ELE538 Quiz/Answers (2004)

Name: _____ Student #: ____ Time: 30 minutes

Chun, Clowes, Guerkov

Table of Contents

Answer all questions. All questions have equal weight.

Reference Material

This material contains technical details that may be required to answer certain questions.

Instructions

Table 1. Instruction Details (Abridged)

Assembler	Mode	Encoding	Cycles
ldaa	IMM	86 ii	2
ldab	IMM	C6 ii	2
mul	INH	3D	10

A/D system

The bits in the Control/Status register (ADCTL, mapped to address 0x1030) are:

Figure 1. AD Control/Status Register

7 6 5 4 3 2 1 0 CCF - M* S 0 n n n

The interpretation of the bits is:

CCF 0: conversion NOT complete; 1: conversion complete.

M* 0: Convert 4 channels; 1: Convert single channel.

S 0: continuous conversion; 1: one-shot conversion.

nnn Channel number (0-7).

Questions

1. The following program uses the A/D converter subsystem to read some voltages. The program does work. (i.e. there are no logical or syntactical errors.)

```
; A simple program using adc module.
; Author: Foo Bar
; Date: October 6, 2004
                    ;address of ADC Control register
ADCTL equ $1030
ADR1 equ ADCTL+1
                    ;address of first result register
ADR2 equ ADCTL+2
                    ;address of second result register
ADR3
     equ ADCTL+3
                    ;address of third result register
                    ;address of fourth result register
ADR4 equ ADCTL+4
        org $6000
main:
        ldaa #%00010100
        staa ADCTL
        jsr foo
        ldaa ADR1
        ldab ADR4
        swi
foo:
         tst ADCTL
         bpl foo
         rts
```

a. The subroutine "foo" performs an essential task. The name of the subroutine, however, is poorly chosen since it does not hint at the task it performs.

What is a better name for the subroutine?

b. Suppose that all 8 analog channels are connected to DC voltages as follows (assume that "full scale analog voltage" is 5.0 V):

Channel 1: 2.5 V Channel 2: 1.25 V Channel 3: 3.75 V Channel 4: 5.0 V Channel 5: 0.0 V Channel 6: 3.75 V Channel 7: 5.0 V Channel 8: 2.5 V

The program is run from address 0x6000. What values will be in Acc. A and Acc B. when the "swi" instruction is encountered?

ANSWER

- a. A better name would be something like WaitConvDone.
- b. Channels 5-8 are converted. Channel 5 is 0.0 volts (analog), converted to digital %00000000. Channel 8 is 2.5 volts (analog), converted to digital %10000000. Since AccA reads Channel 5, it is \$00; since AccB reads Channel 8, it is \$80.
- 2. Given the following program:

```
org $6000
main:

ldx #stuff
ldab #0

loop:

ldaa 0,x
beq done
addb 0,x
inx
bra loop

done:

swi

org $7000
stuff fcb 3, 1, 4, -1, 0, 2, 7
```

Assume that the CPU begins executing at address 0x6000.

a. What value (in hex) will be in index register X following the execution of the instruction ldx #stuff?

b. What will the values in index register X, AccA and AccB be just before the swi instruction is executed?

ANSWER

a.

\$7000

b.

AccA: 0 AccB: 7 IX: \$7004

- 3. Write a code fragment that performs the following:
 - a. Divides the signed 8-bit binary number in Acc by 2. (For example, if AccA were 15, it would be 7 after division.)
 - b. If Acc A is an odd number, convert it to the next smaller even number. (For example, a 7 would become a 6.)
 - c. Invert the bits 2 and 3 of the result. (For example, 6—00000110 in binary— would become 10—00001010 in binary.)

ANSWER

```
asra ;Part a: arithmetic right shift divides by 2 (signed)
anda #$FE ;Part b: no effect on even numbers; decrements odd numbers
eora #%1100 ;Part c: XORing with 1 inverts bit at same position
```