
xx
COE538 Microprocessor Systems

Lab 3: Battery and Bumper Displays1

Peter Hiscocks
Department of Electrical and Computer Engineering

Ryerson University
phiscock@ee.ryerson.ca

Contents
1 Overview 1

2 Calculating and Displaying Battery Voltage 2

3 The Analog to Digital Converter 2
3.1 Using the A/D Converter . 3
3.2 An A/D Conversion Routine . 5
3.3 Testing A/D Conversion Routine . 7

4 Some Math Required 8
4.1 Scaling The Equation . 8

5 Writing Battery Voltage to the Display 9

6 Displaying Bumper Status 9
6.1 Reading the Bumper Switches . 9
6.2 Display Architecture . 11
6.3 Display Mechanics . 11

7 Assignment Summary 12

8 Binary 16 to BCD Conversion Routine 13

9 BCD to ASCII Conversion Routine: Version 1 14

10 BCD to ASCII Conversion Routine: Version 2 15

11 The General Structure of the Program 16

1 Overview
The objective of this exercise is to develop software that can read an analog quantity (such as the power supply
voltage) and display it on the LCD. This includes the following steps:

• Read the A/D Converter

• Do a fixed point calculation, including scaling

• Display a binary number on the LCD using binary-BCD and BCD-ASCII conversion routines

1This lab was adapted to be used with the HCS12 microcontroller by V. Geurkov.

1

2 Calculating and Displaying Battery Voltage
The eebot is fed by a 9.6 volt NiCad battery, when it is operating autonomously (on its own). It is important
to monitor this voltage in order to ensure that the robot is operating correctly. The motors each draw a variable
current of about 300mA, and this also tends to pull down the supply voltage. So the power supply voltage
fluctuates according to load. When the supply voltage falls below about 7 volts, the 5 volt logic supplies will
degrade and eventually the microprocessor will stop functioning.

The simplified circuit for the power supply monitor input is shown in figure 1.

☎
☎
☎
☎

☎

☎

☎

Figure 1: Voltage Monitor, Programming Model

In this exercise, we will construct the software to read and display the eebot battery voltage.
There are three stages to this:

1. Read the A/D converter channel 0 voltage (9.6 volt).

2. Process it through the equation relating battery voltage to A/D reading.

3. Convert this reading to an ASCII string and write it to the display.

At this point, we need to switch from the bench machine to the eebot [1]. The microcontroller employed in
the eebot, mc9s12c32, has less resources compared to the one used in the bench board, mc9s12dg128. Namely,
it can address only 32KB of memory space (vs 128KB). Also, it has only one A/D converter (vs two converters
for the bench one). The mc9s12c32 RAM ranges from $3800 to $3FFF (vs $2000 ∼ $3FFF). And not all of the
mc9s12dg128 ports are available on the mc9s12c32. Consequently, the eebot’s LCD is connected to ports B and
J, instead of ports S and E as on the bench board. Table 1 and figure 2 below summarize the relationship between
the standard LCD signals and the corresponding pins of ports B and J of the mc9s12c32. As it can be seen from
the figure, this interface allows 4-bit as well as 8-bit data transfers.

3 The Analog to Digital Converter
There are many applications where it is useful for a microcomputer to be able to read an analogue voltage. For
example, many sensors output a continuously variable signal and this must be converted into a binary number
for use by the microcomputer. In the case of the eebot, there is a manual potentiometer that generates a variable
voltage, and 6 illumination sensors in the line follower circuitry that generate voltages in the range of 1 to 4 volts.

The A/D converter of the HCS12 reads voltages between zero and 5 volts, and generates a binary number
proportional to the input voltage.

2

Table 1: LCD Signal Summary
LCD Signals 9S12C Port Pins

Data 0 - D0 Port B/0 - PB0
Data 1 - D1 Port B/1 - PB1
Data 2 - D2 Port B/2 - PB2
Data 3 - D3 Port B/3 - PB3
Data 4 - D4 Port B/4 - PB4
Data 5 - D5 Port B/5 - PB5
Data 6 - D6 Port B/6 - PB6
Data 7 - D7 Port B/7 - PB7
Reset - RS Port J/6 - PJ6
Enable - E Port J/7 - PJ7

9S12C LCD

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PJ6

PJ7

RS

E

R/W*

PB0

D7

D6

D5

D4

D3

D2

D1

D0

Figure 2: LCD Layout

In formula form,

NAD =
Vin

Vref
Nmax

where NAD is the value produced by the A/D converter, Vin is the input voltage, Vref the reference voltage (in
this case, the 5 volt logic supply), and Nmax the maximum value contained in 8 bits (255).

For example, a 5 volt input will produce an output of 255 and a 2.5 volt input would produce 127. Notice as
well that each step in the A/D converter output is equivalent to 5V/255 = 0.0196 volts (approximately 20mV). It
directly follows from the above formula: 1 = Vin/5V × 255.

The A/D of the HCS12 is preceded by an 8 channel analog multiplexer, so that any of 8 possible analog inputs
(channels 0 ∼ 7) can be selected for conversion.

3.1 Using the A/D Converter
The HCS12 A/D converter is shown in figure 3 [5]. Its operation is controlled by certain registers that must
be initialized before the use of the converter. A part of this initialization is done by the reset sequence which
is initiated every time the reset button is depressed. The remaining initialization is taken place in the Serial
Monitor. Note that if a (stand-alone) program runs on a microcontroller which does not have the Serial Monitor,
this program would have to contain the missing initialization instructions.

The after-reset state of microprocessor control registers is indicated in data sheets by the acronym res. As
sown in figure 4, the state of one of the control registers for the HCS12 A/D converter, the ATDCTL2 after reset
is %00000000. It can later be changed by the programmer. For example, if you intend to use the A/D converter,

3

Clock
prescaler

Bus clock

Mode and timing control
Conversion
complete interrupt

Successive
apparoximation
Register (SAR)

and DAC

ATD 0

ATD 1

ATD 2

ATD 3

ATD 4

ATD 5

ATD 6

ATD 7

1
1

sample and hold

+
-

comparator

ATD input enable register

Port AD data register

Analog
MUX

results

ATD clock

VRH

VRL

VDDA

VSSA

AN7/PAD7

AN6/PAD6

AN5/PAD5

AN4/PAD4

AN3/PAD3

AN2/PAD2

AN1/PAD1

AN0/PAD0

Figure 3: Analog-to-Digital Converter

the ADPU bit of the ATDCTL2 should be set to 1 to power up the A/D converter2.
Few other important control registers for the A/D converter are the ATDCTL3, ATDCTL4 and ATDCTL5

shown in figures 5, 6 and 7 respectively (for the sake of convenience, these figures only describe the bits that are
essential for our exercises; other bits can be left intact).

We will also use the Status Register 0 (ATDSTAT0) and the Conversion Result Register (ATDDRy, y = 0 ∼
7). The Sequence Complete Flag (SCF) is the most significant bit of the ATDSTAT0. It is set, when the conversion
sequence is completed. The registers ATDDRy contain the results of the conversion sequence. Depending on the
configuration of the control registers, we can perform from 1 to 8 conversions (see figure 5). (For more details,
refer to [5], section 12.3).

These registers:

• select which one (or group of up to 8) of the 8 possible input channels will be converted

• selects whether the A/D will read one input or several successive inputs

• selects whether the A/D takes a reading on request or continuously, on its own

• indicates when a conversion sequence is complete

For our purposes, we will read the 8 input channels (AN0 to AN7) and take readings on request. Notice that a
new request is initiated by writing (anything) to the ATDCTL5, so no explicit request is required.

When a group of 8 readings is requested, they are put in the A/D Result registers, ATDDR0 through ATDDR7,
which are located at $0090 trough $009E.

2Note that the name of this as well as other control registers is different in the mc9s12c32 and mc9s12dg128 microcontrollers, ATDCTL2
vs ATD0CTL2 and ATD1CTL2 respectively. If you are in doubt of the correct name, check it with the appropriate .inc file in the CodeWarrior.

4

7 6 5 4 3 2 1 0

ADPU AFFC ASCIE ASCIFETRIGLE ETRIGP ETRIGE

0 0 0 0 0 0 0 0reset:

ADPU: ATD power down bit

0 = power down ATD; 1 = normal ATD operation

AFFC: ATD fast flag clear all bit

0 = ATD flag is cleared normally, i.e., read the status reg-r before reading the result reg-r

1 = any access to a result register will cause the associated CCF flag to clear

automatically if it is set at the time

ETRIGLE | ETRIGP

0 0 falling edge

0 1 rising edge

1 0 low level

1 1 high level

ETRIGE: External trigger mode enable

0 or 1 = disable or enable external trigger on ATD channel 7

ASCIE: ATD sequence complete interrupt enable bit

0 or 1 = disable or enable ATD interrupt on sequence complete (ASCIF = 1)

ASCIF: ATD sequence complete interrupt flag

0 or 1 = no ATD interrupt occurred or ATD sequence complete interrupt pending

ATD CTL2

Figure 4: ATD Control Register 2

7 6 5 4 3 2 1 0

0 S8C S4C S2C S1C FIFO

0 0 0 0 0 0 0 0reset:

S8C,S4C,S2C,S1C: Conversion sequence limit

0000 = 8 conversions

0001 = 1 conversion

0010 = 2 conversions

…

0111 = 7 conversions

1xxx = 8 conversions

FIFO: Result register FIFO mode

0 = conversion results are placed in the corresponding result

registers up to the selected sequence length

1 = conversion results are placed in consecutive result registers

(wrap around at end)

ATD CTL3

Figure 5: ATD Control Register 3

Another important registers that we will use in this lab are the ATD input enable register (ATDDIEN) and
the Port AD data register (PORTAD0) (see figure 3). The ATDDIEN allows the user to enable Port AD pins as
digital inputs (refer to figure 8). The states of these inputs are written to the PORTAD0 as the ATD conversion is
completed.

3.2 An A/D Conversion Routine
Now we need to give some thought to the form of the A/D conversion software.

First, we need to decide how the A/D routine will pass its results (the 8 input channel readings) back to the
calling routine. To keep things simple, as part of the subroutine we’ll define 8 RAM registers to contain the results
(we will be using an 8-bit conversion mode). The 8-byte block of RAM can be defined as:

ADDATA RMB 8 ; Storage for A/D converter results

You can access the information in this block of memory with commands like

LDAA ADDATA+7

5

7 6 5 4 3 2 1 0

SRES8 SMP1 SMP0 PRS1 PRS0PRS4 PRS3 PRS2

0 0 0 0 0 1 0 1reset:

SRES8: Select Resolution: 0 = 10-bits; 1 = 8-bits

SMP1 | SMP0

0 0 2 A/D conversion clock periods

0 1 4 -“-

1 0 8 -“-

1 1 16 -“-

PRS4--PRS0: ATD clock prescaler bits

00101 : 12

01011 : 24

10111 : 48

ATD CTL4

Figure 6: ATD Control Register 4

which would load the accumulator with the data from channel 7 of the A/D converter.

7 6 5 4 3 2 1 0

DJM DSGN SCAN CB CAMULT 0 CC

0 0 0 0 0 0 0 0reset:

DJM: 0 or 1 - left or right justified data in the result registers

DSGN: 0 or 1 - unsigned or sign. data represent. in the result reg-s

SCAN: 0 or 1 - single or continuous convers. sequences (scan mode)

MULT: 0 or 1 - sample one or several channels

CC, CB, CA: Channel select code

0 0 0 AN0

0 0 1 AN1

…

1 1 1 AN7

ATD CTL5

Figure 7: ATD Control Register 5

7 6 5 4 3 2 1 0

IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0

IENx: ATD digital input enable on channel x (x = 0~7)

0 /1 = disable / enable digital input buffer to PTADx

reset: 0 0 0 0 0 0 0 0

ATD DIEN

Figure 8: ATD Input Enable Register

Now we can sketch out an algorithm for reading the A/D readings. First, read input channels 0 through 7:

• Initialize the ATDCTL3 bits 6 ∼ 3 to 0000 and set the ATDCTL5 bit 4 to 1, so that 8 conversion takes place
on 8 successive channels.

• Initialize the ATDCTL5 bit 5 to 0 so that each conversions starts on a request.

• Read the ATDSTAT0 SCF bit 7. One way to to examine this bit is to mask off all the other bits and then
test for zero using a conditional branch:

LDAA ATDSTAT0
ANDA #%10000000 ; Mask off all bits except 7
BEQ NOT_SET

ITS_SET (continue here) ; The flag is set

6

(this code handles the flag set condition)
BRA CONTINUE

NOT_SET (continue here) ; The flag is not set
(this code handles the flag not set condition)

CONTINUE (program continues here)

The effect of the mask operation is to reduce all the bits except bit 7 to zero. If bit 7 is also zero, the whole
byte is then zero. If bit is not zero, then the whole byte is not zero. Consequently, the condition of bit 7
may be tested by testing the whole byte for zero, using a BEQ (Branch if Equal to zero) conditional branch
instruction.

Notice how the Unconditional Branch instruction BRA is used to branch around the NOT SET code.

• When it is set, the conversion is complete. So read the ATD0DR0 through ATD0DR7 into the memory
registers ADDATA through ADDATA+7. Now, you can also read/test the PORTAD0 bits.

At this point, all 8 analog input channels have been converted and stored in RAM locations ADDATA through
ADDATA+7. If any port AD pins were enabled as digital inputs, their digital states are also available in the
PORTAD0.

3.3 Testing A/D Conversion Routine
Hardware

A first step is to ensure that the A/D hardware is working correctly.
Use the WB command to modify location $0085 (ATDCTL5) to $B5. This puts the A/D in continuous scan

mode and it starts scanning the eight A/D channels.
Now use the command DB $0090 to display one line of memory data starting at location $0090 (ATDDR0).
You will need to repeat the DB command few times.
Put the potentiometer that is hardwired to the A/D channel 4 (see figure 9) to its minimum setting and the A/D

should read close to zero. Put the pot to its maximum setting and the A/D should read $FF (or close to it). Put the
pot about mid-point, and the A/D should read something about halfway between 00 and $FF. (Ideally, $7F).

You can also observe contents of the memory locations directly at the memory window of the CodeWarrior.

Software

When the hardware is working as expected, you can test your A/D software as follows:
Using the algorithm of section 3.2 as a guide, write an A/D conversion routine that reads the 8 input channels

into 8 RAM locations. The routine should be structured as a subroutine, ie, it should be callable from different
locations with a JSR (Jump To Subroutine) instruction. The last instruction in the routine must be RTS (Return
from Subroutine).

Like all software developed for this course, the subroutine must contain descriptive header documentation.
To test the routine, assemble it with a stub test routine. This is a one line driver that calls the routine under

test. It will be something like

START JSR ADCCONVERT ; Read 8 A/D channels into RAM
SWI ; Break to Monitor

The subroutine code will follow the stub in the listing.
Assemble and test the routine. Using the potentiometer on A/D channel 5, vary its input voltage. Use the

monitor DB instruction to see if the channel 5 reading changes as the pot is rotated.
When the routine works correctly, add it to your subroutine library directory, (˜/ele538/library).

7

4 Some Math Required
On the eebot, the A/D channel 0 reads the voltage at the centre of an equal resistor voltage divider. The top end
of this voltage divider is connected via one diode drop to the battery voltage. (When the bot is operated from a
bench supply, the divider is connected to the bench supply voltage minus one diode drop.)

The voltage divider is required because the A/D converter can only cope with voltages up to 5 volts, and the
battery supply is nearly double the maximum. The voltage divider effectively divides the battery_voltage-
0.6 volts by two.

So the formula relating the A/D voltage to the battery voltage is (see figure 1):

Vin = (Vbatt − 0.6)/2

Recapitulating, the A/D converter of the HCS12 reads voltages between zero and 5 volts, and generates a
binary number proportional to the input voltage:

NAD =
Vin

Vref
Nmax

where NAD is the value produced by the A/D converter, Vin is the input voltage, Vref the reference voltage (in
this case, the 5 volt logic supply), and Nmax the maximum value contained in 8 bits (255).

Combining the previous two equations to solve for battery voltage in terms of the A/D reading NAD, we
have3:

Vbatt = 0.039NAD + 0.6

For example, an A/D reading of $7F (12710) would correspond to a battery voltage of 5.6 volts4.

4.1 Scaling The Equation
The next challenge is this: we need some way of representing the constants 0.039 and 0.6. We could, for example,
include a floating point math package and then use the routines in that package to do the math. A floating point
package can deal directly with such numbers as 0.039.

However, this is overkill for our application, so we’ll use a different trick. The HCS12 can work quite easily
with binary integers, so if we can convert the equation to integer numbers, we can use the math routines directly.
Multiplying both sides of the previous equation by 1000 will do this for us:

1000Vbatt = 1000(0.039NAD + 0.6)

= 39NAD + 600

This process of multiplying by 1000 is known as scaling the equation, and is often necessary to map a mathe-
matical equation to some piece of analogue or digital hardware.

The nice thing about the constant 1000 is that it can be removed very simply by shifting the decimal place
3 places to the left, which we can do during the display routine by careful placement of the decimal point. For
example, for NAD equal to $7F (12710), the value of 1000Vbatt is 5553, or Vbatt = 5.553 volts. We’d round this
off to one decimal place, or 5.5 volts.

This approach to calculation is called fixed point mathematics in contrast to floating point math, which uses
exponents to place the decimal point.

One potentially fatal problem with this approach is the problem of overflow. We must make sure that the
maximum expected number does not exceed the capacity of the computer registers to represent it. The maximum
value of an 8 bit register is 255, and of a 16 bit register 65535.

3Make sure you too can do this derivation.
4It has been suggested that this equation implies that if the A/D reading NAD is zero, the battery voltage is then 0.6 volts. To be

pedantically correct about it, a zero A/D reading implies that the voltage is 0.6 volts or less. In practice, even a fully discharged 9.6 volt ni-cad
battery has a residual voltage of several volts (and a very high internal resistance).

8

The maximum possible number computed by this routine occurs when NAD is 255, in which case 1000Vbatt

would be 10545 (10.545 volts). Since this is well below 65535, a dual byte register will be sufficient and overflow
should never occur5.

When you construct this routine, it should be passed the value of NAD in one of the 8 bit accumulators and
return the value of 1000Vbatt in the D accumulator.

Before going any further, you should test this routine with various inputs and verify that it works. When it is
complete, add it to your library.

5 Writing Battery Voltage to the Display
Now we need to convert the format of the previous answer into a form that can be written to the display. This is a
three-step process:

• Convert the 16 bit ’1000× Vbatt’ value, which is in binary, into binary coded decimal (BCD) digits

• Convert the BCD digits into ASCII

• Write the ASCII value to the display, formatting it in the way that the decimal point occurs in the correct
location. You will need to use the control instruction of the LCD to position the cursor and to determine
where each character is written. (The LCD control codes were given in Lab 2).

The two conversion routines are rather lengthy so they are appended to these lab directions. The 16 bit
binary to BCD routine is in section 7. There are two BCD to ASCII routines in section 8 and 10. They illustrate
different styles of writing software, and you can choose according to your preference. These three routines are
also available in the ˜courses/coe538/lib directory in electronic form so you don’t need to type them in.

You must attribute the routines, ie, identify that they came from source other than your own work and identify
that source.

While you are using these routines, reflect on how much more difficult it would be to use these routines if they
were not documented properly. You are also welcome to identify any documentation shortcomings and suggest
them to the author.

When the program is completed, demonstrate its operation using the potentiometer on the eebot. In this
program, you will read the A/D channel 4 (see figure 9 below), so that the LCD readings will range from 0.6 to
10.5 volts. In the future, you can use the same program to read the A/D channel 0 (ie, the actual battery voltage).

6 Displaying Bumper Status
In this section, we’ll develop code for displaying the status of the two bumper switches.

6.1 Reading the Bumper Switches
The bumpers may be used to signal the computer program for various purposes. For example, the operator may
trigger the bow bumper switch when the motors are to start. Or, when the robot bumps into some object, it may
be programmed to stop.

Two bumper switches, one at the bow and one at the stern, generate signals for this purpose. When a bumper
switch is actuated, the corresponding LED on the back deck will illuminate.

The bumper signals also feed into 2 channels of the A/D converter so that the microprocessor can detect when
a collision has occurred. The equivalent circuit for bumper switches and General Purpose Knob is shown in
figure 9.

5A point about precision and accuracy: Our original measurement had an accuracy and precision of 8 bits, or one part in 256. Then we
multiply this reading by another 8 bit value and get a 16 bit result. The precision of this answer is 16 bits or 1 part in 65535, but the lower 8
bits are meaningless, since the accuracy has not improved and is still 8 bit accuracy.

9

 !"#

$%&

#'

()*+!,#-./*+

()*+!#-./

$%&

$%&

#'

#"0,#-./*+

#"0#-./

 !"#$"$%&#$''(#

 !"#

!"#!

!"#"

Figure 9: Bumper Switches and Frob Knob

• When a bumper switch is open (no bump), there will be no current through the resistor and LED. The LED
has a fixed voltage drop of about 1.5 volts, so the input voltage to the A/D converter channel will be about
3.5 volts. If this channel is enabled as digital input, the 3.5 volts will be interpreted as logic 1.

• When the switch is closed (bump), the input voltage will be zero volts (or logic 0, respectively).

• The general purpose knob (aka frob knob) produces an input between zero and 5 volts, which will read
between $00 and $FF at the A/D input channel AN04. (Please note that on the microcontroller bench
system, the knob is connected to the input AN05 (see lab2, figure 1).

In designing the routine to signal a bow or stern bump, we should first decide how we want to record the result.
We suggest that you create a two RAM variables named BUMPER_BOW and BUMPER_STERN. If a bumper is
activated, its register LSbit is SET; otherwise its LSbit is CLEARED. (You could also use two bits in one RAM
variable, but the activation and reading of the bits is a little more tricky.)

As one alternative for testing the bumper registers, you can AND a bumper register with the mask %00000001
to strip out any other bits than the one of interest and then use a BNE or BEQ conditional branch instruction to
determine if the LSbit is set or cleared.

With this data structure in mind, our routine to test the bumpers includes the following steps:

• Read the 8 inputs of the A/D converter into RAM registers. (You developed a subroutine to do this earlier
in the lab.)

• Check the digital state of the AN02 input. If it is logic 1, set the bow bumper bit. Otherwise, clear the bow
bumper bit.

• Check the digital state of the AN03 input. If it is logic 1, set the stern bumper bit. Otherwise, clear the stern
bumper bit.

• Return

10

When this routine is completed, you should also have a routine that can be called as a subroutine and will
refresh the information in the two bumper registers.

Now we will give some thought to indicating the state of the bumpers on the display.

6.2 Display Architecture
In the final analysis, we will have a number of things to write to the LCD. This is a good time to give some thought
to the overall architecture of the program and the methods it writes to the display.

The obvious method of writing to the LCD is very simple: any routine that needs to put something on the
display simply writes it there. We’ll refer to this as a generator-centered design, because the routine that generates
the information puts it on the display. There are at least two problems with this approach:

• direct writing to the LCD by various routines requires that each one of these routines ’understand’ where
its information should go on the LCD. If the layout of the display changes, then all these routines must be
modified, which is very cumbersome and prone to error.

• There is no easy way to control the update rate of the display, since each routine writes to the display
whenever it’s in the mood.

• There is no centralized control to determine what gets written to the display. If this requirement changes
with time (the operator wishes to see different information, for example) there is no easy way to switch the
display generators on and off.

A better approach is change the point of control to a display-centered architecture. In this arrangement, there
is one display driver routine that is responsible for gathering the display information together and then putting it
on the display. The display driver must know where to get the various pieces of information and how to format
them before putting them on the display. But if the layout of the display changes, only the display driver routine
needs to be modified. If the display rate is changed, then the display driver routine is simply called more or
less frequently. The display driver can choose some data and skip other data according to various and changing
requirements.

Like many issues in the architecture of software, when the program is small and simple it’s not immediately
obvious that you should take a particular approach. Almost anything will work. However, when you get a dozen
different elements being written to the display and the display rate must be adjustable, the advantages of the
display driver technique become clear.

6.3 Display Mechanics
When the display driver routine gets called, how exactly should it write to the display?

One simple strategy is wipe and write: clear the entire display and rewrite it. Unfortunately, this results in a
very ugly display. At high update rates the display appears to have various artifacts traveling through it. At low
update rates it flashes intermittently. Either way, it’s very unpleasant to look at.

A better strategy is selective replace. Recall that the display cursor specifies where the next character will be
written on the display. Happily, the LCD control codes include commands to position, hide or show the cursor.
Thus, to rewrite some part of the display, ensure that the cursor is hidden, position it where the replacement is to
occur, and write the new information over the old information. This requires that the new information completely
overwrite the old or some garbage may be left behind. So it may be necessary for the display driver to pad the
new information with leading or trailing blanks.

An even more intelligent display driver will check to see if information has changed. If it has, it will do a
selective replace. Otherwise, it’s left alone. This wastes less time and results in a better looking display. (The
information generator sets a flag6 every time the information has changed. The display driver tests the flag to see
if it should rewrite the information and then clears the flag every time it updates the screen.)

6A flag is simply a memory location that contains a binary 1 or 0.

11

7 Assignment Summary
On the due date for lab3, you are required to demonstrate a program that reads the potentiometer and shows
the equivalent battery voltage reading on the LCD. The same program should read the bumper switches and put
symbols on the LCD to indicate whether the bumper switches are open or closed. For example, you might show a
blank character if the switch is open and a letter (B for Bow, S for Stern for example) when the switch is closed.

The structure of the program should include a display driver routine that coordinates the writing of the battery
voltage and bumper switch status displays. The display of battery voltage should include only one digit to the
right of the decimal point.

The general structure of the program is given in section 11.

12

8 Binary 16 to BCD Conversion Routine
* file ref b16todec.asm

*

BCD_BUFFER EQU * The following registers are the BCD buffer area
TEN_THOUS RMB 1 10,000 digit
THOUSANDS RMB 1 1,000 digit
HUNDREDS RMB 1 100 digit
TENS RMB 1 10 digit
UNITS RMB 1 1 digit
BCD_SPARE RMB 2 Extra space for decimal point and string terminator
NO_BLANK RMB 1 Used in ’leading zero’ blanking by BCD2ASC

* Integer to BCD Conversion Routine

* This routine converts a 16 bit binary number in .D into

* BCD digits in BCD_BUFFER.

* Peter Hiscocks

* Algorithm:

* Because the IDIV (Integer Division) instruction is available on

* the HCS12, we can determine the decimal digits by repeatedly

* dividing the binary number by ten: the remainder each time is

* a decimal digit. Conceptually, what we are doing is shifting

* the decimal number one place to the right past the decimal

* point with each divide operation. The remainder must be

* a decimal digit between 0 and 9, because we divided by 10.

* The algorithm terminates when the quotient has become zero.

* Bug note: XGDX does not set any condition codes, so test for

* quotient zero must be done explicitly with CPX.

* Data structure:

* BCD_BUFFER EQU * The following registers are the BCD buffer area

* TEN_THOUS RMB 1 10,000 digit, max size for 16 bit binary

* THOUSANDS RMB 1 1,000 digit

* HUNDREDS RMB 1 100 digit

* TENS RMB 1 10 digit

* UNITS RMB 1 1 digit

* BCD_SPARE RMB 2 Extra space for decimal point and string terminator
INT2BCD XGDX Save the binary number into .X

LDAA #0 Clear the BCD_BUFFER
STAA TEN_THOUS
STAA THOUSANDS
STAA HUNDREDS
STAA TENS
STAA UNITS
STAA BCD_SPARE
STAA BCD_SPARE+1

*
CPX #0 Check for a zero input
BEQ CON_EXIT and if so, exit

*
XGDX Not zero, get the binary number back to .D as dividend
LDX #10 Setup 10 (Decimal!) as the divisor
IDIV Divide: Quotient is now in .X, remainder in .D
STAB UNITS Store remainder
CPX #0 If quotient is zero,
BEQ CON_EXIT then exit

*
XGDX else swap first quotient back into .D
LDX #10 and setup for another divide by 10
IDIV
STAB TENS
CPX #0
BEQ CON_EXIT

*
XGDX Swap quotient back into .D
LDX #10 and setup for another divide by 10

13

IDIV
STAB HUNDREDS
CPX #0
BEQ CON_EXIT

*
XGDX Swap quotient back into .D
LDX #10 and setup for another divide by 10
IDIV
STAB THOUSANDS
CPX #0
BEQ CON_EXIT

*
XGDX Swap quotient back into .D
LDX #10 and setup for another divide by 10
IDIV
STAB TEN_THOUS

*
CON_EXIT RTS We’re done the conversion

9 BCD to ASCII Conversion Routine: Version 1
Note: If you use this version, you will also need the strrev.asm routine which should be in the strings.asm file in
the course \library directory.

* file ref: bcdtoasc.asm

;; @name itoa_u16
;; Converts an unsigned 16-bit number to a decimal string.
;;
;; @param AccD 16-bit unsigned number to convert
;; @param IX Starting address of string.
;; @return Nothing
;; @side CC modified
;; @author K.Clowes

itoa_u16::
psha
pshb
pshy
pshx
pshx
puly

; zero is a special case
cmpd #0
bne u16_cont
ldaa #’0
staa 0,x
clr 1,x
pulx
bra u16_ret ;We’re outa-here!

; it’s not zero
u16_cont:
ldx #10
idiv ; AccB is remainder, IX is quotient
addb #’0 ; Convert remainder to ASCII
stab 0,y
iny
cmpx #0
beq u16_done
xgdx
bra u16_cont

14

u16_done:
clr 0,y ; ensure generated string is null-terminated
pulx
jsr strrev ; string is in reverse order-->reverse it!
u16_ret:
puly ; restore original registers
pulb
pula
rts

10 BCD to ASCII Conversion Routine: Version 2
* file ref: bcdtoasc.asm

*

BCD_BUFFER EQU * The following registers are the BCD buffer area
TEN_THOUS RMB 1 10,000 digit
THOUSANDS RMB 1 1,000 digit
HUNDREDS RMB 1 100 digit
TENS RMB 1 10 digit
UNITS RMB 1 1 digit
BCD_SPARE RMB 10 Extra space for decimal point and string terminator
NO_BLANK RMB 1 Used in ’leading zero’ blanking by BCD2ASC

**
* BCD to ASCII Conversion Routine

* This routine converts the BCD number in the BCD_BUFFER

* into ascii format, with leading zero suppression.

* Leading zeros are converted into space characters.

* The flag ’NO_BLANK’ starts cleared and is set once a non-zero

* digit has been detected.

* The ’units’ digit is never blanked, even if it and all the

* preceding digits are zero.

* Peter Hiscocks

BCD2ASC LDAA #0 Initialize the blanking flag
STAA NO_BLANK

*
C_TTHOU LDAA TEN_THOUS Check the ’ten_thousands’ digit

ORAA NO_BLANK
BNE NOT_BLANK1

*
ISBLANK1 LDAA #’ ’ It’s blank

STAA TEN_THOUS so store a space
BRA C_THOU and check the ’thousands’ digit

*
NOT_BLANK1 LDAA TEN_THOUS Get the ’ten_thousands’ digit

ORAA #$30 Convert to ascii
STAA TEN_THOUS
LDAA #$1 Signal that we have seen a ’non-blank’ digit
STAA NO_BLANK

*
C_THOU LDAA THOUSANDS Check the thousands digit for blankness

ORAA NO_BLANK If it’s blank and ’no-blank’ is still zero
BNE NOT_BLANK2

*
ISBLANK2 LDAA #’ ’ Thousands digit is blank

STAA THOUSANDS so store a space
BRA C_HUNS and check the hundreds digit

*
NOT_BLANK2 LDAA THOUSANDS (similar to ’ten_thousands’ case)

ORAA #$30
STAA THOUSANDS
LDAA #$1

15

STAA NO_BLANK

*
C_HUNS LDAA HUNDREDS Check the hundreds digit for blankness

ORAA NO_BLANK If it’s blank and ’no-blank’ is still zero
BNE NOT_BLANK3

*
ISBLANK3 LDAA #’ ’ Hundreds digit is blank

STAA HUNDREDS so store a space
BRA C_TENS and check the tens digit

*
NOT_BLANK3 LDAA HUNDREDS (similar to ’ten_thousands’ case)

ORAA #$30
STAA HUNDREDS
LDAA #$1
STAA NO_BLANK

*
C_TENS LDAA TENS Check the tens digit for blankness

ORAA NO_BLANK If it’s blank and ’no-blank’ is still zero
BNE NOT_BLANK4

*
ISBLANK4 LDAA #’ ’ Tens digit is blank

STAA TENS so store a space
BRA C_UNITS and check the units digit

*
NOT_BLANK4 LDAA TENS (similar to ’ten_thousands’ case)

ORAA #$30
STAA TENS

*
C_UNITS LDAA UNITS No blank check necessary, convert to ascii.

ORAA #$30
STAA UNITS

*
RTS We’re done

11 The General Structure of the Program

* Displaying battery voltage and bumper states (s19c32) *

; Definitions
LCD_DAT EQU PORTB LCD data port, bits - PB7,...,PB0
LCD_CNTR EQU PTJ LCD control port, bits - PE7(RS),PE4(E)
LCD_E EQU $80 LCD E-signal pin
LCD_RS EQU $40 LCD RS-signal pin

; Variable/data section
ORG $3850

TEN_THOUS RMB 1 10,000 digit
THOUSANDS RMB 1 1,000 digit
HUNDREDS RMB 1 100 digit
TENS RMB 1 10 digit
UNITS RMB 1 1 digit
NO_BLANK RMB 1 Used in ’leading zero’ blanking by BCD2ASC

; Code section
ORG $4000

Entry:
_Startup:

LDS #$4000 initialize the stack pointer
JSR initAD initialize ATD converter
JSR initLCD initialize LCD
JSR clrLCD clear LCD & home cursor

16

LDX #msg1 display msg1
JSR putsLCD "
LDAA #$C0 move LCD cursor to the 2nd row
JSR cmd2LCD
LDX #msg2 display msg2
JSR putsLCD "

lbl MOVB #$90,ATDCTL5 r.just., unsign., sing.conv., mult., ch0, start conv.
BRCLR ATDSTAT0,$80,* wait until the conversion sequence is complete

LDAA ... load the ch4 result into AccA
LDAB ... AccB = 39
MUL AccD = 1st result x 39
ADDD ... AccD = 1st result x 39 + 600

JSR int2BCD
JSR BCD2ASC

LDAA ... move LCD cursor to the 1st row, end of msg1
JSR cmd2LCD "

LDAA TEN_THOUS output the TEN_THOUS ASCII character
JSR putcLCD "
... same for THOUSANDS, ’.’ and HUNDREDS

LDAA ... move LCD cursor to the 2nd row, end of msg2
JSR cmd2LCD "

BRCLR PORTAD0,...,bowON
LDAA #$31 output ’1’ if bow sw OFF
BRA bowOFF

bowON LDAA #$30 output ’0’ if bow sw ON
bowOFF JSR putcLCD

... output a space character in ASCII

BRCLR PORTAD0,...,sternON
LDAA #$31 output ’1’ if stern sw OFF
BRA sternOFF

sternON LDAA #$30 output ’0’ if stern sw ON
sternOFF JSR putcLCD

JMP lbl

msg1 dc.b "Battery volt ",0
msg2 dc.b "Sw status ",0

; Subroutine section
initLCD ...
clrLCD ...
del_50us ...
cmd2LCD ...
putsLCD ...
putcLCD ...
dataMov ...
int2BCD ...
BCD2ASC ...
initAD MOVB #$C0,ATDCTL2 power up AD, select fast flag clear

JSR del_50us wait for 50 us
MOVB #$00,ATDCTL3 8 conversions in a sequence
MOVB #$85,ATDCTL4 res=8, conv-clks=2, prescal=12
BSET ATDDIEN,$0C configure pins AN03,AN02 as digital inputs
RTS

; Interrupt vectors
...

17

References
[1] eebot Technical Description

Peter Hiscocks, 2002
A complete technical description of the eebot mobile robot.
Available on-line.

[2] Schematics of the EvalH1 Interface Trainer Board
Available on-line.

[3] CPU12 Reference Manual
Motorola Document CPU12RM/AD REV 3, 4/2002
The authoritative source of information about the 68HC12 & HCS12 microcontrollers.

[4] 68HC11 Microcontroller, Construction and Technical Manual
Peter Hiscocks, 2001
Technical information on the MPP Board, 68HC11 Microprocessor Development System
Information on programming and interfacing the M68HC11 MPP Board.

[5] HCS12/9S12: An Introduction to Software and Hardware Interfacing
Han-Way Huang
Delmar Cengage Learning, 2010
A basic text on the HCS12 microcontroller.

18

