Critical Infrastructure Modeling and Simulation: The State of the Art

Ali A. Ghorbani and Ebrahim Bagheri

Faculty of Computer Science, University of New Brunswick, Fredericton, N.B., Canada

Abstract

The protection of critical infrastructure systems has recently become a major concern for many countries. This is due to the effect of these systems on the everyday life of all citizens and the high possibility of disruption because of their complex structure and hidden interdependencies, which subsequently attracts the attention of many researchers and scientists. The investigations of researchers have encompassed issues of national security, policy making, infrastructure system organization, and behavior analysis and modeling. In this paper, we look into the latter subject and explore the attempts that have been made. Based on the available schemes and the requirements of this area, we propose a five-dimensional framework that introduces the major research necessities in this field. Among the various available schemes, we study ten of the most recently developed and/or influential systems. A comparison of these schemes based on the features of our proposed framework is made. We also formulate a graph theoretic method for analyzing critical infrastructure interdependencies.

Key words: Critical Infrastructure Protection, Modeling and Simulation, CIP Framework

1. Introduction

Critical infrastructures are among the most significant technical systems that influence the ordinary life of any person or the normal operation of any industrial sector. Their importance is mainly due to the type of facilities/utilities that they provide. These facilities (either in the form of asset supply or service provisioning) serve as the building block for any other simple or complex functionality of the society. The outputs of the infrastructures although complex in nature, can be thought of as the essential atomic inputs to other more complex systems. Apparently, without the proper operation of infrastructure systems, the function of other reliant systems would be disrupted.

The very interesting point is that throughout the years, infrastructures themselves have become dependent on each others' outputs, turning the so vertically integrated systems with only a few points of communication, into horizontally integrated systems with many points of interaction in many of their dimensions [Donzelli and Setola (2006)]. Analogous to the dependency of other systems on infrastructures, it can be observed that infrastructure systems themselves are inter-reliant or in other words tightly coupled. As has been extensively studied in the field of fault tolerant computing, a complex system built from many interacting components is exposed to a high risk of failure derived from the possibility of mal-function in any of its components. The degree of effectiveness of the failing component in the overall architecture, suggests an estimate of the degree of damage or harm that its failure will cause.

With the increase in the complexity of the system, the approximation of the degree of effectiveness of each component becomes a time-consuming, cumbersome, complicated, and at times impossible task. Surprisingly, other than the visible mutual effects of system components on each other, there are usually unexpected side-effects from a component failure. This type of failure would have never happened nor anticipated under normal conditions or even normal break down of the components, making the fault detection and recovery process a hard mission.

The extreme inter-connectedness between infrastructure systems makes one think of them as different components of a single network. Comparable to digital circuits, a failure in a node of this complex network of interdependent infrastructures, results in catastrophic failures; many of which had not been foreseen. These failures are in many cases the result of the propagation of failure through these intercon-
nted systems. Failure propagation is known as the cascading effect or ripple effect and has been the inspiration for many fruitful research efforts [Rinaldi (2004)].

In the next section of this paper, ten critical infrastructure modeling or analysis schemes are introduced and briefly explained. Section 3 then introduces our proposed framework in detail along with a graph theoretic interdependency analysis method. The schemes introduced in Section 2 are compared based on the dimensions of the proposed framework in Section 4. Discussions are presented in Section 5, and the paper is finally concluded in Section 6.

2. Critical Infrastructure Analysis Schemes

During the past few years, many different schemes have been developed with the aim of supporting the process of understanding the behavior of an infrastructure and identify its points of weakness. From among the available schemes, we have chosen ten (however we have considered ASPEN and its descendants as one system. The same has also been applied to the CASCADE and coupled CASCADE models), so that at least one pattern for each paradigm within the field of infrastructure analysis is covered. The most important criteria for selection have been: 1) the scheme should have been in the focus of research and been well cited; 2) the scheme should have been recently developed; 3) the scheme should have a distinguishing feature that makes them significantly different compared with the others; and, 4) the scheme should have been well documented and sufficient amount of literature for understanding its performance should exist. For example we have chosen, ASPEN [Basu et al. (1998)] because it has been well documented and serves as one of the first systems that have been thoroughly studied and cited in the field of infrastructure modeling and simulation. Agent-based Interdependency Modeling and Simulation, AIMS[Ghorbani et al. (2006)], and Critical Infrastructure Simulation by Interdependent Agents, CISIA [Panzieri et al. (2005)], have been introduced due to their recent development (2006 and 2005, respectively) while UML-CI [Bagheri and Ghorbani (2006b), Bagheri and Ghorbani (2007), Bagheri and Ghorbani (2006a)] is being introduced due to the unique features that it provides for profiling the organization and behavior of an infrastructure. Hierarchical Holographic Modeling, HHM [Haimes (1981)], is the representative of the group of models that have been quite extensively used and documented.

Although the list of the selected schemes is not at all exhaustive, but they have been chosen such that most of the research in the field would be covered. In the following part of this section, we will briefly visit the main features of these schemes. This would allow us to further compare the selected schemes in our proposed framework.

AIMS AIMS is a multiagent modeling and simulation suite that allows its users to create models of an infrastructure and observe the behavior of the modeled system through simulations. One of the distinguishing features of AIMS is that it provides its users with a set of predefined component templates (e.g. pipes, switches, etc). The organization of an infrastructure can be built through the instantiation of these component templates into actual software agents. AIMS also provides the means for inserting transients into a running simulation for observing the outcome of the occurrence of an unexpected event. The set of these transients called scenarios, control and hence effect the operation of the simulation. Visualization and analysis modules can also be plugged into a running simulation to view and study the structure and behavior of the simulated infrastructure.

ASPN ASPEN is an agent based micro-analytic simulation model designed specifically at the SANDIA national laboratories to simulate the US economy. Based upon evolutionary learning within the agent architecture, ASPEN has been able to simulate the behavior of simple decision making agents of the economy. The agents that have been modeled in ASPEN have been households, banks, companies and the government. It also provides means for analyzing the impact of various policies and regulations on the economy. Different economic sectors can be modeled independently or as an integrated whole within ASPEN.

CASCADE The CASCADE model depicts a scenario in which n identical components (either from the same infrastructure or from different infrastructures) operate and interact. Each of the components can tolerate a load between \([L_{\text{min}}, L_{\text{max}}]\), and is bearing an initial load of \(L^j\) (where \(j\) denotes the component number and \(L^j\) is a random variable uniformly distributed within \([L_{\text{min}}, L_{\text{max}}]\)). A component in this setting is susceptible to failure if its load exceeds a threshold \(L^j\). The load of a failing component will be evenly distributed amongst the rest of components. To model a cascading failure, an initial load is enforced on one of the components forcing it to fail. The breakdown of the component will transfer an extra burden onto the other components that may result in their collapse (depending on their current load), causing a cascading failure effect. Depending on how the setting is configured (variation in the number of components, their interconnection, degree of load transfer, recovery models, etc), this model provides a very good basis for understanding the behavior of interconnected systems under extreme failure conditions.

CISIA CISIA models the behavior of an infrastructure (or a set of interacting infrastructures) through a set of non-linear interdependent agents. Each of the agents represents a macro component of the modeled system. For the sake of generality, and to be able to encompass more infrastructure systems, CISIA employs a very high level description of the internal logic of an agent. This description consists of only the specification of the agents’ operative level (agents stamina), requirements (agents’ needs), and faults.
To model the interaction of the agents (provide mutual requirements or disseminate failure), three types of matrices namely Operative Level Incidence Matrix, Requirement Incidence Matrix, and Fault Incidence Matrices are devised. Fault incidence matrices are further refined to allow the analysis of different types of failure propagation (geographical, physical, and cyber).

GoRAF To integrate the business and engineering points of view within a single framework, GoRAF has both employed a goal based requirement engineering methodology and the CISIA simulator to identify the most critical resources of an infrastructure. Based on the business perspective, the *Business Value* metric has been devised that represents the economic and strategic losses that result form the malfunction of a resource. The *Risk Value* metric is calculated through the CISIA simulator and shows the probability of inoperability of an infrastructure resource. According to this framework, criticality of the resources is estimated based on these two metrics.

HHM In the hierarchical holographic modeling scheme, different models represent multiple perspectives of a complex system such as an infrastructure. This approach justly claims that no single perspective on a complex system is adequate for its proper understanding; hence it provides the means to identify and integrate multiple complementary decompositions of a system. These decompositions are hierarchically organized and show the subcomponents of the system in different levels. In an attempt using HHM, Sixteen different perspectives were identified which are namely Physical, Scope, Temporal, Maintenance, Institutional, Organizational, Management, Resource Allocation, Supervisory Control and Data Acquisition (SCADA), Systems Configuration, Hydrology, Geography, External Factors, Buffers, Contaminants, and Quality of Surface and Ground Water.

IIM The inoperability input/output model is based on the Leontieff input/output model [Leontief (1966)]. It illustrates the interdependency between different sectors of the economy (the framework in which the participating sectors interoperate and affect) by focusing the investigation on the degree of direct or indirect financial reliance between the sectors (according to the examples used in [Haines et al. (2005b)] this reliance has been calculated through the employment of the publications of the Bureau of Economic Analysis). Based on a set of initial disruptions in a sector, the model is able to characterize the cascading effect of failure. A dynamic extension to IIM allows a temporal analysis of the recovery mode.

IRAM The infrastructure risk analysis model is a four phase methodology to identify, rank and manage the extreme risks that threaten an infrastructure system. These four phases are namely identify, model, assess, and manage. In the first phase and through the application of the hierarchical holographic model (HHM), a system is decomposed into its sub-components. The vulnerabilities and threats to the sub-components are identified and rank ordered. In the next phase, appropriate scenarios of the sub-component operations are generated and shown with the help of event trees. The created scenarios are also rank ordered. The assessment of infrastructure surety in the third phase is undertaken through five different risk measures. These measures allow a decision maker to see the expected value of damage, understand the behavior of low probability-high impact events, and assess the surety of the system. Finally in the last phase, based on the analysis of the previous phases, a decision maker can make qualitative and/or quantitative judgments of the current situation and take appropriate steps to reach an ideal state.

OGC CIPI Critical Infrastructure Protection Initiative (CIPI) is a program coordinated by the Open Geospatial Consortium (OGC). The CIPI pilot project explored the possibility of emergency management through data sharing at different levels of the government. It provided a basis to share geographical information and make different standards interoperable. It also developed a draft interface specifications for emergency alert notification. This interface provides the means for geospatial software interaction and hence integration with emergency alert systems. The main goal of CIPI is to improve interoperability between different sources of information (telecommunication, water resources, oil and gas, government, transportation, emergency response, electric power and health services infrastructure) in order for them to collaboratively detect, prevent, plan for, respond to, and recover from natural vulnerabilities and human threats.

UML-CI UML-CI is a model driven architecture-based design [Frankel (2003)] that provides its users with the high level metamodels to create a profile of an infrastructure system. Its development has been based upon the six dimensions of critical infrastructure specification. The advantages that stem from the notion of infrastructure profiling are that it gives initial insight for infrastructure analysis and system identification, provides sound basis for common understanding, communication, and knowledge transfer, it also allows the documentation of best practices and infrastructure metamodels. The models created based on the UML-CI metamodel can be re-used as the base or guideline for the creation of new infrastructure systems. It is also feasible that simulation models of an infrastructure system be built from the models created in this metamodel.

Based upon the understanding gained from the study of many critical infrastructure modeling and analysis schemes among which we have only introduced a subset in this section, it can be perceived that although many of the aspects of an infrastructure organization, behavior, its risks, threats and vulnerabilities are thoroughly studied, but these attempts have not been in a complementary fashion. Without
3. The Framework

Many researchers define critical infrastructures as networks of highly complex systems that can be classified as socio-technical systems [Rinaldi (2004), Dunn (2005)]. This definition at least shows two of their major facets: social, and technical. For this reason, and to fully understand the operation of infrastructure systems, various aspects of them should be comprehended from different perspectives. A multifaceted strategy requires an integration of many different techniques that are in most cases from a totally different background. The consolidation of these methods and schemes can be achieved through a unified framework. In this sense, the framework is responsible for specifying the role of each technique, the degree of their contribution, type of incorporation into the framework, and their temporal involvement. For our purpose, we propose a five dimensional framework that allows a step by step analysis of an infrastructure behavior and the identification of its interdependencies (either visible or hidden) on other infrastructures.

In the following parts of this section, we will more carefully visit each of the framework dimensions and classify the sort of analysis that can be performed in each dimension. We will also briefly introduce samples of relevant techniques that may be useful in each of the respective dimensions.

3.1. System Analysis

Infrastructure system analysis is mostly involved with the identification of the structural and business aspects of the systems involved in an infrastructure. It attempts to depict a clear picture of the current infrastructure organization through the identification of its different components. The identification of system components facilitates the specification of their requirements and productions which allows an initial recognition of the set of interdependencies. Risk analysis models can also roughly give an estimate of what kind of threats, risks, and vulnerabilities endanger the proper operation of an infrastructure. The aggregate understanding attained in this layer needs to be well documented for consistent re-visits, mitigation strategy selection, guideline extraction, and managerial decision makings.

3.1.1. Infrastructure Organization Elicitation

Understanding infrastructure organization requires an analysis from multiple viewpoints. Other than the technical structure of how the system components are structured, complementary arrangements such as their social settings, human resource hierarchy, enterprise architecture should be realized. To address this issue, the hierarchical holographic modeling scheme, has advocated the fact that only a multidimensional analysis can give enough insight into the operation of a complex system.

By exploiting the aggregate knowledge derived from these models, depending on the degree of elaboration in each of the perspectives, one can claim that a correct overall understanding of the infrastructure organization has been reached. For example, to fully understand a telecommunication infrastructure an understanding of how technical systems operate is not sufficient. Other aspects such as regulations, international connectivity strategy, information systems, and models of communication services should also be considered. In each of these aspects more viewpoints can exist according to their nature. In the information systems category, for instance, management information systems, billing software and SCADA systems should be separately analyzed.

3.1.2. Apparent Interdependency Identification

According to the classification given by Rinaldi et al [Rinaldi (2004)], critical infrastructure interdependencies can be either physical, cyber, geographical, and/or logical. Among these four types of interdependencies, physical and geographical interdependencies seem to be more apparent and can be more easily identified (although an exhaustive list of interdependencies may never be reached).

The identification of the physical interdependencies can be achieved through the examination of the requirements and productions of each system component. For example, the electricity infrastructure (specifically its generators in this example) is physically dependent on the water and sewage infrastructure for consuming water for cooling purposes. Geographical interdependencies are also easily perceivable, but not so effortlessly understandable.

Any two infrastructures or their systems that are within a geographical proximity have geographical interdependency. By analyzing the geographical coordinates of two different infrastructure systems, their geographical interdependencies can be revealed. In the route of this process two major obstacles exist. Firstly, not all infrastructures in a geographical region are known to every body. There are usually visibility levels that are devised for security concerns. For example, a nuclear power plant close to a radio transmission station may not be visible to the operators of the telecommunication company that own the radio transmission station; however, the reverse may not be the case. In these situations the identification of geographical interdependencies is either not possible or is only achievable through a higher level authority (that receives clas-
sified information through information sharing schemes). Secondly, even if all of the geographical interdependencies are well known, still their consequences cannot be easily understood. This is mostly because the internal organization of infrastructures is veiled from outsiders. For this reason, the consequences of an extreme event or failure in a system cannot be perceived by other infrastructure owners and therefore, its consequences on other infrastructure facilities is also unidentified. The only solution to this dilemma is to provide some sort of information sharing mechanism between different infrastructure stakeholders.

Cyber and logical interdependencies seem to be more complicated compared with the other two types of interdependencies. For the exploration of cyber interdependencies, the type of information that is passed between different systems needs to be identified. If all information provisioning and data transfer activities between the infrastructure systems took place through specified information systems, then a similar analysis to the physical interdependency identification over the information systems would reveal cyber interdependencies. But this is currently not the case where no exact port for information transmission exists; therefore, cyber interdependencies cannot be so clearly identified.

Logical interdependencies are also inherently concealed among the many relationships, resources, and interdependencies of infrastructure systems. We will more carefully visit these concepts in later sections.

3.1.3. Risk Management

Risk management is the practice of measuring and evaluating the degree of risk assigned to the normal operation of any process and usually consists of three major steps: risk analysis, assessment, and evaluation [Boehm and DeMarco (1997)]. Risks in the operation of a critical infrastructure can arise from many different sources (have various causes). These causes can be due to natural disaster, human error, terrorist act, and/or the complexity of the operating system [Narich (2005)]. To analyze the risk of a system, the risks assigned to its constituent components (operations and resources) should be analyzed. The most important concern here is to identify the sources of a risk, its associated consequences and allow for the recognition of proper mitigation strategies. Risk management techniques mostly integrate into the techniques that elicit system organization, and based on that information, identify threats.

Fig. 1. The Proposed Five Dimensional CIP Framework
3.1.4. Infrastructure Profiling

The proper understanding of a critical infrastructure organization, its components, interdependencies and the attached risks, requires a systematic documentation schema (a unique metamodeling structure). The major benefits of this schema would be that it provides a base recognition and an initial infrastructure understanding for the teams that have started to model an infrastructure. It also caters suitable grounds for common understanding of the requirements of the modeling effort among the investigators, infrastructure managers and stakeholders. With the employment of a metamodel and based on the common understanding, enhanced communication among the role players would also be achieved. A unique shared metamodel among different investigators, accommodates easier transfer of current understanding and existing knowledge to other teams, and hence makes the research efforts synergistic. It also provides the possibility to transfer best practices among different research teams.

A created infrastructure profile based on a standard schema allows a consistent documentation of the current infrastructure state, and it also facilitates the re-use of the existing profile through extensions for other purposes. UML-CI is an infrastructure profiling mechanism that provides five major categories of metamodels namely: Ownership and Management, Structure and Organization, TRV, Resource, and Relationships. It provides a comprehensible graphical notation created based on the Unified Modeling Language (UML). One of the major benefits of employing the UML-CI profile is that its metamodels can be later transformed into proper simulation components for infrastructure behavior analysis.

3.2. Behavior Analysis

It was previously discussed that the analysis of the behavior and performance of an infrastructure (or even the collective behavior of a set of interacting infrastructures) can be achieved through either observational techniques or computer simulations. Here, we only focus on the aspects of infrastructure behavior analysis that are some how related to infrastructure operation simulation, and leave the analysis of historical data to later sections.

3.2.1. Simulation Control

A simulation is an analytical model that is meant to imitate the actual behavior of any intended system (or a set of systems). The various types of computer simulation for infrastructure behavior analysis (to the extent of the authors knowledge) have mainly been focused on two different approaches. They have either been in the form of mathematical equations with changeable variants (change can be dependent upon different factors such as context, time, state, or etc), or a set of interacting agents that represent instances of real-world role-players, system components, or resources. The inspection of the simulation flow and paths brings about new understanding of the possible routes that an actual infrastructure system may follow.

The key issues related to the execution of a simulation are related to the suitable selection of the simulation scenarios, and the context variables that are used while the model is been examined. An inappropriate choice of scenarios or unsuitable selection of context variables deteriorates the efficiency of the simulation results. In this section, we will more closely look into the two models that tackle these issues.

Monte Carlo Simulation

Monte Carlo simulation is an approach for repeatedly analyzing a deterministic model through the employment of random input values for the uncertain variables of the model [Rubinstein (1981)]. The technique is widely used for simulating non-linear complex systems that have a range of undecided parameters. Through the employment of random values a stochastic simulation of a deterministic model is created. The aim of the simulations performed through the Monte Carlo technique is to study the effect of variation, uncertainty, fault and/or attack on the performance and/or reliability of the system. The nature of this technique matches well with the character of the problem we are trying to undertake. Understanding the behavior of critical infrastructure systems under unknown conditions can be studied through the employment of Monte Carlo simulations. The random values selected for any parameter of the infrastructure system models in a Monte Carlo simulation is hence based on a predefined probability distribution, within a specified range. The probability distributions are usually selected from amongst the normal, triangular,
uniform, and log-normal distributions.

Scenario Building

Scenarios are tools for creating alternative scenes based on the different arrangements of the initial hypotheses about environmental parameters and system settings [Zhang and Bose (1989)]. They are usually built in cases where more knowledge or understanding of a situation or system is required. They allow the observation of different perspectives on the same system by giving new viewpoints. In a computer simulation, a scenario specifies the initial setting of the model, and provides guidelines on what paths the simulation has to follow. Similar to the selection of the initial simulation parameter value, creating appropriate scenarios for the simulation of the behavior of an infrastructure is of utmost importance. Since many of the interesting (and at many times harmful) events within an infrastructure system are unpredictable and rare, scenarios should be able to design simulation routes that cover most of these events. A scenario that guides a simulation into the normal operation of an infrastructure does not seem to be so valuable. It is only the scenarios that help the investigators reach new understanding that are precious. Scenario graphs [Mathew et al. (2005)] and event trees [Papazoglou (1998)] are two of the models that can be used to create scenarios. It is obvious that creating a scenario graph or an event tree by hand that incorporates all of the different possibilities of a simulation execution for a complex system such as an infrastructure is both tedious and impossible. Therefore, appropriate predictive techniques should be used to create such graphs or trees based on the initial understanding that has been gained through the employment of the methods introduced in the previous sections.

3.2.2. Simulation Models

For any type of system, understanding its interaction behavior with other systems requires an initial perception of its internal structure. Infrastructure systems are no exception to this matter. To fully understand how an infrastructure would react to an outside stimulus, a thorough knowledge of its internal functions and organization is required. In the following, we will study how each of the two mathematical, and multiagent approaches support the simulation of infrastructure behavior.

Mathematical Models

Among the various infrastructures, electricity infrastructure has been the focal point of mathematical simulation models. These models have mainly focused on modeling the behavior of a certain component or aspect of the infrastructure. For example, different mathematical schemas for predicting the electricity demand level and price have been developed. [Joskow and Kahn (2001), and Nogales et al. (2002)] are just a few to name. Other attempts have aimed at developing mathematical models for eliciting hidden interdependencies between different sectors of the economy (or interdependencies between infrastructures). The inoperability input/output model (IIM) introduced earlier in this paper, is one of the most prominent examples of these efforts.

Although the results of mathematical models of infrastructure analysis is highly reliable, they lack scalability features [Amin (2001)]. This is due to the fact that infrastructures are fairly complex systems with many intricate details that rapidly change. Designing a monolithic mathematical model that incorporates all these rapidly evolving specifications is almost impossible. This has provoked researchers to look for more dynamic solutions that can integrate with the available mathematical models.

Multiagent systems can incorporate suitable mathematical models into appropriate agent logic components. Each of the agents would then behave based on its internal mathematical representation.

Multiagent Systems

Multiagent systems provide a collective understanding of a very complex system through a unified view on the aggregate behavior of their constituent elements (agents). Infrastructure systems can hence be very well modeled by multiagent systems. Depending on the modelers understanding of the structure and organization of an infrastructure, appropriate multiagent systems can be created to mimic the actual behavior of an infrastructure.

There are two main issues to a proper design for a multiagent based architecture: agents internal design, and agents environmental commitments and collaborations. The first issue addresses the internal representation of each agent within the multiagent architecture. This aspect specifies what functionalities/services an agent requires/provides, what resources it owns/consumes, and what goals it pursues. These specifications would allow an agent to decide on its reactions under various conditions. For example, an electricity generator can be modeled as an agent in a multiagent architecture. If the generator goal is to maximize its profit, it would regardless of its current load, accept new requests, but if its objective is to provide a very high quality of service to its customers, it would prefer to accept a lower number of requests but provide them with a better service.

Investigators can use a very well known multiagent architecture known as BDI, which specifies the internal structure of an agent through three concepts: Belief, Desire and Intention [Dignum (2000)]. An agents belief is its perception of the surrounding environment. Desire is the agents motivational states or goals, and an agents intention is its current decision in order to reach his goals (desires). Agent intentions are realized through intelligent planning [Fraile et al. (1999)].

Following the previous example, an electricity generator can forecast power market’s future, and plan not to forward sale its electricity supplies because of a rise in electricity prices in the near future. As this example portrays, the sort
of planning problems in a multiagent system that simulates an infrastructure system is usually complicated and have to be discovered and optimized in a multidimensional space and hence requires complex techniques.

Identifying the internal representation of all of the components of a critical infrastructure is always a time consuming task. We assume that if the proposed framework in this paper is fully observed, the required descriptions would be available in this phase; however for many research teams, it is infeasible to fully implement a complete study based on this framework. In these cases, the internal representation of an agent can either be replaced with a mathematical or conditional equation. The incompleteness of these models does not necessarily suggest that they are inappropriate, rather it implies that they are not as accurate as a full fledged implementation.

An agent’s societal interaction within a multiagent architecture is the other point that should be specified when modeling an infrastructure system. This would include features such as Negotiation, Cooperation, and Coordination [Zlotkin and Rosenschein (1991)]. Negotiation is a social practice through communication that is experienced for regulating power, resources and commitments among different agents.

Agents are autonomous by their definition (as their corresponding infrastructure systems are in the real world), but require interaction to reach their goals. As a result of a successful negotiation, cooperation can be achieved. Negotiation and cooperation procedures appear to be able to reveal a set of infrastructure interdependencies. The negotiation of agents (each agent being an infrastructure system) over each others’ resources depicts their interdependencies. This allows the revelation of many physical or cyber interdependencies. However, still logical interdependencies are not revealed.

Logical interdependencies are related to a more sophisticated notion in multiagent systems: Coordination. Coordination is conceptually different from cooperation, since two coordinated agents may not in fact cooperate with each other, however make coordinated decisions. Suppose that the price of oil is strictly dependant upon the peace process in the Middle East. Therefore, major oil producers and consumers, try to coordinate their decisions with the political developments in that region. It is visible that oil companies have no direct cooperation with the political side of the issue, but they are highly coordinated with their decisions. This coordinated behavior can be considered as logical interdependency between two infrastructure systems.

3.3. Knowledge Discovery

Knowledge discovery is the process of analyzing data which has been derived from various sources and studying their features, correlations, and patterns from different perspectives to reach a new understanding about the sources of those data. In the study of critical infrastructure systems, data may be available from two major sources. They may be either the result of a long term observational process or be synthetically generated through computer simulations. In either case, the procedure for extracting knowledge is very similar. The only difference may be related to the reliability of the data sources. Data collected from the observational process can be deemed to be more trustworthy compared with the results obtained from a computer simulation. This is because a computer simulation may have a very small invisible flaw, which causes a significant difference in the final output. In this section, we investigate two major techniques used for inferring knowledge from the available data sources.

3.3.1. Hypothesis Testing

In hypothesis based knowledge discovery, the investigators make a set of assumptions about the behavior of an infrastructure under certain conditions. For example, a research team may claim that the price of electricity is logically dependant on the variation of climate changes throughout winter. To verify the correctness of this claim, they will try to find corresponding evidences from the collected data. The techniques used to support this process have to search all of the available data for any clue that matches a set of predefined criteria. The criteria should be precisely described through an understandable, unambiguous notation. Logical notations such as first order logic, modal logic, temporal logic, and others can be used to describe the hypotheses that need to be validated.

Like many other techniques, there are certain advantages and drawbacks associated with this approach. The major deficiency of this method is that the research team should make the hypotheses themselves. This may have two major consequences. Firstly, many of the relationships and correlations between data gathered from the operation of an infrastructure are not easily understandable, and hence guessing all of the probable associations is not feasible. For this reason, there is always the possibility that many undetected relationships exist. Secondly, the process of specifying the associations and making the hypotheses is a time-consuming task. However this approach has its own advantage and that is the fact that simple reasoning models and pattern (data) mining techniques can assist in the process of hypothesis evaluation.

3.3.2. Exploratory Data Analysis

As opposed to the method introduced in the previous section, exploratory data analysis is concerned with the methodical identification of the hidden associations between a set of available data without any prior knowledge over their essence [Tukey (1977)]. In this approach, many of the combinations of data relationships are tested through the exploitation of a wide range of statistical methods and machine learning techniques to find appropriate patterns and relationships (In the case of infrastructure systems, identifying hidden interdependencies, vulnerabilities, probable
threats and risks and even business opportunities). The statistical techniques that can be employed in the study of critical infrastructure behavior may vary from simply observing parameter distributions, and variable correlation analysis to multivariate exploratory techniques such as cluster analysis, factor analysis, multidimensional scaling, log-linear analysis, canonical correlation, correspondence analysis, time series analysis, and classification trees.

Aside from the statistical models for pattern identification, machine learning techniques can also be used to make accurate predictions. These models differ from statistical models in that they do not possess any conceptual relationship with the system being modeled and hence have no theoretical understanding of the underlying causal processes. However, these techniques have the capability to generate accurate predictions over a set of patterns. Artificial neural networks are among the well known examples of such techniques. Machine learning techniques are mainly used to make predictions of future behavior based on a set of currently available data or patterns. The major drawback of techniques such as artificial neural networks is that their predictions cannot be logically verified.

In the context of studying the behavior of a set of interdependent infrastructures, statistical exploratory techniques can be used to discover any correlation (hidden/ logical interdependency) between the infrastructure systems. On the other hand, machine learning techniques can observe the current behavior of the infrastructures and help predict their future reactions under certain conditions. While statistical models seem to be more appropriate for extracting knowledge from the simulation results, machine learning techniques show more suitability for pure prediction reasons and infrastructure behavior modeling purposes.

3.4. Visualization

In the context of infrastructure systems, visualization techniques can be used for two main tasks. They can be employed to reveal the visual structure and organization of an infrastructure (from the information which has been collected in the system analysis layer). Using these representational techniques (that can mostly be used in conjunction with the techniques introduced in the system analysis dimension) many different types of analysis can be performed (e.g. reliability analysis, connectivity, points of failure and bottleneck identification and etc.). The other usage of visualization techniques is that they provide different graphical displays of the data (raw or processed) that have been manipulated in the behavior analysis, and knowledge discovery dimensions. This would allow the investigators to spot any inconsistencies in the results of the previous dimensions or infer new knowledge that has not been extracted by automatic methods.

3.4.1. Infrastructure Organization Representation

There are various techniques that can be used to depict the structure and organization of an infrastructure. Based on our understanding of the available techniques, a suitable technique for representing the structure of a system should provide relevant methods for organization analysis, along side its figurative notations. We have selected two of such schemes namely graph theory, and layered geographical information systems that will be explained in more detail in the following lines.

Graph Theory

In theory, graphs are a set of nodes that are intentionally connected to each other by a set of edges [Cenek (2000)]. The connection between these nodes conveys a meaningful concept. For our purpose, various infrastructures (or their internal systems) can be represented as nodes and their interdependencies can be shown as their respective edges. Through this representation, many of the currently available graph theory techniques can be used to analyze the behavior of the set of interacting infrastructures. Table 2 shows a subset of these techniques and introduces their possible contribution to infrastructure analysis.

Network analysis techniques are a subset of graph theory. Among the very interesting notions in network analysis that has attracted a lot of attention in the recent years has been the concept of scale-free networks [Wang and Chen (2003)]. Scale-free networks are special types of network topology in which only a small subset of the nodes called hubs have an extreme number of connections (high degree of connectivity), while the other nodes do not have such a connection degree. The distribution of the node degrees in such a network follows a power law distribution. The reason why these networks have been so well studied is that they are quite resistant to random failures. For example, an electricity supplies network that has the form of a scale-free network is very rarely disrupted due to random failures because of its fairly tightly connectedness. However, the same network is vulnerable to targeted (purposeful) attacks that aim to disrupt the operation of its hubs. For this reason, the study of infrastructure organization from the perspective of scale-free networks provides the basis to perform a fault tolerance analysis. It is usually recommended that the nodes in an infrastructure network that form its hubs should be well guarded, replicated, and have suitable backups.

A Graph-theoretic Method for Interdependency Identification

Establishing a quantitative association between infrastructures, among components of an infrastructure and/or among components of a number of infrastructures is vital in studying the interdependencies of critical infrastructures. In the following, using concepts adapted from classical graph theory and infrastructure architecture, an at-
tempt is made at defining and computing infrastructure dependency/interdependency graphs. We also show how our model can reveal hidden interdependencies. Predicting hidden interdependencies and cascading failures will assist in devising appropriate plans and solutions for hardening critical infrastructure systems.

We define an infrastructure as a system consisting of a number of components, C, and a set, R, of four functions $\{\text{Physical} = \gamma_p, \text{Cyber} = \gamma_c, \text{Geographical} = \gamma_g, \text{Logical} = \gamma_l\}$, giving the dependency/interdependency relations of the infrastructure. Two types of association between infrastructures may be distinguished, (a) dependentness, $\Gamma_d(I_1, I_2)$, and (b) interdependentness, $\Gamma_i(I_1, I_2)$. Traditional definitions of dependency imply ‘a state in which actions by others is a necessary condition for an actor to achieve his or her own goal’. Let $\Gamma(I) = \Gamma_d(I, \forall i) \cup \Gamma_i(I, \forall i)$ represent the relationships of an infrastructure I with other infrastructures. The dependentness mapping is reflexive, antisymmetric and transitive, i.e.,

\[
\begin{align*}
(i) & \quad \Gamma_d(I_1, I_1) = 1, \quad \text{reflexive}; \\
(ii) & \quad \Gamma_d(I_1, I_2) \neq \Gamma_d(I_2, I_1), \quad \text{antisymmetric};
\end{align*}
\]

whereas the interdependentness is reflexive, symmetric and transitive, i.e.,

\[
\begin{align*}
(i) & \quad \Gamma_i(I_1, I_1) = 1, \quad \text{reflexive}; \\
(ii) & \quad \Gamma_i(I_1, I_2) = \Gamma_d(I_2, I_1), \quad \text{symmetric};
\end{align*}
\]

Given a number of infrastructures, V, we can define a dependency matrix between the infrastructures and their components, the elements of which identifies the dependency between the infrastructures. The elements can be real numbers in the range of 0.0 to 1.0 representing the degree of dependency or binary values representing the existence of dependency between infrastructures. For an interdependency matrix, if we replace the non-zero elements of the matrix with ones, we get the adjacency matrix of a graph. This graph, D-graph, represents the causal relationships between infrastructures and has an edge between any pair of infrastructures/components which has a non-zero casual relationship.

As a simple example, consider a dependency matrix between 3 components of a sample ICT infrastructure.

$$
\begin{bmatrix}
SC & PC & TX \\
SC & 0 & 1 & 0 \\
PC & 1 & 0 & 1 \\
TX & 0 & 1 & 0
\end{bmatrix}
$$

The first order interdependency of these three components can be decided by a one time traversal through the dependency matrix.

$$
\Gamma_d(SC, PC), \Gamma_d(PC, SC) \Rightarrow \Gamma_i(SC, PC).
$$

Repeating this process will unveil the high order (propagated) as well as some of the hidden interdependencies among a group of infrastructures. Note that there will be 4 different D-matrices corresponding to the four different dependency categories (Physical, Logical, Cyber and Geographical).

Here, we propose a graph theoretic method to group different infrastructure systems and identify the degree of their dependency/interdependency. This method is based on using maximal complete subgraphs or cliques.

Interdependency Derived from Connected Components

A connected component of a graph is defined as a subgraph in which every pair of vertices is connected by a chain of edges. The different connected components constitute a partition of nodes of the graph. Each connected component may be regarded as a distinct group of dependent/interdependent infrastructures.

In a dependency matrix with real values in the range of 0.0 to 1.0, we may have many small non-zero dependency values (edges). Such a D-graph will have many edges. It is possible to use a threshold, T, to remove the edges that are less than T and build a T-graph. The good side of building a T-graph is the grouping of infrastructures that are strongly dependent on each other. But one would argue that the identification of all of the dependencies of an infrastructure is needed, not just the ones that are above a certain threshold. On the other hand, using the D-graph we can identify distant infrastructures along a chain that have very small dependency/interdependency relations, which in the case of T-graph would be discarded due to the use of a threshold.

Cliqus in Infrastructure Networks

A Maximal Complete Subgraph (MCS), also called clique, is a complete subgraph that is not contained in any larger complete subgraph. In a maximal complete subgraph there is an edge between every pair of vertices and any vertex not belonging to the MCS cannot be connected by an edge to all vertices of the MCS. It is possible to enumerate all the maximal complete subgraphs and these correspond to all the known dependent/interdependent infrastructures. A node (infrastructure) may belong to more than one MCSs (i.e., MCSs can overlap). The purpose of grouping infrastructures into groups of MCSs is to identify infrastructures (such as Power and ICT) that play a larger and yet critical role in the operation of other infrastructures.

The problem of determining all cliques of a graph has been widely studied in [Johnson and Papadimitriou (1988), Bomze et al. (1999), Abello et al. (1999)], to name a few. Following is a basic MCS detection algorithm. The core of the algorithm is a recursively defined extension operator that uses the three sets described below [Baum (2003)]:

$$
\Gamma_d(SC, PC), \Gamma_d(PC, SC) \Rightarrow \Gamma_i(SC, PC).
$$
the extension operator performs the following five steps.

- Complete subgraph (CS): the set of vertices in CS induces a complete subgraph of the graph, G.
- Candidate (CA): contains all vertices that will be used to extend CS towards a clique.
- The set NOT: contains all vertices that were previously used to extend CS and are now explicitly excluded from the extension.

Initially, the sets CS and NOT0 are set to empty sets, and CA0 to the set of vertices. Then, at recursion depth i, the extension operator performs the following five steps.

1. **IF** CAi is empty, return, **ELSE** take the first candidate, c, and remove it from CAi.
2. Add c to CS.
3. Create new sets CAi+1 from the old sets CAi and NOTi by removing all vertices not adjacent to c, keeping the old sets intact.
4. Call the extension operator to operate on the sets CS, CAi+1, and NOTi+1.
5. Upon return, remove c from CS and add it to NOTi. Go to (1).

When we apply this concept to the components of a single infrastructure, we can identify the components with a critical role to the operations of the infrastructure. We can also recognize and identify those infrastructures that are 'indirectly' dependent/interdependent to each other. As an illustration of the procedure, consider the infrastructures D-graph in Figure 2. Four MCSs can be identified as follows:

- MCS1 = \{1, 2, 3, 4\}
- MCS2 = \{1, 2, 6\}
- MCS3 = \{2, 4, 5\}
- MCS4 = \{2, 5, 6\}

We can merge the overlapping groups of MCSs into a larger diffusely connected infrastructures. Through this exercise we can identify some of the hidden interdependencies between infrastructures. As an illustration of the procedure, consider the arbitrary graph in Figure 2. The Diffuse subgraphs corresponding to this graph are:

- D1 = MCS1 \cup MCS2 = \{1, 2, 3, 4, 6\};
- D2 = MCS1 \cup MCS3 = \{1, 2, 3, 4, 5\};
- D2 = MCS2 \cup MCS4 = \{1, 2, 4, 5, 6\}.

Now we can analyze the new subgroups to recognize the hidden dependency/interdependency among those infrastructures that are not recognizable from the MCSs. For example, in group D1, we can assume that there is an (indirect) interdependency between infrastructures 3 and 6, even though they are not directly connected in the D-graph.

Layered Geographical Information Systems

A Geographical Information System (GIS) is a software system that provides the functionality to develop, maintain, analyze and handle geo-spatial information [Wolthusen (2005)]. These systems are mainly developed in a multi-layered style, so that various forms of information can be integrated into a single model. The three most important features of a geographical information system that makes it appealing to the study of infrastructure systems are:

- **Integrating information from multiple sources**: Since a GIS is designed in a layered fashion; it can integrate other sorts of information (or even additional information) from different sources. This has the advantage that there is no need for a central team to collect information which results in more completeness, and accuracy.
- **Topological modeling**: A GIS can recognize and analyze spatial relationships between geometric entities that have been stored in a digital format. The typical types of information that can be inferred are entity adjacency, proximity and containment. These forms of information can vary depending on the data available within the GIS.
- **Map overlay**: The integration of various sorts of spatial information onto a single map creates an overlay map. This provides better understanding of the relationships...
between various types of information (improves the process of interdependency identification).

Other than planning purposes, geographical information systems are the best source of geographical interdependency identification. An overlay map provides the best means to find any geographical proximity between two different infrastructure systems. As has been practiced in [Tolone et al. (2004)] a GIS can also visualize the effect of a rippling failure through picturing the failure propagation in a different color or shape.

3.4.2. Analysis Data Visualization

Tremendous amounts of information lie within unstructured data that cannot be identified by statistical or machine learning techniques. This information can only be detected by humans through the employment of proper visualization techniques. These techniques would mostly contribute to the identification of correlation between the parameters of a system, or the detection of logical dependencies between different infrastructure systems. The most important models of data visualization include (but are not restricted to) function fitting and plotting, data smoothing, overlaying and merging of multiple displays, categorizing data, splitting/merging subsets of data in graphs, aggregating data in graphs, identifying and marking subsets of data that meet specific conditions, shading, spectral planes, integrated layered compressions, and projected contours, data image reduction techniques, interactive (and continuous) rotation with animated stratification of 3D displays, and selective highlighting of specific series and blocks of data [StatSoft (2006)].

3.5. Information Sharing

The protection of critical infrastructure systems requires a complete understanding over their internal organization and external links. All of the previous dimensions of this framework tackle this problem from the perspective of a single protection team that intends to protect a particular infrastructure. Therefore, they try to identify the infrastructures organization, discover the hazards that it faces and depict its external dependencies. But as it turns out to be this is not enough for the complete protection of the infrastructure. Many of the threats posed on an infrastructure do not actually stem from roots in that infrastructure, and even have deeper causes other than mutual infrastructure interdependencies. Theses origins of threats to an infrastructure are a collective result of many single bits of invaluable information or events that once summoned result in precious knowledge. The detection of these events requires the integration of multi-dimensional data that are collected from various sources. The compilation of this type of information necessitates the act of information sharing between all of the involved parties in the operation, management, and monitoring of infrastructure systems. A few information sharing models in the realm of multiagent systems have been proposed such as [Marsh et al. (2003), Carter et al. (2002)]; however their suitability for critical infrastructure information sharing has not yet been investigated.

There are two major barriers for achieving information sharing. Firstly, infrastructure owners are reluctant to share their private information with other parties. This is because the transpiration of their information may threaten their market and business advantages. Secondly, sharing information should be achieved through proper communication channels (e.g. based on integrated information systems) that are in accordance with proper rules, regulations, and policies. To date, this set of conventions does not fully exist and vary from country to country, and since many of the infrastructure systems operate in multiple countries, the variety of regulations impedes proper information sharing. The solution to these problems seems to lie in the hands of international cooperation of governments in order to devise proper worldwide rules and regulations and to establish trustable third party agencies. These agencies can then based on international agreements provide suitable platforms for sharing information (e.g. integrated information bases) between different parties according to their access levels and authorities. The overlay of this aggregate information can result in the prevention of many catastrophic events and even enhance the operation of many critical infrastructure systems.

Although information sharing has been introduced as a separate dimension of our framework, but correct, complete, and consistent results from the other four dimensions fully depends on the degree of information sharing among different parties. To a great extent, the proper integration of the rest of the dimensions depends upon the existence of a platform so that information can be shared and knowledge be transferred. This information sharing platform not only allows multiple infrastructures to collaborate to protect their infrastructure systems, but also provides suitable means for a higher degree of cooperation within a single infrastructure.

4. Discussions

Our analysis of the current schemes, models, techniques, and approaches for understanding critical infrastructure organization and behavior has revealed the fact that although the field is fairly new, but a lot of valuable contributions have been made. The classification of these schemes based on our proposed framework shows that a lot of these attempts have been towards either system analysis, and/or behavior analysis of infrastructure systems. But fewer efforts have been made to specify the type of knowledge discovery and visualization techniques that can be used to analyze the information that have been gathered from the two previous dimensions. It would seem to be a great step forward if these techniques along with their possible contributions could be studied (for example a classification of machine learning techniques that can contribute to knowl-
edge discovery in infrastructure systems).

In addition, information sharing has attracted less attention due to its complexity. It serves as one of the most important dimensions for understanding infrastructure systems. Unlike the other dimensions, information sharing is an aspect whose lifetime encompasses all of the other dimensions. Its main role is to facilitate the operation of the other dimensions. To advance the efforts in this field forward, proper information sharing schemes, policies and regulations, models of information integration, and models of international collaboration should be devised.

5. Conclusions

In this paper, we have proposed a five dimensional framework to study the current efforts in the field of infrastructure protection. We have identified the major points of research in these dimensions and explained ten schemes for their study. Each of the dimensions of the framework, address different issues of critical infrastructure protection. We have also compared these ten schemes based on our proposed framework. A graph theoretic model for interdependency identification along with guidelines for the direction of future work have also been provided.

References

Tukey, J. W., 1977. Exploratory Data Analysis. Addison-Wesley, USA.

