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1 Overview
The objective of this exercise is to learn how to exchange data between a microprocessor and I/O (Input/Output)
devices. In the first part of the exercise you will explore simple I/O devices, such as switches, a keypad, LEDs
(Light Emitting Diodes) and a buzzer. In the second part of the lab, you will learn how to write text and numeric
values to the LCD (Liquid Crystal Display). The LCD may then be used as a diagnostic and monitoring tool to
print out information that indicates the hardware/software state of the eebot robot.

To do this, we’ll develop some necessary software tools and then explore the programming of the I/O devices:

• build a software delay routine.

• bit mask operations.

• read from switches and write to LEDs

• convert a one-byte value to a displayable ASCII string.

• initialize the LCD.

• write messages to the LCD.

• writes a hexadecimal value in hexadecimal notation to the LCD.

2 Software Delay
The microprocessor requires a certain execution time to process each machine instruction. This execution time
is measured in units of machine cycles (aka the E clock cycle). The machine cycle time is the basic unit of time
in a microprocessor. It is directly dependant on the oscillator frequency. The bench machines in the lab have a
16MHz oscillator crystal. To further increase the speed of operation, the Serial Monitor converts this frequency to
24MHz. It instructs a special Phase Lock Loop (PLL) circuit in the microcontroller to multiply the 16MHz clock
by 3 and then divide it by 2. Thus, the clock period, hereinafter referred to as E-clock, is 1/(24 × 106) ≈ 42
nanoseconds.

When a brief delay is required in a computer program while waiting for something else to happen it is common
practice to have the machine repetitively execute a loop of instructions. The loop contains a loop counter which is
initialized to some value and then incremented or decremented each iteration of the loop. The loop also contains
a conditional branch instruction that terminates the loop when the count reaches some predetermined value.

2.1 A Simple Loop
A very simple example of a software loop is shown below:

LDAA #$FF ; Initialize the loop counter ACCA to 255
LOOP DECA ; Decrement the loop counter

BNE LOOP ; If not done, continue to loop
... ; Program continues here

The LDAA #$FF instruction initializes the accumulator A. Notice the immediate addressing mode.
Check the DECA in the HCS12 Reference, and you can see under Condition Codes that the Z (zero) flag is set

when the result is zero.
Next, look at the Description of the BNE instruction: it causes a branch if Z is clear, ie, the result is not zero.

So the mnemonic BNE should be interpreted as: Branch if Not Equal (to zero)
Consequently, the operation of the loop is to start at a loop count of 255 and decrement each trip around the

loop until the loop count is zero. At that point, it does not branch and continues with the execution of the program.
Now we are in a position to calculate the delay. Turn back to the HCS12 instruction pages again. We can see

that the DEC instruction requires 1 machine cycle2. And the BNE instruction requires 3 cycles, if the branch is
2Each letter in the Access Detail column of the Instruction Set represents a single machine cycle.
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taken; otherwise, it requires 1 cycle. So each trip around the loop requires 4 machine cycles, or 4 × 42 = 168 ns.
For 255 trips, this represents 42840 ns, or about 43 µs. Certainly not something that a human would ever detect,
but a significant delay in microprocessor time.

2.2 Exercise: Simple Delay
Write a simple delay routine using the 16 bit X index register as the loop counter. How many loop counts can this
delay execute? What is the maximum delay with a 42 ns E clock?

2.3 Tweaking the Delay Time
The delay time may be tweaked (adjusted slightly) by adding instructions inside the loop. The NOP (No Opera-
tion) instruction is useful for this, since it requires 1 machine cycle to execute and has no effect on any machine
registers.

2.4 Loops Within Loops
It is possible to nest one delay loop inside another, thereby creating a really long delay - in the order of N2, where
N is the loop iteration time. This can produce delays in the order of minutes, if required.

2.5 A Generalized Delay
A software delay routine with a specific delay time is of limited usefulness. It’s much more useful to create a
software delay where a parameter can specify the delay time. For example:

*******************************************************************
* Short Delay

*
* This subroutine generates delays approximately 168 nanoseconds

* per count on a 42 nanosecond E clock.

* Passed: The delay count in ACCA.

* Returns: (n/a)

* Side-effects: Clobbers ACCA

SHORTDELAY DECA ; Decrement the loop counter
BNE SHORTDELAY ; If not done, continue to loop
RTS ; Done, return

This can be used as a subroutine and called with the invocation

COUNT EQU 255
LDAA #COUNT
JSR SHORTDELAY

where COUNT is the delay count. It can be filed away in the ’library of useful routines’ and then re-used in a
program whenever a (short) delay is needed.

2.6 Use With Caution
These delays are useful for simple applications but you should be aware of their limitations. For one thing, the
machine is not doing useful work while it is executing a delay loop. In some applications, this is not acceptable.
For example, the machine user interface should be available at all times. If the machine is off executing a delay
loop instead of servicing the keyboard, the machine will appear to have crashed.

You should also be aware that the delay time depends of the computer clock speed. As the CPU clocks
become faster, these delays shorten. Programs containing the software delay loops will normally operate on
very slow machines. A better solution, where accuracy is important, is to use the hardware implemented Real
Time Clock (if the processor contains one) to time delays. The real time clock should operate at the right speed
regardless of the processor clock.
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3 Bit Mask Operations: Writing to Machine Registers
It is frequently necessary to write to certain bits of some register, without affecting other bits. Or, when reading a
register, it is necessary to examine certain bits while ignoring others.

For example, bit 0 of the eebot microprocessor’s Port A register is used to control the eebot Port Motor
direction. When this bit is 0, the motor rotates forward. When it is a 1, the motor rotates in reverse. Obviously, to
control the motor direction this bit must be set and cleared.

The other bits in this same port control other machine functions. It is important when we change direction of
the starboard motor bit that we not affect any of the other bits in the same register.

The logical AND instruction and the logical OR instruction can be used for these operations.

3.1 Setting and Clearing a Specific Bit
The correct way to set a bit in a register is to OR it with a logical 1 in that position (and zeros in the rest of the
byte).

To see why this is so, consider the truth table for the Logical OR:

Data Mask Result
0 0 0
0 1 1
1 0 1
1 1 1

• ORing any data value with a logical 1 in the mask sets that data to 1.

• ORing any data value with a logical 0 in the mask has no effect on that data.

So the sequence of instructions to set bit 0 in this register is:

LDAA PORTA
ORAA #%00000001
STAA PORTA

(The % symbol indicates to the assembler program that the argument is in binary notation). Whatever contents
are in the other bits of PORTA they are unaffected, because ORing a 0 with a 0 gives a zero and ORing a 0 with a
1 gives a 1.

Similarly, the sequence of instructions to clear a bit in a register is to AND it with a zero in that position (and
1’s in the rest of the byte).

To see why this works, consider the truth table for the logical AND:

Data Mask Result
0 0 0
0 1 0
1 0 0
1 1 1

• ANDing any data value with a logical 0 in the mask clears that data to 0.

• ANDing any data value with a logical 1 in the mask has no effect on that data.

So the sequence of instructions to clear bit 0 of PORTA to zero would be:

LDAA PORTA
ANDA #%11111110
STAA PORTA

Whatever contents are in the other bits of PORTA are unaffected because ANDing a 0 with a 1 gives a 0 and
ANDing a 1 with a 1 gives a 1.

The arguments to the OR and AND instructions is often referred to as a mask byte because it hides certain
bits. (Perhaps filter byte would be more descriptive.)
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Test your understanding
• What happens when a data bit is EORed with a mask bit of 0?

• What happens when a data bit is EORed with a mask bit of 1?

• What happens to the contents of PORTA when they are EORed with the mask %11111111?

Recall the truth table for the Exclusive Or: The EOR of two bits is a logical 1 if they are different:

Data Mask Result
0 0 0
0 1 1
1 0 1
1 1 0

3.2 Reading a Specific Data Bit
A similar process can be used to isolate certain bits for testing. When we want to examine bit 7 of a register called
ATDxSTAT0, we can mask off all the other bits and then test for zero using a conditional branch:

LDAA ATDxSTAT0
ANDA #%10000000 ; Mask off all bits except 7
BEQ NOT_SET

ITS_SET (continue here) ; The flag is set
(this code handles the flag set condition)
BRA CONTINUE

NOT_SET (continue here) ; The flag is not set
(this code handles the flag not set condition)

CONTINUE (program continues here)

The effect of the mask operation is to reduce all the bits except bit 7 to zero. If bit 7 is also zero, the whole
byte is then zero. If bit is not zero, then the whole byte is not zero. Consequently, the condition of bit 7 may be
tested by testing the whole byte for zero, using a BEQ (Branch if Equal to zero) conditional branch instruction.

Notice how the Unconditional Branch instruction BRA is used to branch around the NOT SET code.
(When the most significant bit is the one being tested it may be tested directly. Recall that an 8-bit 2’s

complement number has a zero in the most significant bit position when it is positive and a 1 when it is negative.
Consequently, the branch instructions BPL (branch if positive) and BMI (branch if negative) can be used directly.
However, if the bit to be tested is in some other position in the byte, the data word then has to be rotated so that
the bit to be tested is in the most significant position.)

4 The EvalH1 trainer board
In order to explore the HCS12 microprocessor features, we will use a special extension board, referred to as the
EvalH1 interface trainer. A simplified schematic of this board is shown in figure 1. The HCS12 board is connected
to the EvalH1 through the connector P1. The pins of this connector represent the identical microprocessor signals.
We can observe a few input devices in figure 1:

• the single-in-line package (SIP) of eight switches (SW1).

• the keypad connected to P1 through the special scan chip (U2-74C922).

• the four push buttons (SW2, SW3, SW4 and SW5).

As well as a few output devices:

• the LED bar (LED1) comprising 10 LEDs.

• the color LED with the component signals RGB (LED2).
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Figure 1: EvalH1 interface trainer

• the buzzer (LS1).

• the LCD module (LCD).

The operation of the switches, push buttons, LEDs and a buzzer is self-explanatory. The other units are
explained in the next sections.

5 Reading the Keypad
The HEX keypad layout is shown in figure 2. A Data Available (DA) output goes high when a valid keypad entry
has been made. At this time, a binary code (from %0000 to %1111) of the key depressed appears at the data
outputs DOA, DOB, DOC and DOD3. The DA output returns to a low level when the entered key is released. An
internal register remembers the last key pressed even after the key is released. The active low Output Enable (OE)
signal enables the DOA, DOB, DOC and DOD outputs.

3Using a look up table, this binary code can be optionally converted to ASCII code that matches the character of the key depressed, e.g. if
the key A = %1010 was depressed the ASCII equivalent would be $41 (see section 9.1).
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Figure 2: HEX keypad layout

A key code can be obtained by reading the DOA, DOB, DOC and DOD outputs. These outputs are connected to
the HSC12 port S which is configured for input after reset. The same applies to port E. Therefore, the only pin
that must be re-configured (for output) is the PE4.

The program below demonstrates the keypad read procedure (note the use of BSET and BCLR instructions).

BSET DDRE,%00010000 ; Configure pin PE4 for output (enable bit)
BCLR PORTE,%00010000 ; Enable keypad
LDAA PTS ; Read a key code into AccA

All of the switches and push buttons represented in figure 1 can be read in a similar manner.

6 Interfacing with the LED Bar
The LED bar (LED1 in figure 1) is connected to port H. Since the LED1 is an output device, port H must be
configured for output.

The program for driving the LED bar is demonstrated below.

BSET DDRH,%11111111 ; Configure Port H for output
STAA PTH ; Output the AccA content to LED1

We can output data to all of the LEDs and the buzzer represented in figure 1 in a similar manner.

7 Assignment 1: Read/Display Data and Generate a Tone
Demonstrate the three exercises given below to your lab instructor.

1. Run the following routine that reads the switches SW1 and immediately displays their states on the LED1.

LDAA #$FF ; ACCA = $FF
STAA DDRH ; Config. Port H for output
STAA PERT ; Enab. pull-up res. of Port T

Loop: LDAA PTT ; Read Port T
STAA PTH ; Display SW1 on LED1 connected to Port H
BRA Loop ; Loop
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Note that switches SW1 in figure 1 are not pulled-up externally (which is required for getting a steady
high logic signal). To satisfy this requirement, we can enable the pull-up resistors for input pins of Port T
internally, using a special pull device enable register (PERT). The PERT must be written with 1’s to enable
the pull-ups.

2. Run the following routine to read the keypad. The program uses 3 bits of the acquired key code to control
the color LED2.

BSET DDRP,%11111111 ; Configure Port P for output (LED2 cntrl)
BSET DDRE,%00010000 ; Configure pin PE4 for output (enable bit)
BCLR PORTE,%00010000 ; Enable keypad

Loop: LDAA PTS ; Read a key code into AccA
LSRA ; Shift right AccA
LSRA ; -"-
LSRA ; -"-
LSRA ; -"-
STAA PTP ; Output AccA content to LED2
BRA Loop ; Loop

Note that all configurations are done outside of the main loop.

3. Run the following program to generate a sound tone. A tone is made by creating a digital waveform of
appropriate frequency and using it to drive the buzzer LS1. The frequency (of alternating 1’s and 0’s) is
created by means of the software delay routine covered in section 2.

BSET DDRP,%11111111 ; Config. Port P for output
LDAA #%10000000 ; Prepare to drive PP7 high

MainLoop STAA PTP ; Drive PP7
LDX #$1FFF ; Initialize the loop counter

Delay DEX ; Decrement the loop counter
BNE Delay ; If not done, continue to loop
EORA #%10000000 ; Toggle the MSB of AccA
BRA MainLoop ; Go to MainLoop

8 Programming the Liquid Crystal Display
In this next section, you will learn how to write a message string to the liquid crystal display (LCD) that is attached
to the microcontroller board. On the stationary microcontroller stations, the display is 16 characters by 4 lines.
On the eebot the display is a more generous, 20 characters by 2 lines. Programming is the same for both displays.

The LCD modules normally include their own microprocessor controller which takes care of refreshing the
LCD and transferring data to and from the host microprocessor.

The LCD can be mapped into the address space of the microprocessor. The programming in this approach is
generally easier and more straightforward. The LCD module can also be interfaced directly with an I/O port. In
this configuration (that is actually implemented in the boards that we use), the designer will need to use I/O pins
to manipulate the control signals. The programming is slightly more cumbersome.

Two types of information can be written to the LCD: control bytes and data (display) bytes. Some information
can also be read from the LCD. The status of the LCD, for example, may be determined by reading the control
register. If the LCD is busy, the MSBit of the data read from the control register will be set; if the LCD is
ready, the MSBit will be cleared. Before attempting to write any information, the microprocessor must check the
LCD status. This method of communication between the host microprocessor and LCD module is the fastest,
but it requires extra hardware and is more complicated. We will use a simpler (though slower) approach to write
data to the LCD without reading its status back. Namely, we will provide a sufficiently long delay between the
consecutive write operations. This will insure proper completion of the write cycle.
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8.1 Display Control Instructions
Display control instructions are used to set up or change such display properties as

• display scroll as new characters are added

• cursor blinking or steady

• position of the cursor

• show or hide the cursor

• show or hide the display

• type of electrical interface, 4 or 8 bit

• address for the next character to be displayed

If you need to modify the display characteristics or change the position of a the message on the LCD, you will
have to issue 1-byte control instructions to the LCD. The control codes for these various functions are summarized
in figure 3. The values shown represent our choice for programming.

0 0 0 0 0 0 0 1$01 Clear display, move cursor to home position (addr 0)

0 0 0 0 0 0 1 0$02 Home cursor

0 0 0 0 0 1 1 0$06 Entry Mode Set

0 0 0 0 1 1 0 0$0C Display On-Off Control

0 0 1 0 1 0 0 0$28 Display Function Set

1 a
$80 - $8F

Display Address (Character Position) Select0a1a2a3a4a5a6

0=No display shift on entry, 1=shift display

0=Decrement display address, 1=Increment display address

0=No Blink, 1=Blink

0=No Cursor, 1=Cursor

0=Display hide, 1-Display visible

0=1 line display, 1=2 line display

0=4 bit interface, 1=8 bit interface

Character address:

0 to 15 for upper line

64 to 79 for lower line

$C0 - $CF

Figure 3: LCD Control Codes

8.2 Displaying a Message: Overview
Once the display is initialized, placing a message on the display is simply a matter of writing ASCII characters to
the Port. The display will write these characters in sequence.

9



Notice that the second line of the 16 character-per-line display does not begin at address 16, as one might
expect, but at decimal 64. Similarly, the third and fourth lines begin at addresses 16 and 80 respectively4. This
little idiosyncracy has caused more than one programmer to tear out wads of hair in frustration.

Writing a string to the display should be handled by a display string routine that is a subroutine and writes a
null-terminated character string to the display. The display string routine5 is passed a pointer address to the start
of the string and exits when it detects the terminating null character of the string.

The display string routine calls another subroutine, display character (also referred to as the putcLCD subrou-
tine), which writes a single character to the display. This subroutine passes the character to be displayed in (say)
accumulator A and handles the hardware interaction with the actual LCD hardware6.

Notice the philosophy here: the problem is decomposed into one of writing a null-terminated string, and then
further decomposed into the simpler problem of writing one character to the display. This has several advantages:

• It keeps each routine short and simple, and makes each routine easier to maintain and debug.

• It protects against hardware changes. If the display hardware were to change, the display character would
be the only one that would require modification. The display string routine would stay exactly the same.

• If we needed to add another display device, we could add a second display character routine and select the
appropriate one with a software switch mechanism. Again, the display string routine would stay exactly the
same.

A message string can be incorporated into the assembly language source code like this:

TESTMESSAGE FCC ’Hi There!’
FCB 00

The FCB 00 directive places a null byte at the end of the string, which is detected by the display string routine
as the string terminator7.

The sequence of instructions to write to the display will be something like

LDX #TESTMESSAGE
JSR DISPLAYSTRING

8.3 Display Character
The display character routine would be called with code like this:

LDAA #’A’ ; Display A
JSR DISPLAYCHAR

The display character routine would include the following features:

• instruction(s) to write the character to the display.

• instructions to wait (loop) for 50 microseconds until the character write operation is completed.

• the subroutine RETURN instruction
4For the 20 character-per-line display on eebot, the second line also begins at address 64.
5We will also refer to this routine as the putsLCD routine.
6Among programmers, the writing of device drivers is considered to be a difficult and an advanced skill. This is your first device driver!
7The same effect can be achieved using the following (single) instruction: dc.b "Hi There!",0
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8.4 Exercise: Display String
The display string routine should include:

• a proper header, as usual

• an indirect load of the character to be printed, using the X index register as a pointer

• a test for the null character that causes the routine to exit when it is detected

• a subroutine call to the write character display routine

• an instruction to increment the string pointer (the X index register)

The code to write a string to the display would look something like this:

TESTMESSAGE FCC ’Hi There!’ ; The message
FCB 00 ; The message terminator
LDX #TESTMESSAGE ; Initializing the pointer into the message
JSR DISPLAYSTRING ; Write the string
SWI ; Break to the monitor

followed by the code for the display string and display character subroutines.

9 Converting Hex to ASCII
In the next lab, we will try to display a 1 byte (or 2 nibble) A/D voltage readings on the LCD. So, the final building
block in our quest here will be a routine to convert 2 nibble hexadecimal value into a displayable character string.
We begin with the concept of the character code.

9.1 The ASCII Character Codes
The standard for representing of textual information is known as ASCII, American Standard Code for Information
Interchange. ASCII is a seven bit code, allowing the representation of 128 distinct characters: upper and lower
case alphabetics, numerics, punctation, and some control characters. The complete ASCII code is shown in figure
4 on page 12 and figure 5 on page 13.

As the computer has developed, it has become customary to work with information in multiples of one byte,
or 8 bits. The 8 bit byte is a good choice for storing ASCII characters: each ASCII character occupies 7 bits, so
characters may be stored one per byte with one bit unused.

ASCII values from 0 to 31 are control codes, non-printing characters which are used to communicate control
signals in a communication system. The important ones are annotated on the chart.

When writing assembly language for the HCS12, it is not necessary to look up character codes: they can be
represented within quote marks and the assembler will generate the corresponding character code. For example,
the instruction LDAA #’X’ will cause the ACCA to load with the value $58.

9.2 A Conversion Algorithm
A single byte can be considered as a two-digit hexadecimal number. This number cannot be printed directly: the
two HEX digits must be converted into a sequence of two character codes. For example, the hexadecimal number
3F is decimal 63 which represents the ASCII character ’?’. So if you send 3F to the LCD, it will display the
question mark character ’?’.

Consulting the ASCII table, we can see that the string to print the hexadecimal number 3F would be 33 46.
One possible algorithm for converting a hex digit to its ASCII code is the following:

• Consulting the ASCII table, we can see that the ASCII codes for numeric digits 0 through 9 may be obtained
by adding $30 to the value of the digit. For example, $7 becomes $37, which is the display code for the
character 7.
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Dec Hex Character Notes Dec Hex Character Notes

Control Codes

0 00 Null 1 01 SOH

2 02 STX Start Transmission 3 03 ETX End Transmission

4 04 EOT End of Transmission 5 05 ENQ

6 06 ACK Acknowledge 7 07 BELL Ring bell

8 08 BS Backspace 9 09 HT Tab

10 0A LF Line Feed 11 0B VT

12 0C FF Form Feed 13 0D CR Carriage Return

14 0E SO Shift Out 15 0F SI Shift In

16 10 DLE 17 11 DC1 XON, resume output

18 12 DC2 19 13 DC3 XOFF, suspend output

20 14 DC4 21 15 NAK

22 16 SYN 23 17 ETB

24 18 CAN 25 19 EM

26 1A SUB 27 1B ESC Escape sequence follows

28 1C FS 29 1D GS

30 1E RS 31 1F US

Printing Characters

32 20 Space 33 21 !

34 22 ” Double quote 35 23 #

36 24 $ 37 25 % Percent

38 26 & 39 27 ’ Apostrophe

40 28 ( 41 29 )

42 2A * 43 2B +

44 2C , 45 2D -

46 2E . 47 2F / Forward slash

48 30 0 49 31 1

50 32 2 51 33 3

52 34 4 53 35 5

54 36 6 55 37 7

56 38 8 57 39 9

58 3A : 59 3B ;

60 3C ☞ 61 3D =

62 3E ✌ 63 3F ?

Figure 4: ASCII Character Codes

• For digits greater than 9, (letters between A and F), in addition to $30 it is necessary to add a further value
of $07. For example, $A becomes $41, which is the display code for the character A.

Computer code may often be re-used from another application. An example of HEX-ASCII conversion is
found in the source code for the Buffalo Monitor and reproduced below. (Ask your lab supervisor if you’re
interested in reading the Buffalo Monitor assembly language listing). This example is lacking in documentation
and doesn’t do exactly what we want, but it’s a starting point.

************************************************
* OUTRHLF(), OUTLHLF(), OUTA()

* Convert A from binary to ASCII and output.

* Contents of A are destroyed.

************************************************
OUTLHLF LSRA ; shift data to right

LSRA
LSRA
LSRA

OUTRHLF ANDA #$0F ; mask top half
ADDA #$30 ; convert to ascii
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continued. . .

Dec Hex Character Notes Dec Hex Character Notes

64 40 @ 65 41 A

66 42 B 67 43 C

68 44 D 69 45 E

70 46 F 71 47 G

72 48 H 73 49 I

74 4A J 75 4B K

76 4C L 77 4D M

78 4E N 79 4F O

80 50 P 81 51 Q

82 52 R 83 53 S

84 54 T 85 55 U

86 56 V 87 57 W

88 58 X 89 59 Y

90 5A Z 91 5B [

92 5C “ 93 5D ]

94 5E ˆ Caret 95 5F Underscore

96 60 ‘ Grave accent 97 61 a

98 62 b 99 63 c

100 64 d 101 65 e

102 66 f 103 67 g

104 68 h 105 69 i

106 6A j 107 6B k

108 6C l 109 6D m

110 6E n 111 6F o

112 70 p 113 71 q

114 72 r 115 73 s

116 74 t 117 75 u

118 76 v 119 77 w

120 78 x 121 79 y

122 7A z 123 7B [

124 7C ✍ Bar 125 7D ]

126 7E ˜ Tilde 127 7F DEL Delete

Figure 5: ASCII Character Codes

CMPA #$39
BLE OUTA ; jump if 0-9
ADDA #$07 ; convert to hex A-F

OUTA JSR OUTPUT ; output character
RTS

Points to notice:

• It’s not clear from the documentation, but this routine is passed a two-digit hexadecimal (binary) number in
ACCA and, depending on the entry point OUTLHLF or OUTRHLF, prints either the left or right digit as an
ASCII character. This shows a common practice: dual entry points with a common exit point.

• Entering at OUTLHLF outputs the left digit; entering at OUTRHLF outputs the right digit. (Notice how the
descriptive names are a big help in figuring out the routine function.)

• The JSR OUTPUT is definitely not required in our application: we have developed a separate routine for
this. If we eliminate that line, we have a routine which is entered with the hex number in ACCA and
(depending on the entry point) returns with either the left or right ASCII character in ACCA. A more subtle
point is this: it is best if each routine is limited to one simple function. This routine not only does the
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conversion but sends the character to the output. This is not good practice, because we might want to use
the routine in an application where we don’t want to send the result to the output.

Now you should be able to reverse engineer the code and understand how it works.

10 Assignment 2: Display Message and Hex Value
Write a routine to print a text message followed by two hexadecimal values, to the LCD. The text message can
be anything you like. It should be stored in the program text as a null-terminated string. The hexadecimal values
should be taken from location $3000 and $3001. Your lab supervisor will specify the actual hex values at demo
time (run the program after you have entered these values).

The final program should loop endlessly: clear the display, write the information, wait for one second.

10.1 Assignment Hints
You’ll need to build and test this program in a series of steps:

1. Write a routine, however crude, to write one ASCII character to the display. Test it.

2. Restructure this routine as a subroutine and test it.

3. Write a routine to write a string to the display. It’s best if this routine uses one of the index registers to step
through the string, but if you can’t get that to work, use brute force: a series of calls to the write character
subroutine.

4. Write a routine to convert a two-digit hex number into two ASCII characters. This routine shouldn’t write
to the display - it should accept a byte value in the accumulator and then convert it to two ASCII characters
and leave the result in one of the HCS12 registers.

5. Put all this together to create one program that writes the string and numeric values to the display.

6. Add a delay routine and looping instructions so that the program endlessly loops, each time delaying for 1
second or so, clearing the display, and then writing the string and byte values.

Note that the first command to be written to the LCD must be the one that selects the 4-bit interface. Once
the LCD accepts the most significant nibble (MSN) of this command, it will detect the 4-bit interface setting and
will ignore the rest of the command (i.e. the least significant nibble - LSN). The LCD will then expect immediate
transfer of the remaining LSN.

Also note that writing of a data to the LCD occurs at the HIGH-TO-LOW transition of the Enable signal.
If the LCD RS-signal is low during this transition, the data (respectively, a byte or a nibble) will be written to
the Instruction Register (IR), i.e. it will be interpreted as a command. Otherwise, it will be written to the Data
Register (DR) and will be interpreted as a character to be displayed.

For more details about the LCD operation refer to chapter 7.7 (pp. 322-336) of the textbook [5].
Your program should look as follows.

*******************************************************************
* Writing to the LCD *
*******************************************************************
; Definitions
LCD_DAT EQU PTS ; LCD data port S, pins PS7,PS6,PS5,PS4
LCD_CNTR EQU PORTE ; LCD control port E, pins PE7(RS),PE4(E)
LCD_E EQU $10 ; LCD enable signal, pin PE4
LCD_RS EQU $80 ; LCD reset signal, pin PE7

; code section
ORG $4000

Entry:
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_Startup:
LDS #$4000 ; initialize stack pointer
JSR initLCD ; initialize LCD

*******************************************************************
* Program starts here *
*******************************************************************
MainLoop JSR clrLCD ; clear LCD & home cursor

LDX ... ; display msg1
JSR putsLCD ; -"-

LDAA ... ; load contents at $3000 into A
JSR leftHLF ; convert left half of A into ASCII
STAA ... ; store the ASCII byte into mem1

LDAA ... ; load contents at $3000 into A
JSR rightHLF ; convert right half of A into ASCII
STAA ; store the ASCII byte into mem2

LDAA ... ; load contents at $3001 into A
JSR ... ; convert left half of A into ASCII
STAA ... ; store the ASCII byte into mem3

LDAA ... ; load contents at $3001 into A
JSR ... ; convert right half of A into ASCII
STAA ... ; store the ASCII byte into mem4

LDAA ... ; load 0 into A
STAA ... ; store string termination character 00 into mem5

LDX #mem1 ; output the 4 ASCII characters
JSR putsLCD ; -"-

LDY #... ; Delay = 1s
JSR del_50us
BRA MainLoop ; Loop

msg1 dc.b "Hi There! ",0

;subroutine section

*******************************************************************
* Initialization of the LCD: 4-bit data width, 2-line display, *
* turn on display, cursor and blinking off. Shift cursor right. *
*******************************************************************
initLCD BSET DDRS,%11110000 ; configure pins PS7,PS6,PS5,PS4 for output

BSET DDRE,%... ; configure pins PE7,PE4 for output
LDY #2000 ; wait for LCD to be ready
JSR del_50us ; -"-
LDAA #$28 ; set 4-bit data, 2-line display
JSR cmd2LCD ; -"-
LDAA #$0C ; display on, cursor off, blinking off
JSR cmd2LCD ; -"-
LDAA #$06 ; move cursor right after entering a character
JSR cmd2LCD ; -"-
RTS

*******************************************************************
* Clear display and home cursor *
*******************************************************************
clrLCD LDAA #$01 ; clear cursor and return to home position

JSR cmd2LCD ; -"-
LDY #40 ; wait until "clear cursor" command is complete
JSR del_50us ; -"-
RTS

15



*******************************************************************
* ([Y] x 50us)-delay subroutine. E-clk=41,67ns. *
*******************************************************************
del_50us: PSHX ;2 E-clk
eloop: LDX #30 ;2 E-clk -
iloop: PSHA ;2 E-clk |

PULA ;3 E-clk |
... |
PSHA ;2 E-clk | 50us
PULA ;3 E-clk |
NOP ;1 E-clk |
NOP ;1 E-clk |
DBNE X,iloop ;3 E-clk -
DBNE Y,eloop ;3 E-clk
PULX ;3 E-clk
RTS ;5 E-clk

*******************************************************************
* This function sends a command in accumulator A to the LCD *
*******************************************************************
cmd2LCD: BCLR LCD_CNTR,LCD_RS ; select the LCD Instruction Register (IR)

JSR dataMov ; send data to IR
RTS

*******************************************************************
* This function outputs a NULL-terminated string pointed to by X *
*******************************************************************
putsLCD LDAA 1,X+ ; get one character from the string

BEQ donePS ; reach NULL character?
JSR putcLCD
BRA putsLCD

donePS RTS

*******************************************************************
* This function outputs the character in accumulator in A to LCD *
*******************************************************************
putcLCD BSET LCD_CNTR,LCD_RS ; select the LCD Data register (DR)

JSR dataMov ; send data to DR
RTS

*******************************************************************
* This function sends data to the LCD IR or DR depening on RS *
*******************************************************************
dataMov BSET LCD_CNTR,LCD_E ; pull the LCD E-sigal high

STAA LCD_DAT ; send the upper 4 bits of data to LCD
BCLR LCD_CNTR,LCD_E ; pull the LCD E-signal low to complete the write oper.

LSLA ; match the lower 4 bits with the LCD data pins
LSLA ; -"-
LSLA ; -"-
LSLA ; -"-

BSET LCD_CNTR,LCD_E ; pull the LCD E signal high
STAA LCD_DAT ; send the lower 4 bits of data to LCD
BCLR LCD_CNTR,LCD_E ; pull the LCD E-signal low to complete the write oper.

LDY #1 ; adding this delay will complete the internal
JSR del_50us ; operation for most instructions
RTS

*******************************************************************
* Binary to ASCII *
*******************************************************************
leftHLF LSRA ; shift data to right

LSRA
LSRA
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LSRA
rightHLF ANDA #$0F ; mask top half

ADDA #$30 ; convert to ascii
CMPA #$39
BLE out ; jump if 0-9
ADDA #$07 ; convert to hex A-F

out RTS

When you have all this code working, you have some valuable intellectual property which should be properly
stored and protected for re-use. Create a subdirectory ˜/538/library. Clean up each of the useful routines so
that they can be incorporated in other programs, and store them in the library directory. Make a backup and keep
it safe.
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