Computer Organization
Introduction

COE608: Computer Organization
and Architecture

Dr. Gul N. Khan

http://www.ee.ryerson.ca/~gnkhan

Electrical and Computer Engineering
Ryerson University

Overview

• Course Management
• Introduction to Computer Architecture
 ♦ Instruction Set Architecture
 ♦ Machine Organization
• VHDL Review
Lectures and Labs

Half Notes
• You will need to take additional notes from lectures and the text and reference books.

Labs and Assignments
• Aimed at concept reinforcement and practical experience.

Lecture and Laboratory Material available at the course website
http://www.ee.ryerson.ca/~courses/coe608/

Assessment and Evaluation
Labs: 30%
Mid-term Exam: 30%
Final Examination: 40%
Course Text and Reference Materials

Recommended Text Book and support material

David Patterson and John Hennessy

Useful Text Book for Labs: Embedded Core Design with FPGAs

VHDL Tutorial
Print or download from
http://www.ee.ryerson.ca/~courses/coe608/public_html/vhdl_tutorial.ps

Reference Book and other material:

Logic and Computer Design Fundamentals,
by *Morris Mano and Charles R. Kime*

VHDL Reference
*Refer the files in the subdirectory at /usr/common/docs/VHDL/
Look for Tutorial and VHDL-Cookbook

➢ *In addition to the text and reference books, lectures and labs may contain material from other sources.*
Introduction

Computer design is a rapidly changing field:

- Relay \Rightarrow vacuum-tube \Rightarrow transistors \Rightarrow IC \Rightarrow VLSI \Rightarrow ULSI
- Doubling every 1.5-2.5 years
 - Memory capacity
 - Processor speed
 (Advances in technology and organization)

Things you will be learning:

- How CPU/computers work
- How to analyze their performance
- Issues affecting modern CPUs (processors)
- Designing a processor

Why learn this stuff?

- To call yourself a “computer engineer”
- You want to build software for people to use
 (need performance)
- You make a good purchasing decision for computers
- Offer “expert” advice
Abstraction in Software

High-level language program (in C)
\[v[k] \leftrightarrow v[k+1]; \text{SWAP} \]

\[
\begin{align*}
\text{temp} &= v[k]; \\
v[k] &= v[k+1]; \\
v[k+1] &= \text{temp};
\end{align*}
\]

Assembly language
Program (for MIPS Processor)

\[
\begin{align*}
lw \ $15, 0($2) \\
lw \ $16, 4($2) \\
sw \ $16, 0($2) \\
sw \ $15, 4($2)
\end{align*}
\]

Machine language
Program -for MIPS Logic Processor (M2000)

\[
\begin{align*}
1000 &\ 1100 \ 0110 \ 0010 \ 0000 \ 0000 \ 0000 \ 0000 \\
1000 &\ 1100 \ 1111 \ 0010 \ 0000 \ 0000 \ 0000 \ 0100 \\
1010 &\ 1100 \ 1111 \ 0010 \ 0000 \ 0000 \ 0000 \ 0000 \\
1010 &\ 1100 \ 0110 \ 0010 \ 0000 \ 0000 \ 0000 \ 0100
\end{align*}
\]
Instruction Set

A very important abstraction for computer architecture:

- Interface between hardware & low-level software
- Standardizes instructions and machine language bit patterns.
- Advantage:
 \textit{One can have different implementations of the same architecture.}
- Disadvantage:
 \textit{It sometimes prevents using new innovations.}

\textbf{Is binary compatibility is extraordinarily important? (True or False)}

An abstraction omits unnecessary details. But it helps to cope with complexity.
Instruction Set Architecture (ISA)

Main Goals for ISA Design
Maximize performance, minimize cost and reduce design time

Between Software and Hardware
Which is easier to modify?
ISA: Instruction Set Architecture

- Organization of Programmable Storage
- Data Types and Data Structures: Encoding and Representations
- Instruction Set
- Instruction Formats
- Modes of Addressing
 Accessing Data Items and Instructions
- Exceptional Conditions

Some examples of ISA

<table>
<thead>
<tr>
<th>Processor</th>
<th>Version(s)</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC Alpha</td>
<td>(v1, v3)</td>
<td>1992-97</td>
</tr>
<tr>
<td>HP PA-RISC</td>
<td>(v1.1, v2.0)</td>
<td>1986-96</td>
</tr>
<tr>
<td>SGI MIPS</td>
<td>(MIPS I-V)</td>
<td>1986-96</td>
</tr>
<tr>
<td>Sun SPARC</td>
<td>v8, v9, UltraSparc versions</td>
<td>1987-2011</td>
</tr>
<tr>
<td>Intel</td>
<td>(8086, 80x86, Pentium II - IV, 6, i3-7 series)</td>
<td>1978-2011</td>
</tr>
<tr>
<td>ARM (v4-v7)</td>
<td>(7, 9, 11, Cortex R*, M*, A*)</td>
<td>1998-201x</td>
</tr>
</tbody>
</table>
ARM Versions Cores and Architectures

- There is difference between ARM7™ & ARMv7.
- Look into ARM architecture on Wikipedia to get the full list.
- ARM doesn’t make ICs but soft cores….maybe a few test chips.

<table>
<thead>
<tr>
<th>Family</th>
<th>Architecture</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM7TDMI</td>
<td>ARMv4T</td>
<td>ARM7TDMI(S)</td>
</tr>
<tr>
<td>ARM9</td>
<td>ARMv5TE(J)</td>
<td>ARM926EJ-S, ARM966E-S</td>
</tr>
<tr>
<td>ARM9E</td>
<td>ARMv5TE(J)</td>
<td></td>
</tr>
<tr>
<td>ARM11</td>
<td>ARMv6 (T2)</td>
<td>ARM1136(F), 1156T2(F)-S, 1176JZ(F), ARM11 MPCore™</td>
</tr>
<tr>
<td>Cortex-A</td>
<td>ARMv7-A</td>
<td>Cortex-A5,7,8,9,15</td>
</tr>
<tr>
<td>Cortex-R</td>
<td>ARMv7-R</td>
<td>Cortex-R4(F)</td>
</tr>
<tr>
<td>Cortex-M</td>
<td>ARMv7-M</td>
<td>Cortex-M3, M4</td>
</tr>
<tr>
<td></td>
<td>ARMv6-M</td>
<td>Cortex-M1, M0</td>
</tr>
</tbody>
</table>
Samsung S5PC100 SoC

S5PC100 has a 32-bit ARM Cortex A8 microprocessor
Operates up to 833MHz with 64/32-bit bus architecture

S5PC100 has various functionalities
such as Wireless communication,
Personal navigation, Camera,
Portable gaming, Video player and
Mobile TV into one device.

Used in iPhone 3GS and iPod touch
3rd generation.
UltraSPARC T2/T2-Plus

Ultra SPARCT2 has a 10Gbit Ethernet interface.
SPARC64

Multicore Architecture

<table>
<thead>
<tr>
<th></th>
<th>SPARC64 VI</th>
<th>SPARC64 VII</th>
<th>SPARC64 VII+</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU cores per chip</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Level-1 cache</td>
<td>256KB per core</td>
<td>128KB per core</td>
<td>128KB per core</td>
</tr>
<tr>
<td>Maximum Level-2 cache</td>
<td>6MB with 12 ways at maximum (per CPU chip)</td>
<td>6MB with 12 ways at maximum (per CPU chip)</td>
<td>12MB with 12 ways (per CPU chip)</td>
</tr>
</tbody>
</table>

Also used in Fujitsu Supercomputer
Exynos 5410 Octa Processor

- Octa core Mobile CPU with big.LITTLE processing
- 3D graphics – fast/efficient operation for smartphone/tablets. 12.8 GB/s memory bandwidth, 1080p 60 fps video.

- vSMP: used in Krait, a customized CPU of Qualcomm with 4 high performance cores Cortex-A15 and one low power Cortex A7.
- For a comparison, big.LITTLE processing is depicted in the right part of where B represents big core and L represents LITTLE core.
- 28nm enables 10 percent performance improvement from 32nm.
MIPS R2000/R3000 Processor
(First RISC based CPU series 1985/88)
ISA: Instruction Set Architecture
Instruction Categories

- Load/Store
- Computational
- Jump and Branch
- Floating Point -Coprocessor
- Memory Management
- Special

| R0 - R31 |
| PC |
| HI |
| LO |

3 Instruction Formats: all 32 bits wide

<table>
<thead>
<tr>
<th>OP</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>sa</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP</td>
<td>rs</td>
<td>rt</td>
<td></td>
<td></td>
<td>immediate</td>
</tr>
<tr>
<td>OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jump target</td>
</tr>
</tbody>
</table>
MIPS R4700/R4000 Processor
64-bit Architectures (2009/2010)

MIPS 4000
What is “Computer Architecture”

Computer Architecture =
Instruction Set Architecture +
Machine Organization

- Coordination of many levels of abstraction
 Under a rapidly changing set of forces
 Design, measurement and evaluation

A number of forces affect the computer architecture

(clock) Technology

Programming Languages

Applications

Operating Systems

History

© G.N. Khan
Computer Organization & Architecture – COE608: Introduction
Page: 17
Computer Technology

Dramatic Change

• Processor
 Performance: 100 fold in the last decade
 Speed: Doubled every 1.5 year

• Memory
 DRAM capacity: 64 fold in the last decade
 Memory speed: about 10% per year
 Cost per bit: Improves about 25% every year

• Disk
 Capacity: Doubled every year
 250 fold in the last decade
Technology: Memory Capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Size (Mbit)</th>
<th>DRAM-Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>0.0625M</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>0.25M</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>16M</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>64M</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>128M</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>256M</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1G</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2G</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>4G</td>
<td></td>
</tr>
</tbody>
</table>
CPU Performance Growth
ISA is a subset of Computer Architecture

Computer architecture is described as

... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and physical implementation.

(Amdahl et al. 1964)
What is “Computer Architecture”

Computer Architecture =
 Instruction Set Architecture +
 Machine Organization

What is a computer?
Main Components:
-- Input (mouse, keyboard)
-- Output (display, printer)
-- Memory (disk drives, DRAM/SRAM, CD)
-- Network

Our primary focus:
The processor (datapath and control)
-- Implemented using millions of transistors.
-- Impossible to understand by looking at each transistor

-- We need ... CPU organization and architecture
Computer Organization

Levels of Organization
A Computer System Design Target

- Cost on processor 30%
- Cost on memory 25%

with min. memory (cache & DRAM) size

- Rest on I/O devices, power supplies, box or casing, etc.

A typical Computer System
Computer Organization

All computers consist of five components

- Processor
 - (1) datapath
 - (2) control
- (3) Memory
- (4) Input devices and (5) Output devices

Not all “memory” are created equally

- Cache: fast (expensive) memory are placed closer to the processor
- Main memory: Less expensive memory--we can have more

Input and output (I/O) devices have the most complex organization

- Wide range of speed: graphics vs. keyboard
- Wide range of requirements: speed, standard, cost ...
- Least amount of research (so far)
Where are we Heading?

- **VHDL**
 Download VHDL tutorial and documentation from the course web site

- **An Instruction Set Architecture (ISA)** (Chapter 2)

- **Computer Arithmetic and How to build an ALU** (Chapter 3)

- **Performance Issues** (Chapter 1)
 - Evaluating Performance

- **Constructing a processor to execute CPU instructions** (Chapter 4: Sections 4.1-4.4)
 - Datapath Design
 - ASM Charts and Finite State Machines
 - Control Unit Design

- **Pipelining to improve performance** (Chapter 4: Sections 4.5 -- 4.8)