular interrupt occurred (see Table 6).

Finally, to clear a DUART interrupt, the appropriate bit in the DUART’s ISR should be set to
0. This is automatically done when the corresponding register is read or written. For example,
when a TxRdyA interrupt is signaled and the interrupt service routine writes the TBA register to
send a character to the ready terminal, bit 0 of the ISR is cleared automatically.

The following is code for configuring Port B of DUART to generate an interrupt when the
receiver is ready:

IMR equ $fffff7eb ;interrupt mask register
IVR equ $fffff7f9 ;interrupt vector register

org $20000
move.l #inter,$70 ;initialize interrupt vector table
move.b #28,IVR ;initialize IVR
move.b #%00100000,IMR ;initialize IMR for interrupt on Receiver

Ready
move.w #$2300,sr
. . .

inter . . . ;interrupt service routine

Please refer to Section 8.2.4 for different DUART interrupt level configurations.

8.1.3 DUART Initialization

The DUART used on the Ultragizmo board is very flexible. The number of start and stop bits,
baud rate and various other communication options can be varied easily. This is done by writing
appropriate values to the DUART’s various mode and control registers. The MC68306 User’s
Manual provides a complete description of the DUART registers in section 6.

One unusual feature of the mode registers is that two registers, MR1x and MR2x, appear at
the same address (we use x to mean A or B when the discussion applies to both ports). The first
write to this address after a reset goes to MR1x; subsequent writes go to MR2x until the pointer is
reset (by writing to yet another register!).

The following is code for configuring Port B of the DUART:

*
* INIT. DUART Port B
* 8 data bits, 1 stop bit, 9600 baud, no parity
* op4 and op6 interrupt outputs txrdya and rxrdya
*
MR1B equ $fffff7f1
MR2B equ $fffff7f1
CSRB equ $fffff7f3
CRB equ $fffff7f5
ACR equ $fffff7e9

The Ultragizmo Lab Board

99

org $20000

move.b #$1a,CRB ;Disable Rx, Tx, and reset mode pointer
move.b #$30,CRB ;Reset transmitter(tx)
move.b #$20,CRB ;Reset receiver(rx)
move.b #$13,MR1B ;8 bits, no parity
move.b #$07,MR2B ;1 stop bit; disable hardware flow control
move.b #$bb,CSRB ;9600 baud tx and rx
move.b #$60,ACR ;Baud rate set select
move.b #$05,CRB ;Enable rx, tx

The above code is available in /cad2/ultragizmo/MLabs/duart_init.s on the ugsparc system. To
initialize the mode and control registers for the serial ports, use the above as a guide and refer to
the MC68306 User’s Manual for a complete register description.

The Ultragizmo Lab Board

100 Lab Manual for the UofT Ultragizmo Board

8.2 Interrupts on the Ultragizmo Board
Efficient communication between the processor and peripherals can be implemented using

interrupts. This section discusses the interrupt system architecture of the Ultragizmo board.

For external interrupts (interrupts generated by devices external to the MC68306 processor),
the MC68306 processor implements the entire 7 interrupt levels of the M68000 instruction set,
providing both vectored and autovectored interrupts through an on-chip interrupt controller.
Internal interrupts (interrupts generated by on-chip peripherals like the DUART and the 16-bit
DUART Timer) are not controlled by the interrupt controller. Instead, dedicated system registers
are used to control these interrupts. Both external and internal interrupts are discussed in this
section. Motorola documentation often refers to interrupts as exceptions. We use the term
interrupt exclusively to avoid confusion but the two terms can be considered interchangeable for
the purposes of this discussion.

Section 8.2.1 discusses the basic concepts regarding the M68000 interrupts and the interrupt
controller for the MC68306 processor, without considering the limitations imposed by the
Ultragizmo architecture. The Ultragizmo board and its operating system allow user programs and
external devices to access a subset of M68000 interrupts. The Ultragizmo interrupt architecture is
discussed in Section 8.2.2. Section 8.2.3 summarizes the basic procedure for initializing external
interrupts on the Ultragizmo board. It also provides several programming examples.

Internal interrupts are discussed in Section 8.2.4 and Section 8.2.5. Section 8.1.2 specifically
discusses generating level 4 autovectored interrupts using the DUART, whereas Section 8.2.4
discusses generating DUART interrupts at other interrupt levels. The 16-bit DUART Timer on the
MC68306 can be used to interrupt the processor at fixed time intervals. It is discussed in
Section 8.2.5.

8.2.1 M68000 Interrupts and the Interrupt Controller of MC68306

The M68000 instruction set has seven interrupt priority levels, numbered from 1 to 7 with
priority 7 being the highest. The interrupt signals are managed by the interrupt control unit on the
MC68306 chip. An I/O device, such as a DUART or PIT, can interrupt the M68000 at a particular
priority level and cause the M68000 to execute an interrupt service routine that handles the
event causing the interrupt. To begin executing the interrupt service routine, the M68000 needs to
know the starting address of the routine.

The starting address of an interrupt service routine is called an interrupt vector. Interrupt
vectors are stored in the Interrupt Vector Table which is placed in a fixed location in memory. For
the M68000, the Interrupt Vector Table begins at address 0 and stores 256 addresses. Table 8
shows the part of the M68000 Interrupt Vector Table that is of interest to us.

An entry in the Interrupt Vector Table corresponds to a particular type of interrupt. For
example, entry 25 at address 100 (=0x64) stores the address of the interrupt service routine that
executes in response to a priority 1 autovectored interrupt. Because all addresses are 4 bytes long,
the M68000 uses the entry number to identify the location of the address of an interrupt service
routine in the Interrupt Vector Table. This identifier is called a vector number or vector for short.
When you define an interrupt service routine for a particular interrupt event, you must store the
address of the service routine (i.e., its interrupt vector) at the appropriate vector in the Interrupt
Vector Table. Note the distinction between a vector and an interrupt vector!

The Ultragizmo Lab Board

101

There are two different methods for specifying the vector number of an interrupt:
autovectored and vectored interrupts. Autovectored interrupts use the priority level to specify
the vector number. The interrupting I/O device does not supply a vector and instead the M68000
generates a vector depending on the priority of the interrupt. For example, as Table 8 shows, the
M68000 generates vector number 25 for priority 1 autovectored interrupts and vector number 31
for priority 7 autovectored interrupts. In general the vector number for an autovectored interrupt
at priority p is 24+p.

In contrast, devices generating vectored interrupts must provide the vector explicitly. The
interrupting device must generate the 8-bit vector number and send it to the M68000 over the data
bus when requested by the processor in a vectored interrupt cycle. The M68000 defines the first
64 vectors for its own purposes, including the autovectored interrupts, and leaves the remaining
192 vectors for the system designer to allocate. When using vectored interrupts, the generated
vector must be one of these 192 vectors.

Autovectored interrupts allow I/O devices to interrupt the M68000 with almost no extra
hardware thus allowing hardware designers to easily add an I/O device with interrupting
capabilities. Vectored interrupts, on the other hand, allow more than 7 events to cause an interrupt
and to still be serviced efficiently.

Each MC68306 processor contains an on-chip interrupt control unit. This controller decodes
the standard M68000 interrupt signals into seven I/O signal pairs, one for each interrupt level. The
two signals in each pair are the interrupt request signal (IRQ) and the interrupt acknowledge sig-
nal (IACK). The IRQs are inputs to the processor, and the IACKs are outputs from the processor.
An external device can request an interrupt by lowering an IRQ line. The IACK signals are used

Vector
Number Address Assignment

0-24 0-96
(=0x00-0x60)

Reserved

25 100 (=0x64) priority 1 autovectored interrupt

26 104 (=0x68) priority 2 autovectored interrupt

27 108 (=0x6c) priority 3 autovectored interrupt

28 112 (=0x70) priority 4 autovectored interrupt

29 116 (=0x74) priority 5 autovectored interrupt

30 120 (=0x78) priority 6 autovectored interrupt

31 124 (=0x82) priority 7 autovectored interrupt

31-63 128-252
(=0x86-0x96)

Reserved

64–255 256–1020
(=0x100–0x3FC)

vectored interrupts

Table 8 - Overview of the M68000 Interrupt Vector Table

The Ultragizmo Lab Board

102 Lab Manual for the UofT Ultragizmo Board

for handshaking during the vectored interrupts. For a complete description of these signals, please
refer to the MC68306 User’s Manual.

Whether a priority level uses vectored or autovectored interrupts is also determined by the
interrupt controller. The interrupt controller contains a 16-bit Interrupt Control Register (ICR),
which can be configured by software. Seven bits of the ICR indicate if the corresponding interrupt
levels are vectored or autovectored. Another 7 bits enable or disable their corresponding interrupt
levels. Finally, one bit enables the timer interrupt, which is described in Section 8.2.5 on
page 107. Figure 43 shows the configuration of the ICR in detail.

The IRQ and IACK signals of interrupt levels 2, 3, 5, and 6, are multiplexed with other signals
at the MC68306 I/O pins. The configuration of these pins is controlled by two 16-bit MC68306
internal registers, Port Direction Register (PDIR) and Port Data Register (PDATA). The PDIR
register is located at address $FFFFFFF2. The PDATA register is located at address $FFFFFFF0.
The configuration of these two registers for each interrupt level is listed in Table 9. For a detailed
description of the PDIR and PDATA registers, please refer to page 5-7 and 5-8 of the MC68306
User’s Manual.

8.2.2 Interrupt Signal Assignments on the Ultragizmo Board

This section describes specifics and limitations of interrupts on the Ultragizmo board. On the
Ultragizmo board, for level 3 and 5 interrupts, there are no IACK connections to the outside
world, only IRQ connections; thus level 3 and 5 interrupts can only be used as autovectored
interrupts by external devices. For interrupt levels 1, 2 and 6, both IRQ and IACK signals are
connected to external connections. These interrupt levels can be used either as autovectored
interrupts or vectored interrupts. Figure 44 shows the interrupt signal connections on the
Ultragizmo board in detail. The same information is summarized in Table 10.

Interrupt Control Register (ICR) Address: FFFFFFFA/B

FFFFFFFA

FFFFFFFB ----- AVEC7 AVEC6 AVEC5 AVEC4 AVEC3 AVEC2 AVEC1

IENT IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1
Reset : 0 0 0 0 0 0 0 0

Reset : 1 1 1 1 1 1 1 1

IENT --- Timer Interrupt Enable
This bit enables the DUART timer interrupt
0 - Interrupts disabled
1 = Interrupts enabled

IEN7-1 --- Interrupt Enable 7 through 1
These bits enable interrupt 7,6,5,4,3,2,1
0 = Interrupts disabled
1 = Interrupts enabled

AVEC7-1 --- Autovector Enable 7 through 1
These bits enable autovectoring for interrupts 7,6,5,4,3,2,1
0 = No autovector
1 = Autovector

Figure 43 - Interrupt Control Register (ICR)

The Ultragizmo Lab Board

103

As shown in Figure 44, interrupt signals of level 2 and 3 are directly connected to the M68000
bus. These interrupts are always enabled. Interrupt signals of level 1, 5 and 6, however, are
controlled by the CFPGA. The CFPGA contains an 8-bit configuration register (CFPGA_ICR) at
address $c20000. Currently, the CFPGA can only service one interrupt level at a time. This
interrupt level is determined by the contents of the configuration register as listed in Table 10. For

Interrupt Level and Type PDIR ($FFFFFFF2) PDATA ($FFFFFFF0)

Level 2 - autovector bit4 = 0 bit0 = 0

Level 2 - vector bit4 = 0, bit0 = 1 --------

Level 3 - autovector bit5 = 0 bit1 = 0

Level 3 - vector bit5 = 0, bit1 = 1 --------

Level 5 - autovector bit6 = 0 bit2 = 0

Level 5 - vector bit6 = 0, bit2 = 1 --------

Level 6 - autovector bit7 = 0 bit3 = 0

Level 6 - vector bit7 = 0, bit3 = 1 --------

Table 9 - PDIR and PDATA Configurations

Level
Type of

Interrupt
CFPGA_ICR

($c20000)
Interrupt

Event IRQ IACK

7 autovector only ------- IRQ low NMI / DUART Timer NMI

6 vector /
autovector

$06 IRQ low pin AV20 (IRQ) of
SFPGA

pin D12 (IACK) of
SFPGA

5 autovector only $05 IRQ high to
low transi-
tion

pin 10 (H1), pin 12
(H2), pin 14 (H3), or
pin 16 (H4) of PIT
connector

5 autovector only $f5 IRQ low to
high transi-
tion

pin 10(H1), pin 12
(H2), pin 14 (H3), or
pin 16 (H4) of PIT
connector

4 vector /
autovector

------- IRQ low DUART DUART

3 autovector only ------- IRQ low pin 43 (AUTO3) of
M68000_BUS connec-
tor

2 vector /
autovector

------- IRQ low pin 44 (IRQ2) of
M68000_BUS connec-
tor

pin 42 (IACK2) of
M68000_BUS con-
nector

1 vector /
autovector

$01 IRQ low pin 10 (H1) of PIT
connector

pin 12 (H2) of PIT
connector

Table 10 - Interrupt Priorities on the Ultragizmo Board

The Ultragizmo Lab Board

104 Lab Manual for the UofT Ultragizmo Board

example, when the configuration register contains value $01, a 0 on pin 10 (H1) of PIT will cause
the CFPGA to generate a level 1 interrupt request; level 5 and 6 interrupts are disabled.

All interrupts, except level 5 interrupts, are level sensitive and active low. Level 5 interrupts
are edge triggered either by high-to-low or low-to-high transitions. Columns 3 and 5 of Table 10
show the CFPGA_ICR configuration for each of these two types.

For vectored interrupts at interrupt level 1 or 6, the CFPGA automatically handles the
interrupt acknowledgment cycles. The interrupt vector number provided by the CFPGA is the
value contained in the 8-bit CFPGA Interrupt Vector Register (CFPGA_IVR) at address location
$c20002. This value is set by user programs.

8.2.3 Interrupt Initialization

To enable an interrupt on the Ultragizmo board, follow these seven steps:

1. If the interrupt is at level 1, 5, or 6, initialize the CFPGA_ICR register with proper values
from Table 10.

2. If the interrupt is a vectored interrupt at level 1 or 6, initialize the CFPGA_IVR register with
the corresponding interrupt vector number as discussed in Section 8.2.2.

3. Initialize the interrupt vector table as discussed in Section 8.2.1.

4. If the interrupt is at level 2, 3, 5, or 6, enable the IRQ and IACK lines by properly initializing
the PDIR register as described in Table 9. Note: All bits of the PDIR register contain a default
value of 0.

5. If the interrupt is not a level 4 interrupt, initialize the ICR register as described in Figure 43 on
page 102. Note: The ICR register is configured for level 4 interrupt by default.

Figure 44 - Overview of Interrupt Control on the Ultragizmo Board

The Ultragizmo Lab Board

105

6. If the interrupt is autovectored at level 2, 3, 5, or 6, initialize the PDATA register as described
in Table 9. Note: The reset value of the PDATA register is undefined.

7. Set the processor status register (SR) to a proper priority level.

We conclude this subsection by three interrupt programming examples. Each program contin-
uously prints the character ‘N’ on the screen until it is interrupted by the corresponding interrupt
signal. Once interrupted, a interrupt service routine prints the character ‘I’ for 100 times. Then the
program returns to the main program and continuously prints the character ‘N’ again.

8.2.3.1 Vectored Interrupt at Level 1
SRB equ $FFFFF7F3 ;duart status register
TBB equ $FFFFF7F7 ;duart transmit register
ICR equ $FFFFFFFA ;interrupt register - cpu
CFPGA_ICR equ $00c20000 ;CFPGA interrupt configuration register
CFPGA_IVR equ $00c20002 ;CFPGA interrupt vector register
N equ $4E
I equ $49

* initializing vectored interrupt at level 1
 org $20000
 move.b #$01,CFPGA_ICR ;step 1 (see sec 8.2.3)
 move.b #64,CFPGA_IVR ;step 2 (see sec 8.2.3)
 move.l #inter,$100 ;step 3 (see sec 8.2.3)
 move.w #$41fe,ICR ;step 5(see sec 8.2.3)
 move.w #$2000,sr ;step 6 (see sec 8.2.3)

* main program loop - continuously print ‘N’
loopt btst.b #2,SRB
 move.b #N,TBB
 bra loopt

* interrupt subroutine - print 100 ‘I’
 org $30000
inter move.b #I,d0
 move.l #100,d1
loopi btst.b #2,SRB
 beq loopi
 move.b d0,TBB
 dbra d1,loopi
 rte

8.2.3.2 Vectored Interrupt at Level 2
SRB equ $FFFFF7F3 ;duart status register
TBB equ $FFFFF7F7 ;duart transmit register
ICR equ $FFFFFFFA ;interrupt control register - cpu
PDIR equ $FFFFFFF2 ;port direction register - cpu
PDATA equ $FFFFFFF0 ;port data register - cpu
N equ $4E
I equ $49

The Ultragizmo Lab Board

106 Lab Manual for the UofT Ultragizmo Board

* initializing vectored interrupt at level 2
 org $20000
 move.l #inter,$100 ;step 3 (see sec 8.2.3)
 move.w #$1,PDIR ;step 4 (see sec 8.2.3)
 move.w #$42fd,ICR ;step 5 (see sec 8.2.3)
 move.w #$fffe,PDATA ;step 6 (see sec 8.2.3)
 move.w #$2100,sr ;step 7 (see sec 8.2.3)

* main program loop - continuously print ‘N’
loopt btst.b #2,SRB
 move.b #N,TBB
 bra loopt

* interrupt subroutine - print 100 ‘I’
 org $30000
inter move.b #I,d0
 move.l #100,d1
loopi btst.b #2,SRB
 beq loopi
 move.b d0,TBB
 dbra d1,loopi
 rte

8.2.3.3 Autovectored Interrupt at Level 5
SRB equ $FFFFF7F3 ;duart status register
TBB equ $FFFFF7F7 ;duart transmit register
ICR equ $FFFFFFFA ;interrupt control register - cpu
CFPGA_ICR equ $00c20000 ;CFPGA interrupt configuration register
PDATA equ $FFFFFFF0 ;port data register - cpu
N equ $4E
I equ $49

* initializing autovectored interrupt at level 5
* step 4 is skipped since we are using the default value of PDIR ($0000)
 org $20000
 move.b #$05,CFPGA_ICR ;step 1 (see sec 8.2.3)
 move.l #inter,$74 ;step 3 (see sec 8.2.3)
 move.w #$50ff,ICR ;step 5 (see sec 8.2.3)
 move.w #$fffb,PDATA ;step 6 (see sec 8.2.3)
 move.w #$2200,sr ;step 7 (see sec 8.2.3)
* main program loop - continuously print ‘N’
loopt btst.b #2,SRB
 move.b #N,TBB
 bra loopt
* interrupt subroutine - print 100 ‘I’
 org $30000
inter move.b #I,d0
 move.l #100,d1
loopi btst.b #2,SRB
 beq loopi
 move.b d0,TBB
 dbra d1,loopi
 rte

The Ultragizmo Lab Board

107

8.2.4 Generating Interrupts with the DUART

Section 8.1.2 discusses how to generate autovectored level 4 interrupts using the DUART. By
default, interrupt level 4 is assigned to the DUART, but the DUART also can be configured to use
other interrupt levels. This is controlled by the last three bits of the System Register (SREG) at
address location $FFFFFFFE. Table 11 lists the configuration values and their corresponding
interrupt levels. These three bits have the default value of 100, which sets the DUART interrupt
level to level 4 by default.

To configure the DUART to generate an autovectored interrupt, the DUART’s IVR (see
Table 5) should contain the corresponding vector number for the given autovector interrupt level
as shown in Table 8. For example, for the default level 4 interrupt, the IVR should be configured
to be 28. For level 5 autovectored interrupt, the IVR should be configured to be 27.

The DUART also can be configured to generate vectored interrupts by setting the IVR value
to be a value between 64 and 255, which is the vectored interrupt section of the interrupt vector
table.

8.2.5 Generating Interrupts with the 16-Bit DUART Timer

The MC68306 contains a 16-bit timer, which is part of the DUART. The timer is described in
detail in the MC68306 User’s Manual on page 6-16 and page 6-17. This section gives an over-
view of the timer. The timer can be used to periodically generate interrupts, or output a periodical
square wave on the MC68306 output pin, OP3, which is connected to pin 37 of the PIT
(Section 8.3). The functionality and two operation modes are controlled by a set of registers listed
in Table 12.

The Timer Vector Register (TVR) is an 8-bit register. The value of TVR determines the inter-
rupt vector number of the timer, when a vectored timer interrupt is configured. Since the timer is
part of the DUART, it can also be configured through the DUART, which is set to level 4 on the

SREG2-0 Value Interrupt Level

000 Reserved

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 11 - DUART Interrupt Level Configuration

The Ultragizmo Lab Board

108 Lab Manual for the UofT Ultragizmo Board

ultragizmo board. Two programming examples are supplied at the end of this section to demon-
strate these two distinct interrupt methods.

The ICR register is described in Section 8.2.1. The left most bit of the ICR register should be
set to 1 if a TVR controlled timer interrupt is needed; the TVR register is used as the interrupt
vector number. When the DUART autovectored interrupt is desired, this bit should be set to 0.

The fourth bit of the IMR register (Section 8.1.1) enables and disables the timer interrupts. A
value of 1 enables the timer interrupt, and a value of 0 disables the timer interrupt. The period of
the timer interrupts is controlled by the CUR and CLR registers. These two registers are treated as
a single 16-bit register, with the CUR register as the upper byte and the CLR as the lower byte.
The processor decrements the 16-bit register every DUART clock cycle, which can be configured
to several distinct clock frequencies (see the MC68306 User’s Manual for instructions), and an
interrupt is generated when the value of the 16-bit register is reduced to zero. Once the interrupt is
serviced, the 16-bit register is reset to its starting value and the entire cycle is repeated.

The timer is started when the user program reads the STC register. It can be stopped by read-
ing the SPC register. The values of these two registers have no meaning. The ACR register con-
trols additional timer configurations. Refer to page 6-30 of the MC68306 User’s Manual for
details.

The following two examples demonstrate the process of configuring the timer for vectored
and autovectored interrupts. The vectored interrupt is shown in example 1. The timer periodically
interrupts the processor at level 7. The autovectored interrupt is shown in example 2. The timer
periodically interrupts the processor at level 4. The main loop of both programs repeatedly prints
the character ‘N’. The interrupt service routine prints 100 ‘I’s on the screen.

Address Register Name Width
(bits)

$FFFFFFFF timer vector register TVR 8

$FFFFFFFA interrupt control register ICR 16

$FFFFF7FF timer stop counter command register SPC 8

$FFFFF7FD timer start counter command register STC 8

$FFFFF7F9 DUART interrupt vector register IVR 8

$FFFFF7EF timer counter upper preload register CUR 8

$FFFFF7ED timer counter lower preload register CLR 8

$FFFFF7EB DUART interrupt mask register IMR 8

$FFFFF7E9 DUART auxiliary control register ACR 8

Table 12 - 16-bit DUART Timer Configuration Registers

The Ultragizmo Lab Board

109

8.2.5.1 Example 1 - Vectored Timer Interrupts
SRB equ $FFFFF7F3 ;duart status register
TBB equ $FFFFF7F7 ;duart transmit register
ICR equ $FFFFFFFA ;interrupt control register - cpu
TVR equ $FFFFFFFF ;timer vector register
IMR equ $FFFFF7EB ;duart interrupt mask register
ACR equ $FFFFF7E9 ;duart auxiliary control register
CUR equ $FFFFF7EF ;timer counter upper preload register
CLR equ $FFFFF7ED ;timer counter lower preload register
STC equ $FFFFF7FD ;timer start counter command register
SPC equ $FFFFF7FF ;timer stop counter command register
tmp equ $31000 ;temporary variable
N equ $4E
I equ $49

* Using the timer to generate a vectored interrupt
* at priority 7 (Non-Maskable)
 org $20000
 move.l #inter, $100 ;initialize the interrupt vector table
 move.b #64,TVR ;initialize the timer vector register
 move.w #$c000,ICR ;initialize the interrupt control register
 move.b #$b0,ACR ;initialize the auxiliary control register
 move.b #$ff,CUR ;initialize the upper preload register
 move.b #$ff,CLR ;initialize the lower preload register
 move.b SPC,tmp ;stop the timer
 move.b #%00001000,IMR;initialize the interrupt mask register
* ;for timer interrupt
 move.b STC,tmp ;start the timer

* main program continuously print ‘N’s
loopt btst.b #2,SRB
 move.b #N,TBB
 bra loopt

* interrupt service routine - print 100 ‘I’s for every interrupt
 org $30000
inter move.b SPC,tmp ;stop the timer
 move.l #100,d1
loopi btst.b #2 ,SRB
 beq loopi
 move.b #I,TBB
 dbra d1,loopi
 move.b STC,tmp ;restart the timer
 rte

8.2.5.2 Example 2 - Autovectored Timer Interrupts
SRB equ $FFFFF7F3 ;duart status register
TBB equ $FFFFF7F7 ;duart transmission buffer
ICR equ $FFFFFFFA ;cpu interrupt control register
IMR equ $FFFFF7EB ;duart interrupt mask register
IVR equ $FFFFF7F9 ;duart interrupt vector register
ACR equ $FFFFF7E9 ;duart auxiliary control register

The Ultragizmo Lab Board

110 Lab Manual for the UofT Ultragizmo Board

CUR equ $FFFFF7EF ;timer counter upper preload register
CLR equ $FFFFF7ED ;timer counter lower preload register
STC equ $FFFFF7FD ;timer start counter command register
SPC equ $FFFFF7FF ;timer stop counter command register
tmp equ $31000
N equ $4E
I equ $49

 org $20000
* initialize the DUART for level 4 interrupt
 move.l #inter,$70 ;initialize vector table
 move.b #28,IVR ;initialize DUART interrupt vector register
 move.w #$2300,sr ;initialize processor status register

* initialize the counter
 move.b #$b0,ACR ;initialize the auxiliary control register
 move.b #$ff,CUR ;initialize the timer counter - high byte
 move.b #$ff,CLR ;initialize the timer counter - low byte

* enable DUART to interrupt when the timer is ready
 move.b SPC,tmp ;stop the counter
 move.b #%00001000,IMR ;initialize for counter interrupt
 move.b STC,tmp ;start the timer

* main loop of the program - continously print out the character ‘N’.
loopt btst.b #2,SRB
 move.b #N,TBB
 bra loopt

 org $30000
inter move.b SPC,tmp ;stop the counter
 move.l #100,d1 ;print ‘I’ 100 times
loopi btst.b #2,SRB
 beq loopi
 move.b #I,TBB
 dbra d1,loopi
 move.b STC,tmp ;start the timer
 rte

The Ultragizmo Lab Board

111

8.3 Parallel Interface/Timer
The Ultragizmo board has a Parallel Interface/Timer (PIT) port, used for parallel I/O (as

opposed to the serial I/O on the DUART). The PIT is a 40-pin I/O connector controlled by the
CFPGA. The location of the PIT on the Ultragizmo board is shown in Figure 42 (on page 92). The
PIT provides two 8-bit I/O ports labelled PA and PB and access to the 16-bit DUART Timer
output of MC68306. All PIT signals are fully available to the user. Figure 45 shows the
connections of a PIT and its pin assignment.

8.3.1 PIT Overview

The primary function of the PIT is to provide an interface that allows the CPU to
communicate with other logic circuits by means of registers that drive or receive logical values on
the pins of the PIT. The PIT contains two separate ports, each of which contains 8 Boolean signals
that can be driven or read. Each logic signal is connected to a pin on the PIT. The names of the
pins are PA0 through PA7 and PB0 through PB7.

A simplified logic diagram of the circuitry connected to each pin is shown in Figure 46. The
figure shows the logic connected to pin PA0. Each pin is controlled by a control bit, called the
data direction bit, which controls whether the pin is an input or output to the PIT. This direction

Figure 45 - Pin Connections for the Parallel Interface/Timer

PA0 (pin 1)
PA2 (pin 3)
PA4 (pin 5)
PA6 (pin 7)
GND (pin 9)
GND (pin 11)
GND (pin 13)
GND (pin 15)
PB0 (pin 17)
PB2 (pin 19)
PB4 (pin 21)
PB6 (pin 23)
GND (pin 25)
GND (pin 27)
GND (pin 29)
GND (pin 31)
unused (pin 33)
unused (pin 35)
timer (pin 37)
unused (pin 39)

PA1 (pin 2)
PA3 (pin 4)
PA5 (pin 6)
PA7 (pin 8)
H1 (pin 10)
H2 (pin 12)
H3 (pin 14)
H4 (pin 16)
PB1 (pin 18)
PB3 (pin 20)
PB5 (pin 22)
PB7 (pin 24)
unused (pin 26)
unused (pin 28)
unused (pin 30)
unused (pin 32)
unused (pin 34)
unused (pin 36)
unused (pin 38)
unused (pin 40)

PORTA

PORTB

CFPGA
10K20

ADDRESS

DATA

CONTROL

A1-A23

D1-D15

R/W, RESET
DTACK TIMER

PIT Pin Assignment

M68000 BUS

The Ultragizmo Lab Board

112 Lab Manual for the UofT Ultragizmo Board

bit is stored in the direction register for that port (in this case PADDR0). The PADDR register
contains 8 bits, one for each of PA0-7. Writing a 1 to a bit in PADDR causes the corresponding
pin to be an output. Writing a 0 causes the pin to be an input. If the pin is configured to be an
output, a logical high or low can be asserted on that line by writing a 1 or 0 respectively into the
corresponding bit in the data register for the port, called PADOR. If the bit is configured to be an
input, the processor can determine the state of the pin by reading and testing a bit in the input port
PADI. A pull-up resistor connected to the pin ensures that unconnected inputs are always read as
1.

It is possible to use some pins as outputs and some pins as inputs within a single port. For
example, we could use pins PA0-5 as outputs and pins PA6-7 as inputs by writing $3F to PADDR.
We could drive logic 1 on PA0 and PA3, and 0 on PA1, PA2, PA4, and PA5 by writing $09 to
PADOR. The external state of pins PA6 and PA7 could be determined by testing bits 6 and 7 of
PADI.

External devices can generate level 1 vectored/autovectored interrupts or level 5 autovectored
interrupts through the PIT. A procedure for enabling the level 1 or level 5 interrupt is described in
Section 8.2 on page 100. Pins H1-H4 on the PIT are used for interrupt purposes. When the level 1
interrupt is enabled, H1 acts as the interrupt request signal, and H2 acts as the interrupt
acknowledge signal. A level 1 interrupt is triggered when H1 is pulled down to ground. When the
level 5 autovectored interrupt is enabled, any H1, H2, H3, or H4 pin acts as the interrupt request
signal. A level 5 interrupt is triggered when any of these four pins has an edge transition (see
Table 10 for transition types).

The PIT also allows external devices to access the 16-bit DUART timer of the MC68306. Pin
37 of the PIT is connected to the output of the DUART Timer, which is referred to as the OP3 pin
in the MC68306 User’s Manual. The details of configuring and using the DUART Timer can be
found in the MC68306 User’s Manual on page 6-16 to 6-17. A sample program is given in
Section 8.2.5 on page 107.

Figure 46 - Port Logic for Parallel Interface/Timer

PA0

PADI0

PADOR0

D

CLK

Q

PADDR0

D

CLK

Qaddress
decoder

Vdd

D0
(from
CPU
data bus)

R/W
A1-A23
(from CPU
address bus)

The Ultragizmo Lab Board

113

Table 13 gives a summary of the PIT registers and their addresses on the Ultragizmo board.

8.3.2 Using the PIT to Understand Memory-Mapped I/O

The following exercise is intended to show, in a direct way, the link between memory
locations and the physical world. Here, the PIT is used to access values put onto the M68000 bus.
For this exercise, you will need a cable, a proto-board connector, a proto-board, a logic probe and
one wire. Make sure that the cable has connectors that have “key” plugs on them so that there is
only one way to plug it in.

1. Plug the proto-board in and turn it on. Check that the logic probe works by touching the probe
to +5V and ground. The “high” and “low” lights should come on respectively.

2. Plug the cable into connector PIT on the Ultragizmo board. See Figure 42 (on page 92) for the
position of the PIT Connector.

3. Plug the other end of the cable into the proto-board connector (if it isn’t already) and then into
the proto-board. Make sure it is straddling a valley in the board. The pins can now be con-
nected to by plugging a wire into any one of the vertically adjacent holes in the proto board.

4. Hook up pin #11 of the connector to ground on the proto- board. This makes the ground on the
proto-board the same as the ground on the Ultragizmo board. Pin number 1 of the proto- board
connector is indicated by a small triangle. The next pin on the same side is #3, and so on. Pin
#2 is opposite Pin #1, and Pin #4 is opposite Pin #3.

5. Use the monitor block fill command (bf) to set up the control registers and registers for Port A
of the PIT in the following way. (We configure it to be an output, and to output $f0)

i. Put $ff in memory location $c10002 (PADDR - set data direction to be all out)

Address REGISTER Name

$00C10000 Port A Data Output Register PADOR

$00C10001 Port B Data Output Register PBDOR

$00C10002 Port A Data Direction Register PADDR

$00C10003 Port B Data Direction Register PBDDR

$00C10004 Port A Data Input PADI

$00C10005 Port B Data Input PBDI

$00C20000 CFPGA Interrupt Configuration Register CFPGA_ICR

$FFFFF7E9 DUART Auxiliary Control Register DUACR

$FFFFF7ED DUART Counter/Timer Upper Register DUCTUR

$FFFFF7EF DUART Counter/Timer Lower Register DUCTLR

$FFFFF7FD DUART Start Counter Command DUSTART

$FFFFF7FF DUART Stop Counter Command DUSTOP

Table 13 - Register Addresses for the PIT

The Ultragizmo Lab Board

114 Lab Manual for the UofT Ultragizmo Board

ii. Put $f0 in memory location $c10000 (PADOR - output 11110000 through port A)

6. Using the logic probe, measure the binary value on each of the pins PA0 (Proto-board connec-
tor pin #1), PA1 (#2), PA2 (#3)... PA7 (#8). These can be measured by touching the solder
traces on the board that the connector is soldered to.

Make sure that the value put into the PADOR ($f0 =111100002) is what you read with the
logic probe.

7. Change the value in PADOR, and make sure that the output logic probe values change cor-
rectly.

8.3.3 Creating a Second PIT on the SFPGA

Some projects might require a second PIT. This can be created on port SFPGA_CON40 using
the 10K70 SFPGA. The second PIT has the same functionality as the regular PIT, with the
following two exceptions. First, the PIT is not connected to the DUART timer. Second, the PIT
can only be configured to generate level 6 autovectored interrupts since this is the interrupt level
supported by the SFPGA.

To create the second PIT, the user needs to use MAX+plusII (see the FPGA downloading
instructions from the FPGA tutorial in Chapter 3) to download the X:\DEMOS\PIT.SOF file onto
the Ultragizmo board. This file creates the second pit on the SFPGA (See X:\DEMOS\README
for a more detailed description). The addresses for this PIT are listed below.

The second PIT uses IRQ6. To enable interrupts on the second PIT you have to write $06 into
the CFPGA_IVR (location $c20000), and write $06 into the PVR2 (location $c50006). The
X:\DEMOS\INTER6.SREC file can be used to test the interrupts. An interrupt is triggered when
any of H1, H2, H3, H4 is low. To further test the second PIT, you can use
X:\DEMOS\MOTSFPGA.SREC with the LEGO controller, starting the program at address
$20000 and following the menu instructions.

Address REGISTER Name

00C20000 CFPGA Interrupt Configuration Register CFPGA_ICR

00C50000 Port A Data Output Register PADOR2

00C50001 Port B Data Output Register PBDOR2

00C50002 Port A Data Direction Register PADDR2

00C50003 Port B Data Direction Register PBDDR2

00C50004 Port A Data Input PADI2

00C50005 Port B Data Input PBDI2

00C50006 Port Vector Register PVR2

Table 14 - Creating a Second PIT on the SFPGA

The Ultragizmo Lab Board

115

8.4 CPU Expansion Bus
The Ultragizmo board has a buffered version of the main CPU bus available through

connector M68000_BUS. This section contains a brief description of the expansion bus signals.
All of the CPU address bus, the data bus and the bus arbitration control are available on the
M68000_BUS, which is a 60-pin connector. Three interrupt control signals are provided for
interrupt requests. The following is a list of the available signals.

• Address Bus (A23-A1): A full 23-bit bidirectional three-state bus is pro-
vided. The address bus is buffered with non-inverting buffers.

• Data Bus (D15-D0): A full 16-bit bidirectional three-state bus is provided.
The data bus is buffered with non-inverting buffers.

• Asynchronous Control (AS, LDS, UDS, DTACK, R/W): The asynchronous
control signals are provided as bidirectional buffered three-state signals.

• Bus Arbitration control (BR, BGACK, BG): The Bus Request signal BR can
be asserted to request an off board bus request. The bus grant BG is asserted
when the CPU grants the bus to the external request. BGACK is used to
acknowledge the BG signal

• Interrupt Control (IRQ2, IACK2, AUTO3): Three interrupt control signals
are provided. AUTO3 can be used to request an autovectored level 3 inter-
rupt. IRQ2 and IACK2 can be used to request both autovectored or vectored
level 2 interrupts.

• System Control (RESET, CLK): The reset signal RESET is a bidirectional
three-state signal. The clock signal CLK is a buffered version of the 16.67
MHz CPU clock.

Table 15, “Pin Assignment for CPU Expansion Bus (M68000_BUS),” on page 116 lists the
signals of the CPU Expansion Bus with their pin locations.

The Ultragizmo Lab Board

116 Lab Manual for the UofT Ultragizmo Board

1 - GND 2 - CLK

3 - GND 4 - A1

5 - A2 6 - A3

7 - A4 8 - A5

9 - A6 10 - A7

11 - A8 12 - A9

13 - A10 14 - A11

15 - A12 16 - A13

17 - A14 18 - A15

19 - A16 20 - A17

21 - A18 22 - A19

23 - A20 24 - A21

25 - A22 26 - A23

27 - R/W 28 - DTACK

29 - GND 30 - AS

31 - GND 32 - UDS

33 - GND 34 - LDS

35 - GND 36 - BR

37 - GND 38 - BG

39 - GND 40 - BGACK

41 - RESET 42 - IACK2

43 - AUTO3 44 - IRQ2

45 - D0 46 - D1

47 - D2 48 - D3

49 - D4 50 - D5

51 - D6 52 - D7

53 - D8 54 - D9

55 - D10 56 - D11

57 - D12 58 - D13

59 - D14 60 - D15

Table 15 - Pin Assignment for CPU Expansion Bus (M68000_BUS)

The Ultragizmo Lab Board

117

8.5 SFPGA

The SFPGA is an Altera FLEX 10K70 device. It is used for fast prototyping of M68000
peripherals. The pins of the SFPGA are connected to the M68000 bus and several external con-
nectors (SFPGA_DIGITAL, SFPGA_CON40, SFPGA_CON60, SFPGA_LOGIC) shown in
Figure 42 (on page 92). This section describes the pin connections to the SFPGA in detail.

Unused pins on the Altera FLEX 10K70 become outputs and are driven low by default. To
ensure that unused SFPGA pins do not drive the M68000 bus, all unused pins connected to the
bus have to be defined as inputs or high impedance outputs.

To simplify the pin assignment for your design, two wrapper files, wrapper.vhd and wrap-
per.acf, are provided in the directory /cad2/ultragizmo/FLabs/ on the ugsparc system. Pin assign-
ment information has already been entered into these files. You can use these wrapper files as
your top level design files. Any output signals that are not used in the wrapper files should be
reassigned as input pins or driven to high impedance.

The following sections summarize the pin assignments to the SFPGA chip. Tables in these
sections contain three fields. The first field lists the names of the signals, the second field lists the
names of the corresponding SFPGA pins, and the third field contains the VHDL names in the
wrapper files.

8.5.1 LEDs

There are 16 LEDs on the Ultragizmo board, just above the SFPGA (See Figure 42 for their
locations). The LEDs are connected to the SFPGA and can be used for debugging purposes.
Table 16 lists the pin assignments for the LEDs. See Figure 42 for the numbering of the LEDs.
LEDs are active low devices. To turn on an LED the corresponding signal has to be driven low
and vice versa.

LED
Name

SFPGA
Pin Name

VHDL Signal
Name

LED1 A9 led(0)

LED2 AT42 led(1)

LED3 D32 led(2)

LED4 AE37 led(3)

LED5 L1 led(4)

LED6 AP40 led(5)

LED7 AM38 led(6)

LED8 B34 led(7)

Table 16 - Pin Assignment for the LEDs

The Ultragizmo Lab Board

118 Lab Manual for the UofT Ultragizmo Board

8.5.2 Hex Displays

There are two banks of hex displays on the Ultragizmo board. Each bank contains two hex
displays. The hex displays are located below the SFPGA on the board (See Figure 42 for their
location; note the ordering of the displays). These four hex displays are connected to the SFPGA.
They can be used as digital displays in applications like digital watches or microprocessors.
Table 17, Table 18, Table 19, and Table 20 list the pin assignments for the hex displays. Figure 47
shows the naming convention for the display segments. Hex displays are active low devices. To
turn on a hex display segment, the corresponding signal has to be driven low.

LED9 B12 led(8)

LED10 A11 led(9)

LED11 AR43 led(10)

LED12 AC43 led(11)

LED13 G15 led(12)

LED14 E33 led(13)

LED15 AL3 led(14)

LED16 Y40 led(15)

Hex Display
Signal Name

SPGA Pin
Name

VHDL Signal
Name

A W43 hex0(6)

B W37 hex0(5)

C V38 hex0(4)

Table 17 - Pin Assignment for Hex Display 0

LED
Name

SFPGA
Pin Name

VHDL Signal
Name

Table 16 - Pin Assignment for the LEDs

A

B

C

D

E

F

G

H

Figure 47 - Hex Display Segment Naming Convention

The Ultragizmo Lab Board

119

D U43 hex0(3)

E L37 hex0(2)

F AL37 hex0(1)

G A13 hex0(0)

H AN7 hex0(7)

Hex Display
Signal Name

SPGA Pin
Name

VHDL Signal
Name

A AA37 hex1(6)

B G39 hex1(5)

C H38 hex1(4)

D AW1 hex1(3)

E AR5 hex1(2)

F F42 hex1(1)

G E21 hex1(0)

H Y42 hex1(7)

Table 18 - Pin Assignment for Hex Display 1

Hex Display
Signal Name

SPGA Pin
Name

VHDL Signal
Name

A AY28 hex2(6)

B AA7 hex2(5)

C Y4 hex2(4)

D D10 hex2(3)

E AV28 hex2(2)

F AY14 hex2(1)

G Y6 hex2(0)

H BC29 hex2(7)

Table 19 - Pin Assignment for Hex Display 2

Hex Display
Signal Name

SPGA Pin
Name

VHDL Signal
Name

Table 17 - Pin Assignment for Hex Display 0

The Ultragizmo Lab Board

120 Lab Manual for the UofT Ultragizmo Board

8.5.3 SFPGA_DIGITAL Connector

SFPGA_DIGITAL is a 40-pin connector directly connected to the SFPGA. It is located on
the bottom of the Ultragizmo board just to the left of the PIT (see Figure 42 for details). The
SFPGA_DIGITAL connector is pin to pin compatible with the protoboard 40-pin digital connec-
tor (Section 9.1). The protoboard can easily be made available to the SFPGA by connecting these
two connectors using a 40-pin ribbon cable. Table 21 lists the pin assignment for the 40-pin
SFPGA_DIGITAL connector.

Hex Display
Signal Name

SPGA Pin
Name

VHDL Signal
Name

A F12 hex3(6)

B AY18 hex3(5)

C W1 hex3(4)

D AW29 hex3(3)

E G13 hex3(2)

F BC31 hex3(1)

G W7 hex3(0)

H BB30 hex3(7)

Table 20 - Pin Assignment for Hex Display 3

Pin SFPGA
Pin Name

VHDL Signal Name Pin SFPGA
Pin Name

VHDL Signal Name

1 BC9 sfpga_digital(0) 2 AW23 sfpga_digital(1)

3 AU15 sfpga_digital(2) 4 A15 sfpga_digital(3)

5 AU13 sfpga_digital(4) 6 BC35 sfpga_digital(5)

7 AN43 sfpga_digital(6) 8 R1 sfpga_digital(7)

9 AM40 sfpga_digital(8) 10 AV22 sfpga_digital(9)

11 AL43 sfpga_digital(10) 12 F20 sfpga_digital(11)

13 AJ37 sfpga_digital(12) 14 BB34 sfpga_digital(13)

15 F16 sfpga_digital(14) 16 T4 sfpga_digital(15)

17 --- GND 18 AU21 sfpga_digital(16)

19 AK40 sfpga_digital(17) 20 --- GND

21 AM42 sfpga_digital(18) 22 AY32 sfpga_digital(19)

23 AN39 sfpga_digital(20) 24 AV30 sfpga_digital(21)

25 AV42 sfpga_digital(22) 26 T2 sfpga_digital(23)

27 AY34 sfpga_digital(24) 28 U5 sfpga_digital(25)

Table 21 - Pin Assignment for the SFPGA_DIGITAL Connector

The Ultragizmo Lab Board

121

8.5.4 SFPGA_CON40 Connector

SFPGA_CON40 is a 40-pin connector located right above the LEDs (see Figure 42 for
details). The SFPGA_CON40 is directly connected to the SFPGA. This is a versatile connector
which can be used for a variety of applications. Table 22 lists the pin assignment for
SFPGA_CON40. See Section 8.3.3 for instructions on how to create a PIT using this connector.

29 AW33 sfpga_digital(26) 30 BC21 sfpga_digital(27)

31 P2 sfpga_digital(28) 32 C19 sfpga_digital(29)

33 F14 sfpga_digital(30) 34 BB32 sfpga_digital(31)

35 --- GND 36 U1 sfpga_digital(32)

37 --- GND 38 --- GND

39 --- GND 40 BA31 sfpga_digital(33)

Pin SFPGA
Pin Name

VHDL Signal Name Pin SFPGA
Pin Name

VHDL Signal Name

1 L7 sfpga_con40(0) 2 B2 sfpga_con40(1)

3 BA41 sfpga_con40(2) 4 G43 sfpga_con40(3)

5 AV38 sfpga_con40(4) 6 F28 sfpga_con40(5)

7 B4 sfpga_con40(6) 8 BA43 sfpga_con40(7)

9 --- GND 10 E7 sfpga_con40(8)

11 --- GND 12 AY42 sfpga_con40(9)

13 --- GND 14 E29 sfpga_con40(10)

15 --- GND 16 K38 sfpga_con40(11)

17 G9 sfpga_con40(12) 18 AU39 sfpga_con40(13)

19 D30 sfpga_con40(14) 20 AW43 sfpga_con40(15)

21 F6 sfpga_con40(16) 22 AT38 sfpga_con40(17)

23 A5 sfpga_con40(18) 24 AR37 sfpga_con40(19)

25 --- GND 26 E9 sfpga_con40(20)

27 --- GND 28 AR39 sfpga_con40(21)

29 --- GND 30 C31 sfpga_con40(22)

31 --- GND 32 AK38 sfpga_con40(23)

33 G11 sfpga_con40(24) 34 AP39 sfpga_con40(25)

35 B32 sfpga_con40(26) 36 AH40 sfpga_con40(27)

37 E11 sfpga_con40(28) 38 AN37 sfpga_con40(29)

39 B8 sfpga_con40(30) 40 AU43 sfpga_con40(31)

Table 22 - Pin Assignment for the SFPGA_CON40 Connector

Table 21 - Pin Assignment for the SFPGA_DIGITAL Connector

The Ultragizmo Lab Board

122 Lab Manual for the UofT Ultragizmo Board

8.5.5 SFPGA_LOGIC Connector

The SFPGA_LOGIC connector is reserved for the logic analyzers available in the lab. For
instructions on how to connect the logic analyzers to this port, please consult Fred Aulich’s web-
site at http://www.eecg.toronto.edu/~aulich. This 40-pin connector is located on the right side of
the Ultragizmo board. Table 23 summarizes the pin assignments for the SFPGA_LOGIC connec-
tor.

8.5.6 SFPGA_CON60 Connector

The SFPGA_CON60 is a 60-pin connector located on the right side of the Ultragizmo board
(see Figure 42 for details). Besides application specific functions, this connector is pin to pin
compatible with the M68000_BUS connector. Since the M68000_BUS contains some bus signals
that are not available to the SFPGA through the direct connection (Section 8.5.7), additional
M68000 bus signals can be made available to the SFPGA by connecting the SFPGA_CON60 and
the M68000_BUS using a 60-pin ribbon connector.

Pin SFPGA
Pin Name

VHDL Signal Name Pin SFPGA
Pin Name

VHDL Signal Name

1 --- GND 2 AU23 sfpga_logic(0)

3 AV24 sfpga_logic(1) 4 --- GND

5 AB6 sfpga_logic(2) 6 --- GND

7 D8 sfpga_logic(3) 8 --- GND

9 BB26 sfpga_logic(4) 10 --- GND

11 BC27 sfpga_logic(5) 12 --- GND

13 AY26 sfpga_logic(6) 14 --- GND

15 AB4 sfpga_logic(7) 16 --- GND

17 AB2 sfpga_logic(8) 18 --- GND

19 --- GND 20 --- GND

21 --- GND 22 --- GND

23 AW27 sfpga_logic(9) 24 --- GND

25 AV26 sfpga_logic(10) 26 --- GND

27 AA1 sfpga_logic(11) 28 --- GND

29 F10 sfpga_logic(12) 30 --- GND

31 AA5 sfpga_logic(13) 32 --- GND

33 A7 sfpga_logic(14) 34 --- GND

35 BB28 sfpga_logic(15) 36 --- GND

37 AV14 sfpga_logic(16) 38 --- GND

39 --- GND 40 Y2 sfpga_logic(17)

Table 23 - Pin Assignment for the SFPGA_LOGIC Connector

The Ultragizmo Lab Board

123

8.5.7 M68000 Bus to SFPGA Connections

Several SFPGA pins are directly connected to the M68000 bus. Table 25 lists the names of the
M68000 bus signals, the SFPGA pins connected to the signals, and the VHDL signal names used
in the wrapper file. The MC68306 User’s Manual gives a detailed description of the signals.

Pin SFPGA
Pin Name

VHDL Signal Name Pin SFPGA
Pin Name

VHDL Signal Name

1 --- GND 2 R5 sfpga_con60(0)

3 --- GND 4 BA35 sfpga_con60(1)

5 F22 sfpga_con60(2) 6 BB24 sfpga_con60(3)

7 BC37 sfpga_con60(4) 8 E17 sfpga_con60(5)

9 A17 sfpga_con60(6) 10 BC25 sfpga_con60(7)

11 AV34 sfpga_con60(8) 12 AU33 sfpga_con60(9)

13 G19 sfpga_con60(10) 14 E23 sfpga_con60(11)

15 R7 sfpga_con60(12) 16 P6 sfpga_con60(13)

17 AW35 sfpga_con60(14) 18 AU25 sfpga_con60(15)

19 BB36 sfpga_con60(16) 20 AY36 sfpga_con60(17)

21 F24 sfpga_con60(18) 22 D42 sfpga_con60(19)

23 M4 sfpga_con60(20) 24 BB38 sfpga_con60(21)

25 A25 sfpga_con60(22) 26 BC39 sfpga_con60(23)

27 V36 sfpga_con60(24) 28 AU35 sfpga_con60(25)

29 --- GND 30 AJ1 sfpga_con60(26)

31 --- GND 32 B26 sfpga_con60(27)

33 --- GND 34 K2 sfpga_con60(28)

35 --- GND 36 J1 sfpga_con60(29)

37 --- GND 38 AW37 sfpga_con60(30)

39 --- GND 40 BA33 sfpga_con60(31)

41 M6 sfpga_con60(32) 42 AY38 sfpga_con60(33)

43 A27 sfpga_con60(34) 44 AU31 sfpga_con60(35)

45 L5 sfpga_con60(36) 46 H2 sfpga_con60(37)

47 AV32 sfpga_con60(38) 48 BA39 sfpga_con60(39)

49 BC41 sfpga_con60(40) 50 C27 sfpga_con60(41)

51 G1 sfpga_con60(42) 52 BB40 sfpga_con60(43)

53 C7 sfpga_con60(44) 54 BC43 sfpga_con60(45)

55 B28 sfpga_con60(46) 56 H42 sfpga_con60(47)

57 J5 sfpga_con60(48) 58 BB42 sfpga_con60(49)

59 A29 sfpga_con60(50) 60 U41 sfpga_con60(51)

Table 24 - Pin Assignment for the SFPGA_CON60 Connector

The Ultragizmo Lab Board

124 Lab Manual for the UofT Ultragizmo Board

M68000 Bus
Signal Name

SFPGA
Pin Name

VHDL Signal
Name

M68000 Bus
Signal Name

SFPGA
Pin Name

VHDL Signal
Name

A1 AK4 address(1) A16 AK6 address(16)

A2 J7 address(2) A17 E1 address(17)

A3 B20 address(3) A18 T6 address(18)

A4 AJ7 address(4) A19 AM4 address(19)

A5 A43 address(5) A20 J37 address(20)

A6 B38 address(6) A21 F38 address(21)

A7 D36 address(7) A22 F36 address(22)

A8 B42 address(8) A23 AD42 address(23)

A9 AK2 address(9) AS L41 as

A10 AL1 address(10) BERR M38 berr

A11 D16 address(11) BG AU29 bg

A12 M42 address(12) BGACK AC1 bgack

A13 P40 address(13) BR BC13 br

A14 R39 address(14) CLK AY22 clk

A15 B10 address(15) D0 AL7 data(0)

D1 E43 data(1) D14 AN1 data(14)

D2 D40 data(2) D15 AM2 data(15)

D3 V40 data(3) FC2 AP4 fc2

D4 G41 data(4) FC1 AM6 fc1

D5 AT2 data(5) FC0 AU1 fc0

D6 AN5 data(6) DTACK AG3 dtack

D7 V6 data(7) HALT AJ5 halt

D8 AR1 data(8) IACK6 D12 iacksf

D9 U39 data(9) IRQ6 AV20 irqsf

D10 T42 data(10) LDS J43 lds

D11 T38 data(11) RESET AH6 reset

D12 R43 data(12) R/W AH2 rw

D13 AP2 data(13) UDS AH4 uds

Table 25 - Pin Assignment for the M68000 Bus Signals

The Ultragizmo Lab Board

125

8.5.8 SRAM to SFPGA Connections

Two SRAM chips are attached to the SFPGA. Each chip has the capacity of 16x256k bits. On
the board the chips are configured to provide 32x256k bits of memory. Table 26 summarizes the
pin assignment for the SRAM. The two SRAMs share the same address signals, but each has sep-
arate control and data signals. The data signals for SRAM 1 are named data_l_0 to data_l_15.
The control signals are enable1, ld1, ud1, we1, oe1. The data signals for SRAM 2 are named
data_h_0 to data_h_15. The control signals are enable2, ld2, ud2, we2, oe2. See the Samsung
KM6164002 SRAM User’s Manual for more details on the SRAM signals.

SRAM Sig-
nal Name

SFPGA
Pin Name

VHDL Signal
Name

SRAM Sig-
nal Name

SFPGA
Pin Name

VHDL Signal
Name

data_l_0 C43 sramdl(0) data_l_1 AA39 sramdl(1)

data_l_2 AA43 sramdl(2) data_l_3 AP6 sramdl(3)

data_l_4 AR7 sramdl(4) data_l_5 AV2 sramdl(5)

data_l_6 Y38 sramdl(6) data_l_7 AV6 sramdl(7)

data_l_8 AY2 sramdl(8) data_l_9 BA1 sramdl(9)

data_l_10 BB2 sramdl(10) data_l_11 BA3 sramdl(11)

data_l_12 N37 sramdl(12) data_l_13 J39 sramdl(13)

data_l_14 AB42 sramdl(14) data_l_15 AB40 sramdl(15)

data_h_0 AB38 sramdh(0) data_h_1 AC37 sramdh(1)

data_h_2 AC39 sramdh(2) data_h_3 AP42 sramdh(3)

data_h_4 AT6 sramdh(4) data_h_5 AU5 sramdh(5)

data_h_6 BC1 sramdh(6) data_h_7 AY6 sramdh(7)

data_h_8 AV8 sramdh(8) data_h_9 BC5 sramdh(9)

data_h_10 AG43 sramdh(10) data_h_11 AF42 sramdh(11)

data_h_12 N43 sramdh(12) data_h_13 AD38 sramdh(13)

data_h_14 AD40 sramdh(14) data_h_15 AE41 sramdh(15)

address0 GE43 srama(0) address1 AF40 srama(1)

address2 AU9 srama(2) address3 AW7 srama(3)

address4 BA5 srama(4) address5 BB4 srama(5)

address6 BB6 srama(6) address7 AV10 srama(7)

address8 BC7 srama(8) address9 AY10 srama(9)

address10 AW11 srama(10) address11 AJ37 srama(11)

address12 AH38 srama(12) address13 AH42 srama(13)

address14 AG39 srama(14) address15 AG41 srama(15)

address16 AF38 srama(16) address17 AJ43 srama(17)

enable1 AG41 sram1en enable2 BB12 sram2en

ld1 AK42 sram1ld ld2 AV12 sram2ld

Table 26 - Pin Assignment for SRAM Signals

The Ultragizmo Lab Board

126 Lab Manual for the UofT Ultragizmo Board

8.5.9 CODEC to SFPGA Connections

The CODEC provides audio capability to the Ultragizmo board. It is attached to the SFPGA,
as well as the M68000 bus. The SFPGA can control the CODEC through three signals, ssync,
sclk, and lrsync. Two serial lines are used to transfer data between the SFPGA and the CODEC.
Line sdout is a serial line from the CODEC to the SFPGA. Line sdin is a serial line from the
SFPGA to the CODEC. A shift register must be designed for the SFPGA in order to convert the
input serial stream into a 32-bit word. Similarly, a shift register must be used to convert an output
32-bit word into a serial bit stream for the CODEC. Section 8.6 provides more details on the
CODEC and how to configure it for use with both the M68000 and the SFPGA. The SFPGA pin
assignments for the CODEC are listed in Table 27:

8.5.10 Programmable Clock to SFPGA Connections

The output of the Cypress ICD2053B programmable clock chip is connected to pin D22 of the
SFPGA. See Section 8.7 on page 130 for details on how to program the output clock frequency of
the programmable clock chip.

ud1 AU11 sram1ud ud2 BB10 sram2ud

we1 AW9 sram1we we2 AY12 sram2we

oe1 AY8 sram1oe oe2 BC11 sram2oe

CODEC
Signal
Name

SFPGA
Pin

Name

VHDL Signal
Name

CODEC
Signal
Name

SFPGA
Pin

Name

VHDL Signal
Name

sdout BC3 sdout_cod ssync C3 ssync_cod

sclk AG1 sclk_cod lrsync AW15 lrsync_cod

sdin C1 sdin_cod

Table 27 - Pin Assignment for CODEC Signals

Table 26 - Pin Assignment for SRAM Signals

The Ultragizmo Lab Board

127

8.6 The CODEC and Audio I/O

The CODEC (COder-DECoder) allows the input and output of audio signals via jacks on the
Ultragizmo board (see Figure 42 on page 92 for the locations of the jacks; the default microphone
jack is DC coupled; the AC coupled jack can be used by configuring a command register on the
CFPGA; see Fred Aulich for instructions). The CODEC has a sampling rate of 48 kHz. Two 16-
bit channels are available for stereo sound. The CODEC has three modes of operation, the
receiver mode, the transmitter mode and the SFPGA mode. These three modes are controlled by
the CODEC mode control register (CONCNTL). The CONCNTL register is an 8-bit register
located at memory location $c80000 on the M68000 bus. The MC68306 processor can set the
CODEC into receiver, transmitter, or SFPGA mode by writing $01, $02, or $f0 into the CON-
CNTL register, respectively.

In either receiver mode and transmitter mode, the CODEC is controlled by the processor.
M68000 programs can communicate with the CODEC using the following set of registers:

In the receiver mode, the CODEC samples both audio input channels and places the sampled
values into two 16-bit registers, CODRECL and CODRECH. Once the CODEC completes one
sampling cycle, it informs the processor by setting the 8-bit CODEC status register, CODSTAT, to
$04. The CODEC then waits until the processor reads CODRECL and CODRECH (this should be
done as soon as possible). After reading the CODRECL and CODRECH, the processor must reset
the CODSTAT and CODCNTL registers to $00. The CODEC then proceeds to the next sampling
cycle.

In the transmitter mode, the CODEC reads the values of two 16-bit registers, CODTRSL and
CODTRSH, converting them into left and right audio signals, respectively. The processor initiates
a transmission by writing to the CODTRSL and CODTRSH registers and then writing $02 into
CODCNTL. Once the transmission is complete, the CODEC will set the status register, COD-
STAT, to $03. The processor can thenstart the next transmission.

The following M68000 code segment reads from the CODEC input channels and immediately
writes the information to the output channels.

CODCNTL $c80000 8-bit CODEC mode control register

CODSTAT $c80002 8-bit CODEC status register

CODRECL $c80010 16-bit data received from input channel one of the CODEC

CODRECH $c80012 16-bit data received from input channel two of the CODEC

CODTRSL $c80014 16-bit data send to output channel one of the CODEC

CODTRSH $c80016 16-bit data send to output channel two of the CODEC

Table 28 - CODEC Registers

The Ultragizmo Lab Board

128 Lab Manual for the UofT Ultragizmo Board

CODRECL equ $c80010
CODRECH equ $c80012
CODTRSL equ $c80014
CODTRSH equ $c80016
CODSTAT equ $c80002
CODCNTL equ $c80000

 org $20000

loop1 move.b #$01,CODCNTL “ set for read
loop cmpi.b #$04,CODSTAT “ wait for codec data

 bne loop
 move.w CODRECL,CODTRSL
 move.w CODRECH,CODTRSH

 move.b #$00,CODSTAT
 move.b #$00,CODCNTL

 move.b #$02,CODCNTL “ set for send
lop3 cmpi.b #$03,CODSTAT “ wait for codec data to be sent

 bne lop3
 bra loop1

In the SFPGA mode, the CODEC is accessed through the 10K70 SFPGA, as shown in
Figure 48. Three control signals are used.

A typical read and write cycle timing diagram, in the 10K70 mode, is shown in Figure 49. The
ssync pulse has a 48 kHz frequency, equivalent to 32 sclk pulses; ssync is low for 31 sclk cycles
and high for one sclk cycle. During one ssync cycle, the lrsync signal, which indicates the chan-

CODEC CFPGA SFPGA

O
U

T
_S

T
E

R
E

O

IN
_L

E
FT

IN
_R

IG
H

T

MC68306

M
68

00
0

bu
s

si
gn

al
s

Figure 48 - CODEC Signal Connections

sdout

ssync

sclk

lrsync

sdin

CODEC

signals

The Ultragizmo Lab Board

129

nel being read or written, is high for 16 cycles (indicating an access to the left channel), and low
for 16 cycles (indicating an access to the right channel). During an ssync period, a read or write
can be performed. Writes are performed serially using the sdout signal on a positive sclk edge.
Reads are performed serially using the sdin signal on a negative sclk edge. For each channel, the
MSB is read or written first, and the LSB last. The first write takes place on the falling ssync edge
and the first read takes place on the subsequent sclk falling edge. See Section 8.5.9 for pin loca-
tions on the SFPGA.

In order to read or write data to the CODEC, two serial shift registers must be built as shown
in Figure 50. One shift register converts the serial input sdin to a 32-bit parallel string pdin; the
other converts a 32-bit parallel string pdout to the serial output sdout. In the figure the control
logic generates the clocking for the shift registers.

More information on the CODEC can be obtained from Fred Aulich’s website at http://
www.eecg.toronto.edu/~aulich.

Figure 49 - CODEC Timing Diagram

sclk

ssync

lrsync
16 cycles

16 cycles

...

rising edge used to send data out to sdout falling edge used to receive data from sdin

32 sclk cycles

Figure 50 - CODEC Serial-to-Parallel Converter

shift register in length = 32

shift register in length = 32

sdin_cod

sdout_cod

Control Logic

sclk_cod,
ssync_cod,
lrsync_cod CLK

pdin (32 bits) pdout (32 bits)

The Ultragizmo Lab Board

130 Lab Manual for the UofT Ultragizmo Board

8.7 Programmable Clock

A Cypress ICD2053B programmable clock chip is connected to pin D22 of the SFPGA. The
reference frequency for the chip is 24 MHz. The chip can be programmed to generate a clock with
frequencies between 391 kHz and 90 MHz. The FBUG command cc, clock configure, is used to
program the chip. The command takes a single argument, which is a number that specifies the
desired frequency in Hz. For example, to program the clock chip to generate a 10 MHz output sig-
nal, simply type the following command at the monitor prompt (the ‘&’ is used to indicate deci-
mal numbers in the FBUG monitor syntax):

Ultrag > cc &10000000

