ARMOTDMI

(Rev 3)
Technical Reference Manual

ARM

ARM DDI 0180A

ARMOTDMI
Technical Reference Manual

© Copyright ARM Limited 2000. All rights reserved.
Release information

Change history

Description Issue Change

March 2000 A First release

Proprietary notice
ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI,
ARMOTDMI, TDMI and STRONG are trademarks of ARM Limited.

All other praducts or serices mernbned heran maybe trademaks d their respedave owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fithess for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality status
This document is Open Access. This document has no restriction on distribution.

ARM web address

http://ww. arm com

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Preface

This prefaceintroducesthe ARM9TDMI (Revision 3), which isamember of the ARM
family of general-purpose microprocessors. It contains the following sections:

About this document on page iv.

. Further reading on page v.

. Typographical conventions on page Vi.
Feedback on page vii.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. iii

About this document

Intended audience

This document is a reference manual for the ARM9TDMI microprocessor. The
ARMOYTDMI includes the following features:

. The option, selectable using tb®&I EN signal, of using two unidirectional
busedDD[31:0] andDDIN[31:0], instead of a single bidirectional data bus. This
is described itunidirectional/bidirectional mode interface on page 3-10.

. The value returned by the JTAG TAP controller IDCODE instruction is the value
present on the nelWAPID[31:0] input bus. This allows the ID code to be easily
changed for each chip design.

This document has been written for experienced hardware and software engineers who
may or may not have experience of ARM products.

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Further reading
This section lists publications by ARM Limited, and by third parties.

ARM publications

ARM Architecture Reference Manual (ARM DDI 0100).
ARM7TDMI Data Sheet (ARM DDI 0029).

Other reading
|EEE Std. 1149.1 - 1990, Standard Test Access Port and Boundary-Scan Architecture.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. \

Typographical conventions

The following typographical conventions are used in this document:

bold

italic

typewriter

typewriter

typewriter

typewriter

Highlights ARM processor signal nameswithin text, and interface
elements such as menu names. May also be used for emphasisin
descriptive lists where appropriate.

Highlights special terminology, cross-references and citations.

Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or
option name.

italic
Denotes argumentsto commands or functionswherethe argument
isto be replaced by a specific value.

bol d
Denotes language keywords when used outside example code.

Vi

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Feedback

Feedback on this manual

ARM Limited welcomes feedback both on the ARM9TDMI, and on the
documentation.

If you have any comments on thisdocument, please send an email toer r at a@r m com
giving:

the document title

the document number

the page number(s) to which your comments refer
a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM9TDMI

If you have any comments or suggestions about the ARM9TDMI, please contact your
supplier giving:

the product name
a concise explanation of your comments.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. vii

viii © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Contents

ARMOTDMI Technical Reference Manual

Chapter 1

Chapter 2

Chapter 3

Preface

ADOUL thiS OCUMENT ...ttt e e et e e e e e eaes iv
U1 [T (=T To [T o PRSPPI v
Typographical conventions i
FEEADACK ...t et e e a e e eeeas ii
Introduction

11 AbOUt the ARMOTDIMI ..ottt e e e e eeenes 1-2
1.2 Processor block diagram.............c..uuiiieoiiiiee e 1-3

Programmer’s Model
2.1 About the programmer’'s MOdel............cooiiiiiiiiiiiiii e 2-2
2.2 Pipeline implementation and iNterloCks...........ccocvieinii e 2-4

ARMOTDMI Processor Core Memory Interface

3.1 About the memory interface

3.2 Instruction interface.........ccoccoeevvvvviviiieeeeeeeees

3.3 Endian effects for instruction fetches

3.4 (D1 = W 0] (] £ 1= (oL =TSR
3.5 Unidirectional/bidirectional mode interfacecccoovviiivivivieiiiereeeeeceeee,
3.6 Endian effects for data transfers

3.7 ARMOTDMI reset behavior.............cccccvvvveene....

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. ix

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix A

ARM9TDMI Coprocessor Interface

4.1 About the coprocessor interface

4.2 LDC/STC it

4.3

4.4

4.5

4.6 Privileged iNSrUCHIONS.........coiiiiiiii et
4.7 Busy-waiting and iNterrUPtScoeeiiiiiieii e
4.8 COoProCeSSOr 15 MCRSuiiiiiiiiiiiiie et e e

Debug Support

5.1 About debugccocceeeiiiennn.

5.2 Debug systems..........cceueee..

5.3 Debug interface signals

5.4 Scan chains and JTAG interface

55 The JTAG state machine

5.6 Test data registers...............

5.7 ARMOTDMI core clocks........c.ccoveveenineenn.

5.8 Clock switching during debug

5.9 Clock switching dUFNG tESt.........eeiiiiei et
5.10 Determining the core state and system state

5.11 Exit from debug state...........cccveviiiiiiie e

5.12 The behavior of the program counter during debug

5.13 EmbeddedICE MacroCell............oceviiiiiiiiiiiiiiee e
5.14 VECLOr CALCHINGeii i e
5.15 Single stepping

5.16 Debug communications channelcccccooiiiiieiii e,

Test Issues
6.1 ADOUL EESTING .. eeeee e ettt e e e et e e e e e e e e e e an 6-2
6.2 Scan chain 0 DIt OFdEr.......vvvviiieieiiiiiieeeeeeeeeeeeee s 6-3

Instruction Cycle Summary and Interlocks
7.1 INSErUCLION CYCIE tIMES ..ot 7-2
7.2 INEEIIOCKS ..ttt et e e e e eneeas 7-5

ARM9TDMI AC Characteristics
8.1 ARMOTDMI timing diagramsceeeiiiiiiiieie e
8.2 ARMOTDMI timing parameters

ARM9TDMI Signal Descriptions

Al Instruction memory interface SigNalSocveeeeeiiiiinie e A-2
A.2 Data memory interface signals.................

A3 Coprocessor interface signals

A4 JTAG and TAP controller signals

A5 DEbUQ SIGNAISceei et eas
A.6 Miscellaneous SIgNAIS...........cviieiiiiiiiiie e

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 1
Introduction

This chapter introduces the ARM9TDMI (Revision 3) and shows its processor block
diagram under the headings:

. About the ARM9TDMI on page 1-2.
. Processor block diagram on page 1-3.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 1-1

Introduction

1.1 About the ARMOTDMI

The ARMOTDMI isamember of the ARM family of general-purpose microprocessors.
The ARM9TDM I istargeted at embedded control applications where high
performance, low die size and low power are al important. The ARM9TDMI supports
both the 32-bit ARM and 16-bit Thumb instruction sets, allowing the user to trade off
between high performance and high code density. The ARM9TDMI supportsthe ARM
debug architecture and includes logic to assist in both hardware and software debug.
The ARM9TDMI supports both bidirectional and unidirectional connection to external
memory systems. The ARMOTDMI also includes support for coprocessors.

The ARMOTDMI processor coreisimplemented using afive-stage pipeline consisting
of fetch, decode, execute, memory and write stages. The device has a Harvard
architecture, and the simple bus interface eases connection to either a cached or
SRAM-based memory system. A simple handshake protocol is provided for
COprocessor support.

1-2

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

1.2 Processor block diagram

Introduction

Figure 1-1 shows the ARM9TDMI processor block diagram.

I
|
ID[.] Instruction i X X
Pipeline ! Instruction Decode and Datapath control logic
|
IDScan .
DIN[.] Byte Rot DINFWDI.] DDJ.]
/Sign Ex.
Cmux 9 .
clL] Bytel
Word DDIN[]
Repl
shift DDScan
Bmux
B[] —
L] BDatd.] SHIFTER Di
Imm
REGBANK
+PC
MUL ALU
ALl — ’—>
ADad..]
IAScan
IA[..
i Amux
PSR
PSRRDY..]
nALUOu.]
RESULT[.] ’_‘

Figure 1-1 ARMO9TDMI processor block diagram

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 1-3

Introduction

1-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 2

Programmer’s Model

This chapter describes the programmer’s model for the ARMO9TDMI under the
headings:

. About the programmer’s modeh page 2-2.
. Pipeline implementation and interlocks on page 2-4.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 2-1

Programmer’s Model

2.1 About the programmer’s model

The ARM9TDMI processor core implements ARM Architecture vA4T, and so executes
the ARM 32-bit instruction set and the compressed Thumb 16-bit instruction set. The
programmer’s model is fully described in tABM Architecture Reference Manual.

The ARM vA4T architecture specifies a small number of implementation options. The
options selected in the ARM9TDMI implementation are listed in the table below. For
comparison, the options selected for the ARM7TDMI implementation are also shown:

Table 2-1 ARM9TDMI implementation option

Processor ARM Data abort model Value stored by direct
core architecture STR, STRT, STM of PC
ARM7TDMI VAT Base updated Address of Inst + 12
ARMOTDMI VAT Base restored Address of Inst + 12

The ARM9TDMI is code compatible with the ARM7TDMI, with two exceptions:

. The ARM9TDMI implements the Base Restored Data Abort model, which
significantly simplifies the software data abort handler.

. The ARM9TDMI fully implements the instruction set extension spaces added to
the ARM (32-bit) instruction set in Architecture v4 and v4T.

These differences are explained in more detail below.

211 Data abort model

The ARM9TDMI implements the Base Restored Data Abort Model, which differs from
the Base updated data abort model implemented by ARM7TDMI.

The difference in the Data Abort Model affects only a very small section of operating
system code, the data abort handler. It does not affect user code. With the Base Restored
Data Abort Model, when a data abort exception occurs during the execution of a
memory access instruction, the base register is always restored by the processor
hardware to the value the register contaipefdre the instruction was executed. This
removes the need for the data abort handler to ‘unwind’ any base register update which
may have been specified by the aborted instruction.

The Base Restored Data Abort Model significantly simplifies the software data abort
handler.

2-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Programmer’s Model

2.1.2 Instruction set extension spaces

All ARM processors implement the undefined instruction space as one of the entry
mechanisms for the Undefined Instruction Exception. That is, ARM instructions with
opcode[27:25] = 0b011 and opcode[4] = 1 are UNDEFINED on al ARM processors
including the ARM9TDMI and ARM7TDMI.

ARM Architecture v4 and v4T also introduced a number of instruction set extension
spaces to the ARM instruction set. These are:

. arithmetic instruction extension space

. control instruction extension space

. coprocessor instruction extension space
. load/store instruction extension space.

Instructions in these spaces are UNDEFINED (they cause an Undefined Instruction
Exception). The ARM9TDMI fully implements all the instruction set extension spaces
defined in ARM Architecture v4T as UNDEFINED instructions, allowing emulation of
future instruction set additions.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 2-3

Programmer’s Model

2.2 Pipeline implementation and interlocks
The ARM9TDMI implementation uses a five-stage pipeline design. These five stages
are:
. instruction fetch (F)
. instruction decode (D)
. execute (E)
. data memory access (M)
. register write (W).
ARM implementations are fully interlocked, so that software will function identically
across different implementations without concern for pipeline effects. Interlocks do
affect instruction execution times. For example, the following sequence suffers a single
cycle penalty due to a load-use interlock on register RO:
LDR RO, [R7]
ADD R5, RO, Rl
For more details, see Chaptemgtruction Cycle Summary and Interlocks. Figure 2-1
shows the timing of the pipeline, and the principal activity in each stage.
F D E M W
il oo EE TN Bl v
J | | L L
IA[31:1], INMREQ,
ISEQ
ID[31:0] E]
DA[31.0], DnMREQ,
DSEQ, DMORE
DD[31:0]
DDIN[31:0] [j
Figure 2-1 ARM9TDMI processor core instruction pipeline
2-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 3

ARMOTDMI Processor Core Memory Interface

This chapter describes the memory interface of the ARM9TDMI processor core. The
processor core has a Harvard memory architecture, and so the memory interfaceis
separated into the instruction interface and the data interface. The information in this
chapter is broken down as follows:

About the memory interface on page 3-2.

Instruction interface on page 3-5.

Endian effects for instruction fetches on page 3-7.

Data interface on page 3-8.

Unidirectional/bidirectional mode interface on page 3-11.
Endian effects for data transfers on page 3-12.
ARMOTDMI reset behavior on page 3-13.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 3-1

ARMOITDMI Processor Core Memory Interface

3.1

About the memory interface

The ARM9TDMI has a Harvard bus architecture with separate instruction and data
interfaces. Thisallows concurrent instruction and data accesses, and greatly reducesthe
CPI of the processor. For optimal performance, single cycle memory accesses for both
interfaces are required, although the core can be wait-stated for non-sequential
accesses, or slower memory systems.

For both instruction and datainterfaces, the ARMOTDMI process core uses pipelined
addressing. The address and control signals are generated the cycle before the data
transfer takes place, giving any decode logic as much advance notice as possible. All
memory accesses are generated from GCLK.

For each interface there are different types of memory access:
. non-sequential

. sequential

. internal

. coprocessor transfer (for the data interface).

These accesses are determinethbyREQ andl SEQ for the instruction interface, and
by DnMREQ andDSEQ for the data interface.

The ARM9TDMI can operate in both big-endian and little-endian memory
configurations, and this is selected by BIGEND input. The endian configuration
affects both interfaces, so care must be taken in designing the memory interface logic
to allow correct operation of the processor core.

For system purposes, it is normally necessary to provide some mechanism whereby the
data interface can access instruction memory. There are two main reasons for this:

. The use of in-line data for literal pools is very common. This data will be fetched
via the data interface but will normally be contained in the instruction memory
space.

. To enable debug via the JTAG interface it must be possible to download code
into the instruction memory. This code has to be written to memory via the data
data bus as the instruction data bus is unidirectional. This means in this instance
it is essential for the data interface to have access to the instruction memory.

A typical implementation of an ARM9TDMI-based cached processor has Harvard
caches and a unified memory structure beyond the caches, thereby giving the data
interface access to the instruction memory space. The ARM940T is an example of such
a system. However, for an SRAM-based system this technique cannot be used, and an
alternative method must be employed.

3-2

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI Processor Core Memory Interface

It is not as critical for the instruction interface to have access to the data memory area
unless the processor needs to execute code from data memory.

3.1.1 Actions of the ARM9TDMI in debug state

3.1.2 Wait states

Once the ARM9TDMI isin debug state, both memory interfaces will indicate internal
cycles. Thisalows the rest of the memory system to ignore the ARM9TDMI and
function as normal. Since the rest of the system continues operation, the ARM9TDMI
will ignore aborts and interrupts.

The BIGEND signal should not be changed by the system whilein debug state. If it
changes, not only will there be a synchronization problem, but the programmer’s view
of the ARMOTDMI will change without the knowledge of the debugger.NRESET

signal must also be held stable during debug. If the system applies reset to the
ARMOTDMI (nRESET is driven LOW), the state of the ARM9TDMI will change
without the knowledge of the debugger.

When instructions are executed in debug state, the ARM9TDMI will change
asynchronously to the memory system outputs (excephFREQ, | SEQ,

DnMREQ, andDSEQ which change synchronously frad@CL K). For example, every

time a new instruction is scanned into the pipeline, the instruction address bus will
change. If the instruction is a load or store operation, the data address bus will chang
as the instruction executes. Although this is asynchronous, it should not affect the
system, because both interfaces will be indicating internal cycles. Care must be taken
with the design of the memory controller to ensure that this does not become a problen

For memory accesses which require more than one cycle, the processor can be halte
by usingnWAIT. This signal halts the processor, including both the instruction and
data interfaces. TH@NVAIT signal should be driven LOW by the end of phase 2 to stall
the processor (it is inverted and ORed V&#GL K to stretch the internal processor
clock). ThenWAIT signal must only change during phase &6fLK. For debug
purposes the internal core clock is exported ofetBEK signal. This timing is shown
below in Figure 3-1.

Alternatively, wait states may be inserted by stretching either ph&@eLlaok before it

is applied to the processor. ARM9TDMI does not contain any dynamic logic which
relies on regular clocking to maintain its state. Therefore there is no limit on the
maximum period for whiclsCLK may be stretched, in either phase, or the time for
whichnWAIT may be held LOW.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 3-3

ARMOITDMI Processor Core Memory Interface

The system designer must take care when adding wait states because the interface is
pipelined. When await state is asserted, the current data and instruction transfers are
suspended. However, the address buses and control signals will have already changed
to indicate the next transfer. It is therefore necessary to latch the address and control
signals of each interface when using wait states.

ok e Y e L B
nWAIT \ /
ECLK [\ [\
Figure 3-1 ARM9TDMI clock stalling using nWAIT
3-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI Processor Core Memory Interface

3.2 Instruction interface

Whenever an instruction enters the execute stage of the pipeline, a new opcode is
fetched from theinstruction bus. The ARM9TDM I processor core may be connected to
avariety of cache/SRAM systems, and it is optimized for single cycle access systems.

However, in order to ease the system design, it is possible to connect the ARMOTDMI
to memory which takes two (or more) cycles for a non-sequential (N) access, and one
cycle for asequential (S) access. Although this increases the effective CHI, it
considerably eases the memory design.

The ARMOTDMI indicates that an instruction fetch will take place by driving
INMREQ LOW. Theinstruction address bus, | A[31:1] will contain the address for the
fetch, and the | SEQ signal will indicate whether the fetch is sequential or
non-sequential to the previous access. All these signal's become valid towards the end
of phase 2 of the cycle that precedes the instruction fetch.

If ITBIT isLOW, and thus ARM9TDMI is performing word reads, then | A[1] should
be ignored.

Thetiming is shown in Figure 3-2 on page 3-6. The full encoding of INMREQ and
ISEQ isasfollows:

Table 3-1 INMREQ and ISEQ encoding

INMREQ ISEQ Cycle type

0 0 Non-sequential

0 1 Sequential

1 0 Internal

1 1 Reserved for future use

Note
The 1,1 case does not occur in this implementation but may be used in the future.

Instruction fetches may be marked as aborted. The IABORT signal isan input to the
processor with the same timing as the instruction data. If, and when, the instruction
reaches the execute stage of the pipeline, the prefetch abort vector istaken. Thetiming
for thisis shown in Figure 3-2 on page 3-6. If the memory control logic does not make
use of the IABORT signal, it must be tied LOW.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 3-5

ARMOITDMI Processor Core Memory Interface

Internal cycles occur when the processor is stalled, either waiting for an interlock to
resolve, or completing a multi-cycle instruction.

Note
A sequential cycle can occur immediately after an internal cycle.

Figure 3-2 shows the cycle timing for an N followed by an S cycle, where thereisa
prefetch abort on the S cycle:
N-cycle S-cycle

SeLK | | | | | | L
INMREQ ’7—\ ﬂ /
-

|

ISEQ

IA[31:1] ‘

ID[31:0]

IABORT /7‘\

]
|
-
|

Figure 3-2 Instruction fetch timing

3-6

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI Processor Core Memory Interface

3.3 Endian effects for instruction fetches

The ARMOTDMI will perform 32-bit or 16-bit instruction fetches depending on
whether the processor isin ARM or Thumb state. The processor state may be
determined externally by the value of the ITBIT signal. When thissignal is LOW, the
processor isin ARM state, and 32-bit instructions are fetched. When it is HIGH, the
processor isin Thumb state and 16-bit instructions are fetched.

When the processor isin ARM state, its endian configuration does not affect the
instruction fetches, as all 32 bits of ID[31:0] are read. However, in Thumb state the
processor will read either from the upper half of the instruction data bus, | D[31:16], or
from the lower half, ID[15:0]. Thisis determined by the endian configuration of the
memory system, which isindicated by the BIGEND signal, and the state of A[1].

Table 3-2 shows which half of the data bus is sampled in the different configurations:

Table 3-2 Endian effect on instruction position

Little BIGEND =0 Big BIGEND =1

IA[1] =0 ID[15:0] ID[31:16]

IA[1] =1 ID[31:16] ID[15:0]

When a 16-bit instruction is fetched, the ARM9TDMI ignores the unused half of the
data bus.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 3-7

ARMOITDMI Processor Core Memory Interface

3.4 Datainterface

Data transferstake placein the memory stage of the pipeline. The operation of the data
interface is very similar to the instruction interface.

Theinterfaceis pipelined with the address and control signals, becoming valid in
phase 2 of the cycle before thetransfer. There are four types of datacycle, and these are
indicated by DnMREQ and DSEQ. The timing for these signalsis shown in

Figure 3-3 on page 3-10. The full encoding for these signalsisgivenin Table 3-3:

Table 3-3 DnMREQ and DSEQ encoding

DnMREQ DSEQ Cycle Type

0 0 Non-sequential

0 1 Sequential

1 0 Internal

1 1 Coprocessor Transfer

For internal cycles, data memory accesses are not required in this instance, the data
interface outputs will retain the state of the previous transfer.

DnRW indicates the direction of thetransfer, LOW for reads and HIGH for writes. The
signal becomes valid at approximately the same time as the data address bus.

. For readsPDIN[31:0] must be driven with valid data for the falling edge of
GCLK at the end of phase 2.

. For writes by the processor, data will become valid in phase 1, and remain valid
throughout phase 2.

Both reads and writes are illustrated in Figure 3-3 on page 3-10.

See4.1 About the coprocessor interface on page 4-2 for further information on using
DDINJ[31:0] andDD[31:0] in unidirectional mode or connecting together to form a
bidirectional bus.

Data transfers may be marked as aborted. DZRBORT signal is an input to the
processor with the same timing as the data. Upon completion of the current instruction
in the memory stage of the pipeline, the data abort vector is taken. If the memory control
logic does not make use of tBABORT signal, it must be tied LOW, but with the
exception that data can be transferred to and from the ARM9TDMI core.

3-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI Processor Core Memory Interface

The size of the transfer isindicated by DM AS[1:0]. These signals become valid at
approximately the same time as the data address bus. The encoding is given below in
Table 3-4:

Table 3-4 DMAS[1:0] encoding

DMAS[1:0] Transfer size
00 Byte

01 Half word

10 Word

11 Reserved

For coprocessor transfers, accessto memory isnot required, but there will be atransfer
of data between the ARM9TDMI and coprocessor using the data buses, DD[31:0] and
DDIN[31:0]. DnRW indicates the direction of the transfer and DM AS[1:0] indicates
word transfers, as al coprocessor transfers are word sized.

The DM ORE signal is active during load and store multiple instructions and only ever
goes HIGH when DnMREQ isLOW. Thissignal effectively gives the same
information asDSEQ, but acycle ahead. Thisinformation isprovided to alow external
logic more time to decode sequential cycles.

Figure 3-3 on page 3-10 shows aload multiple of four words followed by an MCR,
followed by an aborted store. Note the following:

. The DM ORE signal is active in the first three cycles of the load multiple to
indicate that a sequential word will be loaded in the following cycle.

. From the behavior dinM REQ during the LDM, it can be seen that an
instruction fetch takes place when the instruction enters the execute stage of the
pipeline, but that thereafter the instruction pipeline is stalled until the LDM
completes.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-9

ARMOITDMI Processor Core Memory Interface

GCLK J I | I I 1 ’ ’ | FM(I:RH e /_
wree | [T T T L bl bl

oo — | J—{]]]
DNMREQ \ [\ /\ I\ H_ —n [_ N
- IR il
1T T L b A
- I I I
DDIN[31:0] E] E] E] E]

DABORT [__\

Figure 3-3 Data access timings

3-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI Processor Core Memory Interface

3.5 Unidirectional/bidirectional mode interface

The ARM9TDMI supports connection to external memory systems using either a
bidirectional datadatabusor two unidirectional buses. Thisiscontrolled by the UNIEN
input.

If UNIEN isLOW, DD[31:0] is atristate output bus used to transfer write data. It is
only driven when the ARM9TDMI is performing awrite to memory. By wiring
DD[31:0] totheinput DDIN[31:0] bus (externally to the ARM9TDMI), abidirectional
data data bus can be formed.

If UNIEN is HIGH, then DD[31:0], and all other ARM9TDMI outputs, are
permanently driven. DD[31:0] then forms a unidirectional write data data bus. In this
mode, the tristate enable pins | ABE, DABE, DDBE, TBE, and the TAP instruction
nHIGHZ, have no effect. Therefore all outputs are always driven.

All timing diagrams in this manual, except where tristate timing is shown explicitly,
assume UNIEN isHIGH.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 3-11

ARMOITDMI Processor Core Memory Interface

3.6 Endian effects for data transfers

The ARM9TDMI supports 32-bit, 16-bit and 8-bit data memory access sizes. The
endian configuration of the processor, set by BIGEND, affects only non-word transfers
(16-bit and 8-bit transfers).

For datawrites by the processor, the write datais duplicated on the data bus. So for a
16-bit data store, one copy of the data appears on the upper half of the data bus,
DD[31:16], and the same data appears on the lower half, DD[15:0]. For 8-bit writes
four copies are output, one on each byte lane, DD[31:24], DD[23:16], DD[15:8] and
DDJ[7:0Q]. Thisconsiderably easesthe memory control logic design and hel ps overcome
any endian effects.

For datareads, the processor will read a specific part of the databus. Thisis determined
by the endian configuration, the size of the transfer, and bits 1 and O of the data address
bus. Table 3-5 shows which bits of the data bus are read for 16-bit reads, and

Table 3-6 shows which bits are read for 8-bit reads.

For simplicity of design, 32 bits of data can be read from memory and the processor will
ignore any unwanted bits.

Table 3-5 Endian effects for 16-bit data fetches

DA[1:0] Little (BIGEND =0) Big (BIGEND = 1)
00 DDIN[15:0] DDIN[31:16]
10 DDIN[31:16] DDIN[15:0]

Table 3-6 Endian effects for 8-bit data fetches

DA[1:0] Little (BIGEND =0) Big (BIGEND = 1)
00 DDIN[7:0] DDIN[31:24]

01 DDIN[15:8] DDIN[23:16]

10 DDIN[23:16] DDIN[15:8]

1 DDIN[31:24] DDIN[7:0]

3-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI Processor Core Memory Interface

3.7 ARM9TDMI reset behavior

When nRESET isdriven LOW, the currently executing instruction terminates
abnormally. If GCLK isHIGH, InMREQ, | SEQ, DnMREQ, DSEQ and DMORE
will asynchronously change to indicate aninternal cycle. If GCLK is LOW, they will
not change until after the GCLK goes HIGH.

WhennRESET isdriven HIGH, the ARM9TDM I startsrequesting memory again once
the signal has been synchronized, and thefirst memory accesswill start two cycleslater.
The nRESET signal is sampled on the falling edge of GCLK . The behavior of the
memory interfaces coming out of reset is shown in Figure 3-4 on page 3-14.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 3-13

ARMOITDMI Processor Core Memory Interface

cox | | | | | | .
NRESET 4]

INMREQ \ ﬂ ﬂ
R
|

1A[31:1] , 0x0 ﬂ ox4

ID[31:0]

1
[
1
[
1
[

DNMREQ \

DSEQ '

DMORE ’

DnRW ‘ l

DA[31:0] ‘ l

Figure 3-4 ARM9TDMI reset behavior

3-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 4
ARM9TDMI Coprocessor Interface

Thischapter describesthe ARM9TDMI coprocessor interface, and detail sthe following

operations:

. About the coprocessor interface on page 4-2.
. LDC/STC on page 4-3.

. MCR/MRC on page 4-9.

. Interlocked MCR on page 4-11.

. CDP on page 4-13.

. Privileged instructions on page 4-15.

. Busy-waiting and interrupts on page 4-16.

. Coprocessor 15 MCRs on page 4-17.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved.

4-1

ARMOITDMI Coprocessor Interface

4.1 About the coprocessor interface

The ARM9TDMI supports the connection of coprocessors. All types of ARM
coprocessor instructions are supported. Coprocessors determine the instructions they
need to execute using a pipeline follower in the coprocessor. Aseachinstruction arrives
from memory, it enters both the ARM pipeline and the coprocessor pipeline. Typically,
a coprocessor operates one clock phase behind the ARM9TDMI pipeline. The
coprocessor determines when an instruction is being fetched by the ARM9TDMI, so
that the instruction can be loaded into the coprocessor, and the pipeline follower
advanced.

Note

A cached ARM9TDMI coretypically has an external coprocessor interface block, the
main purpose of which isto latch the instruction data bus, 1D, one of the data buses,
DD[31:0] or DDIN[31:0], and relevant ARMOTDMI control signals before exporting
them to the coprocessors. For adescription of all the interface signalsreferred to in this
chapter, refer to A.3 Coprocessor interface signals on page A-5.

There are three classes of coprocessor instructions:

. LDC/STC
. MCR/MRC
. CDP.

The following sections give examples of how a coprocessor should execute these

instruction classes.

4-2

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMOITDMI Coprocessor Interface

4.2 LDC/STC

The number of words transferred is determined by how the coprocessor drives the
CHSD[1:0] and CHSE[1:0] buses. In the example, four words of data are transferred.
Figure 4-1 on page 4-4 shows the ARMOTDMI LDC/STC cycletiming.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-3

ARMOITDMI Coprocessor Interface

| | | |
ARM Processor «Dec‘ode _»| < Execute || Execute | Execute | Execute «Mem‘o N kW"t N ‘
inali (GO) (GO) (GO) (LAST) Y e
Pipeline \ ! ! ! ‘ \ \ \

c pipeli <« Decode —» <7E><ecu194> <7E><ecute" <7E><ecu154> kExecute
oprocessor Pipeline \ [*~ (o) o) 1 o) I asn

o [|
INMREQ ’—\ ! ﬂ
ID[27:0] —EDH

PASS ‘

— ‘«Memory »‘FWrite—» ‘

\
\
|
\
\
\
\
[

L1

LATECANCEL ‘

CHSDI[1:0] ‘

CHSE[L:0] ‘ x 6o

[oo

K LAST

DD[31:0] ‘
sTC

DDIN[31:0]
LDC

-
L1 —
[

|| S—

DNMREQ

DMORE

s |/
— /]

DA[31:0]

\ \
| |
T T
| |
| |
| |
| |
T T
| |
| |
| |
; ;
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 1
\ \

| | |
| | |

l AIK A+4H A+8HA+C
| | |

Figure 4-1 ARM9TDMI LDC / STC cycle timing

4-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

GCLK

nWAIT

Coproc
Clock

B [T U Y B O B

ARMOITDMI Coprocessor Interface

Aswith al other instructions, the ARM9TDMI processor core performs the main
decode off the rising edge of the clock during the decode stage. From this, the core
commits to executing the instruction, and so performs an instruction fetch. The
coprocessor instruction pipeline keeps in step with the ARM9TDMI by monitoring
INMREQ.

At thefalling edge of GCLK, if N\WAIT isHIGH, and INMREQ isLOW, an
instruction fetchistaking place, and 1 D[31: 0] will contain thefetched instruction onthe
next falling edge of the clock, when nWAIT is HIGH. This means that:

. the last instruction fetched should enter the decode stage of the coprocessor
pipeline

. the instruction in the decode stage of the coprocessor pipeline should enter its
execute stage

. the fetched instruction should be latched.

In all other cases, the ARM9TDMI pipeline is stalled, and the coprocessor pipeline
should not advance.

Figure 4-2 shows the timing for these signals, and indicates when the coprocessor
pipeline should advance its state. In this timing diagram, Coproc Clock shows a
processed version GCLK with InMREQ andnWAIT. This is one method of
generating a clock to reflect the advance of the ARM9TDMI pipeline.

Im

|

Ny
N

Figure 4-2 ARM9TDMI coprocessor clocking

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 4-5

ARMOITDMI Coprocessor Interface

During the execute stage, the condition codes are combined with the flags to determine
whether the instruction really executes or not. The output PASS is asserted (HIGH) if
the instruction in the execute stage of the coprocessor pipeline:

. iS a coprocessor instruction

. has passed its condition codes.

If a coprocessor instruction busy-walf\SSis asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-w&fiSH
is driven LOW, and the coprocessor will stop execution of the coprocessor instruction.

A further outputl. ATECANCEL, is used to cancel a coprocessor instruction when the
instruction preceding it caused a data abort. This is valid on the rising eGgH_&f

on the cycle that follows the first execute cycle of the coprocessor instructions. This is
the only cycle in whichk ATECANCEL can be asserted.

On the falling edge of the clock, the ARMOTDMI processor core examines the
coprocessor handshake sign@ldSD[1:0] or CHSE[1:0]:

. If a new instruction is entering the execute stage in the next cycle, it examines
CHSD[1:0].
. If the currently executing coprocessor instruction requires another execute cycle,

it examinesCHSE[1:0].
The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9TDMI processor core takes the undefined instruction
trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9TDMI processor core should stall until the coprocessor
can catch up. This is known as they-wait condition. In this case, the
ARMOTDMI processor core loops in an idle state waitingbiSE[1:0]
to be driven to another state, or for an interrupt to occur.

If CHSE[1:0] changes to ABSENT, the undefined instruction trap will
be taken.

If CHSE[1:0] changes to GO or LAST, the instruction will proceed as
described below.

If an interrupt occurs, the ARM9TDMI processor core is forced out of the
busy-wait state. This is indicated to the coprocessor byAISS signal
going LOW. The instruction will be restarted at a later date and so the

4-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMOITDMI Coprocessor Interface

coprocessor must not commit to the instruction (it must not change any
of the coprocessor’s state) until it has sB&$S HIGH, when the
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARMOTDMI processor core and the coprocessor must also consider the
state of thd?ASS signal before actually committing to the instruction.

For an LDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still need to be
transferred. When only one further word is to be transferred, the
coprocessor drives the handshake signals with LAST.

In phase 2 of the execute stage, the ARMOTDMI processor core outputs
the address for the LDC/STC. Also in this phdxeM REQ is driven

LOW, indicating to the memory system that a memory access is required
at the data end of the device. The timing for the data@f81:0] for an

LDC andDD[31:0] for an STC is shown in Figure 4-1 on page 4-4.

LAST An LDC or STC can be used for more than one item of data. If this is the
case, possibly after busy waiting, the coprocessor drives the coprocessol
handshake signals with a number of GO states, and in the penultimate
cycle LAST (LAST indicating that the next transfer is the final one). If
there was only one transfer, the sequence would be
[WAIT,[WAIT,...]],LAST.

For both MRC and STC instructions, tB®IN[31:0] bus is owned by the coprocessor,
and can hence be driven by the coprocessor from the cycle after the relevant instructio
enters the execute stage of the coprocessor pipeline, until the next instruction enters tt
execute stage of the coprocessor pipeline. This is the case even if the instruction is
subject to & ATECANCEL or thePASS signal is not asserted.

For efficient coprocessor design, an unmodified versiga@if K should be applied to
the execution stage of the coprocessor. This will allow the coprocessor to continue
executing an instruction even when the ARM9TDMI pipeline is stalled.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-7

ARMOITDMI Coprocessor Interface

4.2.1 Coprocessor handshake encoding

Table 4-1 shows how the handshake signals CHSDJ[1:0] and CHSE[1:0] are encoded.

Table 4-1 Handshake signals

CHSD/E[1:0]

ABSENT 10
WAIT 00
GO 01
LAST 1

If acoprocessor is not attached to the ARM9TDMI, the handshake signals must be
driven with “10” ABSENT, otherwise the ARM9TDMI processor will hang if a
coprocessor enters the pipeline.

If multiple coprocessors are to be attached to the interface, the handshaking signals can
be combined by ANDing bit 1, and ORing bit 0. In the case of two coprocessors which
have handshaking signal#1SD1, CHSE1 andCHSD2, CHSE2 respectively:

CHSD[1]<= CHSD1[1] AND CHSD2[1]
CHSD[0]<= CHSD1[0] ORCHSD2[0]
CHSE[1]<= CHSE1[1] AND CHSE2[1]
CHSE[0]<= CHSE1[0] OR CHSE2[0]

4-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMOITDMI Coprocessor Interface

4.3 MCR/MRC

These cycles ook very similar to STC/LDC. An example, with a busy-wait state, is
shown in Figure 4-3:

ARM Processor Decode Execute Memory Write |
Pipeline ‘ (GP) (G‘o) ‘ (LA‘ST) |
Coprocessor Pipeline |«—— Decode — ‘<—E’(‘g%‘;te4> | M(eemoo)’y e (‘L’:”S‘% |
| | | | |

| | |
GCLK J 4} k X (r
\ \ \ \ \
ID[31:0] 4(5:\ I \ \
| ‘ L J ‘ L J ‘ | ‘
| | \ \ \
INMREQ \ | ﬂ | / | | |
| | | | |
PASS ' J / | \ ' !
| | | | |
| | | | |
CHSDI[1:0] | X LasT | X | | |
| | | | |
]] |]]
CHSE[1:0] I | X Gnored X | |
| | | | |
DD[31:0] | | x ‘ X | |
MCR T T i T I
| | | | |
DDIN[31:0] ‘ ‘ ‘ 11 ‘ ‘
MRC ‘ ‘ \ Ll \ \
| | | | |

Figure 4-3 ARM9TDMI MCR / MRC transfer timing

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-9

ARMOITDMI Coprocessor Interface

First InMREQ isdriven LOW to denote that the instruction on I D is entering the
decode stage of the pipeline. This causes the coprocessor to decode the new instruction
and drive CHSD[1: 0] asrequired. Inthe next cycle InM REQ isdriven LOW to denote
that theinstruction hasnow been issued to the execute stage. If the condition codes pass,
and hence the instruction isto be executed, the PASS signal is driven HIGH and the
CHSD[1:0] handshake busis examined (it isignored in all other cases). For any
successive execute cyclesthe CHSE[1: 0] handshake busis examined. Whenthe LAST
condition is observed, the instruction is committed. In the case of an MCR, the
DD[31:0] busisdriven with the register data. In the case of an MRC, DDIN[31:0] is
sampled at the end of the ARM9TDMI memory stage and written to the destination
register during the next cycle.

4-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMOITDMI Coprocessor Interface

4.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9TDMI pipeline
during itsfirst decode cycle, the ARM9TDMI pipeline will interlock for one or more
cycles until the datais available. An example of thisiswhere the register being
transferred is the destination from a preceding LDR instruction. In this situation the
MCR instruction will enter the decode stage of the coprocessor pipeline, and remain
there for anumber of cycles before entering the execute stage. Figure 4-4 on page 4-12
gives an example of an interlocked MCR.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-11

ARMOITDMI Coprocessor Interface

I I I
ARM Processor Decode | Execute Execute | ‘ |
+|<—Decode —» |<— —> | —» | «—Memory —»> | «— Write —>

Pipeline * (interlock) | (WAIT) (LAST) | | |
! I
Execute Execute

|
Coprocessor P|pe||ne ‘«Decode — ‘ <—Decode ‘ - (WAIT) —> ‘ -« (LAST) — ‘« Memory — ‘ <— Write —» ‘

oK J IR L L

ID[31:0] e [| [:j | | |

INMREQ __w ”_____Tl_n___u \ | | I

PASS

LATECANCEL

WAIT WAIT

CHSD[1:0]

CHSE[L:0]

DD[31:0]
MCR

DDIN[31:0]
MRC

]
| I

[
|
|
|
|
|
|
T
|
|
| LAST
.
I
|
|
|
|
|
|

Figure 4-4 ARM9TDMI interlocked MCR

4-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

45 CDP

ARMOITDMI Coprocessor Interface

CDPsignalsnormally executeinasingle cycle. Likeall the previous cycles, INM REQ
isdriven LOW to signal when aninstruction is entering the decode and then the execute
stage of the pipeline:

. if the instruction really is to be executed, #&SS signal is be driven HIGH
during phase 2 of execute

. if the coprocessor can execute the instruction immediately it dZiM&D[1:0]
with LAST

. if the instruction requires a busy-wait cycle, the coprocessor diid&ED[1:0]

with WAIT and thenCHSE[1:0] with LAST.

Figure 4-5 on page 4-14 shows a CDP which is cancelled due to the previous instructiol
causing a data abort. The CDP instruction enters the execute stage of the pipeline an
is signalled to execute BBASS. In the following phase ATECANCEL is asserted.

This causes the coprocessor to terminate execution of the CDP instruction and for it tc
cause no state changes to the coprocessor.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 4-13

ARMOITDMI Coprocessor Interface

LDR with Data Abort

CDP: ARM Processor
Pipeline

CDP: Coprocessor Pipeline

<«—Execute —»

<«——Decode —>
I

<«—Memory —» | <+—

<«—Execute —»
I

<«——Decode —'«——Execute —» '«

|
Exception
Entry Start
|

4—'—>

Memory
(LateCancelled)

|
Exception
Continues
|

4—'—>

\ \
| |
\ \
GCLK ’ { / / / _
\ \ \ \ \
\ \ \ \ \
ID[3L0] Lo L | [] | | |
\ \ \ \ \
INMREQ \ I | | | |
\ \ \ \ \
| | | | |
PASS | | / | \ | |
\ \ \ \ \
I I \ I I
LATECANCEL | | > | | |
| | / | | |
CHSD[1:0] I LasT | | | |
| | | | |
| | | | |
CHSE[1:0] | | Ignored | X | |
| | | | |
DABORT | | \ | | |
i i i i i
\ \ \ \ \
Figure 4-5 ARM9TDMI late cancelled CDP
4-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMOITDMI Coprocessor Interface

4.6 Privileged instructions

The coprocessor may restrict certain instructions for use in privileged modes only. To
dothis, the coprocessor will havetotrack thel nT RANS output. Figure 4-6 showshow
INTRANS changes after a mode change.

\ ‘ ‘ \ \ \ \
Mode Change kExe‘cute — «(I(E:Xyi(;:t;) —> | (EC);/?:(I:;l??) — &Mer‘nory — <—Wr‘ite — | |
CPP: ARM Processor <+—Decode — | «—Decode — | «— Decode — | «—Execute — | +—Memory — | «— Write —» ‘
Pipeline ‘ ! ‘ w ‘ w
CDP: Coprocessor Pipeline ‘F Decode —» ‘ <—Decode — ‘ <—Decode — ‘ <—Execute — ‘ <—Memory — ‘ <— Write —» ‘
\ \ \ \ \ \ \
\ \ \ \ \ \ \
ootk S e e ey
| | | | | | |
D31 ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ
X CPRT
[31.0] | | | | | | |
| | | | | | |
INMREQ “ \” | \\\ \, | | |
\ \ \ \ \ \
| | | | | | |
INTRANS Old Mode ‘ ‘ New Mode ‘ ‘ ‘ ‘
/InM[4:0] !
\ \ \ \ \ \ \
PASS | | | | I ! \ | 1
a a a a | a a
\ \ \ \ \ \ \
LATECANCEL | | |] |
| | | | | | |
i 1 1 1 i i i
CHSD[lZO] | Ignored ‘ Ignored ‘ LAST | | | |
\ \ \ \ \ \ \
CHSE[lZO] | | | | Ignored ‘ | |
T T T T ! T T
\ \ \ \ \ \ \

Figure 4-6 ARMOTDMI privileged instructions

Thefirst two CHSD responses are ignored by the ARMOTDMI becauseit is only the
final CHSD response, as the instruction moves from decode into execute, that counts.
This allows the coprocessor to change its response as INnTRANS/InM[4:0] changes.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-15

ARMOITDMI Coprocessor Interface

4.7 Busy-waiting and interrupts
The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of acoprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the decode stage instruction
drives WAIT onto CHSD[1:0]. When the instruction concerned enters the execute
stage of the pipeline the coprocessor may drive WAIT onto CHSE[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.
For interrupt latency reasons the coprocessor may be interrupted while busy-waiting,
thus causing the instruction to be abandoned. Abandoning execution is done through
PASS. The coprocessor must monitor the stage of PASS during every busy-wait cycle.
If it isHIGH, the instruction should still be executed. If it is LOW, the instruction
should be abandoned. Figure 4-7 shows a busy-waited coprocessor instruction being
abandoned due to an interrupt:
ARM Processor «D | de > <7E><e‘<:ute Exe‘cute Exe‘cute ExeL:ute R Exce‘ption N |
Pipeline ec“’ € (WAIT) (WAIT) (WAIT) Intertupted b Entry ‘
Coprocessor Pipeline | +—Decode —» [« LU~ |+ A —> 1 WA 1 *~ WA —|“Abandoned”|
\ \ \ \ \ \ \
| | |
J L L L
\ \ \ \ \ \ \
: L T Y I I \ \ \ \
|D[310] Instr
R \ L \ L \ \ \ \ \
\ \ | | | | |
INMREQ _\ \H \I I \ \ \\ \ \
\ \ \ \ \ \ \
\ \ \ \ \ \ \
PASS | | I \ \ \ \ | I |
\ \ \ \ \ \ \
LATECANCEL |] e | |
\ \ \ \ \ \ \
| | | | | | |
CHSD[1:0] | WAIT | | | | | |
\ \ \ \ \ \ \
CHSEJ1:0] ! ! warr | warr | warr | Ignored ‘ ‘
i i i i i i i
\ \ \ \ \ \ \
Figure 4-7 ARM9TDMI busy waiting and interrupts
4-16 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMOITDMI Coprocessor Interface

4.8 Coprocessor 15 MCRs

Coprocessor 15 istypically reserved for use as a system control coprocessor. For an
M CR to coprocessor 15, it ispossibleto transfer the coprocessor datato the coprocessor
onthel A and DA buses. To do thisthe coprocessor should drive GO on the coprocessor
handshake signals for a number of cycles. For each cycle that the coprocessor
responded with GO on the handshake signals the coprocessor data will be driven onto
I A and DA as shown in Figure 4-8.

| | |
Qiimhfemcessor «Dec:ode» o Ereate |, Breate , | Beate «Men:mry» kw%nea :
I I I
Coprocessor Pipeline |+ Decode »\kE(xég‘)‘b\kE?gg‘e '?Eicsﬁ)e»‘«nnemory > Wiite —» |
\ \ \ \ \ \ \
| | |
GCLK J]]
L
\ \ \ \ \ \ \
ID[31.0] 4@% M } | x x | |
\ \ \ \ \ \ \
\ | | | | | |
INMREQ E\ \B \H \ \\ \ \ \
\ \ \ \ \ \ \
\ \ 1 1 \ \ \
PASS ‘ | l/ \ \\ | | |
\ \ \ \ \ \ \
LATECANCEL ‘ \ \ \ | | [\ \ \
\ \ \ \ \ \ \
; - ; ; ; ; ;
CHSD[L0] | 1HEN | | | | |
\ \ \ \ \ \ \
CHSE[1:0] ‘ | !) co | l Last | ‘ ignored ! K ! |
f f i i i f f
\ \ \ \ \ \ \
E)AEELO] ‘ ‘ ‘ x ‘ Coproc Data ‘ ‘ l ‘ ‘
\ \ \ \ \ \ \
f f f f f f f
IABL0] ‘ | | x i x | | |
\ \ \ \ \ \ \
DA[31:O] ‘ ‘ ‘ x ‘ Coproc Data ‘ x ‘ ‘ ‘
[[I I [[[
| | | | | | |

Figure 4-8 ARM9TDMI coprocessor 15 MCRs

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-17

ARMOITDMI Coprocessor Interface

4-18 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 5
Debug Support

This chapter describes the debug support for the ARM9TDMI, including the
Embedded| CE macrocell:

. About debug on page 5-2.

. Debug systems on page 5-3.

. Debug interface signals on page 5-5.

. Scan chains and JTAG interface on page 5-11.

. The JTAG state machine on page 5-12.

. Test data registers on page 5-19.

. ARM9TDMI core clocks on page 5-26.

. Clock switching during debug on page 5-27.

. Clock switching during test on page 5-28.

. Determining the core state and system state on page 5-29.
. Exit from debug state on page 5-32.

. The behavior of the program counter during debug on page 5-35.
. EmbeddedI CE macrocell on page 5-38.

. Vector catching on page 5-46.

. Single stepping on page 5-47.

. Debug communications channel on page 5-48.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved.

Debug Support

5.1 About debug

The ARM9TDMI debug interface is based on |EEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture. Please refer to this standard for an
explanation of thetermsused in this chapter and for a description of the TAP controller
states.

The ARM9TDMI contains hardware extensions for advanced debugging features.
These are intended to ease the user’s development of application software, operating
systems, and the hardware itself.

The debug extensions allow the core to be stopped by one of the following:
. a given instruction fetch (breakpoint)

. a data access (watchpoint)

. asynchronously by a debug request.

When this happens, the ARM9TDMI is said to belébug state. At this point, the

internal state of the core and the external state of the system may be examined. Once
examination is complete, the core and system state may be restored and program
execution resumed.

The ARM9TDMI is forced into debug state either by a request on one of the external
debug interface signals, or by an internal functional unit known as the EmbeddedICE
macrocell. Once in debug state, the core isolates itself from the memory system.
The core can then be examined while all other system activity continues as normal.

The internal state of the ARM9TDMI is examined via a JTAG-style serial interface,
which allows instructions to be serially inserted into the pipeline of the core without
using the external data bus. Thus, when in debug state, a store-multiple (STM) could be
inserted into the instruction pipeline, and this would export the contents of the
ARMOTDMI registers. This data can be serially shifted out without affecting the rest of
the system.

5-2

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.2 Debug systems

Debug Support

The ARM9TDMI forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARMOI9TDMI. A typical system isshownin Figure 5-1:

Debug Host computer running armsd or ADW

\

Protocol | for example, Multi-ICE

converter
\\J:AG

Debug Development system
target containing ARMOTDMI

Figure 5-1 Typical debug system

Such a system typically has three parts:

The debug host.
The protocol converter.
The ARM9TDMI on page 5-4.

These are described in the following paragraphs.

5.2.1 The debug host

The debug host is a computer, for example a personal computer, running a
software debugger such as armsd, for example, or ADW. The debug host allows
the user to issue high-level commands such as “set breakpoint at location XX”,
or “examine the contents of memory from 0x0 to 0x100".

5.2.2 The protocol converter

The debug host is connected to the ARM9TDMI development system via an
interface (an RS232, for example). The messages broadcast over this connectio
must be converted to the interface signals of the ARM9TDMI. This function is
performed by the protocol converter, for example, Multi-ICE.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-3

Debug Support

5.2.3 The ARMOTDMI

The ARM9TDMI, with hardware extensions to ease debugging, is the lowest
level of the system. The debug extensions allow the user to stall the core from
program execution, examine itsinternal state and the state of the memory
system, and then resume program execution.

The debug host and the protocol converter are system dependent. The rest of this

chapter describes the ARMOTDMI hardware debug extensions.

5-4

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.3 Debug interface signals

There are four primary external signals associated with the debug interface:

. |EBKPT, DEWPT, andEDBGRQ, with which the system asks the
ARM9TDMI to enter debug state

. DBGACK, which the ARM9TDMI uses to flag back to the system when it is in
debug state.

5.3.1 Entry into debug state on breakpoint

Any instruction being fetched for memory is latched at the end of phase 2. To apply a
breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
following phasel. This minimizes the setup time, giving the EmbeddedICE macrocell
an entire phase in which to perform the comparison. This is shown in Figure 5-2 on
page 5-6.

External logic, such as additional breakpoint comparators, may be built to extend the
functionality of the EmbeddedICE macrocell. Their output should be applied to the
|[EBKPT input. This signal is simply ORed with the internally gener8ieshk point

signal before being applied to the ARM9TDMI core control logic.

A breakpointed instruction is allowed to enter the execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All writes from previous
instructions complete as normal.

The decode cycle of the debug entry sequence occurs during the execute cycle of the
breakpointed instruction. The latchBdeak point signal forces the processor to start
the debug sequence.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-5

Debug Support

F1

D1

F2

El

D2

F

GCLK J

Ddebug

w1

M2

E

Edebugl

w2

Mi

wl

w2

L/TL

Edebug2

Wi

IA[31:0]

|
|

ID[31:0]

IEBKPT

DBGACK

o

5.3.2

Breakpoints and exceptions

Figure 5-2 Breakpoint timing

A breakpointed instruction may have a prefetch abort associated with it. If so, the
prefetch abort takes priority and the breakpoint isignored. (If there is a prefetch abort,
instruction data may beinvalid, the breakpoint may have been data-dependent, and as
the data may be incorrect, the breakpoint may have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction
which may have a breakpoint set on it. Therefore, the breakpoint takes priority over the

SWI or undefined instruction.

Onaninstruction boundary, if thereis abreakpointed instruction and aninterrupt (IRQ
or FI1Q), the interrupt is taken and the breakpointed instruction is discarded. Once the
interrupt has been serviced, the execution flow is returned to the original program.

5-6

© Copyright ARM Limited 2000. All rights reserved.

ARM DDI 0180A

5.3.3 Watchpoints

Debug Support

This meansthat theinstruction which waspreviously breakpointedisfetched again, and
if the breakpoint is still set, the processor enters debug state once it reaches the execute
stage of the pipeline.

Oncethe processor has entered debug state, it isimportant that further interrupts do not
affect the instructions executed. For this reason, as soon as the processor enters debug
state, interrupts are disabled, although the state of the | and F bitsin theProgram Satus
Register (PSR) are not affected.

Entry into debug state following a watchpointed memory access isimprecise. Thisis
necessary because of the nature of the pipeline and thetiming of the Watchpoint signal.

After awatchpointed access, the next instruction in the processor pipeline is always
allowed to complete execution. Wherethisinstruction isasingle-cycle data-processing
instruction, entry into debug stateis delayed for one cycle while the instruction
completes. The timing of debug entry following awatchpointed load in this caseis
shown in Figure 5-3 on page 5-8.

Note

Although instruction 5 enters the execute state, it is not executed, and there is no state
update as a result of thisinstruction. Once the debugging session is complete, normal
continuation would involve areturn to instruction 5, the next instruction in the code
sequence which has not yet been executed.

Theinstruction following the instruction which generated the watchpoint could have
modified the Program Counter (PC). If this has happened, it will not be possible to
determine the instruction which caused the watchpoint. A timing diagram showing
debug entry after a watchpoint where the next instruction is a branch is shown in
Figure 5-4 on page 5-9. However, it is always possible to restart the processor.

Once the processor has entered debug state, the ARM9TDMI core may beinterrogated
to determine its state. In the case of awatchpoint, the PC contains avalue that is five
instructions on from the address of the next instruction to be executed. Therefore, if on
entry to debug state, in ARM state, theinstruction SUB PC, PC, #20 isscannedin and
the processor restarted, execution flow would return to the next instruction in the code
sequence.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-7

Debug Support

Ddebug | Edebugl | Edebug2

\
\
F5 D5 E5 M5 W5

|
|
FDp DDp EDp MDp WDp
Fldr Didr Eldr Midr Widr
\
F2 D2 E2 M2 w2 \
F1 D1 E1 M1 w1 |

o Tl el LR L
weee || 11|

D[31:0] N L P D N [y
' [0 N R o R it A A R o L 6 B /
A[31:0] /
| |
D[31:0] | /
\
+ |
DIN[31:0] B

atchpoint m
|
‘ \v
BGACK \ ’_
\

Figure 5-3 Watchpoint entry with data processing instruction

5-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

Ddebug Edebugl | Edebug2

FT DT ET
I
|
FB DB EB MB wB
Fidr Didr Eldr Midr widr

ceLk ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂdﬂ
e A }
|

1A[31:1] A A+ A+8 Tl T+4 T+8 T+C
\
ID[3L:0] lon— o b x —1{x1 | [L M L N /
' (I e A R o B R S i T /
\
DA[31:0] : /
| |
DD[31:0] | /
* |
\
DDIN[31:0] B ‘
\

Watchpoint ’T\
\
+ il
DBGACK \ ’_
|

Figure 5-4 Watchpoint entry with branch

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-9

Debug Support

53.4

53.5

5.3.6

Watchpoints and exceptions

If thereisan abort with the dataaccess aswell asawatchpoint, the watchpoint condition
islatched, the exception entry sequence performed, and then the processor enters debug
state. If thereisan interrupt pending, again the ARM9TDMI allowsthe exception entry
seguence to occur and then enters debug state.

Debug request

A debug request can take place through the Embedded! CE macrocell or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
request takes priority over any pending interrupt. Following synchronization, the core
will enter debug state when the instruction at the execution stage of the pipeline has
completely finished executing (once memory and write stages of the pipeline have
completed). While waiting for the instruction to finish executing, no more instructions
will beissued to the execute stage of the pipeline.

Actions of the ARM9TDMI in debug state

Once the ARM9TDMI isin debug state, both memory interfaces will indicate internal
cycles. This allows the rest of the memory system to ignore the ARM9TDMI and
function as normal. Since the rest of the system continues operation, the ARM9TDMI
will ignore aborts and interrupts.

The BIGEND signal should not be changed by the system while in debug state. If it
changes, not only will there be a synchronization problem, but the programmer’s view
of the ARM9TDMI will change without the knowledge of the debugger. ARESET

signal must also be held stable during debug. If the system applies reset to the
ARMOTDMI (nNRESET is driven LOW), the state of the ARMOTDMI will change
without the knowledge of the debugger.

When instructions are executed in debug state, the ARM9TDMI will change
asynchronously to the memory system outputs (excephMREQ, | SEQ,

DnMREQ, andDSEQ which change synchronously frddCL K). For example, every

time a new instruction is scanned into the pipeline, the instruction address bus will
change. If the instruction is a load or store operation, the data address bus will change
as the instruction executes. Although this is asynchronous, it should not affect the
system, because both interfaces will be indicating internal cycles. Care must be taken
with the design of the memory controller to ensure that this does not become a problem.

5-10

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.4 Scan chains and JTAG interface

Therearethree scan chainsinsidethe ARM9TDMI. Theseallow testing, debugging and
programming of the Embeddedl CE macrocell watchpoint units. The scan chains are
controlled by a JTAG-style Test Access Port (TAP) controller. In addition, support is
provided for an optional fourth scan chain. Thisisintended to be used for an external
boundary scan chain around the pads of apackaged device. Thesignalsprovided for this
scan chain are described on Scan chain 3 on page 5-25.

The three scan chains of the ARM9TDMI are referred to as scan chain O, 1 and 2.

Note

The ARMOTDMI TAP controller supports 32 scan chains. Scan chains 0 to 15 have
been reserved for use by ARM. Any extension scan chains should be implemented in
the remaining space. The SCREG[4:0] signals indicate which scan chain is being
accessed.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-11

Debug Support

55 The JTAG state machine

Theprocessof serial test and debugisbest explained in conjunction withthe JTAG state
machine. Figure 5-5 shows the state transitions that occur in the TAP controller.

The state numbers are also shown on the diagram. These are output from the
ARM9TDMI on the TAPSM[3:0] hits.

Test-Logic Reset
OxF

tms=1 tms=0

t
Run-Test/Idle
0xC

tms=0

tms=1

tms=1

Select-DR-Scan
ox7

tms=0

Capture-DR
0x6

tms=0

Exitl-DR
Ox1

tms=0

Pause-DR
0x3

tms=0

tms=1

Exit2-DR
0x0

tms=1

Update-DR
0x5

tms=0

Select-IR-Scan
0x4

tms=0

Capture-IR
OxE

tms=0

Shift-IR ’
OxA

tms=0

tms=1

Exitl-IR
0x9

tms=0

0xB

tms=0

tms=1

Exit2-IR
0x8

tms=1

Update-IR
0xD

tms=1 tms=0

-t

Figure 5-5 Test access port (TAP) controller state transitions

5-12

© Copyright ARM Limited 2000. All rights reserved.

ARM DDI 0180A

551

55.2

553

Reset

Debug Support

The JTAG interface includes a state-machine controller (the TAP controller). In order
to force the TAP controller into the correct state after power-up of the device, areset
pulse must be applied to the nTRST signal. If the JTAG interfaceisto be used, nTRST
must be driven LOW, and then HIGH again. If the boundary scan interface ishot to be
used, the nTRST input may be tied permanently LOW.

Note
A clock on TCK is not needed to reset the device.

The action of reset is as follows:

1. System modeis selected. The boundary scan chain cells do not intercept any of
the signals passing between the external system and the core.

2. ThelDCODE instruction is selected. If the TAP controller is put into the
Shift-DR state and TCK is pulsed, the contents of the ID register are clocked out
of TDO.

Pullup resistors

The |EEE 1149.1 standard effectively requires TDI and TM Sto have internal pullup
resistors. In order to minimize static current draw, these resistors are not fitted to the
ARMO9TDMI. Accordingly, the four inputs to the test interface (the TDO, TDI and
TMSsignals plus TCK) must al be driven to valid logic levels to achieve normal
circuit operation.

Instruction register

Theinstruction register is four bitsin length. Thereis no parity bit. The fixed value
loaded into the instruction register during the CAPTURE-IR controller state is 0001.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-13

Debug Support

5.5.4 Public instructions

The following public instructions are supported:

Table 5-1 Public instructions

Instruction Binary code
EXTEST 0000
SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
CLAMP 0101
HIGHZ 0111
CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100

In the descriptions that follow, TDI and TM S are sampled on the rising edge of TCK
and all output transitions on TDO occur as aresult of the falling edge of TCK.

EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction.
The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register isloaded with the EXTEST instruction, all the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output
scan cells to the system are captured by the scan cells.

Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan chain
viaTDO, while new test dataiis shifted in viathe TDI input. Thisdatais applied
immediately to the system logic and system pins.

5-14

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

SCAN_N (0010)
This instruction connects the scan path select register between TDI and TDO.
During the CAPTURE-DR state, the fixed value 10000 is loaded into the register.

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

Inthe UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO, and remains connected until asubsequent SCAN_N instruction
isissued. On reset, scan chain 3 is selected by default. The scan path select register is
five bits long in thisimplementation, although no finite length is specified.

INTEST (1100)

The selected scan chainis placed in test mode by the INTEST instruction. The INTEST
instruction connects the sel ected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the
output scan cells, and the value of the data applied from the system logic to the input
scan cellsis captured.

Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan chain
viathe TDO pin, while new test datais shifted in viathe TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register)
between TDI and TDO. The ID register is a 32-bit register that allows the
manufacturer, part number, and version of a component to be determined through the
TAP. The ID register isloaded from the TAPID[31:0] input bus, which should be tied
to a constant value being the unique JTAG IDCODE for the device.

When the instruction register is loaded with the IDCODE instruction, al the scan cells
are placed in their normal (system) mode of operation.

Inthe CAPTURE-DR state, the deviceidentification codeiscaptured by the D register.

Inthe SHIFT-DR state, the previously captured deviceidentification codeis shifted out
of the ID register viathe TDO pin, while datais shifted in viathe TDI pininto the ID
register.

Inthe UPDATE-DR state, the ID register is unaffected.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-15

Debug Support

BYPASS (1111)

The BY PASS instruction connects a 1-bit shift register (the bypass register) between
TDI and TDO.

When the BY PASS instruction is loaded into the instruction register, all the scan cells
areplaced in their normal (system) mode of operation. Thisinstruction has no effect on
the system pins.

Inthe CAPTURE-DR state, alogic 0 is captured by the bypass register.

Inthe SHIFT-DR state, test datais shifted into the bypass register via TDI and out via
TDO after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

Note
All unused instruction codes default to the BY PASS instruction.

CLAMP (0101)

This instruction connects a 1-bit shift register (the bypass register) between TDI and
TDO.

When the CLAMP instruction isloaded into the instruction register, the state of all the
output signalsis defined by the values previously loaded into the currently-loaded scan
chain.

Note

This instruction should only be used when scan chain 0 is the currently selected scan
chain.

Inthe CAPTURE-DR state, alogic O is captured by the bypass register.

Inthe SHIFT-DR state, test data is shifted into the bypassregister viaTDI and out via
TDO after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

This instruction connects a 1-bit shift register (the bypass register) between TDI and
TDO.

5-16

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

When the HIGHZ instruction is loaded into the instruction register, all ARM9TDMI
outputs are driven to the high impedance state and the external HIGHZ signal isdriven
HIGH. Thisisasif the signal TBE had been driven LOW.

Inthe CAPTURE-DR state, alogic 0 is captured by the bypass register. In the
SHIFT-DR state, test datais shifted into the bypass register viaTDI and out via TDO
after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

Thisinstruction connects a 1-bit shift register (the bypass register) between TDI and
TDO.

When the CLAMPZ instruction isloaded into the instruction register and scan chain O
isselected, all the 3-state outputs (as described above) are placed in their inactive state,
but the data supplied to the outputs is derived from the scan cells. The purpose of this
instruction is to ensure that, during production test, each output can be disabled when

its datavalue is either alogic O or logic 1.

Inthe CAPTURE-DR state, alogic O is captured by the bypass register.

Inthe SHIFT-DR state, test datais shifted into the bypass register via TDI and out via
TDO after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, al
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on
the rising edge of TCK. Normal system operation is unaffected.

Inthe SHIFT-DR state, the sampled test datais shifted out of the boundary scan viathe
TDO pin, while new datais shifted in viathe TDI pin to preload the boundary scan
parallel input latch. Note that this datais not applied to the system logic or system pins
while the SAMPLE/PRELOAD instruction is active.

Thisinstruction should be used to prel oad the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-17

Debug Support

RESTART (0100)

Thisinstructionisused to restart the processor on exit from debug state. The RESTART
instruction connectsthe bypass register between TDI and TDO and the TAP controller
behaves asif the BY PASS instruction had been loaded. The processor will

resynchronize back to the memory system once the RUN-TEST/ IDLE stateis entered.

5-18 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.6 Test dataregisters

The following test data registers may be connected between TDI and TDO:
. Bypassregister.

. ARMOTDMI device identification (ID) code register.

. Instruction register on page 5-20.

. Scan chain select register on page 5-20.

. Scan chains 0, 1, 2, and 3 on page 5-22.

These are described below.

5.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
betweenT DI andTDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred fid to TDO in
the SHIFT-DR state with a delay of oR€K cycle. There is no
parallel output from the bypass register. A logic O is loaded from
the parallel input of the bypass register in CAPTURE-DR state.

5.6.2 ARM9TDMI device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits.

Operating mode When the IDCODE instruction is current, the ID register is
selected as the serial path betw&&t andTDO. There is no
parallel output from the ID register. The 32-bit identification code
is loaded into the register from the parallel inputs of the
TAPID[31:0] input bus during the CAPTURE-DR state.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-19

Debug Support

The IEEE format of the ID register is as shown in Figure 5-2:

Table 5-2 ID code register

Bits Contents
31-28 Version number
27-12 Part number
11-1 Manufacturer identity
0 1
5.6.3 Instruction register
Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode When in SHIFT-IR state, theinstruction register is selected asthe
serial path between TDI and TDO.

During the CAPTURE-IR state, the value 0b0001 is loaded into this register. Thisis
shifted out during SHIFT-IR (least significant bit first), while anew instruction is
shifted in (least significant bit first). During the UPDATE-IR state, the valuein the
instruction register becomes the current instruction. On reset, IDCODE becomes the
current instruction.

5.6.4 Scan chain select register
Purpose Changes the current active scan chain.

Length 5 hits.

Operating mode After SCAN_N has been selected asthe current instruction, when
in SHIFT-DR state, the scan chain select register is selected asthe
seria path between TDI and TDO.

During the CAPTURE-DR state, the value 0b10000 is loaded into thisregister. Thisis
shifted out during SHIFT-DR (least significant bit first), whileanew valueis shifted in
(least significant bit first).

During the UPDATE-DR state, the value in the register selects a scan chain to become
the currently active scan chain. All further instructions such as INTEST then apply to
that scan chain.

5-20 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

The currently selected scan chain only changes when a SCAN_N instruction is
executed, or areset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chainisreflected on the SCREG[4: 0] output
bus. The TAP controller may be used to drive external scan chainsin addition to those
withinthe ARM9TDMI macrocell. The external scan chain must be assigned a number
and control signalsfor it, and can be derived from SCREG[4:0], IR[3:0],
TAPSM[3:0], TCK1and TCK2.

Thelist of scan chain numbers alocated by ARM are shown in Table 5-3. An external
scan chain may take any other number. The serial data stream applied to the external
scan chain is made present on SDIN. The serial data back from the scan chain must be
presented to the TAP controller on the SDOUTBS input.

The scan chain present between SDIN and SDOUTBSwill be connected between TDI
and TDO whenever scan chain 3 is selected, or when any of the unassigned scan chain
numbers is selected. If there is more than one external scan chain, a multiplexor must
be built externally to apply the desired scan chain output to SDOUTBS. The
multiplexor can be controlled by decoding SCREG[4:0].

Table 5-3 Scan chain number allocation

Scan chain number Function

0 Macrocell scan test

1 Debug

2 Embeddedl CE macrocell programming
3 External boundary scan

4-15 Reserved

16-31 Unassigned

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-21

Debug Support

5.6.5 Scan chains 0, 1, 2, and 3

These allow serial access to the core logic, and to the Embeddedl CE macrocell for
programming purposes. Each scan cell isfairly ssmple and can perform two basic
functions, capture and shift.

Scan chain 0

Purpose Primarily for inter-devicetesting (EXTEST), and testing the core
(INTEST). Scan chain 0 is selected viathe SCAN_N instruction.

Length 184 hits.

INTEST allows serial testing of the core. The TAP controller must be placed in the

INTEST mode after scan chain 0 has been selected.

. During CAPTURE-DR, the current outputs from the core’s logic are captured in
the output cells.

. During SHIFT-DR, this captured data is shifted out while a new serial test
pattern is scanned in, thus applying known stimuli to the inputs.

. During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller
should only spend one cycle in RUN-TEST/IDLE. The whole operation may
then be repeated.

EXTEST allows inter-device testing, useful for verifying the connections between

devices in the design. The TAP controller must be placed in EXTEST mode after scan

chain 0 has been selected.

. During CAPTURE-DR, the current inputs to the core’s logic from the system are
captured in the input cells.

. During SHIFT-DR, this captured data is shifted out while a new serial test
pattern is scanned in, thus applying known values on the core’s outputs.

. During RUN-TEST/IDLE, the core is not clocked.

The operation may then be repeated.

5-22

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

Scan chain 1

Purpose Primarily for debugging, although it can be used for EXTEST on
the data data bus DD[31:0] and theinstruction databus | D[31:0].
Scan chain 1is selected viathe SCAN_N TAP controller
instruction.

Length 67 hits.

This scan chain is 67 bitslong, 32 bits for data values, 32 bits for instruction data, and

three additional bits, SY SSPEED, DDEN and an used bit. The three bits serve four

different purposes:

. Under normal INTEST test conditions, tb®EN signal can be captured and
examined.

. During EXTEST test conditions, a known value can be scanne®DEN to
be driven into the rest of the system. If a logic 1 is scanne®DEN, the data

data buD[31:0] will drive out the values stored in its scan cells. If a logic O is

scanned int@DEN, DD[31:0] will capture the current input values.

. While debugging, the value placed in the SYSSPEED control bit determines
whether the ARM9TDMI synchronizes back to system speed before executing

the instruction.
. After the ARM9TDMI has entered debug state, the first time SYSSPEED is

captured and scanned out, its value tells the debugger whether the core has
entered debug state due to a breakpoint (SYSSPEED LOW), or a watchpoint

(SYSSPEED HIGH).

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-23

Debug Support

Scan chain 2

Purpose Allows accessto the Embedded! CE macrocell registers. Theorder
of the scan chain from TDI to TDO is
read/write
register address bits 4 to O,
data values bits 31 to 0.

Length 38 hits.

To accessthis serial register, scan chain 2 must first be selected viathe SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.

During SHIFT-DR, adatavalue is shifted into the seria register. Bits 32 to 36 specify
the address of the Embeddedl CE macrocell register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read).

5-24 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

Scan chain 3

Purpose Allows the ARM9TDMI to control an external boundary scan
chain.
Length User-defined.

Scan chain 3 is provided so that an optional external boundary scan chain may be
controlled viathe ARM9TDMI. Typically thiswould be used for a scan chain around
the pad ring of a packaged device. The following control signals are provided and are
generated only when scan chain 3 has been selected. These outputs are inactive at all
other times.

DRIVEOUTBS Thisisused to switch the scan cells from system mode to test
mode. Thissignal is asserted whenever either the INTEST,
EXTEST, CLAMP or CLAMPZ instruction is selected.

PCLKBS Thisisthe update clock, generated in the UPDATE-DR state.
Typicaly the value scanned into the chain will be transferred to
the cell output on the rising edge of thissignal.

ICAPCLKBS, ECAPCLKBS
Thesearethe capture clocks used to sample datainto the scan cells
during INTEST and EXTEST respectively. These clocks are
generated in the CAPTURE-DR state.

SHCLK1BS, SHCLK?2BS
These are non-overlapping clocks generated in the SHIFT-DR
state that are used to clock the master and slave element of the
scan cells respectively. When the state machineis not in the
SHIFT-DR state, both these clocks are LOW.

In addition to these control outputs, SDIN output and SDOUTBS input are also
provided. When an external scan chainisin use, SDOUT BS should be connected to the
serial data output and SDIN should be connected to the serial datainput.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-25

Debug Support

5.7 ARM9TDMI core clocks

The ARM9TDMI has two clocks, the memory clock GCLK, and an internally TCK
generated clock, DCL K. During normal operation, the coreis clocked by GCLK, and
internal logicholdsDCLK LOW. Whenthe ARM9TDM I isinthe debug state, the core
isclocked by DCLK under control of the TAP state machine, and GCLK may freerun.
The selected clock is output on the ECLK signal for use by the external system.

Note
When the coreis being debugged and is running from DCLK, nWAIT has no effect.

The two cases in which the clocks switch are during debugging and during testing.

5-26 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.8 Clock switching during debug

GCLK

DBGACK

DCLK

ECLK

When the ARM9TDM I enters debug state, it must switch from GCLK to DCLK. This
is handled automatically by logic in the ARM9TDMI. On entry to debug state, the
ARMOI9TDMI asserts DBGACK inthe HIGH phase of GCLK. The switch between the
two clocks occurs on the next falling edge of GCLK.

Sy

H L
| L

Figure 5-6 Clock switching on entry to debug state

The ARM9TDMI isforced to use DCLK asthe primary clock until debugging is
complete. On exit from debug, the core must be allowed to synchronize back to GCLK.
This must be donein the following sequence. The final instruction of the debug
seguence must be shifted into the instruction data bus scan chain, and clocked in by
asserting DCLK. At this point, RESTART must be clocked into the TAP controller
register.

The ARMOTDMI will now automatically resynchronize back to GCLK whenthe TAP
controller enters the RUN-TEST/IDLE mode and start fetching instructions from
memory at GCLK speed. For more information, refer to Exit from debug state on
page 5-32.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-27

Debug Support

5.9 Clock switching during test

When under serial test conditions, when test patterns are being applied to the core
through the JTAG interface, the ARM9TDMI must be clocked using DCL K. Entry into
test is less automatic than debug and some care must be taken.

On the way into test, GCLK must be held LOW. The TAP controller can how be used
to perform serial testing on the ARMOTDMI. If scan chain 0 and INTEST are selected,
DCLK isgenerated while the state machineisin RUN-TEST/IDLE state.

During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
thisisdone, GCLK can be alowed to resume. After INTEST testing, care should be
taken to ensure that the coreisin asensible state before switching back. The safest way
to do thisisto either select RESTART and then cause a system reset, or to insert

MOV PC, #0 into the instruction pipeline before switching back.

5-28 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.10 Determining the core state and system state

When the ARMOTDMI isin debug state, the core state and system state may be
examined. Thisis done by forcing load and store multiples into the pipeline.

Before the core state and system state can be examined, the debugger must first
determine whether the processor was in Thumb or ARM state when it entered debug.
Thisis achieved by examining bit 4 of the Embeddedl CE macrocell debug status
register. If thisis HIGH, the core was in Thumb state when it entered debug. If it is
LOW, the coreisin ARM state.

5.10.1 Determining the core state

If the processor has entered debug state from Thumb state, the simplest course of action
is for the debugger to force the core back into ARM state. Once thisis done, the
debugger can always execute the same sequence of instructions to determine the
processor state.

To force the processor into ARM state, the following sequence of Thumb instructions
should be executed on the core:

STR RO, [R1]; Save RO before use

MOV RO, PC; Copy PCinto RO

STR RO, [R1]; Save the PCin RO

BX PC, Junp into ARM state

MOV R8, R8; NOP (no operation)

MOV R8, R8; NOP

The above use of R1 as the base register for the stores is for illustration only—any

register could be used.

Since all Thumb instructions are only 16 bits long, the simplest course of action when
shifting them into scan chain 1 is to repeat the instruction twice on the instruction data
bus bits. For example, the encodingB®rRO is 0x4700. Thus, if 0x47004700 is shifted

into the 32 bits of the instruction data bus of scan chain 1, the debugger does not hav

to track from which half of the bus the processor expects to read instructions.

From this point on, the processor state can be determined by the sequences of ARM

instructions described below.

Once the processor is in ARM state, typically the first instruction executed would be:

STM RO, {RO- RL5}

This causes the contents of the registers to be made visible on the data data bus. The

values can then be sampled and shifted out.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-29

Debug Support

5.10.2 Determining

After determining the valuesin the current bank of registers, it may be desirable to
access banked registers. This can only be done by changing mode. Normally, a mode
change may only occur if the coreis already in a privileged mode. However, while in
debug state, a mode change from any mode into any other mode may occur. Note that
the debugger must restore the original mode before exiting debug state.

For example, assume that the debugger has been asked to return the state of the user
mode and FIQ mode registers, and debug state was entered in supervisor mode.

The instruction sequence could be:

STM A RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, [RO]; Save CPSR to determ ne current node
Bl C RO, RO, #0x1F; Clear node bits

ORR RO, RO, #0x10; Sel ect USER node

MSR CPSR, RO; Enter USER node

STM A RO, {R13-Rl14}; Save registers not previously visible
ORR RO, RO, #0x01; Select FIQ node

MSR CPSR, RO; Enter FIQ node

STM A RO, {R8-R14}; Save banked FI Q registers

All theseinstructions are said to execute at debug speed. Debug speed is much slower

than system speed since between each core clock, 67 scan clocks occur in order to shift

in aninstruction, or shift out data. Executing instructions more slowly than usual isfine

for accessing the core’s state since the ARM9TDMI is fully static. However, this same
method cannot be used for determining the state of the rest of the system.

While in debug state, only the following instructions may be inserted into the
instruction pipeline for execution:

. all data processing operations

. all load, store, load multiple and store multiple instructions

. MSR and MRS.

system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously. Therefore, the ARM9TDMI must be forced to
synchronize back to system speed. The 33rd bit of scan chain 1, SYSSPEED, controls
this.

A legal debug instruction may be placed in the instruction data bus of scan chain 1 with
bit 33 (the SYSSPEED bit) LOW. This instruction will then be executed at debug speed.
To execute an instruction at system speed, a NOP (suvaB0, R0) must be

scanned in as the next instruction with bit 33 set HIGH.

5-30

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.10.3

Debug Support

After the system speed instructions have been scanned into the instruction data bus and
clocked into the pipeline, the RESTART instruction must be loaded into the TAP
controller. Thiswill cause the ARM9TDMI automatically to resynchronize back to
GCLK when the TAP controller enters RUN-TEST/IDLE state, and execute the
instruction at system speed. Debug state will be reentered once the instruction
completes execution, when the processor will switch itself back to theinternally
generated DCLK. When the instruction has completed, DBGACK will be HIGH. At
this point INTEST can be selected in the TAP controller, and debugging can resume.

To determine whether a system speed instruction has completed, the debugger must
look at SY SCOMP (bit 3 of the Debug status register). To access memory, the
ARMITDMI must access memory through the data data bus interface, as this access
may be stalled indefinitely by nWAIT. Therefore, the only way to determine whether
the memory access has completed is to examine the SY SCOMP bit. When this bit is
HIGH the instruction has completed.

By the use of system speed |oad multiples and debug store multiples, the state of the
system memory can be passed to the debug host.

Instructions which may have the SYSSPEED bit set

The only valid instructions on which to set this bit are;

. loads
. stores
. load multiple

. store multiple.

When the ARM9TDMI returns to debug state after a system speed access, the
SYSSPEED bit is set HIGH.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-31

Debug Support

5.11 Exit from debug state

L eaving debug state involvesrestoring theinternal state of the ARM9TDMI, causing a
branch to the next instruction to be executed, and synchronizing back to GCL K. After
restoring the internal state, a branch instruction must be loaded into the pipeline. For
detailson cal cul ating the branch, see The behavior of the program counter during debug
on page 5-35.

Bit 33 of scan chain 1 is used to force the ARM9TDMI to resynchronize back to
GCLK. The penultimate instruction in the debug sequenceisabranch to theinstruction
at which execution isto resume. Thisis scanned in with bit 33 set LOW. The coreis
then clocked to load the branch into the pipeline. The final instruction to be scanned in
isaNOP (suchasMOv RO, RO0),with bit 33 set HIGH. The coreisthen clocked to load
thisinstruction into the pipeline. Now, the RESTART instruction isselected inthe TAP
controller. When the state machine enters the RUN-TEST/IDLE state, the scan chain
will revert back to system mode and clock resynchronization to GCL K will occur
within the ARM9TDMI. Normal operation will then resume, with instructions being
fetched from memory.

Thedelay, until the state machineisin RUN-TEST/IDLE state, allows conditionsto be
set up in other devicesin amultiprocessor system without taking immediate effect.
Then, when RUN-TEST/IDLE state is entered, all the processors resume operation
simultaneously.

The function of DBGACK istotell the rest of the system when the ARM9TDMI isin
debug state. This can be used to inhibit peripherals such as watchdog timers that have
real time characteristics. Also, with asmall amount of external logic, DBGACK canbe
used to mask out all memory accesses caused by the debugging process, so that the
same number of memory accesses are seen independent of debug entry. This, however,
isonly possible if debugging is performed through breakpoints. It is not possible to
precisely mask memory accesses due to debugging if watchpoints are used.

For example, when the ARM9TDMI enters debug state after a breakpoint, the
instruction pipeline contains the breakpointed instruction plus two other instructions
which have been prefetched. On entry to debug state the pipelineis flushed. So, on exit
from debug state, the pipeline must be refilled to its previous state. Therefore, because
of the debugging process, more memory accesses occur than would normally be
expected. Through the use of DBGACK , together with asmall amount of external logic
itis possible for aperipheral that simply counts the number of instruction fetches to
return the same answer after a program has run both with and without debugging.

It can be seen in Figure 5-8 on page 5-34 that two instructions are fetched after that
which breakpoints. Figure 5-7 on page 5-33, showsDBGACK normally masksthefirst
three instruction fetches out of the debug state, corresponding to the breakpoint
instruction, and thetwoinstructions prefetched after it. Since under some circumstances

5-32

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ECLK

INMREQ
ISEQ

IA[31:1]

ID[31:0]

DBGACK

Debug Support

DBGACK may remain HIGH for more than three instruction fetches, if precise
instruction access counting is required, some external logic must generate a modified
DBGACK that alwaysfalls after three instruction fetches.

Note

When a system speed access occurs, DBGACK remains HIGH throughout the system
speed memory accesses. It then falls after the system speed memory accesses are
completed, and finally rises again as the processor re-enters debug state. Therefore
DBGACK masks al system speed memory accesses.

[W mluRNEE

Internal Cycles N S S

1Ab 1Ab+4 1Ab+8

M T

W (W

\

Figure 5-7 Debug exit sequence

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-33

Debug Support

soc | | | LN L
‘ \
InMREQ Memory Cycles ‘ Internal Cycles ’
ISEQ |
, |
1A[31:0] ‘ /
| /
ID[31:0] |
|
|
IEBKPT \ \
|
\ K‘ —
DBGACK | [_
\
Figure 5-8 Debug state entry
5-34 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.12 The behavior of the program counter during debug

5.12.1 Breakpoint

5.12.2 Watchpoint

To forcethe ARMITDMI to branch back to the place at which program flow was
interrupted by debug, the debugger must keep track of what happensto the PC. There
are six cases:

. Breakpoint.

. Watchpoint.

. Watchpoint with another exception on page 5-36.

. Watchpoint and breakpoint on page 5-36.

. Debug request on page 5-36.

. System speed accesses on page 5-37.

In each case the same equation is used to determine where to resume execution. The
are explained below.

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address. The normal way to exit from debug state after a
breakpoint is to remove the breakpoint, and branch back to the previously breakpointec
address.

For example, if the ARM9TDMI entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of 7 addresses m
occur (four for debug entry, plus two for the instructions, plus one for the final branch).
The following sequence shows ARM instructions scanned into scan chain 1. This is the
Most Significant Bit (MSB) first, so the first digit represents the value to be scanned into
the SYSSPEED bit, followed by the instruction.

0 EAFFFFF9 ; B -7 addresses (two's complement)
1 E1A00000 ; NOP (MOV RO, R0), SYSSPEED bit is set

For small branches, the final branch could be replaced with a subtract with the PC as
the destination. For example, SUB PC, PC, #28 for ARM code.

Returning to the program execution after entering debug state from awatchpoint isdone
in the same way as the procedure described in Breakpoint on page 5-35 above. Debug
entry adds four addresses to the PC, and every instruction adds one address. Since the
instruction after that which caused the watchpoint has executed, instruction execution
will resume at the one after that.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-35

Debug Support

5.12.3 Watchpoint with another exception

If awatchpoint access simultaneously causes a data abort, the ARMOTDMI will enter
debug state in abort mode. Entry into debug is held off until the core has changed into
abort mode, and fetched the instruction from the abort vector.

A similar sequenceisfollowed when an interrupt, or any other exception, occurs during
awatchpointed memory access. The ARMOTDMI will enter debug state in the mode of
the exception, and so the debugger must check to see whether this happened. The
debugger can deduce whether an exception occurred by looking at the current and
previous mode, (in the CPSR and SPSR), and the value of the PC. If an exception did
take place, the user should be given the choice of whether to service the exception
before debugging.

For example, suppose an abort occurred on a watchpoint access, and ten instructions
had been executed to determine this. The following sequence could be used to return
program execution:

0 EAFFFFF1; B -15 addresses (two’s complement)

1 E1A00000; NOP (MQOV RO, R0), SYSSPEED bit is set

Thiswill forceabranch back to the abort vector, causing theinstructionsat that | ocation
to be refetched and executed. Note that after the abort service routine, the instruction
that caused the abort and watchpoint will be re-executed. Thiswill cause the watchpoint
to be generated and hence the ARMOTDMI will enter debug state again.

5.12.4 Watchpoint and breakpoint

It is possible to have a watchpoint and breakpoint condition occurring simultaneously.
This can happen when an instruction causes awatchpoint, and the following instruction
has been breakpointed. The same cal culation should be performed asfor Breakpoint on
page 5-35 to determine where to resume. In this case, it will be at the breakpoint
instruction, since this has not been executed.

5.12.5 Debug request

Entry into debug state via a debug request is similar to a breakpoint, and as for
breakpoint entry to debug state adds four addresses to the PC, and every instruction
executed in debug state adds one.

For example, the following sequence handles a situation in which the user has invoked
a debug request, and decides to return to program execution immediately:

0 EAFFFFFB; B -5 addresses (2's complement)
1 E1A00000; NOP (MOV RO, R0O), SYSSPEED bit is set

This restores the PC, and restarts the program from the next instruction.

5-36

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.12.6 System speed accesses

If a system speed accessis performed during debug state, the value of the PC is
increased by five addresses. Since system speed instructions access the memory system,
it is possible for aborts to take place. If an abort occurs during a system speed memory
access, the ARM9TDMI enters abort mode before returning to debug state.

Thisissimilar to an aborted watchpoint. However, the problem is much harder to fix
because the abort was not caused by an instruction inthe main program, and the PC does
not point to the instruction that caused the abort. An abort handler usually looks at the
PC to determine the instruction that caused the abort, and hence the abort address. In
this case, the value of the PC isinvalid, but the debugger will know the address of the
location that was being accessed. Thus the debugger can be written to help the abort
handler fix the memory system.

5.12.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:
-(4 + N +59)

where Nis the number of debug speed instructions executed (including the final
branch), and S is the number of system speed instructions executed.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-37

Debug Support

5.13 EmbeddedICE macrocell

The EmbeddedI CE macrocell isintegral to the ARMOTDMI processor core. It has two
hardware breakpoint/watchpoint units each of which may be configured to monitor
either the instruction memory interface or the data memory interface. Each watchpoint
unit has a value and mask register, with an address, data and control field.

Because the ARM9TDMI processor core has a Harvard Architecture, the user must
specify whether the watchpoint registers examine the instruction or the data interface.
Thisis specified by bit 3:

. when bit 3 is set, the data interface is examined

. when bit 3 is clear, the instruction interface is examined.

There can be ndon't care case for this bit because the comparators cannot compare
the values on both buses simultaneoudly. Therefore, bit 3 of the control mask register is
aways clear and cannot be programmed HIGH. Bit 3 also determines whether the
internal Breakpoint or Watchpoint signal should be driven by the result of the
comparison. Figure 5-9 on page 5-40 gives an overview of the operation of the
Embedded| CE macrocell.

The ARM9TDMI Embeddedl CE macrocell haslogic that alows single stepping
through code. Thisreducesthework required by an external debugger, and removesthe
need to flush the instruction cache. Thereisalso hardwareto allow efficient trapping of
accesses to the exception vectors. These blocks of logic free the two general-purpose
hardware breakpoint/watchpoint units for use by the programmer at all times.

The general arrangement of the Embedded! CE macrocell is shown in Figure 5-9 on
page 5-40.

5.13.1 Register map

The Embeddedl CE macrocell register map is shown below:

Table 5-4 ARM9TDMI EmbeddedICE macrocell register map

Address Width Function

00000 4 Debug control

00001 5 Debug status

00010 8 Vector catch control
00100 6 Debug comms control
00101 32 Debug comms data

5-38

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

Table 5-4 ARMO9TDMI EmbeddedICE macrocell register map (continued)

Address Width Function

01000 32 Watchpoint O address value
01001 32 Watchpoint O address mask
01010 32 Watchpoint O data value
01011 32 Watchpoint O data mask
01100 9 Watchpoint O control value
01101 8 Watchpoint O control mask
10000 32 Watchpoint 1 address value
10001 32 Watchpoint 1 address mask
10010 32 Watchpoint 1 datavalue
10011 32 Watchpoint 1 data mask
10100 9 Watchpoint 1 control value
10101 8 Watchpoint 1 control mask

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-39

Debug Support

Scan Chain
Register
kel R/W Update
4
5/ Address
Address / Decoder w
0 Enable
31 >
@) (@] (@)
o o o .
= =1 | Control =1 Breakpoint
e = D Control e —
32 » Rangeout>
Data ra g | 8 ID[310] | 8
» » DD [31:0] ®
> > > >
5y g) g
s S IA [31:0] 5
@ A DA [31:0] @
0
Value Mask Comparator
Registers
TDI TDO

Figure 5-9 ARM9TDMI EmbeddedICE macrocell overview

For example, if awatchpoint is requested on a particular memory location but the data
valueisirrelevant, the data mask register can be programmed to Oxffffffff, (all bits set
to 1), to make the entire data bus value ignored.

5.13.2 Using the mask registers

For each value register there is an associated mask register in the same format. Setting
abit to 1 in the mask register causes the corresponding bit in the value register to be
ignored in any comparison.

5-40 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.13.3 Control registers

8

Debug Support

Theformat of the control registers depends on how bit 3 is programmed. If bit 3is
programmed to be 1, the breakpoint comparators examine the data address, data and

control signals.

In this case, the format of the register is as shown in Figure 5-10.

Note

Bit 8 and bit 3 cannot be masked.

4 3 2 1 0

ENABLE

RANGE

CHAIN

EXTERN | DnTRANS | 1 DMAS[1] | DMAS[0] | DnRW

Figure 5-10 Watchpoint control register for data comparison

The bits have the following functions:

Table 5-5 Watchpoint control register for data comparison bit functions

Bit Function

DnRW Compares against the data not read/write signal from the core in order to
detect the direction of the data data bus activity. nRW is O for aread, and 1
for awrite.

DMAS1:0] Comparesagainst the DMAS[1:0] signal from the corein order to detect the
size of the data data bus activity.

DnTRANS Compares against the data not translate signal from the core in order to
determine between a user mode (DnTRANS = 0) data transfer, and a
privileged mode (DnTRANS = 1) transfer.

EXTERN Is an external input into the Embedded! CE macrocell that allows the

watchpoint to be dependent upon some external condition. The EXTERN
input for watchpoint 0 is labelled EXTERNO, and the EXTERN input for
watchpoint 1islabelled EXTERNL

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-41

Debug Support

Table 5-5 Watchpoint control register for data comparison bit functions (continued)

Bit Function

CHAIN Can be connected to chain output of another watchpoint in order to
implement, for example, debugger requests of the form “breakpoint on
address YYY only when in process XXX".
In the ARM9TDMI EmbeddedICE macrocell, ti¢HAINOUT output of
watchpoint 1 is connected to t@#{AIN input of watchpoint 0. The
CHAINOUT output is derived from a latch. The address/control field
comparator drives the write enable for the latch and the input to the latch is
the value of the data field comparator. TieAINOUT latch is cleared
when the control value register is written or windrRST is LOW.

RANGE Can be connected to the range output of another watchpoint register. In the
ARM9TDMI EmbeddedICE macrocell, the Address comparabdputfrom
watchpoint 1 is connected to tRANGE input of watchpoint 0. This allows
two watchpoints to be coupled for detecting conditions that occur
simultaneously, for example, for range-checking.

ENABLE If a watchpoint match occurs, the interiéhtchpoint signal will only be
asserted when tHENABLE bit is set. This bit only exists in the value
register, it cannot be masked.

If bit 3 of the control register is programmed to 0, the comparators will examine the
instruction address, instruction dataand instruction control buses. In this case bits[1:0]

of the mask register must be set to “don’t care” (programmed to 11). The format of the
register in this case is as shown in Figure 5-11.

8 7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN EXTERN INTRANS 0 X ITBIT X

Figure 5-11 Watchpoint control register for instruction comparison

5-42 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

Table 5-6 Watchpoint control register for instruction comparison bit functions

Bit Function

ITBIT Compares against the Thumb state signal from the core to determine between a
Thumb (ITBIT = 1) instruction fetch or an ARM (ITBIT = 0) fetch.

INTRANS Compares against the not trandlate signal from the corein order to determine
between a user mode (InNnTRANS = 0) instruction fetch, and a privileged mode
(INTRANS = 1) fetch.

EXTERN Isanexternal input into the Embeddedl CE macrocell that allows the watchpoint
to be dependent upon some external condition. The EXTERN input for
watchpoint O is labelled EXTERNO, and the EXTERN input for watchpoint 1
islabelled EXTERNL.

CHAIN Can be connected to chain output of another watchpoint in order to implement,
for example, debugger requests of the form “breakpoint on address YYY only
when in process XXX".
In the ARM9TDMI EmbeddedICE macrocell, tid#AINOUT output of
watchpoint 1 is connected to tB#AIN input of watchpoint 0. The
CHAINOUT output is derived from a latch. The address/control field
comparator drives the write enable for the latch, and the input to the latch is the
value of the data field comparator. TBEIAINOUT latch is cleared when the
control value register is written, or whemRST is LOW.

RANGE Can be connected to the range output of another watchpoint register. In the
ARM9TDMI EmbeddedICE macrocell, tiRANGEOUT output of
watchpoint 1 is connected to tRANGE input of watchpoint 0. This allows
two watchpoints to be coupled for detecting conditions that occur
simultaneously, for example, for range-checking.

ENABLE If a watchpoint match occurs, the interBakak point signal will only be
asserted when tHENABLE bit is set. This bit only exists in the value register,
it cannot be masked.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-43

Debug Support

5.13.4 Debug control register

The ARM9TDMI debug control register is four bitswide and is shown in Figure 5-12:

3 2 1 0

Single step INTDIS DBGRQ DBGACK

Figure 5-12 Debug control register
Bit 3 controls the single-step hardware, and this is explained in more detail in Sngle
stepping on page 5-47.
5.13.5 Debug status register

The debug status register isfive bitswide. It isaread only register and any writes will
beignored. If it isaccessed for aread (with the read/write bit LOW), the status bits are

read.
4 3 2 1 0
ITBIT SYSCOMP IFEN DBGRQ DBGACK

Figure 5-13 Debug status register

The function of each bit in thisregister is asfollows:

Bits1and O Allow the values on the synchronized versions of DBGRQ and
DBGACK to beread.

Bit 2 Allows the state of the core interrupt enable signal (IFEN) to be read.
Since the capture clock for the scan chain may be asynchronous to the
processor clock, the DBGACK output from the core is synchronized
before being used to generate the IFEN status bit.

Bit 3 Allows the state of the SY SCOMP hit from the core (synchronized to
TCK) to beread. This alows the debugger to determine that a memory
access from the debug state has compl eted.

Bit4 Allows I TBIT to beread. This enables the debugger to determine what
state the processor is in, and hence which instructions to execute.

5-44 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.13.6 Vector catch register

The ARMOTDMI EmbeddedI CE macrocell controls logic to enable accesses to the
exception vectors to be trapped in an efficient manner. Thisis controlled by the vector

Debug Support

catch register, as shown in Figure 5-14. The functionality is described in Vector
catching on page 5-46.

5

4

3

1

0

FIQ

IRQ

Reserved

D_Abort

P_Abort

SWiI

Undef

Reset

Figure 5-14 Vector catch register

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved.

5-45

Debug Support

5.14 Vector catching

The ARM9TDMI Embedded! CE macrocell containslogic that all ows efficient trapping
of fetches from the vectors during exceptions. Thisis controlled by the Vector catch
register. If one of the bitsin this register is set HIGH and the corresponding exception
occurs, the processor enters debug state asif a breakpoint has been set on an instruction
fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the Vector catch
register is set, the ARM9TDMI fetches an instruction from location 0x8. The vector
catch hardware detects this access and forces the internal Breakpoint signal HIGH into
the ARMOTDMI control logic. This, in turn, forcesthe ARM9TDMI to enter debug
state.

The behavior of the hardware is independent of the watchpoint comparators, leaving
them free for general use. The vector catch register is sensitive only to fetches from the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the Vector Catch register
is set, the processor is not forced to enter debug state.

5-46

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

5.15 Single stepping

The ARM9TDMI EmbeddedI CE macrocell contains logic that alows efficient single
stepping through code. This |eaves the macrocell watchpoint comparators free for
general use.

Thisfunction is enabled by setting bit 3 of the debug control register. The state of this
bit should only be altered while the processor isin debug state. If the processor exits
debug state and this bit is HIGH, the processor fetches an instruction, executes it, and
then immediately reenters debug state. This happens independently of the watchpoint
comparators. If a system-speed data access is performed while in debug state, the
debugger must ensure that the control bit is clear first.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-47

Debug Support

5.16 Debug communications channel

The ARM9TDMI EmbeddedI CE macrocell contains a communication channel for
passing information between the target and the host debugger. Thisisimplemented as
coprocessor 14.

The communications channel consists of a 32-bit wide comms data read register, a
32-bit wide comms data write register and a 6-bit wide comms control register for
synchronized handshaking between the processor and the asynchronous debugger.
These registers are located in fixed locations in the Embedded| CE register map (as
shown in Figure 5-9 on page 5-40) and are accessed from the processor viaMCR and
MRC instructions to coprocessor 14.

5.16.1 Debug comms channel registers

The debug comms control register is read only, and allows synchronized handshaking
between the processor and the debugger.

31 30 29 28 1 0

Figure 5-15 Debug comms control register
The function of each register bit is described below:

Bits31:28 Contain afixed pattern that denotesthe Embedded! CE macrocell version
number, in this case 0010.

Bits 27:2 Unused.

Bit 1 Denotes from the processor’s point of view, whether the comms data
write register is free.
If, from the processor’s point of view, the comms data write register is
free (W=0), new data may be written.
If it is not free (W=1), the processor must poll until W=0.
If, from the debugger’s point of view, W=1, some new data has been
written which may then be scanned out.

5-48 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Debug Support

Bit0 Denotes whether there is some new datain the comms dataread register.
If, from the processor’s point of view, R=1, there is some new data which
may be read via an MRC instruction.
If, from the debugger’s point of view, R=0, the comms data read register
is free and new data may be placed there through the scan chain.
If R=1, this denotes that data previously placed there through the scan
chain has not been collected by the processor, and so the debugger mus
wait.

From the debugger’s point of view, the registers are accessed via the scan chain in th
usual way. From the processor, these registers are accessed via coprocessor registel
transfer instructions. The following instructions should be used:

MRC p14, 0, Rd, c0O, cO, O
Returns the debug comms control register into Rd.

MCR p14, 0, Rn, cl1, cO, O
Writes the value in Rn to the comms data write register.

MRC p14, 0, Rd, cl1, cO, O
Returns the debug data read register into Rd.

Note

The Thumb instruction set does not support coprocessors so the ARM9TDMI must be
operated in ARM state in order to access the debug comms channel.

5.16.2 Communications via the comms channel

There are two methods of communicating via the comms channel, transmitting and
receiving. The following descriptions detail their usage.
Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the com
data write register is free for use by finding out whether the W bit of the debug comms
control register is clear.

It reads the debug comms control register to check status of the W bit.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

. If W bit is clear, the comms data write register is clear.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 5-49

Debug Support

When the W bit is clear, a message is written by aregister transfer to coprocessor 14.
Asthe datatransfer occurs from the processor to the comms data write register, the W
bit is set in the debug comms control register.

The debugger sees a synchronized version of both the R and W bit when it polls the
debug comms control register through the JTAG interface. When the debugger seesthe
W hit is set, it can read the comms data write register and scan the data out. The action
of reading this dataregister clearsthe debug commscontrol register W bit. At thispoint,
the communi cations process may begin again.

As an aternative to polling, the debug comms channel can be interrupt driven by
connecting the ARMOTDMI COMMRX and COMMTX signalsto the systems
interrupt controller.

Receiving a message from the debugger

Message transfer from the debugger to the processor is similar to sending a message to
the debugger. In this case, the debugger polls the R bit of the debug comms control
register.

. If the R bit is LOW, the comms data read register is free, and data can be placed
there for the processor to read.

. If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there via the JTAG interface.
The action of this write sets the R bit in the debug comms control register.

When the processor polls this register, it sedd @h K synchronized version. If the R

bit is set, there is data waiting to be collected. This data can be read via an MRC
instruction to coprocessor 14. The action of this load clears the R bit in the debug
comms control register. When the debugger polls this register and sees that the R bit is
clear, the data has been taken, and the process may now be repeated.

Note

It is not possible to read EmbeddedICE registers through serialized vectors applied
through scan chain 0.

5-50 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 6
Test Issues

This chapter examines the test issues for the ARM9TDMI and lists the scan chain 0
bit order under the headings:

. About testing on page 6-2.
. Scan chain O bit order on page 6-3.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 6-1

Test Issues

6.1

About testing

The ARM9TDMI processor core supports parallel and serial test methodologies. The
paralld test patternsarederived from assembler ARM code programswritten to achieve
a high fault coverage.

The ARM9TDMI processor core has afully JTAG-compatible scan chain which
intersects all the inputs and outputs. This allows the test patterns to be serialized and
injected to the processor viathe JTAG interface. Both theparallel and serial test patterns
are supplied to ARM9TDM I processor core licensees. The scan chain also supports
EXTEST, alowing the connections between the ARM9TDMI processor core and other
JTAG-compatible peripherals to be tested.

6-2

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Test Issues

6.2 Scan chain 0 bit order

Table 6-1 Scan chain 0 bit order

Number Signal Direction
1 ID[0] Input

2 ID[1] Input

331 ID[2:30] Input

32 ID[31] Input

33 SYSSPEED Internal

34 Unused Internal

35 DDEN Output

36 DD[31] Bidirectional
37 DDJ[30] Bidirectional
38:66 DD[29:1] Bidirectional
67 DD[(] Bidirectional
68 DA[3]] Output

69 DA[30] Output
70:98 DA[29:1] Output

99 DA[Q] Output

100 1A[31] Output

101 1A[30] Output
102:129 1A[29:2] Output

130 1A[1] Output

131 IEBKPT Input

132 DEWPT Input

133 EDBGRQ Input

134 EXTERNO Input

135 EXTERN1 Input

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 6-3

Test Issues

Table 6-1 Scan chain 0 bit order (continued)

Number Signal Direction
136 COMMRX Output
137 COMMTX Output
138 DBGACK Output
139 RANGEOUTO Output
140 RANGEOUT1 Output
141 DBGRQ Output
142 DDBE Input
143 INMREQ Output
144 DNMREQ Output
145 DnRW Output
146 DMAS[1] Output
147 DMAS[0] Output
148 PASS Output
149 LATECANCEL Output
150 ITBIT Output
151 INTRANS Output
152 DnTRANS Output
153 NRESET Input
154 nWAIT Input
155 IABORT Input
156 IABE Input
157 DABORT Input
158 DABE Input
159 nFlQ Input
160 nlRQ Input

© Copyright ARM Limited 2000. All rights reserved.

ARM DDI 0180A

Test Issues

Table 6-1 Scan chain 0 bit order (continued)

Number Signal Direction
161 ISYNC Input
162 BIGEND Input
163 HIVECS Input
164 CHSD[1] Input
165 CHSDI0] Input
166 CHSE[1] Input
167 CHSEJOQ] Input
168 UNIEN Input
169 ISEQ Output
170 InM[4] Output
171 InM[3] Output
172 InM[2] Output
173 InM[1] Output
174 InM[0] Output
175 DnM[4] Output
176 DnM[3] Output
177 DnM[2] Output
178 DnM[1] Output
179 DnM[Q] Output
180 DSEQ Output
181 DMORE Output
182 DLOCK Output
183 ECLK Output
184 INSTREXEC Output

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 6-5

Test Issues

6-6

© Copyright ARM Limited 2000. All rights reserved.

ARM DDI 0180A

Chapter 7
Instruction Cycle Summary and Interlocks

This chapter gives the instruction cycle times and shows the timing diagrams for
interlock timing:

. Instruction cycletimes on page 7-2.
. Interlocks on page 7-5.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved.

7-1

Instruction Cycle Summary and Interlocks

7.1 Instruction cycle times

Key to tables

Table 7-1 Symbols used in tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses
m In the range 1 to 4, depending on early termination
(see Multiplier cycle counts on page 7-4)
n The number of words transferred in an LDM/STM/LDC/STC
C Coprocessor register transfer (C-cycle)
I Internal cycle (I-cycle)
N Non-sequentia cycle (N-cycle)
S Sequential cycle (S-cycle)

Table 7-2 summarizes the ARM9TDMI instruction cycle counts and bus activity when
executing the ARM instruction set.

Table 7-2 Instruction cycle bus times

Instruction Cycles Instruction Data Comment

bus bus

Data Op 1 1S 1l Normal case, PC not destination

Data Op 2 1s+1l 2 With register controlled shift, PC not destination

Data Op 3 2S+ 1IN 3l PC destination register

Data Op 4 2S+ 1IN+ 1 l| With register controlled shift, PC destination
register

LDR 1 1S IN Normal case, not loading PC

LDR 2 1S+1lI IN+1I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock)

LDR 3 1S+21 IN+2I L oaded byte, half-word, or unaligned word used
by following instruction (2 cycle load-use
interlock)

7-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Instruction Cycle Summary and Interlocks

Table 7-2 Instruction cycle bus times (continued)

Instruction Cycles Lnus;ruction bDS;a Comment

LDR 5 2S5+2I1+1N IN+4l PC is destination register

STR 1 1S IN All cases

LDM 2 1S+11 1S+1l Loading 1 Register, not the PC

LDM n 1S+(n-1)I IN+(n-1)S Loading n registers, n > 1, not loading the PC

LDM n+4 2S+IN+(n+1)l IN+(n-1)S+41 Loading n registersincluding the PC, n> 0

STM 2 1S+l IN+1I Storing 1 Register

STM n 1S+(n-1)I IN+(n-1)S Storing nregisters, n> 1

SWP 2 1S+1l 2N Normal case

SWP 3 1S+2l 2N+1l Loaded byte used by following instruction

B, BL, BX 3 2S5+1N 3l All cases

SWI, Undefined 3 2S5+1IN 3l All cases

CDP b+1 1S+bl (1+b)!l All cases

LDC, STC b+n 1S+(b+n-1)I bl+IN+(n-1)S All cases

MCR b+1 1S+hl bl+1C All cases

MRC b+1 1S+hl bl+1C Normal case

MRC b+2 1S+(b+1)I (b+)I1+1C Following instruction uses transferred data

MRC b+3 1S+(b+2)I (b+2)I+1C MRC tothe PC

MRS 1 1S T All cases

MSR 1 1S i) If only flags are updated (mask_f)

MSR 3 1S+2 3l If any bits other than just the flags are updated
(all masks other than_f)

MUL, MLA 2+m 1S+H1+m) (2+m)l All cases

SMULL, UMULL, 3+m 1S+(2+m)l (3+m)l All cases

SMLAL, UMLAL

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 7-3

Instruction Cycle Summary and Interlocks

Table 7-3 shows the instruction cycle times from the perspective of the data bus:

Table 7-3 Data bus instruction times

Instruction Cycle time
LDR IN

STR IN
LDM,STM IN+(n-1)S
SWP IN+1S
LDC, STC IN+(n-1)S
MCR,MRC 1C

7.1.1 Multiplier cycle counts

The number of cyclesthat a multiply instruction takes to complete depends on which
instruction it is, and on the value of the multiplier-operand. The multiplier-operand is
the contents of the register specified by bits[8:11] of the ARM multiply instructions, or
bits [2:0] of the Thumb multiply instructions.
. For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, m is:

1 if bits [31:8] of the multiplier operand are all zero or one

2 if bits [31:16] of the multiplier operand are all zero or one

3 if bits [31:24] of the multiplier operand are all zero or all one

4 otherwise.

. For ARM UMULL, UMLAL, m is:
1 if bits [31:8] of the multiplier operand are all zero
2 if bits [31:16] of the multiplier operand are all zero
3 if bits [31:24] of the multiplier operand are all zero
4 otherwise.

7-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

7.2 Interlocks

GCLK

INMREQ

IA[31:1]

ID[31:0]

Fidr

Instruction Cycle Summary and Interlocks

Pipelineinterlocks occur when the data required for an instruction is not available due
to the incomplete execution of an earlier instruction. When an interlock occurs,
instruction fetches stop on the instruction memory interface of the ARM9TDMI. Four
examples of this are given below.

Example 1

In thisfirst example, the following code sequence is executed:
LDR RO, [R1]
ADD R2, RO, Rl

The ADD instruction cannot start until the datais returned from theload. Therefore, the
ADD instruction has to delay entering the execute stage of the pipeline by one cycle.
The behavior on the instruction memory interface is shown in Figure 7-1 on page 7-5.

Dldr Eldr Midr Widr

Fadd Dadd Dadd Eadd Madd Wadd

N

A+4 A+8 A+C A+10 A+14

LDR ADD ()

Figure 7-1 Single load interlock timing

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 7-5

Instruction Cycle Summary and Interlocks

Example 2

In this second example, the following code sequence is executed:
LDRB RO, [R1, #1]
ADD R2, RO, Rl

Now, because arotation must occur on theloaded data, thereisasecond interlock cycle.
The behavior on the instruction memory interface is shown in Figure 7-2.

Fldrb Didrb Eldrb Midrb Widrb

Fadd Dadd Dadd Dadd Eadd Madd Wadd

s S N I U Y O R A
G A o O O

1A[31:1] A+4 A+8 A+C A+10 A+14

ID[31:0] {LDRB ADD

Figure 7-2 Two cycle load interlock

7-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

GCLK

INMREQ

IA[31:1]

ID[31:0]

DNMREQ

DA[31:0]

DDI[31:0]

DDIN[31:0]

Fldm

Instruction Cycle Summary and Interlocks

Example 3

In this third example, the following code sequence is executed:
LDM R12, { R1- R3}
ADD R2, R2, Rl

The LDM takes three cycles to execute in the memory stage of the pipeline. The ADD
istherefore delayed until the LDM beginsits final memory fetch. The behavior of both
the instruction and data memory interface are shown in Figure 7-3.

Dldm Eldm Midm Midm Midm Widm

Fadd Dadd Dadd Dadd Eadd Madd Wadd

B S U o A Y A

1A+4

IA+8 IA+C I1A+10 1A+14

LDM

ADD

DA DA+4 DA+8

Figure 7-3 LDM interlock

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 7-7

Instruction Cycle Summary and Interlocks

Example 4

In the fourth example, the following code sequence is executed:
LDM R12, { R1- R3}
ADD R4, R3, R1

The codeisthe same code asin example 3, but in thisinstancethe ADD instruction uses
R3. Dueto the nature of load multiples, the lowest register specified istransferred first,
and the highest specified register last. Because the ADD isdependent on R3, there must
be afurther cycle of interlock while R3 isloaded. The behavior on the instruction and
data memory interfaceis shown in Figure 7-4.

Fldm Dldm Eldm Midm Midm Midm Widm
Fadd Dadd Dadd Dadd Dadd Eadd Madd Wadd
e | | N
LI N N N B B

omor] gl
owree T T L L [T T T
DD[31:0]

F LI

Figure 7-4 LDM dependent interlock

7-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Chapter 8
ARMO9TDMI AC Characteristics

This chapter gives the timing diagrams and timing parameters for the ARM9TDMI:
. ARMOTDMI timing diagrams on page 8-2.
. ARMOTDMI timing parameters on page 8-14.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved.

8-1

ARMYITDMI AC Characteristics

8.1 ARM9TDMI timing diagrams

CLK
A[31:1]
T —»| le—
| A T
NMREQ
T —» f—
! NQ_|4> <7T| MDD
nM[4:0]
T NvH> -
- =TI nvD
NTRANS
T\ TRSH™ —
- T TRSD
SEQ
TBIT
T TBH™ i
- “TiT1BD
Figure 8-1 ARM9TDMI instruction memory interface output timing
ABE
A[31:1] \
nM[4:0]
NTRANS L
Ti aBz ™ - T ABE

Figure 8-2 ARM9TDMI instruction address bus enable

8-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

GCLK /
ID[31:0]
IABORT
T\ aBs e T agH
IEBKPT
T\ Bks B T\ BkH

Figure 8-3 ARM9TDMI instruction memory interface input timing

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-3

ARMYITDMI AC Characteristics

CLK
A[31:0]
TpoaH—* e
LOCK
ToLkH™ —
- *ToLkD
nM[4:0]
NTRANS
TorRSH™ e
> “TbrRsD
SEQ
MORE
TovRH e
- *TovrD
MAS[1:0]
TovsH* -
- T onveD
nRW
T bR e
- T brRD

Figure 8-4 ARM9TDMI data memory interface output timing

8-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

DABE

DA[31:0],DnRW

DnM[4:0],DnTRANS \1
DMAS[1:0],DLOCK /L -
Tpasz - - TpaBE

Figure 8-5 ARM9TDMI data address bus timing

GCLK
DABORT
« TpaBs
T DBQBTD — TpaABH
DnMREQ)ﬁ)
T vy
DMH > -

Figure 8-6 ARM9TDMI data ABORT and DnMREQ timing

GCLK /

DDIN[3L:0] V |
TDDSJ SO LTDDH
DD[31:0] K
T oo
DDOH -
DEWPT

Towes e Tower
Figure 8-7 ARM9TDMI data data bus timing

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-5

ARMYITDMI AC Characteristics

DBE

D[31:0]

T

Tpoez - - T poBE
Figure 8-8 ARM9TDMI data bus enable
CLK /
FIQ
IRQ
Ti NTS ™ -
- =T NTH
SYNC
Ti sys— -
- “Ti s
IGEND
T s -
- “TBi &4
IVECS
TH vs— [
- “Th vH
NIEN
Tuni s -
- “TuniH
WAIT
Tavs— — T AvH
RESET V
TrsTs - L
- TRsTH
Figure 8-9 ARM9TDMI miscellaneous signal timing
8-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

GCLK
PASS
T —» fe—
PASA_] - TpasD
LATECANCEL
TLteH [-
- *TLTcD
CHSDI[1:0]
CHSE[L:0]
T —» le—
s - T cHsH

Figure 8-10 ARM9TDMI coprocessor interface signal timing

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved.

ARMYITDMI AC Characteristics

TCK
TCK1 {e }\« /
TTokR -~ Trokr
TCK2 m \
Trekr— - “TTekr
IR[3:0]
SCREGI3:0]
TiRsH™ e Tireo
TAPSM[3:0] *e
TrpvH
- T1PvD
TDO
TrooH —
- « T1pop
nTDOEN
TTOEH: - “TToeD
Figure 8-11 ARM9TDMI JTAG output signals
8-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

TCK
ECAPCLKBS
ICAPCLKBS & l
PCLKBS TCAI:’R3 —» TCAPF
RSTCLKBS &

TerTD - &T BRTH

SHCLK1BS /rr \TL

TsHKR ™ - TsHkF
SHCLK2BS ‘\T\« /ﬁ

T sHKF — TsHkr
DRIVEOUTBS K {

T DRBSH |
— TpRBSD

SDIN *&

TSD\H >

-

TspaD
Figure 8-12 ARM9TDMI external boundary scan chain output signals

SDOUTBS

TDO

T1DsH— [
- *~T1DsD

Figure 8-13 ARM9TDMI SDOUTBS to TDO relationship

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-9

ARMYITDMI AC Characteristics

TRST

STCLKBS /ﬁ
TeRsT

Figure 8-14 ARMO9TDMI nTRST to RSTCLKBS relationship

o«

DI
MS
Ttois - T1oiH

Figure 8-15 ARM9TDMI JTAG input signal timing

8-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

GCLK

ECLK

COMMTX
COMMRX

DBGACK

RANGEOUTO

RANGEOUT1

INSTREXEC

EXTERNO
EXTERN1

ARMITDMI AC Characteristics

TR e - \T*TGEKF
TcovH— —
- *Tcovd
TbokH e
- *—Tpckp
TrRaoH [
- - TraoD
TrGLH™ =
- - TralD
Ti NxH™ [
— T nxD

TEWSJX -

— *”TEXTH

EDBGRQ

Figure 8-16 ARM9TDMI GCLK related debug output timings

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved.

8-11

ARMYITDMI AC Characteristics

CK
CLK k (« \

TTEKF > TrekR
BGRQI *«

Toa H™

- Toap
Figure 8-17 ARM9TDMI TCK related debug output timings

TRST

BGRQI J E
TDQR

Figure 8-18 ARM9TDMI nTRST to DBGRQI relationship

DBGRQ

BGRQI

—» eTEDQD

Figure 8-19 ARM9TDMI EDBGRQ to DBGRQI relationship

8-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

DBGEN
RANGEOUTO
RANGEOUT1
TreeN
DBGROQI W&

Figure 8-20 ARM9TDMI DBGEN to output effects

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-13

ARMYITDMI AC Characteristics

8.2 ARM9YTDMI timing parameters

Table 8-1 ARM9TDMI timing parameters

Timing parameter

Description

Thigh BIGEND hold time from GCLK falling

Thigs BIGEND setup timeto GCLK faling

Thrst Delay from nTRST fallingto RSTCLKBSrising

Thrtd RSTCLKBSrising from TCK falling

Thrth RSTCLKBSfaling from TCK rising

Tcapf ECAPCLKBS/IICAPCLKBS/PCLKBSfaling from TCK rising

Tcaph Input hold timeto TCK falling (EXTEST capture)

Tcapr ECAPCLKBS/IICAPCLKBS/PCLKBS ising from TCK falling

Tcaps Input setup timeto TCK falling (EXTEST capture)

Tchsh CHSDI[1:0)/CHSE[1:0] hold time from GCLK falling

Tchss CHSD[1:0]/CHSE[1:0] setup timeto GCLK falling

Tcomd COMMTX/COMMRX output delay

Tcomh COMMTX/COMMRX output hold time

Tdabe Delay from DABE rising to DA[31:0]/DnTRANS/DnM [4:0]/DMAS[1:0]/DnRW/DLOCK
driven valid

Tdabh DABORT hold time from GCLK falling

Tdabs DABORT setuptimeto GCLK falling

Tdabtd DnMREQ delay from DABORT

Tdabz Delay from DABE falling to DA[31:0]/DnTRANS/DnM [4:0]/DM AS[1:0]/DnRW/DLOCK
high impedance

Tdad DA[31:0] delay from GCLK rising

Tdah DA[31:0] hold time from GCLK rising

Tdbgh EDBGRQ input hold time from GCLK falling

Tdbgs EDBGRQ input setup timeto GCLK falling

8-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter

Description

Tdckd DBGACK output delay

Tdckh DBGACK output hold time

Tddbe Delay from DDBE rising to DD[31:0] (output) driven valid
Tddbz Delay from DDBE falling to DD[31:0] (output) high impedance
Tddend DDEN delay from GCLK falling

Tddenh DDEN hold timefrom GCLK falling

Tddh DD[31:0] (input) hold time from GCLK faling
Tddod DD[31:0] (output) delay from GCLK falling
Tddoh DD[31:0] (output) hold time from GCLK falling
Tdds DD[31:0] (input) setup timeto GCLK falling
Tdgid DBGRQI output delay from TCK falling

Tdgih DBGRQI output hold time from TCK falling
Tdih TDI and TM S hold time from TCK rising

Tdis TDI and TM S setup timeto TCK rising

Tdlkd DLOCK delay from GCLK rising

Tdlkh DLOCK hold timefrom GCLK rising

Tdmad DnMREQ delay from GCLK rising

Tdmgh DnMREQ hold time from GCLK rising

Tdmrd DMORE delay from GCLK rising

Tdmrh DM ORE hold time from GCLK rising

Tdmsd DMASY[1:0] delay from GCLK rising

Tdmsh DMASY[1:0] hold time from GCLK rising
Tdnmd DnM[4:0] delay from GCLK rising

Tdnmh DnM[4:0] hold time from GCLK rising

Tdgen DBGRQI faling delay from DBGEN falling

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. 8-15

ARMYITDMI AC Characteristics

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter

Description

Tdaqir NTRST faling to DBGRQI falling delay

Tdrbsd DRIVEOUTBSdelay from TCK falling

Tdrbsh DRIVEOUTBS hold time from TCK falling

Tdrwd DnRW delay from GCLK rising

Tdrwh DnRW hold time from GCLK rising

Tdsqd DSEQ delay from GCLK rising

Tdsgh DSEQ hold time from GCLK rising

Tdtrsd DnTRANS delay from GCLK rising

Tdtrsh DnTRANS hold time from GCLK rising

Tdwph DEWPT hold time from GCLK rising

Tdwps DEWPT setup timeto GCLK rising

Tedqd DBGRQI output delay from EDBGRQ changing

Tedgh DBGRQI output hold time from EDBGRQ changing

Texth EXTERNO/EXTERNZ1 input hold time from GCLK falling

Texts EXTERNO/EXTERNZ1 input setup timeto GCLK falling

Tgclkh Minimum GCLK HIGH period

Tgclkl Minimum GCLK LOW period

Tgekf GCLK falling to ECLK falling delay

Tgekr GCLK rising to ECLK rising delay

Thivh HIVECS hold time from GCLK rising

Thivs HIVECS setup timeto GCLK rising

Tiabe Delay from | ABE rising to | A[31:1]/InM[4:0)/INTRANS driven vaid

Tiabh IABORT hold time from GCLK falling

Tiabs IABORT setup timeto GCLK falling

Tiabz Delay from | ABE falling to | A[31:1]/InM [4:0]/InTRANS high impedance
8-16 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter

Description

Tiad 1A[31:1] delay from GCLK rising

Tiah 1A[31:1] hold time from GCLK rising

Tibkh IEBKPT hold time from GCLK rising

Tibks IEBKPT setup timeto GCLK rising

Tidh ID[31:0] hold time from GCLK falling

Tids 1D[31:0] setup timeto GCLK falling

Timagd INMREQ delay from GCLK rising

Timgh INMREQ hold time from GCLK rising

Tinmd INM[4:0] delay from GCLK rising

Tinmh INM[4:0] hold time from GCLK rising

Tinth Interrupt (NFIQ/nIRQ) hold time from GCLK falling
Tints Interrupt (NFIQ/NIRQ) setup timeto GCLK falling
Tinxd INSTREXEC output delay

Tinxh INSTREXEC output hold time

Tird IREG[3:0]/SCREG[4:0] output delay from TCK falling
Tirsh IREG[3:0]/SCREG[4:0] hold time from TCK falling
Tisqd ISEQ delay from GCLK rising

Tisgh ISEQ hold time from GCLK rising

Tisyh ISYNC hold time from GCLK faling

Tisys ISYNC setup timeto GCLK falling

Titbd ITBIT delay from GCLK rising

Titbh ITBIT hold timefrom GCLK rising

Titrd INTRANS delay from GCLK rising

Titrsh INTRANS hold time from GCLK rising

Tltcd LATECANCEL delay from GCLK falling

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved.

8-17

ARMYITDMI AC Characteristics

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter

Description

Tltch LATECANCEL hold time from GCLK falling
Tnwh NWAIT hold time from GCLK rising
Tnws NWAIT setup timeto GCLK faling
Tpasd PASS output delay from GCLK rising
Tpash PASS hold time from GCLK rising
Trg0d RANGEOUTO output delay
TrgOh RANGEOUTO output hold time
Trgld RANGEOUT1 output delay
Trglh RANGEOUT1 output hold time
Trgen RANGEOUTO/RANGEOQOUT1 faling delay from DBGEN falling
Trsth NRESET hold time from GCLK rising
Trsts NRESET setup timeto GCLK rising
Tsdnd SDIN output delay from TCK falling
Tsdnh SDIN hold time from TCK falling
Tshkf SHCLK1BSSHCLK?2BSfalling from TCK changing
Tshkr SHCLK1BS/SHCLK2BSrising from TCK changing
Ttapidh TAPID[31:0] hold timeto TCK falling
Ttapids TAPID[31:0] setup timeto TCK falling
Tthe Delay from TBE rising, to outputs driven valid
Ttbz Delay from TBE falling, to outputs high impedance
Ttekf TCKUTCK2 faling from TCK changing
Ttckh Minimum TCK HIGH period
Ttckl Minimum TCK LOW period
Ttckr TCKUTCK2rising from TCK changing
Ttdod TDO output delay from TCK falling
8-18 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARMITDMI AC Characteristics

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter

Description

Ttdoh TDO hold time from TCK falling

Ttdsd TDO delay from SDOUTBS changing
Ttdsh TDO hold time from SDOUTBS changing
Ttekf TCK fallingto ECLK falling delay

Ttekr TCK rising to ECLK rising delay

Ttoed nTDOEN output delay from TCK falling
Ttoeh nTDOEN hold time from TCK falling
Ttpmd TAPSM[3:0] output delay from TCK falling
Ttpmh TAPSM[3:0] hold time from TCK falling
Tunis UNIEN input setup timeto GCLK falling
Tunih UNIEN input hold timeto GCLK falling

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved.

8-19

ARMYITDMI AC Characteristics

8-20 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Appendix A
ARM9TDMI Signal Descriptions

This chapter lists and describes the ARM9TDMI signals:

. Instruction memory interface signals on page A-2.

. Data memory interface signals on page A-3.

. Coprocessor interface signals on page A-5.

. JTAG and TAP controller signals on page A-6.
. Debug signals on page A-8.

. Miscellaneous signals on page A-10.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved.

A-1

ARMS9TDMI Signal Descriptions

A.1 Instruction memory interface signals

Table A-1 Instruction memory interface signals

Name

Direction

Description

IA[31:1]

Output

Instruction Address Bus. Thisis the processor instruction address bus. It changes when
GCLK isHIGH.

IABE

Input

Instruction Address Bus Enable. Thisis an input which, when LOW, it putsthe instruction
addressbus, | A[31:1], driversinto a high impedance state. Thissigna has the same effect on
INTRANS and InM[4:0].

If UNIEN isHIGH thissignal isignored.

IABORT

Input

Instruction Abort. Thisis an input which allows the memory system to tell the processor that
the requested instruction memory access is not alowed.

ID[31:0]

Input

Instruction Data Bus. This input bus should be driven with the requested instruction data
before the end of phase 2 of GCLK.

InM[4:0]

Output

Instruction Mode. These signals indicate the current mode of the processor and are in the
same form as the mode bitsin the CPSR.

INMREQ

Output

Not Instruction Memory Request.
If LOW at the end of GCLK phase 2, the processor requires an instruction memory access
during the following cycle.

INTRANS

Output

Not Memory Trandate.
When LOW, the processor isin user mode.
When HIGH, the processor isin a privileged mode.

ISEQ

Output

Instruction Sequential Address. If HIGH at the end of GCLK phase 2, any instruction
memory access during the following cycleis sequential from the last instruction memory
access.

ITBIT

Output

Instruction Thumb Bit.
When HIGH, the processor isin Thumb state.
When LOW, the processor isin ARM state.

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM9TDMI Signal Descriptions

A.2 Data memory interface signals

Table A-2 Data memory interface signals

Name Direction Description

DA[31:0] Output Data Address Bus. Thisisthe processor data address bus. It changeswhen GCLK is
HIGH.

DABE Input Data Address Bus Enable. When LOW, thisinput puts the data address bus,

DA[31:0], driversinto a high impedance state. This signal has the same effect on
DnTRANS, DLOCK, DMAS[1:0], DnRW, and DnM[4:Q]. If UNIEN isHIGH this
signal isignored.

DABORT Input Data Abort. Thisinput allows the memory system to tell the processor that the
requested data memory accessis not allowed.

DDJ[31:0] Output Data Output Bus. This output busis used to transfer write data between the processor
and external memory. The output data will become valid during phase 1 and remain
valid through GCLK phase 2.
If UNIEN isLOW, thisis atristate output bus and is only driven during write cycles.
If UNIEN isHIGH, thisbusis always driven.

DDBE Input Data Data Bus Enable. Thisis an input which, when LOW, puts the Data Data Bus
DD[31:0] into a high impedance state. If UNIEN isHIGH this signal isignored.

DDEN Output Data Data Bus Output Enabled. Thissignal indicates when the processor is
performing awrite transfer on the Data Data Bus, DD[31:0].

DDIN[31:0] Input Data Input Bus. Thisinput is used to transfer load data between external memory and
the processor. It should be driven with the requested data by the end of GCLK phase
2.

DLOCK Output Data Lock. If HIGH at the end of GCLK phase 2, any data memory accessin the

following cycleislocked, and the memory controller must wait until DLOCK goes
LOW before allowing another device to access memory.

DMAS[1:0] Output Data Memory Access Size. These outputs encode the size of adatamemory accessin
the following cycle. A word accessis encoded as 10 (binary), a halfword access as
01, and a byte access as 00. The encoding 11 is reserved.

DMORE Output DataMore. If HIGH at the end of GCLK phase 2, the data memory accessin the
following cycle will be directly followed by a sequential data memory access.

DnM[4:0] Output Data Mode. The processor mode within which the data memory access should be
performed.

Note that the data memory access mode may differ from the current processor mode.

DnMREQ Output Not Data Memory Request. If LOW at the end of GCLK phase 2, the processor
requires a data memory access in the following cycle.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-3

ARMS9TDMI Signal Descriptions

Table A-2 Data memory interface signals (continued)

Name Direction Description

DnRW Output Data not Read, Write.

If LOW at the end of phase 2, any data memory access in the following cycleisa
read.
If HIGH, itisawrite.

DnTRANS Output Data Not Memory Trandate. If LOW, the next data memory accessisto be
performed as auser mode access, if HIGH the data memory accessisto performed as
aprivileged mode access.

Note that the data memory access mode may differ from the current processor mode.

DSEQ Output Data Sequential Address. If HIGH at the end of phase 2, any data memory accessin
the next cycleis sequential from the current data memory access.

A-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM9TDMI Signal Descriptions

A.3 Coprocessor interface signals

Table A-3 Coprocessor interface signals

Name Direction Description

CHSDI[1:0] Input Coprocessor Handshake Decode. The handshake signals from the decode stage of
the coprocessors pipeline follower.

Note, if no coprocessor is present in the system, CHSD[1] should betied HIGH, and
CHSDI0] should be tied LOW.

CHSE[1:Q] Input Coprocessor Handshake Execute. The handshake signals from the execute stage of
the coprocessors pipeline follower.

Note, if no coprocessor is present in the system, CHSE[1] should betied HIGH, and
CHSE[Q] should be tied LOW.

LATECANCEL Output Coprocessor Late Cancel. If HIGH during the first memory cycle of a coprocessor
instruction’s execution, the coprocessor should cancel the instruction without having
updated its state.

PASS Output Coprocessd@ASS. This signal indicates that there is a coprocessor instruction in the

execute stage of the pipeline, and it should be executed.

For further information on the coprocessor interface refer to Chapter 4 ARM9TDMI
Coprocessor Interface.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. A-5

ARMS9TDMI Signal Descriptions

A.4 JTAG and TAP controller signals

Table A-4 JTAG and TAP controller signals

Name

Direction

Description

DRIVEOUTBS

Output

Boundary Scan Cell Enable. This signal is used to control the multiplexersin the scan
cells of an external boundary scan chain. Thissignal changesin the UPDATE-IR state
when scan chain 3 is selected and either the INTEST, EXTEST, CLAMP or CLAMPZ
instruction is loaded. When an external boundary scan chain is not connected, this
output should be left unconnected.

ECAPCLKBS

Output

Extest Capture Clock for Boundary Scan. Thisisa TCK 2 wide pulse generated when
the TAP controller state machine isin the CAPTURE-DR state, the current instruction
iSEXTEST and scan chain 3 is selected. This signal is used to capture the chip level
inputs during EXTEST. When an external boundary scan chain is not connected, this
output should be left unconnected.

ICAPCLKBS

Output

Intest Capture Clock. Thisisa TCK 2 wide pulse generated when the TAP controller
state machine isin the CAPTURE-DR state, the current instruction is INTEST and
scan chain 3 is selected. Thissignal is used to capture the chip level outputs during
INTEST. When an externa boundary scan chain is not connected, this output should
be left unconnected.

IR[3:0]

Output

Tap Controller Instruction Register. These four bits reflect the current instruction
loaded into the TAP controller instruction register. The bits change on the falling edge
of TCK when the state machineisin the UPDATE-IR state.

PCLKBS

Output

Boundary Scan Update Clock. ThisisaTCK 2 wide pulse generated when the TAP
controller state machine isin the UPDATE-DR state and scan chain 3 is selected. This
signal is used by an external boundary scan chain as the update clock. When an
external boundary scan chain is not connected, this output should be left unconnected.

RSTCLKBS

Output

Boundary Scan Reset Clock. This signal denotes that either the TAP controller state
machineisin the RESET state, or that N"TRST has been asserted. This may be used to
reset external boundary scan cells.

SCREG[4:0]

Output

Scan Chain Register. These four bits reflect the ID number of the scan chain currently
selected by the TAP controller. These bits change on the falling edge of TCK when the
TAP state machineisin the UPDATE-DR state.

SDIN

Output

Boundary Scan Seria Input Data. This signal contains the serial data to be applied to
an external scan chain, and isvalid around the falling edge of TCK.

SDOUTBS

Input

Boundary Scan Serial Output Data. Thisis the serial data out of the boundary scan
chain (or other external scan chain). It should be set up to the rising edge of TCK.
When an external boundary scan chain is not connected, this input should be tied
LOW.

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM9TDMI Signal Descriptions

Table A-4 JTAG and TAP controller signals (continued)

Name Direction Description

SHCLK1BS Output Boundary Scan Shift Clock Phase 1. This control signal is provided to ease the
connection of an externa boundary scan chain. SHCLK1BS s used to clock the
master half of the external scan cells. When the state machineisin SHIFT-DR state,
scan chain 3 is selected, SHCLK 1BS follows TCK 1. When not in the SHIFT-DR
state, or when scan chain 3 is not selected, this clock is LOW. When an external
boundary scan chain is not connected, this output must be left unconnected.

SHCLK2BS Output Boundary Scan Shift Clock Phase 2. This control signa is provided to ease the
connection of an external boundary scan chain. SHCLK 2BSisused to clock the dave
half of the external scan cells. When the state machineisin SHIFT-DR state, scan
chain 3 isselected, SHCLK2BS follows TCK 2. When not in the SHIFT-DR state, or
when scan chain 3 is not selected, this clock is LOW. When an external boundary scan
chain is not connected, this output must be left unconnected.

TAPID[31:0] Input TAP Identification. The value on this bus will be captured when using the IDCODE
instruction on the TAP controller state machine.

TAPSM[3:0] Output TAP Controller State Machine. Thisbus reflects the current state of the TAP controller
state machine. These bits change off the rising edge of TCK.

TCK Input The JTAG clock (the test clock).

TCK1 Output TCK, Phase 1. TCK1isHIGH when TCK isHIGH, athough there is a slight phase
lag due to the internal clock non-overlap.

TCK2 Output TCK, Phase 2. TCK2 isHIGH when TCK is LOW, although thereis a slight phase
lag due to the internal clock non-overlap.

TDI Input Test Data Input, the JTAG seridl input.

TDO Output Test Data Output, the JTAG serial output.

nTDOEN Output Not TDO Enable. When LOW, this signal denotes that serial datais being driven out

on the TDO output. The nTDOEN signal would normally be used as an output enable
for aTDO pin in apackaged part.

TMS Input Test Mode Select. TM S selects to which state the TAP controller state machine should
change.
NnTRST Input Not Test Reset. Active-low reset signal for the boundary scan logic. This pin must be

pulsed or driven LOW after power up to achieve normal device operation, in addition
to the normal devicereset (NnRESET).

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-7

ARMS9TDMI Signal Descriptions

A.5 Debug signals

Table A-5 Debug signals

Name

Direction

Description

COMMRX

Output

Communications Channel Receive. When HIGH, this signal denotes that the comms
channel receive buffer contains data waiting to be read by the ARM9TDMI.

COMMTX

Output

Communications Channel Transmit. When HIGH, this signal denotes that the comms
channel transmit buffer is empty and the ARM9TDMI can write new datato the comms
channel.

DBGACK

Output

Debug Acknowledge. When HIGH, this signal indicates the ARM9TDMI isin debug
state.

DBGEN

Input

Debug Enable. Thisinput signal allows the debug features of the ARM9TDMI to be
disabled. This signal should be LOW only when debugging will not be required.

DBGRQI

Output

Internal Debug Request. This signal represents the debug request signal whichiis
presented to the processor core. Thisis acombination of EDBGRQ, as presented to the
ARMOTDMI, and bit 1 of the debug control register.

DEWPT

Input

Data Watchpoint. Thisis an input which alows externa hardware to halt execution of
the processor for debug purposes. If HIGH at the end of phase 1 following a data
memory request cycle, it will cause the ARMITDMI to enter debug state.

EDBGRQ

Input

External Debug Request. When driven HIGH, this causes the processor to enter debug
state after execution of the current instruction completes.

EXTERNO

Input

External Input 0. Thisis an input to watchpoint unit 0 of the Embeddedl CE macrocell
in the processor which allows breakpoints/watchpoints to be dependent on an external
condition.

EXTERN1

Input

External Input 1. Thisisan input to watchpoint unit 1 of the Embeddedl CE macrocell
in the processor which allows breakpoints/watchpoints to be dependent on an external
condition.

|EBKPT

Input

Instruction Breakpoint. Thisis an input which allows a external hardware to halt the
execution of the processor for debug purposes. If HIGH at the end of phase 1 following
an instruction memory request cycle, it causes the ARM9TDMI to enter debug state if
the relevant instruction reaches the execute stage of the processor pipeline.

INSTREXEC

Output

Instruction Executed. Indicates that in the previous cycle the instruction in the execute
stage of the pipeline passed its condition codes, and was executed.

© Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM9TDMI Signal Descriptions

Table A-5 Debug signals (continued)

Name

Direction

Description

RANGEOUTO

Output

Embeddedl CE Rangeout 0. This signal indicates that the Embedded| CE macrocell

watchpoint unit 0 has matched the conditions currently present on the address, data and

control buses. This signal is independent of the state of the watchpoint’s enable control
bit.

RANGEOUT1

Output

EmbeddedICE Rangeout 1. This signal indicates that the EmbeddedICE macrocell
watchpoint unit 1 has matched the conditions currently present on the address, data and
control buses. This signal is independent of the state of the watchpoint’s enable control
bit.

TBE

Input

Test Bus Enable. When driven LOWBE forces the following signals to HIGH
impedance:

DD[31:0]

DA[3L:0]

DLOCK

DMAS[1:0]

DnM[4:0]

DnRW

DnTRANS

DMORE

DnMREQ

DSEQ

IA[31:0]

INnM[4:0Q]

INTRANS

INMREQ

ISEQ

ITBIT

LATECANCEL

PASS.

Under normal operating conditioBBE should be held HIGH at all times.
If UNIEN is HIGH, this signal is ignored.

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved. A-9

ARMS9TDMI Signal Descriptions

A.6 Miscellaneous signals

Table A-6 Miscellaneous signals

Name Direction Description

BIGEND Input Big-Endian Configuration.
When thisinput is HIGH, the ARM9TDMI processor treats bytes in memory as being in big-
endian format. When it is LOW, memory is treated as little-endian.

ECLK Output External Clock.
The clock by which the ARM9TDMI is currently being clocked. This clock will reflect any
wait states applied by nWAI T, and once debug state has been entered by the debug clock.

nFlQ Input Not Fast Interrupt request.
Thisinput causes the core to be interrupted if taken LOW, and if the appropriate enablein the
processor is active. The signdl is level-sensitive and must be held LOW until a suitable
response is received from the processor. The nFI1Q signal may be synchronous or
asynchronous, depending on the state of | SYNC.

GCLK Input Clock.
This clock times all ARM9TDMI memory accesses (both data and instruction), and internal
operations. The clock has two distinct phaspbase 1 in whichGCLK is LOW andphase 2
in whichGCLK is HIGH. The clock may be stretched indefinitely in either phase to allow
access to slow peripherals or memory. AlternativelyAI T may be used with a free running
GCLK to stretch phase 2.

HIVECS Input High Vectors Configuration.
When LOW, the ARM9TDMI exception vectors start at address 0x00000000 (hexadecimal).
When HIGH, the ARMOTDMI exception vectors start at address OxFFFF0000.

nIRQ Input Not Interrupt Request.
As nFIQ, but with lower priority. May be taken LOW to interrupt the processor when the
appropriate enable is active. ThdRQ signalmay be synchronous or asynchronous,
depending on the state I8YNC.

ISYNC Input Synchronous Interrupts.
When LOW, this input indicates that thERQ andnFIQ inputs are tdesynchronized by
the processor. When HIGH it disables this synchronization for inputs that are already
synchronous.

NRESET Input Not Reset.
This is a level-sensitive input signal which is used to start the processor from a known
address. The ARM9TDMI processor asynchronously enters resetniRESET goes LOW.

A-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM9TDMI Signal Descriptions

Table A-6 Miscellaneous signals (continued)

Name Direction Description

nWAIT Input Not Wait.
When amemory request cannot be processed in asingle cycle, the ARMOTDMI can be made
to wait for anumber of GCLK cycles by driving N\WAIT LOW. Internally, the inverse of
NWAIT is ORed with GCLK, and must only change when GCLK isHIGH. If nWAIT isnot
used, it must be tied HIGH.

UNIEN Input Unidirectiona Enable.
When HIGH, all ARM9TDMI outputs are permanently driven, (the state of | ABE, DABE,
DDBE and TBE isignored). The DDIN[31:0] and DD[31:0] busesform aunidirectional data
bus.
When LOW, outputs can go tristate and the DD[31:0] bus is only driven during write cycles.
If DD[31:0] and DDIN[31:0] are wired together, they form a bidirectional data bus.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-11

ARMS9TDMI Signal Descriptions

A-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Index

Theitemsin thisindex arelisted in aphabetic order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

About testing 6-2
ARM instruction set 1-2

ARM7TDMI
code compatibility 2-2

B

bidirectional datadatabus 3-11
BIGEND 3-12
boundary scan chain

controlling external 5-25
boundary scan interface 5-13
breakpoints 5-5

exceptions 5-6

instruction boundary 5-6

prefetch abort 5-6
timing 5-6

busy-wait 4-6, 4-16

abandoned 4-16
interrupted 4-16

C
clocks
core 5-26
DCLK 5-26
GCLK 5-26
internally TCK generated clock 5-
26
memory clock 5-26
switching 5-26

switching during debug 5-27
switching during test 5-28
systemreset 5-28

coprocessor

interface block 4-2

coprocessor handshake signals 4-6

encoding 4-8
states 4-6

COprocessor instructions
busy-wait 4-6
CDP 4-13
coprocessor 15 MCRs ~ 4-17
during busy-wait 4-16
during interrupts ~ 4-16
interlocked MCR ~ 4-11
LDC/STC 4-3
MCR/MRC 4-9
privileged instructions ~ 4-15
privileged modes 4-15
types supported 4-2

core state
determining 5-29

D

data abort
handler 2-2
model 2-2

datainterface

accessing instruction memory ~ 3-2
datatransfers 3-8

ARM DDI 0180A

© Copyright ARM Limited 2000. All rights reserved.

Index-xiii

Index

datatransfer 3-8
16-bit 3-12
32-bit 3-12
8-bit 3-12
aborted 3-8
accesstimings 3-9
coprocessor transfers 3-9
cycleencoding 3-8
data abort vector 3-8
datacycle 3-8
direction 3-8
endian configuration 3-12
endian effects 3-12
memory accesssizes 3-12
size 39
sizeencoding 3-9
DBGACK 5-32

debug
clock switching 5-27
communications channel 5-48
debug scan chain 5-23
entered from ARM state 5-29
entered from Thumb state 5-29
hardware extensions 5-2, 5-4
ingtruction register 5-13
public instructions 5-14
pullupresistors 5-13
reset 5-13
scan chains 5-22
speed 5-30
state-machine controller 5-13
debug host 5-3

debug interface
signads 5-5

TAP controller states 5-2
debug request 5-10
debug state 5-2, 5-30

actionsof ARM9TDMI 3-3,5-10

breakpoints 5-5

exiting 5-32

watchpoints 5-7
debug system 5-3

E
EmbeddedICE 5-5, 5-38

accessing hardware registers 5-24

control registers 5-41
debug control register 5-44
debug statusregister 5-44
functionality 5-38
hardware 5-38

register map 5-38
singlestepping 5-47
vector catch register 5-45
vector catching 5-46

EmbeddedI CE macrocell 5-1, 5-2, 5-10

Embedded| CE watchpoint units
debugging 5-11
programming 5-11
testing 5-11

endian effects
datatransfer 3-12
instruction fetches 3-7

external scan chains 5-21

F

five-stage pipeline 2-4

H

halting
datainterface 3-3
instruction interface 3-3
processor 3-3

I
implementation options ~ 2-2
instruction cycle
counts and bus activity 7-2
databusingtructiontimes 7-4
multiplier cycle counts 7-4
times 7-2
instruction fetch
16-bit 3-7
32-bit 3-7
aborted 3-5
endian effects 3-7
in ARM state 3-7
in Thumb state 3-7
prefetch abort vector 3-5
timing 3-5
instruction interface
accessing datamemory 3-3
instruction addressbus 3-5
instruction fetch timing 3-5
instruction set
ARM 1-2
Thumb 1-2
instruction set extension spaces 2-3
interlocks 2-4,7-5
LDM dependent timing 7-8
LDM timing 7-7
singleload timing 7-5
two cycleload timing 7-6

J

JTAG interface 5-11, 5-13, 5-28
JTAG state machine 5-12

L
LATECANCEL 46

M

memory accesses 3-2
coprocessor transfer 3-2
internal 3-2
non-sequential 3-2
sequential 3-2

memory configurations
big-endian 3-2
little-endian 3-2
selecting 3-2

memory interface
accesses 3-2
addressing 3-2
datainterface 3-1
instruction interface 3-1
performance 3-2
reset behavior 3-13

N

nRESET 3-13
nWAIT 3-3

P

PASS 4-6
PC
return address calculations
pipeline 2-4
ARM 4-2
coprocessor 4-2
interlock 4-11
interlocks 7-5
pipeline follower 4-2
timing 2-4
processor
hating 3-3
processor core
diagram 1-3
implementation 1-2
processor state
determining 5-29
programmer’s model 2-1
protocol converter 5-3

5-37

public instructions within debug

BYPASS 5-16
CLAMP 5-16
CLAMPZ 5-17
EXTEST 5-14
HIGHZ 5-16
IDCODE 5-15
INTEST 5-15
SCAN_N 5-15

Index-xiv

© Copyright ARM Limited 2000. All rights reserved.

ARM DDI 0180A

R \%
reset vector catching 5-46
memory interface 3-13
S W
wait states 3-3
scan chains 5-11, 5-22

oxtomal 521 watchpoints 5-7
scanchain0 5-22 ﬁx n?r%l On§_7 510
scan chain O bit order 6-1, 6-3
scanchainl 5-23
scanchain2 5-24
scanchan3 5-25

serial test and debug 5-12

signas
coprocessor interface A-5
datamemory interface A-3
debug A-8
instruction memory interface A-2
JTAG and TAP controller A-6
miscellaneous A-10

single stepping 5-47

SYSSPEED bit 5-31

system speed
instructions 5-31

system state
determining 5-30
scanchanl 5-30

T

TAP controller 5-11, 5-12, 5-21
TAP state machine 5-26

test
clock switching 5-28
systemreset 5-28

test dataregisters 5-19
ARMOTDMI device ID code

register 5-19

bypassregister 5-19
instruction register 5-20
scan chain select register 5-20
scan chains 5-22

testing 6-1
EXTEST 6-2
parallel and serial 6-2
scan chain O bit order 6-3
test patterns 6-2

Thumb instructionset 1-2

timing
diagrams 8-2
parameters 8-14

U

unidirectional write datadatabus 3-11

Index

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved.

Index-xv

	ARM9TDMI Technical Reference Manual
	Preface
	About this document
	Intended audience

	Further reading
	ARM publications
	Other reading

	Typographical conventions
	Feedback
	Feedback on this manual
	Feedback on the ARM9TDMI

	1 Introduction
	1.1 About the ARM9TDMI
	1.2 Processor block diagram

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.1.1 Data abort model
	2.1.2 Instruction set extension spaces

	2.2 Pipeline implementation and interlocks

	3 ARM9TDMI Processor Core Memory Interface
	3.1 About the memory interface
	3.1.1 Actions of the ARM9TDMI in debug state
	3.1.2 Wait states

	3.2 Instruction interface
	3.3 Endian effects for instruction fetches
	3.4 Data interface
	3.5 Unidirectional/bidirectional mode interface
	3.6 Endian effects for data transfers
	3.7 ARM9TDMI reset behavior

	4 ARM9TDMI Coprocessor Interface
	4.1 About the coprocessor interface
	4.2 LDC/STC
	4.2.1 Coprocessor handshake encoding

	4.3 MCR/MRC
	4.4 Interlocked MCR
	4.5 CDP
	4.6 Privileged instructions
	4.7 Busy-waiting and interrupts
	4.8 Coprocessor 15 MCRs

	5 Debug Support
	5.1 About debug
	5.2 Debug systems
	5.2.1 The debug host
	5.2.2 The protocol converter
	5.2.3 The ARM9TDMI

	5.3 Debug interface signals
	5.3.1 Entry into debug state on breakpoint
	5.3.2 Breakpoints and exceptions
	5.3.3 Watchpoints
	5.3.4 Watchpoints and exceptions
	5.3.5 Debug request
	5.3.6 Actions of the ARM9TDMI in debug state

	5.4 Scan chains and JTAG interface
	5.5 The JTAG state machine
	5.5.1 Reset
	5.5.2 Pullup resistors
	5.5.3 Instruction register
	5.5.4 Public instructions

	5.6 Test data registers
	5.6.1 Bypass register
	5.6.2 ARM9TDMI device identification (ID) code register
	5.6.3 Instruction register
	5.6.4 Scan chain select register
	5.6.5 Scan chains 0, 1, 2, and 3

	5.7 ARM9TDMI core clocks
	5.8 Clock switching during debug
	5.9 Clock switching during test
	5.10 Determining the core state and system state
	5.10.1 Determining the core state
	5.10.2 Determining system state
	5.10.3 Instructions which may have the SYSSPEED bit set

	5.11 Exit from debug state
	5.12 The behavior of the program counter during debug
	5.12.1 Breakpoint
	5.12.2 Watchpoint
	5.12.3 Watchpoint with another exception
	5.12.4 Watchpoint and breakpoint
	5.12.5 Debug request
	5.12.6 System speed accesses
	5.12.7 Summary of return address calculations

	5.13 EmbeddedICE macrocell
	5.13.1 Register map
	5.13.2 Using the mask registers
	5.13.3 Control registers
	5.13.4 Debug control register
	5.13.5 Debug status register
	5.13.6 Vector catch register

	5.14 Vector catching
	5.15 Single stepping
	5.16 Debug communications channel
	5.16.1 Debug comms channel registers
	5.16.2 Communications via the comms channel

	6 Test Issues
	6.1 About testing
	6.2 Scan chain 0 bit order

	7 Instruction Cycle Summary and Interlocks
	7.1 Instruction cycle times
	7.1.1 Multiplier cycle counts

	7.2 Interlocks

	8 ARM9TDMI AC Characteristics
	8.1 ARM9TDMI timing diagrams
	8.2 ARM9TDMI timing parameters

	Appendix A ARM9TDMI Signal Descriptions
	A.1 Instruction memory interface signals
	A.2 Data memory interface signals
	A.3 Coprocessor interface signals
	A.4 JTAG and TAP controller signals
	A.5 Debug signals
	A.6 Miscellaneous signals

