ELE538 Quiz/Answers (2004)
 Name:
 \qquad Student \#:
 \qquad Time: 30 minutes

 Chun,Clowes,Guerkov

 Chun,Clowes,Guerkov}

Table of Contents

Reference Material 1
Instructions 1
A/D system 1
Questions 2

Answer all questions. All questions have equal weight.

Reference Material

This material contains technical details that may be required to answer certain questions.

Instructions

Table 1. Instruction Details (Abridged)

Assembler	Mode	Encoding	Cycles
ldaa	IMM	86 ii	2
ldab	IMM	C6 ii	2
mul	INH	$3 D$	10

A/D system

The bits in the Control/Status register (ADCTL, mapped to address 0x1030) are:
Figure 1. AD Control/Status Register

7	6	5	4	3	2	1	0
CCF	-	M^{*}	S	0	n	n	n

The interpretation of the bits is:
CCF 0: conversion NOT complete; 1: conversion complete.
M* 0: Convert 4 channels; 1: Convert single channel.
S 0: continuous conversion; 1: one-shot conversion.
nnn Channel number (0-7).

Questions

1. Given the following program:
```
    org $6000
main:
    ldx #stuff
    ldab #0
loop:
        ldaa 0,x
        bmi done
        addb 0,x
        inx
        bra loop
done:
        swi
        org $7000
stuff fcb 3, 1, 4, 0, -1, 2, 7
```

Assume that the CPU begins executing at address 0x6000.
a. What value (in hex) will be in index register X following the execution of the instruction ldx \#stuff?
b. What will the values in index register $\mathrm{X}, \mathrm{AccA}$ and AccB be just before the swi instruction is executed?

ANSWER
a.
$\$ 7000$
b.

AccA: -1 (i.e. \$FF)
AccB: 8

IX: \$7004

2. The following program uses the A / D converter subsystem to read some voltages. The program does work. (i.e. there are no logical or syntactical errors.)
```
; A simple program using adc module.
; Author: Foo Bar
; Date: October 6, 2004
ADCTL equ $1030 ;address of ADC Control register
ADR1 equ ADCTL+1 ;address of first result register
ADR2 equ ADCTL+2 ;address of second result register
ADR3 equ ADCTL+3 ;address of third result register
ADR4 equ ADCTL+4 ;address of fourth result register
    org $6000
main:
        ldaa #%00010000
        staa ADCTL
        jsr foo
        ldaa ADR1
        ldab ADR4
        swi
foo:
        tst ADCTL
        bpl foo
        rts
```

a. The subroutine "foo" performs an essential task. The name of the subroutine, however, is poorly chosen since it does not hint at the task it performs.

What is a better name for the subroutine?
b. Suppose that all 8 analog channels are connected to DC voltages as follows (assume that "full scale analog voltage" is 5.0 V):

Channel 1: 2.5 V
Channel 2: 1.25 V
Channel 3: 3.75 V
Channel 4: 5.0 V

Channel 5: 0.0 V
Channel 6: 3.75 V
Channel 7: 5.0 V
Channel 8: 2.5 V

The program is run from address 0×6000. What values will be in Acc. A and Acc B. when the "swi" instruction is encountered?

ANSWER

a. A better name would be something like WaitConvDone.
b. Channels 0-4 are converted. Channel 1 is 2.5 volts (analog), converted to digital $\% 10000000$. Channel 4 is 5.0 volts (analog), converted to digital \%11111111. Since AccA reads Channel 1 , it is $\$ 80$; since AccB reads Channel 4, it is $\$ F F$.
3. Write a code fragment that performs the following:
a. Divides the unsigned 8-bit binary number in Acc by 2. (For example, if AccA were 8, it would be 4 after division.)
b. If Acc A is an even number, convert it to the next bigger odd number. (For example, a 4 would become a 5.)
c. Invert the bits 2 and 1 of the result. (For example, 5-00000101 in binary- would become 3-00000011 in binary.)

ANSWER

```
lsra ;Part a: logical right shift divides by 2 (unsigned)
oraa #1 ;Part b: no effect on odd numbers; adds 1 to even numbers
eora #%110 ;Part c: XORing with 1 inverts bit at same position
```

