
ARM DDI 0180A

ARM9TDMI
(Rev 3)

Technical Reference Manual

ii © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM9TDMI
Technical Reference Manual
© Copyright ARM Limited 2000. All rights reserved.

Release information

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI,
ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

ARM web address

http://www.arm.com

Change history

Description Issue Change

March 2000 A First release

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. iii

Preface

This preface introduces the ARM9TDMI (Revision 3), which is a member of the ARM
family of general-purpose microprocessors. It contains the following sections:

• About this document on page iv.

• Further reading on page v.

• Typographical conventions on page vi.

• Feedback on page vii.

iv © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

About this document

This document is a reference manual for the ARM9TDMI microprocessor. The
ARM9TDMI includes the following features:

• The option, selectable using the UNIEN signal, of using two unidirectional
buses DD[31:0] and DDIN[31:0], instead of a single bidirectional data bus. This
is described in Unidirectional/bidirectional mode interface on page 3-10.

• The value returned by the JTAG TAP controller IDCODE instruction is the value
present on the new TAPID[31:0] input bus. This allows the ID code to be easily
changed for each chip design.

Intended audience

This document has been written for experienced hardware and software engineers who
may or may not have experience of ARM products.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. v

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM publications

ARM Architecture Reference Manual (ARM DDI 0100).
ARM7TDMI Data Sheet (ARM DDI 0029).

Other reading

IEEE Std. 1149.1 - 1990, Standard Test Access Port and Boundary-Scan Architecture.

vi © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. May also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic
Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. vii

Feedback

ARM Limited welcomes feedback both on the ARM9TDMI, and on the
documentation.

Feedback on this manual

If you have any comments on this document, please send an email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM9TDMI

If you have any comments or suggestions about the ARM9TDMI, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.

viii © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. ix

Contents
ARM9TDMI Technical Reference Manual

Preface
About this document ..iv
Further reading... v
Typographical conventions ..vi
Feedback ..vii

 Chapter 1 Introduction
1.1 About the ARM9TDMI...1-2
1.2 Processor block diagram...1-3

 Chapter 2 Programmer’s Model
2.1 About the programmer’s model...2-2
2.2 Pipeline implementation and interlocks...2-4

 Chapter 3 ARM9TDMI Processor Core Memory Interface
3.1 About the memory interface..3-2
3.2 Instruction interface...3-5
3.3 Endian effects for instruction fetches ..3-7
3.4 Data interface..3-8
3.5 Unidirectional/bidirectional mode interface ...3-11
3.6 Endian effects for data transfers ...3-12
3.7 ARM9TDMI reset behavior..3-13

x © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

 Chapter 4 ARM9TDMI Coprocessor Interface
4.1 About the coprocessor interface... 4-2
4.2 LDC/STC .. 4-3
4.3 MCR/MRC .. 4-9
4.4 Interlocked MCR... 4-11
4.5 CDP.. 4-13
4.6 Privileged instructions... 4-15
4.7 Busy-waiting and interrupts .. 4-16
4.8 Coprocessor 15 MCRs ... 4-17

 Chapter 5 Debug Support
5.1 About debug ... 5-2
5.2 Debug systems... 5-3
5.3 Debug interface signals .. 5-5
5.4 Scan chains and JTAG interface .. 5-11
5.5 The JTAG state machine.. 5-12
5.6 Test data registers.. 5-19
5.7 ARM9TDMI core clocks.. 5-26
5.8 Clock switching during debug... 5-27
5.9 Clock switching during test ... 5-28
5.10 Determining the core state and system state ... 5-29
5.11 Exit from debug state.. 5-32
5.12 The behavior of the program counter during debug 5-35
5.13 EmbeddedICE macrocell.. 5-38
5.14 Vector catching... 5-46
5.15 Single stepping ... 5-47
5.16 Debug communications channel .. 5-48

 Chapter 6 Test Issues
6.1 About testing... 6-2
6.2 Scan chain 0 bit order... 6-3

 Chapter 7 Instruction Cycle Summary and Interlocks
7.1 Instruction cycle times .. 7-2
7.2 Interlocks .. 7-5

 Chapter 8 ARM9TDMI AC Characteristics
8.1 ARM9TDMI timing diagrams .. 8-2
8.2 ARM9TDMI timing parameters ... 8-14

 Appendix A ARM9TDMI Signal Descriptions
A.1 Instruction memory interface signals .. A-2
A.2 Data memory interface signals ... A-3
A.3 Coprocessor interface signals .. A-5
A.4 JTAG and TAP controller signals ... A-6
A.5 Debug signals... A-8
A.6 Miscellaneous signals... A-10

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the ARM9TDMI (Revision 3) and shows its processor block
diagram under the headings:

• About the ARM9TDMI on page 1-2.

• Processor block diagram on page 1-3.

Introduction

1-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

1.1 About the ARM9TDMI

The ARM9TDMI is a member of the ARM family of general-purpose microprocessors.
The ARM9TDMI is targeted at embedded control applications where high
performance, low die size and low power are all important. The ARM9TDMI supports
both the 32-bit ARM and 16-bit Thumb instruction sets, allowing the user to trade off
between high performance and high code density. The ARM9TDMI supports the ARM
debug architecture and includes logic to assist in both hardware and software debug.
The ARM9TDMI supports both bidirectional and unidirectional connection to external
memory systems. The ARM9TDMI also includes support for coprocessors.

The ARM9TDMI processor core is implemented using a five-stage pipeline consisting
of fetch, decode, execute, memory and write stages. The device has a Harvard
architecture, and the simple bus interface eases connection to either a cached or
SRAM-based memory system. A simple handshake protocol is provided for
coprocessor support.

Introduction

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 1-3

1.2 Processor block diagram

Figure 1-1 shows the ARM9TDMI processor block diagram.

Figure 1-1 ARM9TDMI processor block diagram

Instruction Decode and Datapath control logic
Instruction
Pipeline

Vectors

IAreg

PSR

B[..]

A[..]

Imm

PSRRD[..]

DINFWD[..]DIN[..]

RESULT[..]

+PC

REGBANK

MUL

BData[..]

AData[..]

IINC

DAreg

Shift

Cmux

IA[..]

IAScan

ID[..]

DAScan

SHIFTER

Amux

Bmux

C[..]

ALU

nALUOut[..]

Byte Rot
/ Sign Ex.

IDScan

Byte/
Word
Repl

DINC

DA[..]

DDIN[]

DDScan

DD[..]

Introduction

1-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 2-1

Chapter 2
Programmer’s Model

This chapter describes the programmer’s model for the ARM9TDMI under the
headings:

• About the programmer’s model on page 2-2.

• Pipeline implementation and interlocks on page 2-4.

Programmer’s Model

2-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

2.1 About the programmer’s model

The ARM9TDMI processor core implements ARM Architecture v4T, and so executes
the ARM 32-bit instruction set and the compressed Thumb 16-bit instruction set. The
programmer’s model is fully described in the ARM Architecture Reference Manual.

The ARM v4T architecture specifies a small number of implementation options. The
options selected in the ARM9TDMI implementation are listed in the table below. For
comparison, the options selected for the ARM7TDMI implementation are also shown:

The ARM9TDMI is code compatible with the ARM7TDMI, with two exceptions:

• The ARM9TDMI implements the Base Restored Data Abort model, which
significantly simplifies the software data abort handler.

• The ARM9TDMI fully implements the instruction set extension spaces added to
the ARM (32-bit) instruction set in Architecture v4 and v4T.

These differences are explained in more detail below.

2.1.1 Data abort model

The ARM9TDMI implements the Base Restored Data Abort Model, which differs from
the Base updated data abort model implemented by ARM7TDMI.

The difference in the Data Abort Model affects only a very small section of operating
system code, the data abort handler. It does not affect user code. With the Base Restored
Data Abort Model, when a data abort exception occurs during the execution of a
memory access instruction, the base register is always restored by the processor
hardware to the value the register contained before the instruction was executed. This
removes the need for the data abort handler to ‘unwind’ any base register update which
may have been specified by the aborted instruction.

The Base Restored Data Abort Model significantly simplifies the software data abort
handler.

Table 2-1 ARM9TDMI implementation option

Processor
core

ARM
architecture

Data abort model
Value stored by direct
STR, STRT, STM of PC

ARM7TDMI v4T Base updated Address of Inst + 12

ARM9TDMI v4T Base restored Address of Inst + 12

Programmer’s Model

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 2-3

2.1.2 Instruction set extension spaces

All ARM processors implement the undefined instruction space as one of the entry
mechanisms for the Undefined Instruction Exception. That is, ARM instructions with
opcode[27:25] = 0b011 and opcode[4] = 1 are UNDEFINED on all ARM processors
including the ARM9TDMI and ARM7TDMI.

ARM Architecture v4 and v4T also introduced a number of instruction set extension
spaces to the ARM instruction set. These are:

• arithmetic instruction extension space

• control instruction extension space

• coprocessor instruction extension space

• load/store instruction extension space.

Instructions in these spaces are UNDEFINED (they cause an Undefined Instruction
Exception). The ARM9TDMI fully implements all the instruction set extension spaces
defined in ARM Architecture v4T as UNDEFINED instructions, allowing emulation of
future instruction set additions.

Programmer’s Model

2-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

2.2 Pipeline implementation and interlocks

The ARM9TDMI implementation uses a five-stage pipeline design. These five stages
are:

• instruction fetch (F)

• instruction decode (D)

• execute (E)

• data memory access (M)

• register write (W).

ARM implementations are fully interlocked, so that software will function identically
across different implementations without concern for pipeline effects. Interlocks do
affect instruction execution times. For example, the following sequence suffers a single
cycle penalty due to a load-use interlock on register R0:
LDR R0, [R7]

ADD R5, R0, R1

For more details, see Chapter 7 Instruction Cycle Summary and Interlocks. Figure 2-1
shows the timing of the pipeline, and the principal activity in each stage.

Figure 2-1 ARM9TDMI processor core instruction pipeline

GCLK

IA[31:1], InMREQ,
ISEQ

ID[31:0]

DA[31:0], DnMREQ,
DSEQ, DMORE

DD[31:0]

DDIN[31:0]

F D E M W

Instruction
Memory Access

Register
Decode

Register
Read

Shift ALU
Data Memory

Access
Register

Write

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-1

Chapter 3
ARM9TDMI Processor Core Memory Interface

This chapter describes the memory interface of the ARM9TDMI processor core. The
processor core has a Harvard memory architecture, and so the memory interface is
separated into the instruction interface and the data interface. The information in this
chapter is broken down as follows:

• About the memory interface on page 3-2.

• Instruction interface on page 3-5.

• Endian effects for instruction fetches on page 3-7.

• Data interface on page 3-8.

• Unidirectional/bidirectional mode interface on page 3-11.

• Endian effects for data transfers on page 3-12.

• ARM9TDMI reset behavior on page 3-13.

ARM9TDMI Processor Core Memory Interface

3-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

3.1 About the memory interface

The ARM9TDMI has a Harvard bus architecture with separate instruction and data
interfaces. This allows concurrent instruction and data accesses, and greatly reduces the
CPI of the processor. For optimal performance, single cycle memory accesses for both
interfaces are required, although the core can be wait-stated for non-sequential
accesses, or slower memory systems.

For both instruction and data interfaces, the ARM9TDMI process core uses pipelined
addressing. The address and control signals are generated the cycle before the data
transfer takes place, giving any decode logic as much advance notice as possible. All
memory accesses are generated from GCLK.

For each interface there are different types of memory access:

• non-sequential

• sequential

• internal

• coprocessor transfer (for the data interface).

These accesses are determined by InMREQ and ISEQ for the instruction interface, and
by DnMREQ and DSEQ for the data interface.

The ARM9TDMI can operate in both big-endian and little-endian memory
configurations, and this is selected by the BIGEND input. The endian configuration
affects both interfaces, so care must be taken in designing the memory interface logic
to allow correct operation of the processor core.

For system purposes, it is normally necessary to provide some mechanism whereby the
data interface can access instruction memory. There are two main reasons for this:

• The use of in-line data for literal pools is very common. This data will be fetched
via the data interface but will normally be contained in the instruction memory
space.

• To enable debug via the JTAG interface it must be possible to download code
into the instruction memory. This code has to be written to memory via the data
data bus as the instruction data bus is unidirectional. This means in this instance
it is essential for the data interface to have access to the instruction memory.

A typical implementation of an ARM9TDMI-based cached processor has Harvard
caches and a unified memory structure beyond the caches, thereby giving the data
interface access to the instruction memory space. The ARM940T is an example of such
a system. However, for an SRAM-based system this technique cannot be used, and an
alternative method must be employed.

ARM9TDMI Processor Core Memory Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-3

It is not as critical for the instruction interface to have access to the data memory area
unless the processor needs to execute code from data memory.

3.1.1 Actions of the ARM9TDMI in debug state

Once the ARM9TDMI is in debug state, both memory interfaces will indicate internal
cycles. This allows the rest of the memory system to ignore the ARM9TDMI and
function as normal. Since the rest of the system continues operation, the ARM9TDMI
will ignore aborts and interrupts.

The BIGEND signal should not be changed by the system while in debug state. If it
changes, not only will there be a synchronization problem, but the programmer’s view
of the ARM9TDMI will change without the knowledge of the debugger. The nRESET
signal must also be held stable during debug. If the system applies reset to the
ARM9TDMI (nRESET is driven LOW), the state of the ARM9TDMI will change
without the knowledge of the debugger.

When instructions are executed in debug state, the ARM9TDMI will change
asynchronously to the memory system outputs (except for InMREQ, ISEQ,
DnMREQ, and DSEQ which change synchronously from GCLK). For example, every
time a new instruction is scanned into the pipeline, the instruction address bus will
change. If the instruction is a load or store operation, the data address bus will change
as the instruction executes. Although this is asynchronous, it should not affect the
system, because both interfaces will be indicating internal cycles. Care must be taken
with the design of the memory controller to ensure that this does not become a problem.

3.1.2 Wait states

For memory accesses which require more than one cycle, the processor can be halted
by using nWAIT. This signal halts the processor, including both the instruction and
data interfaces. The nWAIT signal should be driven LOW by the end of phase 2 to stall
the processor (it is inverted and ORed with GCLK to stretch the internal processor
clock). The nWAIT signal must only change during phase 2 of GCLK. For debug
purposes the internal core clock is exported on the ECLK signal. This timing is shown
below in Figure 3-1.

Alternatively, wait states may be inserted by stretching either phase of GCLK before it
is applied to the processor. ARM9TDMI does not contain any dynamic logic which
relies on regular clocking to maintain its state. Therefore there is no limit on the
maximum period for which GCLK may be stretched, in either phase, or the time for
which nWAIT may be held LOW.

ARM9TDMI Processor Core Memory Interface

3-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

The system designer must take care when adding wait states because the interface is
pipelined. When a wait state is asserted, the current data and instruction transfers are
suspended. However, the address buses and control signals will have already changed
to indicate the next transfer. It is therefore necessary to latch the address and control
signals of each interface when using wait states.

Figure 3-1 ARM9TDMI clock stalling using nWAIT

GCLK

nWAIT

ECLK

ARM9TDMI Processor Core Memory Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-5

3.2 Instruction interface

Whenever an instruction enters the execute stage of the pipeline, a new opcode is
fetched from the instruction bus. The ARM9TDMI processor core may be connected to
a variety of cache/SRAM systems, and it is optimized for single cycle access systems.

However, in order to ease the system design, it is possible to connect the ARM9TDMI
to memory which takes two (or more) cycles for a non-sequential (N) access, and one
cycle for a sequential (S) access. Although this increases the effective CPI, it
considerably eases the memory design.

The ARM9TDMI indicates that an instruction fetch will take place by driving
InMREQ LOW. The instruction address bus, IA[31:1] will contain the address for the
fetch, and the ISEQ signal will indicate whether the fetch is sequential or
non-sequential to the previous access. All these signals become valid towards the end
of phase 2 of the cycle that precedes the instruction fetch.

If ITBIT is LOW, and thus ARM9TDMI is performing word reads, then IA[1] should
be ignored.

The timing is shown in Figure 3-2 on page 3-6. The full encoding of InMREQ and
ISEQ is as follows:

Note

The 1,1 case does not occur in this implementation but may be used in the future.

Instruction fetches may be marked as aborted. The IABORT signal is an input to the
processor with the same timing as the instruction data. If, and when, the instruction
reaches the execute stage of the pipeline, the prefetch abort vector is taken. The timing
for this is shown in Figure 3-2 on page 3-6. If the memory control logic does not make
use of the IABORT signal, it must be tied LOW.

Table 3-1 InMREQ and ISEQ encoding

InMREQ ISEQ Cycle type

0 0 Non-sequential

0 1 Sequential

1 0 Internal

1 1 Reserved for future use

ARM9TDMI Processor Core Memory Interface

3-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Internal cycles occur when the processor is stalled, either waiting for an interlock to
resolve, or completing a multi-cycle instruction.

Note

A sequential cycle can occur immediately after an internal cycle.

Figure 3-2 shows the cycle timing for an N followed by an S cycle, where there is a
prefetch abort on the S cycle:

Figure 3-2 Instruction fetch timing

GCLK

InMREQ

ISEQ

IA[31:1]

ID[31:0]

IABORT

N-cycle S-cycle

A A+4

ARM9TDMI Processor Core Memory Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-7

3.3 Endian effects for instruction fetches

The ARM9TDMI will perform 32-bit or 16-bit instruction fetches depending on
whether the processor is in ARM or Thumb state. The processor state may be
determined externally by the value of the ITBIT signal. When this signal is LOW, the
processor is in ARM state, and 32-bit instructions are fetched. When it is HIGH, the
processor is in Thumb state and 16-bit instructions are fetched.

When the processor is in ARM state, its endian configuration does not affect the
instruction fetches, as all 32 bits of ID[31:0] are read. However, in Thumb state the
processor will read either from the upper half of the instruction data bus, ID[31:16], or
from the lower half, ID[15:0]. This is determined by the endian configuration of the
memory system, which is indicated by the BIGEND signal, and the state of IA[1].

Table 3-2 shows which half of the data bus is sampled in the different configurations:

When a 16-bit instruction is fetched, the ARM9TDMI ignores the unused half of the
data bus.

Table 3-2 Endian effect on instruction position

Little BIGEND = 0 Big BIGEND = 1

IA[1] = 0 ID[15:0] ID[31:16]

IA[1] = 1 ID[31:16] ID[15:0]

ARM9TDMI Processor Core Memory Interface

3-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

3.4 Data interface

Data transfers take place in the memory stage of the pipeline. The operation of the data
interface is very similar to the instruction interface.

The interface is pipelined with the address and control signals, becoming valid in
phase 2 of the cycle before the transfer. There are four types of data cycle, and these are
indicated by DnMREQ and DSEQ. The timing for these signals is shown in
Figure 3-3 on page 3-10. The full encoding for these signals is given in Table 3-3:

For internal cycles, data memory accesses are not required in this instance, the data
interface outputs will retain the state of the previous transfer.

DnRW indicates the direction of the transfer, LOW for reads and HIGH for writes. The
signal becomes valid at approximately the same time as the data address bus.

• For reads, DDIN[31:0] must be driven with valid data for the falling edge of
GCLK at the end of phase 2.

• For writes by the processor, data will become valid in phase 1, and remain valid
throughout phase 2.

Both reads and writes are illustrated in Figure 3-3 on page 3-10.

See 4.1 About the coprocessor interface on page 4-2 for further information on using
DDIN[31:0] and DD[31:0] in unidirectional mode or connecting together to form a
bidirectional bus.

Data transfers may be marked as aborted. The DABORT signal is an input to the
processor with the same timing as the data. Upon completion of the current instruction
in the memory stage of the pipeline, the data abort vector is taken. If the memory control
logic does not make use of the DABORT signal, it must be tied LOW, but with the
exception that data can be transferred to and from the ARM9TDMI core.

Table 3-3 DnMREQ and DSEQ encoding

DnMREQ DSEQ Cycle Type

0 0 Non-sequential

0 1 Sequential

1 0 Internal

1 1 Coprocessor Transfer

ARM9TDMI Processor Core Memory Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-9

The size of the transfer is indicated by DMAS[1:0]. These signals become valid at
approximately the same time as the data address bus. The encoding is given below in
Table 3-4:

For coprocessor transfers, access to memory is not required, but there will be a transfer
of data between the ARM9TDMI and coprocessor using the data buses, DD[31:0] and
DDIN[31:0]. DnRW indicates the direction of the transfer and DMAS[1:0] indicates
word transfers, as all coprocessor transfers are word sized.

The DMORE signal is active during load and store multiple instructions and only ever
goes HIGH when DnMREQ is LOW. This signal effectively gives the same
information as DSEQ, but a cycle ahead. This information is provided to allow external
logic more time to decode sequential cycles.

Figure 3-3 on page 3-10 shows a load multiple of four words followed by an MCR,
followed by an aborted store. Note the following:

• The DMORE signal is active in the first three cycles of the load multiple to
indicate that a sequential word will be loaded in the following cycle.

• From the behavior of InMREQ during the LDM, it can be seen that an
instruction fetch takes place when the instruction enters the execute stage of the
pipeline, but that thereafter the instruction pipeline is stalled until the LDM
completes.

Table 3-4 DMAS[1:0] encoding

DMAS[1:0] Transfer size

00 Byte

01 Half word

10 Word

11 Reserved

ARM9TDMI Processor Core Memory Interface

3-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 3-3 Data access timings

GCLK

InMREQ

ID[31:0]

DnMREQ

DSEQ

DMORE

DnRW

DA[31:0]

DD[31:0]

DDIN[31:0]

DABORT

LDM MCR STR

A A+4 A+8 A+0xC A+0xC B

ARM9TDMI Processor Core Memory Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-11

3.5 Unidirectional/bidirectional mode interface

The ARM9TDMI supports connection to external memory systems using either a
bidirectional data data bus or two unidirectional buses. This is controlled by the UNIEN
input.

If UNIEN is LOW, DD[31:0] is a tristate output bus used to transfer write data. It is
only driven when the ARM9TDMI is performing a write to memory. By wiring
DD[31:0] to the input DDIN[31:0] bus (externally to the ARM9TDMI), a bidirectional
data data bus can be formed.

If UNIEN is HIGH, then DD[31:0], and all other ARM9TDMI outputs, are
permanently driven. DD[31:0] then forms a unidirectional write data data bus. In this
mode, the tristate enable pins IABE, DABE, DDBE, TBE, and the TAP instruction
nHIGHZ, have no effect. Therefore all outputs are always driven.

All timing diagrams in this manual, except where tristate timing is shown explicitly,
assume UNIEN is HIGH.

ARM9TDMI Processor Core Memory Interface

3-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

3.6 Endian effects for data transfers

The ARM9TDMI supports 32-bit, 16-bit and 8-bit data memory access sizes. The
endian configuration of the processor, set by BIGEND, affects only non-word transfers
(16-bit and 8-bit transfers).

For data writes by the processor, the write data is duplicated on the data bus. So for a
16-bit data store, one copy of the data appears on the upper half of the data bus,
DD[31:16], and the same data appears on the lower half, DD[15:0]. For 8-bit writes
four copies are output, one on each byte lane, DD[31:24], DD[23:16], DD[15:8] and
DD[7:0]. This considerably eases the memory control logic design and helps overcome
any endian effects.

For data reads, the processor will read a specific part of the data bus. This is determined
by the endian configuration, the size of the transfer, and bits 1 and 0 of the data address
bus. Table 3-5 shows which bits of the data bus are read for 16-bit reads, and
Table 3-6 shows which bits are read for 8-bit reads.

For simplicity of design, 32 bits of data can be read from memory and the processor will
ignore any unwanted bits.

Table 3-5 Endian effects for 16-bit data fetches

 DA[1:0] Little (BIGEND = 0) Big (BIGEND = 1)

00 DDIN[15:0] DDIN[31:16]

10 DDIN[31:16] DDIN[15:0]

Table 3-6 Endian effects for 8-bit data fetches

 DA[1:0] Little (BIGEND = 0) Big (BIGEND = 1)

00 DDIN[7:0] DDIN[31:24]

01 DDIN[15:8] DDIN[23:16]

10 DDIN[23:16] DDIN[15:8]

11 DDIN[31:24] DDIN[7:0]

ARM9TDMI Processor Core Memory Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 3-13

3.7 ARM9TDMI reset behavior

When nRESET is driven LOW, the currently executing instruction terminates
abnormally. If GCLK is HIGH, InMREQ, ISEQ, DnMREQ, DSEQ and DMORE
will asynchronously change to indicate an internal cycle. If GCLK is LOW, they will
not change until after the GCLK goes HIGH.

When nRESET is driven HIGH, the ARM9TDMI starts requesting memory again once
the signal has been synchronized, and the first memory access will start two cycles later.
The nRESET signal is sampled on the falling edge of GCLK. The behavior of the
memory interfaces coming out of reset is shown in Figure 3-4 on page 3-14.

ARM9TDMI Processor Core Memory Interface

3-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 3-4 ARM9TDMI reset behavior

GCLK

nRESET

InMREQ

ISEQ

IA[31:1]

ID[31:0]

DnMREQ

DSEQ

DMORE

DnRW

DA[31:0]

F D E M

0x0 0x4 0x8

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-1

Chapter 4
ARM9TDMI Coprocessor Interface

This chapter describes the ARM9TDMI coprocessor interface, and details the following
operations:

• About the coprocessor interface on page 4-2.

• LDC/STC on page 4-3.

• MCR/MRC on page 4-9.

• Interlocked MCR on page 4-11.

• CDP on page 4-13.

• Privileged instructions on page 4-15.

• Busy-waiting and interrupts on page 4-16.

• Coprocessor 15 MCRs on page 4-17.

ARM9TDMI Coprocessor Interface

4-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

4.1 About the coprocessor interface

The ARM9TDMI supports the connection of coprocessors. All types of ARM
coprocessor instructions are supported. Coprocessors determine the instructions they
need to execute using a pipeline follower in the coprocessor. As each instruction arrives
from memory, it enters both the ARM pipeline and the coprocessor pipeline. Typically,
a coprocessor operates one clock phase behind the ARM9TDMI pipeline. The
coprocessor determines when an instruction is being fetched by the ARM9TDMI, so
that the instruction can be loaded into the coprocessor, and the pipeline follower
advanced.

Note

A cached ARM9TDMI core typically has an external coprocessor interface block, the
main purpose of which is to latch the instruction data bus, ID, one of the data buses,
DD[31:0] or DDIN[31:0], and relevant ARM9TDMI control signals before exporting
them to the coprocessors. For a description of all the interface signals referred to in this
chapter, refer to A.3 Coprocessor interface signals on page A-5.

There are three classes of coprocessor instructions:

• LDC/STC

• MCR/MRC

• CDP.

The following sections give examples of how a coprocessor should execute these
instruction classes.

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-3

4.2 LDC/STC

The number of words transferred is determined by how the coprocessor drives the
CHSD[1:0] and CHSE[1:0] buses. In the example, four words of data are transferred.
Figure 4-1 on page 4-4 shows the ARM9TDMI LDC/STC cycle timing.

ARM9TDMI Coprocessor Interface

4-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 4-1 ARM9TDMI LDC / STC cycle timing

ARM Processor
Pipeline

Coprocessor Pipeline

GCLK

InMREQ

ID[27:0]

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

DD[31:0]
STC

DDIN[31:0]
LDC

DnMREQ

DMORE

DA[31:0]

Decode
Execute

(GO)
Execute

(GO)
Execute

(GO)
Execute
(LAST)

Memory Write

Decode
Execute

(GO)
Execute

(GO)
Execute

(GO)
Execute
(LAST)

Memory Write

LDC

GO

GO GO LAST Ignored

A A+4 A+8 A+C

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-5

As with all other instructions, the ARM9TDMI processor core performs the main
decode off the rising edge of the clock during the decode stage. From this, the core
commits to executing the instruction, and so performs an instruction fetch. The
coprocessor instruction pipeline keeps in step with the ARM9TDMI by monitoring
InMREQ.

At the falling edge of GCLK, if nWAIT is HIGH, and InMREQ is LOW, an
instruction fetch is taking place, and ID[31:0] will contain the fetched instruction on the
next falling edge of the clock, when nWAIT is HIGH. This means that:

• the last instruction fetched should enter the decode stage of the coprocessor
pipeline

• the instruction in the decode stage of the coprocessor pipeline should enter its
execute stage

• the fetched instruction should be latched.

In all other cases, the ARM9TDMI pipeline is stalled, and the coprocessor pipeline
should not advance.

Figure 4-2 shows the timing for these signals, and indicates when the coprocessor
pipeline should advance its state. In this timing diagram, Coproc Clock shows a
processed version of GCLK with InMREQ and nWAIT. This is one method of
generating a clock to reflect the advance of the ARM9TDMI pipeline.

Figure 4-2 ARM9TDMI coprocessor clocking

GCLK

nWAIT

Coproc
Clock

ARM9TDMI Coprocessor Interface

4-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

During the execute stage, the condition codes are combined with the flags to determine
whether the instruction really executes or not. The output PASS is asserted (HIGH) if
the instruction in the execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, PASS is asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, PASS
is driven LOW, and the coprocessor will stop execution of the coprocessor instruction.

A further output, LATECANCEL, is used to cancel a coprocessor instruction when the
instruction preceding it caused a data abort. This is valid on the rising edge of GCLK
on the cycle that follows the first execute cycle of the coprocessor instructions. This is
the only cycle in which LATECANCEL can be asserted.

On the falling edge of the clock, the ARM9TDMI processor core examines the
coprocessor handshake signals CHSD[1:0] or CHSE[1:0]:

• If a new instruction is entering the execute stage in the next cycle, it examines
CHSD[1:0].

• If the currently executing coprocessor instruction requires another execute cycle,
it examines CHSE[1:0].

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9TDMI processor core takes the undefined instruction
trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9TDMI processor core should stall until the coprocessor
can catch up. This is known as the busy-wait condition. In this case, the
ARM9TDMI processor core loops in an idle state waiting for CHSE[1:0]
to be driven to another state, or for an interrupt to occur.
If CHSE[1:0] changes to ABSENT, the undefined instruction trap will
be taken.
If CHSE[1:0] changes to GO or LAST, the instruction will proceed as
described below.
If an interrupt occurs, the ARM9TDMI processor core is forced out of the
busy-wait state. This is indicated to the coprocessor by the PASS signal
going LOW. The instruction will be restarted at a later date and so the

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-7

coprocessor must not commit to the instruction (it must not change any
of the coprocessor’s state) until it has seen PASS HIGH, when the
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARM9TDMI processor core and the coprocessor must also consider the
state of the PASS signal before actually committing to the instruction.
For an LDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still need to be
transferred. When only one further word is to be transferred, the
coprocessor drives the handshake signals with LAST.
In phase 2 of the execute stage, the ARM9TDMI processor core outputs
the address for the LDC/STC. Also in this phase, DnMREQ is driven
LOW, indicating to the memory system that a memory access is required
at the data end of the device. The timing for the data on DD[31:0] for an
LDC and DD[31:0] for an STC is shown in Figure 4-1 on page 4-4.

LAST An LDC or STC can be used for more than one item of data. If this is the
case, possibly after busy waiting, the coprocessor drives the coprocessor
handshake signals with a number of GO states, and in the penultimate
cycle LAST (LAST indicating that the next transfer is the final one). If
there was only one transfer, the sequence would be
[WAIT,[WAIT,...]],LAST.

For both MRC and STC instructions, the DDIN[31:0] bus is owned by the coprocessor,
and can hence be driven by the coprocessor from the cycle after the relevant instruction
enters the execute stage of the coprocessor pipeline, until the next instruction enters the
execute stage of the coprocessor pipeline. This is the case even if the instruction is
subject to a LATECANCEL or the PASS signal is not asserted.

For efficient coprocessor design, an unmodified version of GCLK should be applied to
the execution stage of the coprocessor. This will allow the coprocessor to continue
executing an instruction even when the ARM9TDMI pipeline is stalled.

ARM9TDMI Coprocessor Interface

4-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

4.2.1 Coprocessor handshake encoding

Table 4-1 shows how the handshake signals CHSD[1:0] and CHSE[1:0] are encoded.

If a coprocessor is not attached to the ARM9TDMI, the handshake signals must be
driven with “10” ABSENT, otherwise the ARM9TDMI processor will hang if a
coprocessor enters the pipeline.

If multiple coprocessors are to be attached to the interface, the handshaking signals can
be combined by ANDing bit 1, and ORing bit 0. In the case of two coprocessors which
have handshaking signals CHSD1, CHSE1 and CHSD2, CHSE2 respectively:

CHSD[1]<= CHSD1[1] AND CHSD2[1]

CHSD[0]<= CHSD1[0] OR CHSD2[0]

CHSE[1]<= CHSE1[1] AND CHSE2[1]

CHSE[0]<= CHSE1[0] OR CHSE2[0]

Table 4-1 Handshake signals

CHSD/E[1:0]

ABSENT 10

WAIT 00

GO 01

LAST 11

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-9

4.3 MCR/MRC

These cycles look very similar to STC/LDC. An example, with a busy-wait state, is
shown in Figure 4-3:

Figure 4-3 ARM9TDMI MCR / MRC transfer timing

ARM Processor
Pipeline

Coprocessor Pipeline

GCLK

ID[31:0]

InMREQ

PASS

CHSD[1:0]

CHSE[1:0]

DD[31:0]
MCR

DDIN[31:0]
MRC

Decode
Execute

(GO)
Memory

(GO)
Write

(LAST)

Decode
Execute

(GO)
Memory

(GO)
Write

(LAST)

CPRT

LAST

IGNORED

ARM9TDMI Coprocessor Interface

4-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

First InMREQ is driven LOW to denote that the instruction on ID is entering the
decode stage of the pipeline. This causes the coprocessor to decode the new instruction
and drive CHSD[1:0] as required. In the next cycle InMREQ is driven LOW to denote
that the instruction has now been issued to the execute stage. If the condition codes pass,
and hence the instruction is to be executed, the PASS signal is driven HIGH and the
CHSD[1:0] handshake bus is examined (it is ignored in all other cases). For any
successive execute cycles the CHSE[1:0] handshake bus is examined. When the LAST
condition is observed, the instruction is committed. In the case of an MCR, the
DD[31:0] bus is driven with the register data. In the case of an MRC, DDIN[31:0] is
sampled at the end of the ARM9TDMI memory stage and written to the destination
register during the next cycle.

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-11

4.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9TDMI pipeline
during its first decode cycle, the ARM9TDMI pipeline will interlock for one or more
cycles until the data is available. An example of this is where the register being
transferred is the destination from a preceding LDR instruction. In this situation the
MCR instruction will enter the decode stage of the coprocessor pipeline, and remain
there for a number of cycles before entering the execute stage. Figure 4-4 on page 4-12
gives an example of an interlocked MCR.

ARM9TDMI Coprocessor Interface

4-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 4-4 ARM9TDMI interlocked MCR

ARM Processor
Pipeline

Coprocessor Pipeline

GCLK

ID[31:0]

InMREQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

DD[31:0]
MCR

DDIN[31:0]
MRC

Decode
(interlock)

Decode
Execute
(WAIT)

Execute
(LAST)

Memory Write

Decode Decode
Execute
(WAIT)

Execute
(LAST)

Memory Write

MCR/
MRC

WAIT WAIT

LAST Ignored

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-13

4.5 CDP

CDP signals normally execute in a single cycle. Like all the previous cycles, InMREQ
is driven LOW to signal when an instruction is entering the decode and then the execute
stage of the pipeline:

• if the instruction really is to be executed, the PASS signal is be driven HIGH
during phase 2 of execute

• if the coprocessor can execute the instruction immediately it drives CHSD[1:0]
with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives CHSD[1:0]
with WAIT and then CHSE[1:0] with LAST.

Figure 4-5 on page 4-14 shows a CDP which is cancelled due to the previous instruction
causing a data abort. The CDP instruction enters the execute stage of the pipeline and
is signalled to execute by PASS. In the following phase LATECANCEL is asserted.
This causes the coprocessor to terminate execution of the CDP instruction and for it to
cause no state changes to the coprocessor.

ARM9TDMI Coprocessor Interface

4-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 4-5 ARM9TDMI late cancelled CDP

LDR with Data Abort

CDP: ARM Processor
Pipeline

CDP: Coprocessor Pipeline

GCLK

ID[31:0]

InMREQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

DABORT

Execute Memory
Exception
Entry Start

Exception
Continues

Decode Execute

Decode Execute
Memory

(LateCancelled)

CPRT

LAST

Ignored

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-15

4.6 Privileged instructions

The coprocessor may restrict certain instructions for use in privileged modes only. To
do this, the coprocessor will have to track the InTRANS output. Figure 4-6 shows how
InTRANS changes after a mode change.

Figure 4-6 ARM9TDMI privileged instructions

The first two CHSD responses are ignored by the ARM9TDMI because it is only the
final CHSD response, as the instruction moves from decode into execute, that counts.
This allows the coprocessor to change its response as InTRANS/InM[4:0] changes.

Mode Change

CDP: ARM Processor
Pipeline

CDP: Coprocessor Pipeline

GCLK

ID[31:0]

InMREQ

InTRANS
/InM[4:0]

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

Execute
Execute
(Cycle 2)

Execute
(Cycle 3)

Memory Write

Decode Decode Decode Execute Memory Write

Decode Decode Decode Execute Memory Write

CPRT

Old Mode New Mode

Ignored Ignored LAST

Ignored

ARM9TDMI Coprocessor Interface

4-16 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

4.7 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the decode stage instruction
drives WAIT onto CHSD[1:0]. When the instruction concerned enters the execute
stage of the pipeline the coprocessor may drive WAIT onto CHSE[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor may be interrupted while busy-waiting,
thus causing the instruction to be abandoned. Abandoning execution is done through
PASS. The coprocessor must monitor the stage of PASS during every busy-wait cycle.

If it is HIGH, the instruction should still be executed. If it is LOW, the instruction
should be abandoned. Figure 4-7 shows a busy-waited coprocessor instruction being
abandoned due to an interrupt:

Figure 4-7 ARM9TDMI busy waiting and interrupts

ARM Processor
Pipeline

Coprocessor Pipeline

GCLK

ID[31:0]

InMREQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

Decode
Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute
Interrupted

Exception
Entry

Decode
Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT) Abandoned

Instr

WAIT

WAIT WAIT WAIT Ignored

ARM9TDMI Coprocessor Interface

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 4-17

4.8 Coprocessor 15 MCRs

Coprocessor 15 is typically reserved for use as a system control coprocessor. For an
MCR to coprocessor 15, it is possible to transfer the coprocessor data to the coprocessor
on the IA and DA buses. To do this the coprocessor should drive GO on the coprocessor
handshake signals for a number of cycles. For each cycle that the coprocessor
responded with GO on the handshake signals the coprocessor data will be driven onto
IA and DA as shown in Figure 4-8.

Figure 4-8 ARM9TDMI coprocessor 15 MCRs

ARM Processor
Pipeline

Coprocessor Pipeline

GCLK

ID[31:0]

InMREQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

DD[31:0]
MCR

IA[31:0]

DA[31:0]

Decode
Execute

(GO)
Execute

(GO)
Execute
(LAST)

Memory Write

Decode
Execute

(GO)
Execute

(GO)
Execute
(LAST)

Memory Write

MCR/
MRC

GO

GO LAST Ignored

Coproc Data

Coproc Data

Coproc Data

ARM9TDMI Coprocessor Interface

4-18 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-1

Chapter 5
Debug Support

This chapter describes the debug support for the ARM9TDMI, including the
EmbeddedICE macrocell:

• About debug on page 5-2.

• Debug systems on page 5-3.

• Debug interface signals on page 5-5.

• Scan chains and JTAG interface on page 5-11.

• The JTAG state machine on page 5-12.

• Test data registers on page 5-19.

• ARM9TDMI core clocks on page 5-26.

• Clock switching during debug on page 5-27.

• Clock switching during test on page 5-28.

• Determining the core state and system state on page 5-29.

• Exit from debug state on page 5-32.

• The behavior of the program counter during debug on page 5-35.

• EmbeddedICE macrocell on page 5-38.

• Vector catching on page 5-46.

• Single stepping on page 5-47.

• Debug communications channel on page 5-48.

Debug Support

5-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.1 About debug

The ARM9TDMI debug interface is based on IEEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture. Please refer to this standard for an
explanation of the terms used in this chapter and for a description of the TAP controller
states.

The ARM9TDMI contains hardware extensions for advanced debugging features.
These are intended to ease the user’s development of application software, operating
systems, and the hardware itself.

The debug extensions allow the core to be stopped by one of the following:

• a given instruction fetch (breakpoint)

• a data access (watchpoint)

• asynchronously by a debug request.

When this happens, the ARM9TDMI is said to be in debug state. At this point, the
internal state of the core and the external state of the system may be examined. Once
examination is complete, the core and system state may be restored and program
execution resumed.

The ARM9TDMI is forced into debug state either by a request on one of the external
debug interface signals, or by an internal functional unit known as the EmbeddedICE
macrocell. Once in debug state, the core isolates itself from the memory system.
The core can then be examined while all other system activity continues as normal.

The internal state of the ARM9TDMI is examined via a JTAG-style serial interface,
which allows instructions to be serially inserted into the pipeline of the core without
using the external data bus. Thus, when in debug state, a store-multiple (STM) could be
inserted into the instruction pipeline, and this would export the contents of the
ARM9TDMI registers. This data can be serially shifted out without affecting the rest of
the system.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-3

5.2 Debug systems

The ARM9TDMI forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARM9TDMI. A typical system is shown in Figure 5-1:

Figure 5-1 Typical debug system

Such a system typically has three parts:

• The debug host.

• The protocol converter.

• The ARM9TDMI on page 5-4.

These are described in the following paragraphs.

5.2.1 The debug host

The debug host is a computer, for example a personal computer, running a
software debugger such as armsd, for example, or ADW. The debug host allows
the user to issue high-level commands such as “set breakpoint at location XX”,
or “examine the contents of memory from 0x0 to 0x100”.

5.2.2 The protocol converter

The debug host is connected to the ARM9TDMI development system via an
interface (an RS232, for example). The messages broadcast over this connection
must be converted to the interface signals of the ARM9TDMI. This function is
performed by the protocol converter, for example, Multi-ICE.

Host computer running armsd or ADW

Protocol
converter

Development system
containing ARM9TDMI

Debug
host

Debug
target

for example, Multi-ICE

JTAG

Debug Support

5-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.2.3 The ARM9TDMI

The ARM9TDMI, with hardware extensions to ease debugging, is the lowest
level of the system. The debug extensions allow the user to stall the core from
program execution, examine its internal state and the state of the memory
system, and then resume program execution.

The debug host and the protocol converter are system dependent. The rest of this
chapter describes the ARM9TDMI hardware debug extensions.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-5

5.3 Debug interface signals

There are four primary external signals associated with the debug interface:

• IEBKPT, DEWPT, and EDBGRQ, with which the system asks the
ARM9TDMI to enter debug state

• DBGACK, which the ARM9TDMI uses to flag back to the system when it is in
debug state.

5.3.1 Entry into debug state on breakpoint

Any instruction being fetched for memory is latched at the end of phase 2. To apply a
breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
following phase1. This minimizes the setup time, giving the EmbeddedICE macrocell
an entire phase in which to perform the comparison. This is shown in Figure 5-2 on
page 5-6.

External logic, such as additional breakpoint comparators, may be built to extend the
functionality of the EmbeddedICE macrocell. Their output should be applied to the
IEBKPT input. This signal is simply ORed with the internally generated Breakpoint
signal before being applied to the ARM9TDMI core control logic.

A breakpointed instruction is allowed to enter the execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All writes from previous
instructions complete as normal.

The decode cycle of the debug entry sequence occurs during the execute cycle of the
breakpointed instruction. The latched Breakpoint signal forces the processor to start
the debug sequence.

Debug Support

5-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 5-2 Breakpoint timing

5.3.2 Breakpoints and exceptions

A breakpointed instruction may have a prefetch abort associated with it. If so, the
prefetch abort takes priority and the breakpoint is ignored. (If there is a prefetch abort,
instruction data may be invalid, the breakpoint may have been data-dependent, and as
the data may be incorrect, the breakpoint may have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction
which may have a breakpoint set on it. Therefore, the breakpoint takes priority over the
SWI or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt (IRQ
or FIQ), the interrupt is taken and the breakpointed instruction is discarded. Once the
interrupt has been serviced, the execution flow is returned to the original program.

GCLK

IA[31:0]

ID[31:0]

IEBKPT

DBGACK

Ddebug Edebug1 Edebug2

F1 D1 E1 M1 W1

F2 D2 E2 M2 W2

FI DI EI MI WI

w1 w2 wI

1 2 I 3 4

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-7

This means that the instruction which was previously breakpointed is fetched again, and
if the breakpoint is still set, the processor enters debug state once it reaches the execute
stage of the pipeline.

Once the processor has entered debug state, it is important that further interrupts do not
affect the instructions executed. For this reason, as soon as the processor enters debug
state, interrupts are disabled, although the state of the I and F bits in the Program Status
Register (PSR) are not affected.

5.3.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise. This is
necessary because of the nature of the pipeline and the timing of the Watchpoint signal.

After a watchpointed access, the next instruction in the processor pipeline is always
allowed to complete execution. Where this instruction is a single-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following a watchpointed load in this case is
shown in Figure 5-3 on page 5-8.

Note

Although instruction 5 enters the execute state, it is not executed, and there is no state
update as a result of this instruction. Once the debugging session is complete, normal
continuation would involve a return to instruction 5, the next instruction in the code
sequence which has not yet been executed.

The instruction following the instruction which generated the watchpoint could have
modified the Program Counter (PC). If this has happened, it will not be possible to
determine the instruction which caused the watchpoint. A timing diagram showing
debug entry after a watchpoint where the next instruction is a branch is shown in
Figure 5-4 on page 5-9. However, it is always possible to restart the processor.

Once the processor has entered debug state, the ARM9TDMI core may be interrogated
to determine its state. In the case of a watchpoint, the PC contains a value that is five
instructions on from the address of the next instruction to be executed. Therefore, if on
entry to debug state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and
the processor restarted, execution flow would return to the next instruction in the code
sequence.

Debug Support

5-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 5-3 Watchpoint entry with data processing instruction

CLK

nMREQ

D[31:0]

A[31:0]

D[31:0]

DIN[31:0]

atchpoint

BGACK

Ddebug Edebug1 Edebug2

F5 D5 E5 M5 W5

FDp DDp EDp MDp WDp

Fldr Dldr Eldr Mldr Wldr

F2 D2 E2 M2 W2

F1 D1 E1 M1 W1

w1 w2 wldr wDp w5 w6

1 2 LDR Dp 5 6 7 8

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-9

Figure 5-4 Watchpoint entry with branch

GCLK

InMREQ

IA[31:1]

ID[31:0]

DA[31:0]

DD[31:0]

DDIN[31:0]

Watchpoint

DBGACK

Ddebug Edebug1 Edebug2

FT DT ET

FB DB EB MB WB

Fldr Dldr Eldr Mldr Wldr

A A+4 A+8 T T+4 T+8 T+C

LDR B X X T T+1 T+2 T+3

Debug Support

5-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.3.4 Watchpoints and exceptions

If there is an abort with the data access as well as a watchpoint, the watchpoint condition
is latched, the exception entry sequence performed, and then the processor enters debug
state. If there is an interrupt pending, again the ARM9TDMI allows the exception entry
sequence to occur and then enters debug state.

5.3.5 Debug request

A debug request can take place through the EmbeddedICE macrocell or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
request takes priority over any pending interrupt. Following synchronization, the core
will enter debug state when the instruction at the execution stage of the pipeline has
completely finished executing (once memory and write stages of the pipeline have
completed). While waiting for the instruction to finish executing, no more instructions
will be issued to the execute stage of the pipeline.

5.3.6 Actions of the ARM9TDMI in debug state

Once the ARM9TDMI is in debug state, both memory interfaces will indicate internal
cycles. This allows the rest of the memory system to ignore the ARM9TDMI and
function as normal. Since the rest of the system continues operation, the ARM9TDMI
will ignore aborts and interrupts.

The BIGEND signal should not be changed by the system while in debug state. If it
changes, not only will there be a synchronization problem, but the programmer’s view
of the ARM9TDMI will change without the knowledge of the debugger. The nRESET
signal must also be held stable during debug. If the system applies reset to the
ARM9TDMI (nRESET is driven LOW), the state of the ARM9TDMI will change
without the knowledge of the debugger.

When instructions are executed in debug state, the ARM9TDMI will change
asynchronously to the memory system outputs (except for InMREQ, ISEQ,
DnMREQ, and DSEQ which change synchronously from GCLK). For example, every
time a new instruction is scanned into the pipeline, the instruction address bus will
change. If the instruction is a load or store operation, the data address bus will change
as the instruction executes. Although this is asynchronous, it should not affect the
system, because both interfaces will be indicating internal cycles. Care must be taken
with the design of the memory controller to ensure that this does not become a problem.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-11

5.4 Scan chains and JTAG interface

There are three scan chains inside the ARM9TDMI. These allow testing, debugging and
programming of the EmbeddedICE macrocell watchpoint units. The scan chains are
controlled by a JTAG-style Test Access Port (TAP) controller. In addition, support is
provided for an optional fourth scan chain. This is intended to be used for an external
boundary scan chain around the pads of a packaged device. The signals provided for this
scan chain are described on Scan chain 3 on page 5-25.

The three scan chains of the ARM9TDMI are referred to as scan chain 0, 1 and 2.

Note

The ARM9TDMI TAP controller supports 32 scan chains. Scan chains 0 to 15 have
been reserved for use by ARM. Any extension scan chains should be implemented in
the remaining space. The SCREG[4:0] signals indicate which scan chain is being
accessed.

Debug Support

5-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.5 The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state
machine. Figure 5-5 shows the state transitions that occur in the TAP controller.

The state numbers are also shown on the diagram. These are output from the
ARM9TDMI on the TAPSM[3:0] bits.

Figure 5-5 Test access port (TAP) controller state transitions

Select-IR-Scan

Capture-IR

tms=0

Shift-IR

tms=0

Exit1-IR

tms=1

Pause-IR

tms=0

Exit2-IR

tms=1

Update-IR

tms=1

tms=0

tms=0

tms=1

tms=1

tms=0

Select-DR-Scan

Capture-DR

tms=0

Shift-DR

tms=0

Exit1-DR

tms=1

Pause-DR

tms=0

Exit2-DR

tms=1

Update-DR

tms=1

Test-Logic Reset

Run-Test/Idle

tms=0tms=1

tms=0

tms=0

tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1

tms=1 tms=1tms=0 tms=0

0xF

0xC 0x7 0x4

0xE

0xA

0x9

0xB

0x8

0xD0x5

0x0

0x3

0x1

0x2

0x6

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-13

5.5.1 Reset

The JTAG interface includes a state-machine controller (the TAP controller). In order
to force the TAP controller into the correct state after power-up of the device, a reset
pulse must be applied to the nTRST signal. If the JTAG interface is to be used, nTRST
must be driven LOW, and then HIGH again. If the boundary scan interface is not to be
used, the nTRST input may be tied permanently LOW.

Note

A clock on TCK is not needed to reset the device.

The action of reset is as follows:

1. System mode is selected. The boundary scan chain cells do not intercept any of
the signals passing between the external system and the core.

2. The IDCODE instruction is selected. If the TAP controller is put into the
Shift-DR state and TCK is pulsed, the contents of the ID register are clocked out
of TDO.

5.5.2 Pullup resistors

The IEEE 1149.1 standard effectively requires TDI and TMS to have internal pullup
resistors. In order to minimize static current draw, these resistors are not fitted to the
ARM9TDMI. Accordingly, the four inputs to the test interface (the TDO, TDI and
TMS signals plus TCK) must all be driven to valid logic levels to achieve normal
circuit operation.

5.5.3 Instruction register

The instruction register is four bits in length. There is no parity bit. The fixed value
loaded into the instruction register during the CAPTURE-IR controller state is 0001.

Debug Support

5-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.5.4 Public instructions

The following public instructions are supported:

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK
and all output transitions on TDO occur as a result of the falling edge of TCK.

EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction.
The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output
scan cells to the system are captured by the scan cells.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain
via TDO, while new test data is shifted in via the TDI input. This data is applied
immediately to the system logic and system pins.

Table 5-1 Public instructions

Instruction Binary code

EXTEST 0000

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

CLAMP 0101

HIGHZ 0111

CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-15

SCAN_N (0010)

This instruction connects the scan path select register between TDI and TDO.

During the CAPTURE-DR state, the fixed value 10000 is loaded into the register.

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

In the UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO, and remains connected until a subsequent SCAN_N instruction
is issued. On reset, scan chain 3 is selected by default. The scan path select register is
five bits long in this implementation, although no finite length is specified.

INTEST (1100)

The selected scan chain is placed in test mode by the INTEST instruction. The INTEST
instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the
output scan cells, and the value of the data applied from the system logic to the input
scan cells is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain
via the TDO pin, while new test data is shifted in via the TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register)
between TDI and TDO. The ID register is a 32-bit register that allows the
manufacturer, part number, and version of a component to be determined through the
TAP. The ID register is loaded from the TAPID[31:0] input bus, which should be tied
to a constant value being the unique JTAG IDCODE for the device.

When the instruction register is loaded with the IDCODE instruction, all the scan cells
are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code is captured by the ID register.

In the SHIFT-DR state, the previously captured device identification code is shifted out
of the ID register via the TDO pin, while data is shifted in via the TDI pin into the ID
register.

In the UPDATE-DR state, the ID register is unaffected.

Debug Support

5-16 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between
TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells
are placed in their normal (system) mode of operation. This instruction has no effect on
the system pins.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

In the SHIFT-DR state, test data is shifted into the bypass register via TDI and out via
TDO after a delay of one TCK cycle. The first bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

Note

All unused instruction codes default to the BYPASS instruction.

CLAMP (0101)

This instruction connects a 1-bit shift register (the bypass register) between TDI and
TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all the
output signals is defined by the values previously loaded into the currently-loaded scan
chain.

Note

This instruction should only be used when scan chain 0 is the currently selected scan
chain.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

In the SHIFT-DR state, test data is shifted into the bypass register via TDI and out via
TDO after a delay of one TCK cycle. The first bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

This instruction connects a 1-bit shift register (the bypass register) between TDI and
TDO.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-17

When the HIGHZ instruction is loaded into the instruction register, all ARM9TDMI
outputs are driven to the high impedance state and the external HIGHZ signal is driven
HIGH. This is as if the signal TBE had been driven LOW.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the
SHIFT-DR state, test data is shifted into the bypass register via TDI and out via TDO
after a delay of one TCK cycle. The first bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

This instruction connects a 1-bit shift register (the bypass register) between TDI and
TDO.

When the CLAMPZ instruction is loaded into the instruction register and scan chain 0
is selected, all the 3-state outputs (as described above) are placed in their inactive state,
but the data supplied to the outputs is derived from the scan cells. The purpose of this
instruction is to ensure that, during production test, each output can be disabled when
its data value is either a logic 0 or logic 1.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

In the SHIFT-DR state, test data is shifted into the bypass register via TDI and out via
TDO after a delay of one TCK cycle. The first bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on
the rising edge of TCK. Normal system operation is unaffected.

In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan via the
TDO pin, while new data is shifted in via the TDI pin to preload the boundary scan
parallel input latch. Note that this data is not applied to the system logic or system pins
while the SAMPLE/PRELOAD instruction is active.

This instruction should be used to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

Debug Support

5-18 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

RESTART (0100)

This instruction is used to restart the processor on exit from debug state. The RESTART
instruction connects the bypass register between TDI and TDO and the TAP controller
behaves as if the BYPASS instruction had been loaded. The processor will
resynchronize back to the memory system once the RUN-TEST/ IDLE state is entered.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-19

5.6 Test data registers

The following test data registers may be connected between TDI and TDO:

• Bypass register.

• ARM9TDMI device identification (ID) code register.

• Instruction register on page 5-20.

• Scan chain select register on page 5-20.

• Scan chains 0, 1, 2, and 3 on page 5-22.

These are described below.

5.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
between TDI and TDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in
the SHIFT-DR state with a delay of one TCK cycle. There is no
parallel output from the bypass register. A logic 0 is loaded from
the parallel input of the bypass register in CAPTURE-DR state.

5.6.2 ARM9TDMI device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits.

Operating mode When the IDCODE instruction is current, the ID register is
selected as the serial path between TDI and TDO. There is no
parallel output from the ID register. The 32-bit identification code
is loaded into the register from the parallel inputs of the
TAPID[31:0] input bus during the CAPTURE-DR state.

Debug Support

5-20 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

The IEEE format of the ID register is as shown in Figure 5-2:

5.6.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode When in SHIFT-IR state, the instruction register is selected as the
serial path between TDI and TDO.

During the CAPTURE-IR state, the value 0b0001 is loaded into this register. This is
shifted out during SHIFT-IR (least significant bit first), while a new instruction is
shifted in (least significant bit first). During the UPDATE-IR state, the value in the
instruction register becomes the current instruction. On reset, IDCODE becomes the
current instruction.

5.6.4 Scan chain select register

Purpose Changes the current active scan chain.

Length 5 bits.

Operating mode After SCAN_N has been selected as the current instruction, when
in SHIFT-DR state, the scan chain select register is selected as the
serial path between TDI and TDO.

During the CAPTURE-DR state, the value 0b10000 is loaded into this register. This is
shifted out during SHIFT-DR (least significant bit first), while a new value is shifted in
(least significant bit first).

During the UPDATE-DR state, the value in the register selects a scan chain to become
the currently active scan chain. All further instructions such as INTEST then apply to
that scan chain.

Table 5-2 ID code register

Bits Contents

31–28 Version number

27–12 Part number

11–1 Manufacturer identity

0 1

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-21

The currently selected scan chain only changes when a SCAN_N instruction is
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[4:0] output
bus. The TAP controller may be used to drive external scan chains in addition to those
within the ARM9TDMI macrocell. The external scan chain must be assigned a number
and control signals for it, and can be derived from SCREG[4:0], IR[3:0],
TAPSM[3:0], TCK1 and TCK2.

The list of scan chain numbers allocated by ARM are shown in Table 5-3. An external
scan chain may take any other number. The serial data stream applied to the external
scan chain is made present on SDIN. The serial data back from the scan chain must be
presented to the TAP controller on the SDOUTBS input.

The scan chain present between SDIN and SDOUTBS will be connected between TDI
and TDO whenever scan chain 3 is selected, or when any of the unassigned scan chain
numbers is selected. If there is more than one external scan chain, a multiplexor must
be built externally to apply the desired scan chain output to SDOUTBS. The
multiplexor can be controlled by decoding SCREG[4:0].

Table 5-3 Scan chain number allocation

Scan chain number Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE macrocell programming

3 External boundary scan

4–15 Reserved

16–31 Unassigned

Debug Support

5-22 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.6.5 Scan chains 0, 1, 2, and 3

These allow serial access to the core logic, and to the EmbeddedICE macrocell for
programming purposes. Each scan cell is fairly simple and can perform two basic
functions, capture and shift.

Scan chain 0

Purpose Primarily for inter-device testing (EXTEST), and testing the core
(INTEST). Scan chain 0 is selected via the SCAN_N instruction.

Length 184 bits.

INTEST allows serial testing of the core. The TAP controller must be placed in the
INTEST mode after scan chain 0 has been selected.

• During CAPTURE-DR, the current outputs from the core’s logic are captured in
the output cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test
pattern is scanned in, thus applying known stimuli to the inputs.

• During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller
should only spend one cycle in RUN-TEST/IDLE. The whole operation may
then be repeated.

EXTEST allows inter-device testing, useful for verifying the connections between
devices in the design. The TAP controller must be placed in EXTEST mode after scan
chain 0 has been selected.

• During CAPTURE-DR, the current inputs to the core’s logic from the system are
captured in the input cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test
pattern is scanned in, thus applying known values on the core’s outputs.

• During RUN-TEST/IDLE, the core is not clocked.

The operation may then be repeated.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-23

Scan chain 1

Purpose Primarily for debugging, although it can be used for EXTEST on
the data data bus DD[31:0] and the instruction data bus ID[31:0].
Scan chain 1 is selected via the SCAN_N TAP controller
instruction.

Length 67 bits.

This scan chain is 67 bits long, 32 bits for data values, 32 bits for instruction data, and
three additional bits, SYSSPEED, DDEN and an used bit. The three bits serve four
different purposes:

• Under normal INTEST test conditions, the DDEN signal can be captured and
examined.

• During EXTEST test conditions, a known value can be scanned into DDEN to
be driven into the rest of the system. If a logic 1 is scanned into DDEN, the data
data bus DD[31:0] will drive out the values stored in its scan cells. If a logic 0 is
scanned into DDEN, DD[31:0] will capture the current input values.

• While debugging, the value placed in the SYSSPEED control bit determines
whether the ARM9TDMI synchronizes back to system speed before executing
the instruction.

• After the ARM9TDMI has entered debug state, the first time SYSSPEED is
captured and scanned out, its value tells the debugger whether the core has
entered debug state due to a breakpoint (SYSSPEED LOW), or a watchpoint
(SYSSPEED HIGH).

Debug Support

5-24 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Scan chain 2

Purpose Allows access to the EmbeddedICE macrocell registers. The order
of the scan chain from TDI to TDO is
read/write
register address bits 4 to 0,
data values bits 31 to 0.

Length 38 bits.

To access this serial register, scan chain 2 must first be selected via the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify
the address of the EmbeddedICE macrocell register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read).

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-25

Scan chain 3

Purpose Allows the ARM9TDMI to control an external boundary scan
chain.

Length User-defined.

Scan chain 3 is provided so that an optional external boundary scan chain may be
controlled via the ARM9TDMI. Typically this would be used for a scan chain around
the pad ring of a packaged device. The following control signals are provided and are
generated only when scan chain 3 has been selected. These outputs are inactive at all
other times.

DRIVEOUTBS This is used to switch the scan cells from system mode to test
mode. This signal is asserted whenever either the INTEST,
EXTEST, CLAMP or CLAMPZ instruction is selected.

PCLKBS This is the update clock, generated in the UPDATE-DR state.
Typically the value scanned into the chain will be transferred to
the cell output on the rising edge of this signal.

ICAPCLKBS, ECAPCLKBS
These are the capture clocks used to sample data into the scan cells
during INTEST and EXTEST respectively. These clocks are
generated in the CAPTURE-DR state.

SHCLK1BS, SHCLK2BS
These are non-overlapping clocks generated in the SHIFT-DR
state that are used to clock the master and slave element of the
scan cells respectively. When the state machine is not in the
SHIFT-DR state, both these clocks are LOW.

In addition to these control outputs, SDIN output and SDOUTBS input are also
provided. When an external scan chain is in use, SDOUTBS should be connected to the
serial data output and SDIN should be connected to the serial data input.

Debug Support

5-26 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.7 ARM9TDMI core clocks

The ARM9TDMI has two clocks, the memory clock GCLK, and an internally TCK
generated clock, DCLK. During normal operation, the core is clocked by GCLK, and
internal logic holds DCLK LOW. When the ARM9TDMI is in the debug state, the core
is clocked by DCLK under control of the TAP state machine, and GCLK may free run.
The selected clock is output on the ECLK signal for use by the external system.

Note

When the core is being debugged and is running from DCLK, nWAIT has no effect.

The two cases in which the clocks switch are during debugging and during testing.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-27

5.8 Clock switching during debug

When the ARM9TDMI enters debug state, it must switch from GCLK to DCLK. This
is handled automatically by logic in the ARM9TDMI. On entry to debug state, the
ARM9TDMI asserts DBGACK in the HIGH phase of GCLK. The switch between the
two clocks occurs on the next falling edge of GCLK.

Figure 5-6 Clock switching on entry to debug state

The ARM9TDMI is forced to use DCLK as the primary clock until debugging is
complete. On exit from debug, the core must be allowed to synchronize back to GCLK.
This must be done in the following sequence. The final instruction of the debug
sequence must be shifted into the instruction data bus scan chain, and clocked in by
asserting DCLK. At this point, RESTART must be clocked into the TAP controller
register.

The ARM9TDMI will now automatically resynchronize back to GCLK when the TAP
controller enters the RUN-TEST/IDLE mode and start fetching instructions from
memory at GCLK speed. For more information, refer to Exit from debug state on
page 5-32.

GCLK

DBGACK

DCLK

ECLK

Debug Support

5-28 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.9 Clock switching during test

When under serial test conditions, when test patterns are being applied to the core
through the JTAG interface, the ARM9TDMI must be clocked using DCLK. Entry into
test is less automatic than debug and some care must be taken.

On the way into test, GCLK must be held LOW. The TAP controller can now be used
to perform serial testing on the ARM9TDMI. If scan chain 0 and INTEST are selected,
DCLK is generated while the state machine is in RUN-TEST/IDLE state.

During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
this is done, GCLK can be allowed to resume. After INTEST testing, care should be
taken to ensure that the core is in a sensible state before switching back. The safest way
to do this is to either select RESTART and then cause a system reset, or to insert
MOV PC,#0 into the instruction pipeline before switching back.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-29

5.10 Determining the core state and system state

When the ARM9TDMI is in debug state, the core state and system state may be
examined. This is done by forcing load and store multiples into the pipeline.

Before the core state and system state can be examined, the debugger must first
determine whether the processor was in Thumb or ARM state when it entered debug.
This is achieved by examining bit 4 of the EmbeddedICE macrocell debug status
register. If this is HIGH, the core was in Thumb state when it entered debug. If it is
LOW, the core is in ARM state.

5.10.1 Determining the core state

If the processor has entered debug state from Thumb state, the simplest course of action
is for the debugger to force the core back into ARM state. Once this is done, the
debugger can always execute the same sequence of instructions to determine the
processor state.

To force the processor into ARM state, the following sequence of Thumb instructions
should be executed on the core:
STR R0, [R1]; Save R0 before use

MOV R0, PC; Copy PC into R0

STR R0, [R1]; Save the PC in R0

BX PC; Jump into ARM state

MOV R8, R8; NOP (no operation)

MOV R8, R8; NOP

The above use of R1 as the base register for the stores is for illustration only—any
register could be used.

Since all Thumb instructions are only 16 bits long, the simplest course of action when
shifting them into scan chain 1 is to repeat the instruction twice on the instruction data
bus bits. For example, the encoding for BX R0 is 0x4700. Thus, if 0x47004700 is shifted
into the 32 bits of the instruction data bus of scan chain 1, the debugger does not have
to track from which half of the bus the processor expects to read instructions.

From this point on, the processor state can be determined by the sequences of ARM
instructions described below.

Once the processor is in ARM state, typically the first instruction executed would be:
STM R0, {R0-R15}

This causes the contents of the registers to be made visible on the data data bus. These
values can then be sampled and shifted out.

Debug Support

5-30 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

After determining the values in the current bank of registers, it may be desirable to
access banked registers. This can only be done by changing mode. Normally, a mode
change may only occur if the core is already in a privileged mode. However, while in
debug state, a mode change from any mode into any other mode may occur. Note that
the debugger must restore the original mode before exiting debug state.

For example, assume that the debugger has been asked to return the state of the user
mode and FIQ mode registers, and debug state was entered in supervisor mode.

The instruction sequence could be:
STMIA R0, {R0-R15}; Save current registers

MRS R0, CPSR

STR R0, [R0]; Save CPSR to determine current mode

BIC R0, R0, #0x1F; Clear mode bits

ORR R0, R0, #0x10; Select USER mode

MSR CPSR, R0; Enter USER mode

STMIA R0, {R13-R14}; Save registers not previously visible

ORR R0, R0, #0x01; Select FIQ mode

MSR CPSR, R0; Enter FIQ mode

STMIA R0, {R8-R14}; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower
than system speed since between each core clock, 67 scan clocks occur in order to shift
in an instruction, or shift out data. Executing instructions more slowly than usual is fine
for accessing the core’s state since the ARM9TDMI is fully static. However, this same
method cannot be used for determining the state of the rest of the system.

While in debug state, only the following instructions may be inserted into the
instruction pipeline for execution:

• all data processing operations

• all load, store, load multiple and store multiple instructions

• MSR and MRS.

5.10.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously. Therefore, the ARM9TDMI must be forced to
synchronize back to system speed. The 33rd bit of scan chain 1, SYSSPEED, controls
this.

A legal debug instruction may be placed in the instruction data bus of scan chain 1 with
bit 33 (the SYSSPEED bit) LOW. This instruction will then be executed at debug speed.
To execute an instruction at system speed, a NOP (such as MOV R0, R0) must be
scanned in as the next instruction with bit 33 set HIGH.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-31

After the system speed instructions have been scanned into the instruction data bus and
clocked into the pipeline, the RESTART instruction must be loaded into the TAP
controller. This will cause the ARM9TDMI automatically to resynchronize back to
GCLK when the TAP controller enters RUN-TEST/IDLE state, and execute the
instruction at system speed. Debug state will be reentered once the instruction
completes execution, when the processor will switch itself back to the internally
generated DCLK. When the instruction has completed, DBGACK will be HIGH. At
this point INTEST can be selected in the TAP controller, and debugging can resume.

To determine whether a system speed instruction has completed, the debugger must
look at SYSCOMP (bit 3 of the Debug status register). To access memory, the
ARM9TDMI must access memory through the data data bus interface, as this access
may be stalled indefinitely by nWAIT. Therefore, the only way to determine whether
the memory access has completed is to examine the SYSCOMP bit. When this bit is
HIGH the instruction has completed.

By the use of system speed load multiples and debug store multiples, the state of the
system memory can be passed to the debug host.

5.10.3 Instructions which may have the SYSSPEED bit set

The only valid instructions on which to set this bit are:

• loads

• stores

• load multiple

• store multiple.

When the ARM9TDMI returns to debug state after a system speed access, the
SYSSPEED bit is set HIGH.

Debug Support

5-32 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.11 Exit from debug state

Leaving debug state involves restoring the internal state of the ARM9TDMI, causing a
branch to the next instruction to be executed, and synchronizing back to GCLK. After
restoring the internal state, a branch instruction must be loaded into the pipeline. For
details on calculating the branch, see The behavior of the program counter during debug
on page 5-35.

Bit 33 of scan chain 1 is used to force the ARM9TDMI to resynchronize back to
GCLK. The penultimate instruction in the debug sequence is a branch to the instruction
at which execution is to resume. This is scanned in with bit 33 set LOW. The core is
then clocked to load the branch into the pipeline. The final instruction to be scanned in
is a NOP (such as MOV R0, R0), with bit 33 set HIGH. The core is then clocked to load
this instruction into the pipeline. Now, the RESTART instruction is selected in the TAP
controller. When the state machine enters the RUN-TEST/IDLE state, the scan chain
will revert back to system mode and clock resynchronization to GCLK will occur
within the ARM9TDMI. Normal operation will then resume, with instructions being
fetched from memory.

The delay, until the state machine is in RUN-TEST/IDLE state, allows conditions to be
set up in other devices in a multiprocessor system without taking immediate effect.
Then, when RUN-TEST/IDLE state is entered, all the processors resume operation
simultaneously.

The function of DBGACK is to tell the rest of the system when the ARM9TDMI is in
debug state. This can be used to inhibit peripherals such as watchdog timers that have
real time characteristics. Also, with a small amount of external logic, DBGACK can be
used to mask out all memory accesses caused by the debugging process, so that the
same number of memory accesses are seen independent of debug entry. This, however,
is only possible if debugging is performed through breakpoints. It is not possible to
precisely mask memory accesses due to debugging if watchpoints are used.

For example, when the ARM9TDMI enters debug state after a breakpoint, the
instruction pipeline contains the breakpointed instruction plus two other instructions
which have been prefetched. On entry to debug state the pipeline is flushed. So, on exit
from debug state, the pipeline must be refilled to its previous state. Therefore, because
of the debugging process, more memory accesses occur than would normally be
expected. Through the use of DBGACK, together with a small amount of external logic
it is possible for a peripheral that simply counts the number of instruction fetches to
return the same answer after a program has run both with and without debugging.

It can be seen in Figure 5-8 on page 5-34 that two instructions are fetched after that
which breakpoints. Figure 5-7 on page 5-33, shows DBGACK normally masks the first
three instruction fetches out of the debug state, corresponding to the breakpoint
instruction, and the two instructions prefetched after it. Since under some circumstances

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-33

DBGACK may remain HIGH for more than three instruction fetches, if precise
instruction access counting is required, some external logic must generate a modified
DBGACK that always falls after three instruction fetches.

Note

When a system speed access occurs, DBGACK remains HIGH throughout the system
speed memory accesses. It then falls after the system speed memory accesses are
completed, and finally rises again as the processor re-enters debug state. Therefore
DBGACK masks all system speed memory accesses.

Figure 5-7 Debug exit sequence

ECLK

InMREQ
ISEQ

IA[31:1]

ID[31:0]

DBGACK

Internal Cycles N S S

IAb IAb+4 IAb+8

Debug Support

5-34 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 5-8 Debug state entry

GCLK

InMREQ
ISEQ

IA[31:0]

ID[31:0]

IEBKPT

DBGACK

Memory Cycles Internal Cycles

1 2 3

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-35

5.12 The behavior of the program counter during debug

To force the ARM9TDMI to branch back to the place at which program flow was
interrupted by debug, the debugger must keep track of what happens to the PC. There
are six cases:

• Breakpoint.

• Watchpoint.

• Watchpoint with another exception on page 5-36.

• Watchpoint and breakpoint on page 5-36.

• Debug request on page 5-36.

• System speed accesses on page 5-37.

In each case the same equation is used to determine where to resume execution. These
are explained below.

5.12.1 Breakpoint

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address. The normal way to exit from debug state after a
breakpoint is to remove the breakpoint, and branch back to the previously breakpointed
address.

For example, if the ARM9TDMI entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of 7 addresses must
occur (four for debug entry, plus two for the instructions, plus one for the final branch).
The following sequence shows ARM instructions scanned into scan chain 1. This is the
Most Significant Bit (MSB) first, so the first digit represents the value to be scanned into
the SYSSPEED bit, followed by the instruction.

0 EAFFFFF9 ; B -7 addresses (two’s complement)

1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

For small branches, the final branch could be replaced with a subtract with the PC as
the destination. For example, SUB PC, PC, #28 for ARM code.

5.12.2 Watchpoint

Returning to the program execution after entering debug state from a watchpoint is done
in the same way as the procedure described in Breakpoint on page 5-35 above. Debug
entry adds four addresses to the PC, and every instruction adds one address. Since the
instruction after that which caused the watchpoint has executed, instruction execution
will resume at the one after that.

Debug Support

5-36 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.12.3 Watchpoint with another exception

If a watchpoint access simultaneously causes a data abort, the ARM9TDMI will enter
debug state in abort mode. Entry into debug is held off until the core has changed into
abort mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during
a watchpointed memory access. The ARM9TDMI will enter debug state in the mode of
the exception, and so the debugger must check to see whether this happened. The
debugger can deduce whether an exception occurred by looking at the current and
previous mode, (in the CPSR and SPSR), and the value of the PC. If an exception did
take place, the user should be given the choice of whether to service the exception
before debugging.

For example, suppose an abort occurred on a watchpoint access, and ten instructions
had been executed to determine this. The following sequence could be used to return
program execution:

0 EAFFFFF1; B -15 addresses (two’s complement)

1 E1A00000; NOP (MOV R0, R0), SYSSPEED bit is set

This will force a branch back to the abort vector, causing the instructions at that location
to be refetched and executed. Note that after the abort service routine, the instruction
that caused the abort and watchpoint will be re-executed. This will cause the watchpoint
to be generated and hence the ARM9TDMI will enter debug state again.

5.12.4 Watchpoint and breakpoint

It is possible to have a watchpoint and breakpoint condition occurring simultaneously.
This can happen when an instruction causes a watchpoint, and the following instruction
has been breakpointed. The same calculation should be performed as for Breakpoint on
page 5-35 to determine where to resume. In this case, it will be at the breakpoint
instruction, since this has not been executed.

5.12.5 Debug request

Entry into debug state via a debug request is similar to a breakpoint, and as for
breakpoint entry to debug state adds four addresses to the PC, and every instruction
executed in debug state adds one.

For example, the following sequence handles a situation in which the user has invoked
a debug request, and decides to return to program execution immediately:
0 EAFFFFFB; B -5 addresses (2’s complement)

1 E1A00000; NOP (MOV R0, R0), SYSSPEED bit is set

This restores the PC, and restarts the program from the next instruction.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-37

5.12.6 System speed accesses

If a system speed access is performed during debug state, the value of the PC is
increased by five addresses. Since system speed instructions access the memory system,
it is possible for aborts to take place. If an abort occurs during a system speed memory
access, the ARM9TDMI enters abort mode before returning to debug state.

This is similar to an aborted watchpoint. However, the problem is much harder to fix
because the abort was not caused by an instruction in the main program, and the PC does
not point to the instruction that caused the abort. An abort handler usually looks at the
PC to determine the instruction that caused the abort, and hence the abort address. In
this case, the value of the PC is invalid, but the debugger will know the address of the
location that was being accessed. Thus the debugger can be written to help the abort
handler fix the memory system.

5.12.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:

-(4 + N +5S)

where N is the number of debug speed instructions executed (including the final
branch), and S is the number of system speed instructions executed.

Debug Support

5-38 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.13 EmbeddedICE macrocell

The EmbeddedICE macrocell is integral to the ARM9TDMI processor core. It has two
hardware breakpoint/watchpoint units each of which may be configured to monitor
either the instruction memory interface or the data memory interface. Each watchpoint
unit has a value and mask register, with an address, data and control field.

Because the ARM9TDMI processor core has a Harvard Architecture, the user must
specify whether the watchpoint registers examine the instruction or the data interface.
This is specified by bit 3:

• when bit 3 is set, the data interface is examined

• when bit 3 is clear, the instruction interface is examined.

There can be no don’t care case for this bit because the comparators cannot compare
the values on both buses simultaneously. Therefore, bit 3 of the control mask register is
always clear and cannot be programmed HIGH. Bit 3 also determines whether the
internal Breakpoint or Watchpoint signal should be driven by the result of the
comparison. Figure 5-9 on page 5-40 gives an overview of the operation of the
EmbeddedICE macrocell.

The ARM9TDMI EmbeddedICE macrocell has logic that allows single stepping
through code. This reduces the work required by an external debugger, and removes the
need to flush the instruction cache. There is also hardware to allow efficient trapping of
accesses to the exception vectors. These blocks of logic free the two general-purpose
hardware breakpoint/watchpoint units for use by the programmer at all times.

The general arrangement of the EmbeddedICE macrocell is shown in Figure 5-9 on
page 5-40.

5.13.1 Register map

The EmbeddedICE macrocell register map is shown below:

Table 5-4 ARM9TDMI EmbeddedICE macrocell register map

Address Width Function

00000 4 Debug control

00001 5 Debug status

00010 8 Vector catch control

00100 6 Debug comms control

00101 32 Debug comms data

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-39

01000 32 Watchpoint 0 address value

01001 32 Watchpoint 0 address mask

01010 32 Watchpoint 0 data value

01011 32 Watchpoint 0 data mask

01100 9 Watchpoint 0 control value

01101 8 Watchpoint 0 control mask

10000 32 Watchpoint 1 address value

10001 32 Watchpoint 1 address mask

10010 32 Watchpoint 1 data value

10011 32 Watchpoint 1 data mask

10100 9 Watchpoint 1 control value

10101 8 Watchpoint 1 control mask

Table 5-4 ARM9TDMI EmbeddedICE macrocell register map (continued)

Address Width Function

Debug Support

5-40 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 5-9 ARM9TDMI EmbeddedICE macrocell overview

For example, if a watchpoint is requested on a particular memory location but the data
value is irrelevant, the data mask register can be programmed to 0xffffffff, (all bits set
to 1), to make the entire data bus value ignored.

5.13.2 Using the mask registers

For each value register there is an associated mask register in the same format. Setting
a bit to 1 in the mask register causes the corresponding bit in the value register to be
ignored in any comparison.

C
ontrol

D
ata

A
ddress

C
ontrol

D
ata

A
ddress

C
ontrol

D
ata

A
ddress

Address

Data

R/W

0

31

0

4

Scan Chain
Register

Value Mask Comparator

Rangeout

Address
Decoder

I Control
D Control

ID [31:0]
DD [31:0]

IA [31:0]
DA [31:0]

TDOTDI

Update

32

Registers

Enable

5

Breakpoint

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-41

5.13.3 Control registers

The format of the control registers depends on how bit 3 is programmed. If bit 3 is
programmed to be 1, the breakpoint comparators examine the data address, data and
control signals.

In this case, the format of the register is as shown in Figure 5-10.

Note

Bit 8 and bit 3 cannot be masked.

Figure 5-10 Watchpoint control register for data comparison

The bits have the following functions:

8 7 6 5 4 3 2 1 0

 ENABLE RANGE CHAIN EXTERN DnTRANS 1 DMAS[1] DMAS[0] DnRW

Table 5-5 Watchpoint control register for data comparison bit functions

Bit Function

DnRW Compares against the data not read/write signal from the core in order to
detect the direction of the data data bus activity. nRW is 0 for a read, and 1
for a write.

DMAS[1:0] Compares against the DMAS[1:0] signal from the core in order to detect the
size of the data data bus activity.

DnTRANS Compares against the data not translate signal from the core in order to
determine between a user mode (DnTRANS = 0) data transfer, and a
privileged mode (DnTRANS = 1) transfer.

EXTERN Is an external input into the EmbeddedICE macrocell that allows the
watchpoint to be dependent upon some external condition. The EXTERN
input for watchpoint 0 is labelled EXTERN0, and the EXTERN input for
watchpoint 1 is labelled EXTERN1.

Debug Support

5-42 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

If bit 3 of the control register is programmed to 0, the comparators will examine the
instruction address, instruction data and instruction control buses. In this case bits [1:0]
of the mask register must be set to “don’t care” (programmed to 11). The format of the
register in this case is as shown in Figure 5-11.

Figure 5-11 Watchpoint control register for instruction comparison

CHAIN Can be connected to chain output of another watchpoint in order to
implement, for example, debugger requests of the form “breakpoint on
address YYY only when in process XXX”.
In the ARM9TDMI EmbeddedICE macrocell, the CHAINOUT output of
watchpoint 1 is connected to the CHAIN input of watchpoint 0. The
CHAINOUT output is derived from a latch. The address/control field
comparator drives the write enable for the latch and the input to the latch is
the value of the data field comparator. The CHAINOUT latch is cleared
when the control value register is written or when nTRST is LOW.

RANGE Can be connected to the range output of another watchpoint register. In the
ARM9TDMI EmbeddedICE macrocell, the Address comparator output from
watchpoint 1 is connected to the RANGE input of watchpoint 0. This allows
two watchpoints to be coupled for detecting conditions that occur
simultaneously, for example, for range-checking.

ENABLE If a watchpoint match occurs, the internal Watchpoint signal will only be
asserted when the ENABLE bit is set. This bit only exists in the value
register, it cannot be masked.

Table 5-5 Watchpoint control register for data comparison bit functions (continued)

Bit Function

8 7 6 5 4 3 2 1 0

 ENABLE RANGE CHAIN EXTERN InTRANS 0 X ITBIT X

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-43

Table 5-6 Watchpoint control register for instruction comparison bit functions

Bit Function

ITBIT Compares against the Thumb state signal from the core to determine between a
Thumb (ITBIT = 1) instruction fetch or an ARM (ITBIT = 0) fetch.

InTRANS Compares against the not translate signal from the core in order to determine
between a user mode (InTRANS = 0) instruction fetch, and a privileged mode
(InTRANS = 1) fetch.

EXTERN Is an external input into the EmbeddedICE macrocell that allows the watchpoint
to be dependent upon some external condition. The EXTERN input for
watchpoint 0 is labelled EXTERN0, and the EXTERN input for watchpoint 1
is labelled EXTERN1.

CHAIN Can be connected to chain output of another watchpoint in order to implement,
for example, debugger requests of the form “breakpoint on address YYY only
when in process XXX”.
In the ARM9TDMI EmbeddedICE macrocell, the CHAINOUT output of
watchpoint 1 is connected to the CHAIN input of watchpoint 0. The
CHAINOUT output is derived from a latch. The address/control field
comparator drives the write enable for the latch, and the input to the latch is the
value of the data field comparator. The CHAINOUT latch is cleared when the
control value register is written, or when nTRST is LOW.

RANGE Can be connected to the range output of another watchpoint register. In the
ARM9TDMI EmbeddedICE macrocell, the RANGEOUT output of
watchpoint 1 is connected to the RANGE input of watchpoint 0. This allows
two watchpoints to be coupled for detecting conditions that occur
simultaneously, for example, for range-checking.

ENABLE If a watchpoint match occurs, the internal Breakpoint signal will only be
asserted when the ENABLE bit is set. This bit only exists in the value register,
it cannot be masked.

Debug Support

5-44 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.13.4 Debug control register

The ARM9TDMI debug control register is four bits wide and is shown in Figure 5-12:

Figure 5-12 Debug control register

Bit 3 controls the single-step hardware, and this is explained in more detail in Single
stepping on page 5-47.

5.13.5 Debug status register

The debug status register is five bits wide. It is a read only register and any writes will
be ignored. If it is accessed for a read (with the read/write bit LOW), the status bits are
read.

Figure 5-13 Debug status register

The function of each bit in this register is as follows:

Bits 1 and 0 Allow the values on the synchronized versions of DBGRQ and
DBGACK to be read.

Bit 2 Allows the state of the core interrupt enable signal (IFEN) to be read.
Since the capture clock for the scan chain may be asynchronous to the
processor clock, the DBGACK output from the core is synchronized
before being used to generate the IFEN status bit.

Bit 3 Allows the state of the SYSCOMP bit from the core (synchronized to
TCK) to be read. This allows the debugger to determine that a memory
access from the debug state has completed.

Bit 4 Allows ITBIT to be read. This enables the debugger to determine what
state the processor is in, and hence which instructions to execute.

3 2 1 0

Single step INTDIS DBGRQ DBGACK

4 3 2 1 0

ITBIT SYSCOMP IFEN DBGRQ DBGACK

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-45

5.13.6 Vector catch register

The ARM9TDMI EmbeddedICE macrocell controls logic to enable accesses to the
exception vectors to be trapped in an efficient manner. This is controlled by the vector
catch register, as shown in Figure 5-14. The functionality is described in Vector
catching on page 5-46.

Figure 5-14 Vector catch register

7 6 5 4 3 2 1 0

 FIQ IRQ Reserved D_Abort P_Abort SWI Undef Reset

Debug Support

5-46 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.14 Vector catching

The ARM9TDMI EmbeddedICE macrocell contains logic that allows efficient trapping
of fetches from the vectors during exceptions. This is controlled by the Vector catch
register. If one of the bits in this register is set HIGH and the corresponding exception
occurs, the processor enters debug state as if a breakpoint has been set on an instruction
fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the Vector catch
register is set, the ARM9TDMI fetches an instruction from location 0x8. The vector
catch hardware detects this access and forces the internal Breakpoint signal HIGH into
the ARM9TDMI control logic. This, in turn, forces the ARM9TDMI to enter debug
state.

The behavior of the hardware is independent of the watchpoint comparators, leaving
them free for general use. The vector catch register is sensitive only to fetches from the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the Vector Catch register
is set, the processor is not forced to enter debug state.

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-47

5.15 Single stepping

The ARM9TDMI EmbeddedICE macrocell contains logic that allows efficient single
stepping through code. This leaves the macrocell watchpoint comparators free for
general use.

This function is enabled by setting bit 3 of the debug control register. The state of this
bit should only be altered while the processor is in debug state. If the processor exits
debug state and this bit is HIGH, the processor fetches an instruction, executes it, and
then immediately reenters debug state. This happens independently of the watchpoint
comparators. If a system-speed data access is performed while in debug state, the
debugger must ensure that the control bit is clear first.

Debug Support

5-48 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

5.16 Debug communications channel

The ARM9TDMI EmbeddedICE macrocell contains a communication channel for
passing information between the target and the host debugger. This is implemented as
coprocessor 14.

The communications channel consists of a 32-bit wide comms data read register, a
32-bit wide comms data write register and a 6-bit wide comms control register for
synchronized handshaking between the processor and the asynchronous debugger.
These registers are located in fixed locations in the EmbeddedICE register map (as
shown in Figure 5-9 on page 5-40) and are accessed from the processor via MCR and
MRC instructions to coprocessor 14.

5.16.1 Debug comms channel registers

The debug comms control register is read only, and allows synchronized handshaking
between the processor and the debugger.

Figure 5-15 Debug comms control register

The function of each register bit is described below:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE macrocell version
number, in this case 0010.

Bits 27:2 Unused.

Bit 1 Denotes from the processor’s point of view, whether the comms data
write register is free.
If, from the processor’s point of view, the comms data write register is
free (W=0), new data may be written.
If it is not free (W=1), the processor must poll until W=0.
If, from the debugger’s point of view, W=1, some new data has been
written which may then be scanned out.

31

0

30

0

29

1

28

0

0

R

1

W

...

...

Debug Support

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 5-49

Bit 0 Denotes whether there is some new data in the comms data read register.
If, from the processor’s point of view, R=1, there is some new data which
may be read via an MRC instruction.
If, from the debugger’s point of view, R=0, the comms data read register
is free and new data may be placed there through the scan chain.
If R=1, this denotes that data previously placed there through the scan
chain has not been collected by the processor, and so the debugger must
wait.

From the debugger’s point of view, the registers are accessed via the scan chain in the
usual way. From the processor, these registers are accessed via coprocessor register
transfer instructions. The following instructions should be used:

MRC p14, 0, Rd, c0, c0, 0
Returns the debug comms control register into Rd.

MCR p14, 0, Rn, c1, c0, 0
Writes the value in Rn to the comms data write register.

MRC p14, 0, Rd, c1, c0, 0
Returns the debug data read register into Rd.

Note

The Thumb instruction set does not support coprocessors so the ARM9TDMI must be
operated in ARM state in order to access the debug comms channel.

5.16.2 Communications via the comms channel

There are two methods of communicating via the comms channel, transmitting and
receiving. The following descriptions detail their usage.

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the comms
data write register is free for use by finding out whether the W bit of the debug comms
control register is clear.

It reads the debug comms control register to check status of the W bit.

• If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

• If W bit is clear, the comms data write register is clear.

Debug Support

5-50 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

When the W bit is clear, a message is written by a register transfer to coprocessor 14.
As the data transfer occurs from the processor to the comms data write register, the W
bit is set in the debug comms control register.

The debugger sees a synchronized version of both the R and W bit when it polls the
debug comms control register through the JTAG interface. When the debugger sees the
W bit is set, it can read the comms data write register and scan the data out. The action
of reading this data register clears the debug comms control register W bit. At this point,
the communications process may begin again.

As an alternative to polling, the debug comms channel can be interrupt driven by
connecting the ARM9TDMI COMMRX and COMMTX signals to the systems
interrupt controller.

Receiving a message from the debugger

Message transfer from the debugger to the processor is similar to sending a message to
the debugger. In this case, the debugger polls the R bit of the debug comms control
register.

• If the R bit is LOW, the comms data read register is free, and data can be placed
there for the processor to read.

• If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there via the JTAG interface.
The action of this write sets the R bit in the debug comms control register.

When the processor polls this register, it sees an MCLK synchronized version. If the R
bit is set, there is data waiting to be collected. This data can be read via an MRC
instruction to coprocessor 14. The action of this load clears the R bit in the debug
comms control register. When the debugger polls this register and sees that the R bit is
clear, the data has been taken, and the process may now be repeated.

Note

It is not possible to read EmbeddedICE registers through serialized vectors applied
through scan chain 0.

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 6-1

Chapter 6
Test Issues

This chapter examines the test issues for the ARM9TDMI and lists the scan chain 0
bit order under the headings:

• About testing on page 6-2.

• Scan chain 0 bit order on page 6-3.

Test Issues

6-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

6.1 About testing

The ARM9TDMI processor core supports parallel and serial test methodologies. The
parallel test patterns are derived from assembler ARM code programs written to achieve
a high fault coverage.

The ARM9TDMI processor core has a fully JTAG-compatible scan chain which
intersects all the inputs and outputs. This allows the test patterns to be serialized and
injected to the processor via the JTAG interface. Both the parallel and serial test patterns
are supplied to ARM9TDMI processor core licensees. The scan chain also supports
EXTEST, allowing the connections between the ARM9TDMI processor core and other
JTAG-compatible peripherals to be tested.

Test Issues

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 6-3

6.2 Scan chain 0 bit order

Table 6-1 Scan chain 0 bit order

Number Signal Direction

1 ID[0] Input

2 ID[1] Input

3:31 ID[2:30] Input

32 ID[31] Input

33 SYSSPEED Internal

34 Unused Internal

35 DDEN Output

36 DD[31] Bidirectional

37 DD[30] Bidirectional

38:66 DD[29:1] Bidirectional

67 DD[0] Bidirectional

68 DA[31] Output

69 DA[30] Output

70:98 DA[29:1] Output

99 DA[0] Output

100 IA[31] Output

101 IA[30] Output

102:129 IA[29:2] Output

130 IA[1] Output

131 IEBKPT Input

132 DEWPT Input

133 EDBGRQ Input

134 EXTERN0 Input

135 EXTERN1 Input

Test Issues

6-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

136 COMMRX Output

137 COMMTX Output

138 DBGACK Output

139 RANGEOUT0 Output

140 RANGEOUT1 Output

141 DBGRQI Output

142 DDBE Input

143 InMREQ Output

144 DnMREQ Output

145 DnRW Output

146 DMAS[1] Output

147 DMAS[0] Output

148 PASS Output

149 LATECANCEL Output

150 ITBIT Output

151 InTRANS Output

152 DnTRANS Output

153 nRESET Input

154 nWAIT Input

155 IABORT Input

156 IABE Input

157 DABORT Input

158 DABE Input

159 nFIQ Input

160 nIRQ Input

Table 6-1 Scan chain 0 bit order (continued)

Number Signal Direction

Test Issues

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 6-5

161 ISYNC Input

162 BIGEND Input

163 HIVECS Input

164 CHSD[1] Input

165 CHSD[0] Input

166 CHSE[1] Input

167 CHSE[0] Input

168 UNIEN Input

169 ISEQ Output

170 InM[4] Output

171 InM[3] Output

172 InM[2] Output

173 InM[1] Output

174 InM[0] Output

175 DnM[4] Output

176 DnM[3] Output

177 DnM[2] Output

178 DnM[1] Output

179 DnM[0] Output

180 DSEQ Output

181 DMORE Output

182 DLOCK Output

183 ECLK Output

184 INSTREXEC Output

Table 6-1 Scan chain 0 bit order (continued)

Number Signal Direction

Test Issues

6-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 7-1

Chapter 7
Instruction Cycle Summary and Interlocks

This chapter gives the instruction cycle times and shows the timing diagrams for
interlock timing:

• Instruction cycle times on page 7-2.

• Interlocks on page 7-5.

Instruction Cycle Summary and Interlocks

7-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

7.1 Instruction cycle times

Key to tables

Table 7-2 summarizes the ARM9TDMI instruction cycle counts and bus activity when
executing the ARM instruction set.

Table 7-1 Symbols used in tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses

m In the range 1 to 4, depending on early termination
(see Multiplier cycle counts on page 7-4)

n The number of words transferred in an LDM/STM/LDC/STC

C Coprocessor register transfer (C-cycle)

I Internal cycle (I-cycle)

N Non-sequential cycle (N-cycle)

S Sequential cycle (S-cycle)

Table 7-2 Instruction cycle bus times

Instruction Cycles
Instruction
bus

Data
bus

Comment

Data Op 1 1S 1I Normal case, PC not destination

Data Op 2 1S+1I 2I With register controlled shift, PC not destination

Data Op 3 2S + 1N 3I PC destination register

Data Op 4 2S + 1N + 1I 4I With register controlled shift, PC destination
register

LDR 1 1S 1N Normal case, not loading PC

LDR 2 1S+1I 1N+1I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock)

LDR 3 1S+2I 1N+2I Loaded byte, half-word, or unaligned word used
by following instruction (2 cycle load-use
interlock)

Instruction Cycle Summary and Interlocks

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 7-3

LDR 5 2S+2I+1N 1N+4I PC is destination register

STR 1 1S 1N All cases

LDM 2 1S+1I 1S+1I Loading 1 Register, not the PC

LDM n 1S+(n-1)I 1N+(n-1)S Loading n registers, n > 1, not loading the PC

LDM n+4 2S+1N+(n+1)I 1N+(n-1)S+4I Loading n registers including the PC, n > 0

STM 2 1S+1I 1N+1I Storing 1 Register

STM n 1S+(n-1)I 1N+(n-1)S Storing n registers, n > 1

SWP 2 1S+1I 2N Normal case

SWP 3 1S+2I 2N+1I Loaded byte used by following instruction

B, BL, BX 3 2S+1N 3I All cases

SWI, Undefined 3 2S+1N 3I All cases

CDP b+1 1S+bI (1+b)I All cases

LDC, STC b+n 1S+(b+n-1)I bI+1N+(n-1)S All cases

MCR b+1 1S+bI bI+1C All cases

MRC b+1 1S+bI bI+1C Normal case

MRC b+2 1S+(b+1)I (b+I)I+1C Following instruction uses transferred data

MRC b+3 1S+(b+2)I (b+2)I+1C MRC to the PC

MRS 1 1S 1T All cases

MSR 1 1S 1T If only flags are updated (mask_f)

MSR 3 1S + 2I 3I If any bits other than just the flags are updated
(all masks other than_f)

MUL, MLA 2+m 1S+(1+m)I (2+m)I All cases

SMULL, UMULL,
SMLAL, UMLAL

3+m 1S+(2+m)I (3+m)I All cases

Table 7-2 Instruction cycle bus times (continued)

Instruction Cycles
Instruction
bus

Data
bus

Comment

Instruction Cycle Summary and Interlocks

7-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Table 7-3 shows the instruction cycle times from the perspective of the data bus:

7.1.1 Multiplier cycle counts

The number of cycles that a multiply instruction takes to complete depends on which
instruction it is, and on the value of the multiplier-operand. The multiplier-operand is
the contents of the register specified by bits [8:11] of the ARM multiply instructions, or
bits [2:0] of the Thumb multiply instructions.

• For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, m is:

1 if bits [31:8] of the multiplier operand are all zero or one

2 if bits [31:16] of the multiplier operand are all zero or one

3 if bits [31:24] of the multiplier operand are all zero or all one

4 otherwise.

• For ARM UMULL, UMLAL, m is:

1 if bits [31:8] of the multiplier operand are all zero

2 if bits [31:16] of the multiplier operand are all zero

3 if bits [31:24] of the multiplier operand are all zero

4 otherwise.

Table 7-3 Data bus instruction times

Instruction Cycle time

LDR 1N

STR 1N

LDM,STM 1N+(n-1)S

SWP 1N+1S

LDC, STC 1N+(n-1)S

MCR,MRC 1C

Instruction Cycle Summary and Interlocks

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 7-5

7.2 Interlocks

Pipeline interlocks occur when the data required for an instruction is not available due
to the incomplete execution of an earlier instruction. When an interlock occurs,
instruction fetches stop on the instruction memory interface of the ARM9TDMI. Four
examples of this are given below.

Example 1

In this first example, the following code sequence is executed:
LDR R0, [R1]

ADD R2, R0, R1

The ADD instruction cannot start until the data is returned from the load. Therefore, the
ADD instruction has to delay entering the execute stage of the pipeline by one cycle.
The behavior on the instruction memory interface is shown in Figure 7-1 on page 7-5.

Figure 7-1 Single load interlock timing

GCLK

InMREQ

IA[31:1]

ID[31:0]

Fldr Dldr Eldr Mldr Wldr

Fadd Dadd Dadd Eadd Madd Wadd

A+4 A+8 A+C A+10 A+14

LDR ADD

Instruction Cycle Summary and Interlocks

7-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Example 2

In this second example, the following code sequence is executed:
LDRB R0, [R1,#1]

ADD R2, R0, R1

Now, because a rotation must occur on the loaded data, there is a second interlock cycle.
The behavior on the instruction memory interface is shown in Figure 7-2.

Figure 7-2 Two cycle load interlock

GCLK

InMREQ

IA[31:1]

ID[31:0]

Fldrb Dldrb Eldrb Mldrb Wldrb

Fadd Dadd Dadd Dadd Eadd Madd Wadd

A+4 A+8 A+C A+10 A+14

LDRB ADD

Instruction Cycle Summary and Interlocks

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 7-7

Example 3

In this third example, the following code sequence is executed:
LDM R12,{R1-R3}

ADD R2, R2, R1

The LDM takes three cycles to execute in the memory stage of the pipeline. The ADD
is therefore delayed until the LDM begins its final memory fetch. The behavior of both
the instruction and data memory interface are shown in Figure 7-3.

Figure 7-3 LDM interlock

GCLK

InMREQ

IA[31:1]

ID[31:0]

DnMREQ

DA[31:0]

DD[31:0]

DDIN[31:0]

Fldm Dldm Eldm Mldm Mldm Mldm Wldm

Fadd Dadd Dadd Dadd Eadd Madd Wadd

IA+4 IA+8 IA+C IA+10 IA+14

LDM ADD

DA DA+4 DA+8

R1 R2 R3

Instruction Cycle Summary and Interlocks

7-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Example 4

In the fourth example, the following code sequence is executed:
LDM R12,{R1-R3}

ADD R4, R3, R1

The code is the same code as in example 3, but in this instance the ADD instruction uses
R3. Due to the nature of load multiples, the lowest register specified is transferred first,
and the highest specified register last. Because the ADD is dependent on R3, there must
be a further cycle of interlock while R3 is loaded. The behavior on the instruction and
data memory interface is shown in Figure 7-4.

Figure 7-4 LDM dependent interlock

GCLK

InMREQ

IA[31:1]

ID[31:0]

DnMREQ

DA[31:0]

DD[31:0]

DDIN[31:0]

Fldm Dldm Eldm Mldm Mldm Mldm Wldm

Fadd Dadd Dadd Dadd Dadd Eadd Madd Wadd

IA+4 IA+8 IA+C IA+10 IA+14

LDM ADD

DA DA+4 DA+8

R1 R2 R3

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-1

Chapter 8
ARM9TDMI AC Characteristics

This chapter gives the timing diagrams and timing parameters for the ARM9TDMI:

• ARM9TDMI timing diagrams on page 8-2.

• ARM9TDMI timing parameters on page 8-14.

ARM9TDMI AC Characteristics

8-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

8.1 ARM9TDMI timing diagrams

Figure 8-1 ARM9TDMI instruction memory interface output timing

Figure 8-2 ARM9TDMI instruction address bus enable

CLK

A[31:1]

nMREQ

nM[4:0]

nTRANS

SEQ

TBIT

TIAH
TIAD

TIMQH
TIMQD

TINMH
TINMD

TITRSH
TITRSD

TISQH
TISQD

TITBH
TITBD

ABE

A[31:1]
nM[4:0]
nTRANS

TIABZ TIABE

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-3

Figure 8-3 ARM9TDMI instruction memory interface input timing

GCLK

ID[31:0]

IABORT

IEBKPT

TIDS TIDH

TIABS TIABH

TIBKS TIBKH

ARM9TDMI AC Characteristics

8-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 8-4 ARM9TDMI data memory interface output timing

CLK

A[31:0]

LOCK

nM[4:0]

nTRANS

SEQ

MORE

MAS[1:0]

nRW

TDAH
TDAD

TDLKH
TDLKD

TDNMH
TDNMD

TDTRSH
TDTRSD

TDSQH
TDSQD

TDMRH
TDMRD

TDMSH
TDMSD

TDRWH
TDRWD

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-5

Figure 8-5 ARM9TDMI data address bus timing

Figure 8-6 ARM9TDMI data ABORT and DnMREQ timing

Figure 8-7 ARM9TDMI data data bus timing

DABE

DA[31:0],DnRW

DnM[4:0],DnTRANS

DMAS[1:0],DLOCK

TDABZ TDABE

GCLK

DABORT

DnMREQ

TDABS
TDABHTDABTD

TDMQH
TDMQD

GCLK

DDIN[31:0]

DD[31:0]

DEWPT

TDDS TDDH

TDDOH
TDDOD

TDWPS TDWPH

ARM9TDMI AC Characteristics

8-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 8-8 ARM9TDMI data bus enable

Figure 8-9 ARM9TDMI miscellaneous signal timing

DBE

D[31:0]

TDDBZ TDDBE

CLK

FIQ
IRQ

SYNC

IGEND

IVECS

NIEN

WAIT

RESET

TINTS
TINTH

TISYS
TISYH

TBIGS
TBIGH

THIVS
THIVH

TUNIS
TUNIH

TNWS TNWH

TRSTS
TRSTH

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-7

Figure 8-10 ARM9TDMI coprocessor interface signal timing

GCLK

PASS

LATECANCEL

CHSD[1:0]
CHSE[1:0]

TPASH
TPASD

TLTCH
TLTCD

TCHSS
TCHSH

ARM9TDMI AC Characteristics

8-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 8-11 ARM9TDMI JTAG output signals

TCK

TCK1

TCK2

IR[3:0]
SCREG[3:0]

TAPSM[3:0]

TDO

nTDOEN

TTCKR TTCKF

TTCKF TTCKR

TIRSH
TIRSD

TTPMH
TTPMD

TTDOH
TTDOD

TTOEH
TTOED

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-9

Figure 8-12 ARM9TDMI external boundary scan chain output signals

Figure 8-13 ARM9TDMI SDOUTBS to TDO relationship

TCK

ECAPCLKBS
ICAPCLKBS
PCLKBS

RSTCLKBS

SHCLK1BS

SHCLK2BS

DRIVEOUTBS

SDIN

TCAPR TCAPF

TBRTD TBRTH

TSHKR TSHKF

TSHKF TSHKR

TDRBSH
TDRBSD

TSDNH
TSDND

SDOUTBS

TDO

TTDSH
TTDSD

ARM9TDMI AC Characteristics

8-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 8-14 ARM9TDMI nTRST to RSTCLKBS relationship

Figure 8-15 ARM9TDMI JTAG input signal timing

TRST

STCLKBS

TBRST

CK

DI
MS

TTDIS TTDIH

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-11

Figure 8-16 ARM9TDMI GCLK related debug output timings

GCLK

ECLK

COMMTX
COMMRX

DBGACK

RANGEOUT0

RANGEOUT1

INSTREXEC

EXTERN0
EXTERN1

EDBGRQ

TGEKR TGEKF

TCOMH
TCOMD

TDCKH
TDCKD

TRG0H
TRG0D

TRG1H
TRG1D

TINXH
TINXD

TEXTS TEXTH

TDBQS TDBQH

ARM9TDMI AC Characteristics

8-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Figure 8-17 ARM9TDMI TCK related debug output timings

Figure 8-18 ARM9TDMI nTRST to DBGRQI relationship

Figure 8-19 ARM9TDMI EDBGRQ to DBGRQI relationship

CK

CLK

BGRQI

TTEKF TTEKR

TDGIH
TDGID

TRST

BGRQI

TDQIR

DBGRQ

BGRQI

TEDQH
TEDQD

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-13

Figure 8-20 ARM9TDMI DBGEN to output effects

DBGEN

RANGEOUT0
RANGEOUT1

DBGRQI

TRGEN

TDQEN

ARM9TDMI AC Characteristics

8-14 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

8.2 ARM9TDMI timing parameters

Table 8-1 ARM9TDMI timing parameters

Timing parameter Description

Tbigh BIGEND hold time from GCLK falling

Tbigs BIGEND setup time to GCLK falling

Tbrst Delay from nTRST falling to RSTCLKBS rising

Tbrtd RSTCLKBS rising from TCK falling

Tbrth RSTCLKBS falling from TCK rising

Tcapf ECAPCLKBS/ICAPCLKBS/PCLKBS falling from TCK rising

Tcaph Input hold time to TCK falling (EXTEST capture)

Tcapr ECAPCLKBS/ICAPCLKBS/PCLKBS rising from TCK falling

Tcaps Input setup time to TCK falling (EXTEST capture)

Tchsh CHSD[1:0]/CHSE[1:0] hold time from GCLK falling

Tchss CHSD[1:0]/CHSE[1:0] setup time to GCLK falling

Tcomd COMMTX/COMMRX output delay

Tcomh COMMTX/COMMRX output hold time

Tdabe Delay from DABE rising to DA[31:0]/DnTRANS/DnM[4:0]/DMAS[1:0]/DnRW/DLOCK
driven valid

Tdabh DABORT hold time from GCLK falling

Tdabs DABORT setup time to GCLK falling

Tdabtd DnMREQ delay from DABORT

Tdabz Delay from DABE falling to DA[31:0]/DnTRANS/DnM[4:0]/DMAS[1:0]/DnRW/DLOCK
high impedance

Tdad DA[31:0] delay from GCLK rising

Tdah DA[31:0] hold time from GCLK rising

Tdbqh EDBGRQ input hold time from GCLK falling

Tdbqs EDBGRQ input setup time to GCLK falling

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-15

Tdckd DBGACK output delay

Tdckh DBGACK output hold time

Tddbe Delay from DDBE rising to DD[31:0] (output) driven valid

Tddbz Delay from DDBE falling to DD[31:0] (output) high impedance

Tddend DDEN delay from GCLK falling

Tddenh DDEN hold time from GCLK falling

Tddh DD[31:0] (input) hold time from GCLK falling

Tddod DD[31:0] (output) delay from GCLK falling

Tddoh DD[31:0] (output) hold time from GCLK falling

Tdds DD[31:0] (input) setup time to GCLK falling

Tdgid DBGRQI output delay from TCK falling

Tdgih DBGRQI output hold time from TCK falling

Tdih TDI and TMS hold time from TCK rising

Tdis TDI and TMS setup time to TCK rising

Tdlkd DLOCK delay from GCLK rising

Tdlkh DLOCK hold time from GCLK rising

Tdmqd DnMREQ delay from GCLK rising

Tdmqh DnMREQ hold time from GCLK rising

Tdmrd DMORE delay from GCLK rising

Tdmrh DMORE hold time from GCLK rising

Tdmsd DMAS[1:0] delay from GCLK rising

Tdmsh DMAS[1:0] hold time from GCLK rising

Tdnmd DnM[4:0] delay from GCLK rising

Tdnmh DnM[4:0] hold time from GCLK rising

Tdqen DBGRQI falling delay from DBGEN falling

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter Description

ARM9TDMI AC Characteristics

8-16 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Tdqir nTRST falling to DBGRQI falling delay

Tdrbsd DRIVEOUTBS delay from TCK falling

Tdrbsh DRIVEOUTBS hold time from TCK falling

Tdrwd DnRW delay from GCLK rising

Tdrwh DnRW hold time from GCLK rising

Tdsqd DSEQ delay from GCLK rising

Tdsqh DSEQ hold time from GCLK rising

Tdtrsd DnTRANS delay from GCLK rising

Tdtrsh DnTRANS hold time from GCLK rising

Tdwph DEWPT hold time from GCLK rising

Tdwps DEWPT setup time to GCLK rising

Tedqd DBGRQI output delay from EDBGRQ changing

Tedqh DBGRQI output hold time from EDBGRQ changing

Texth EXTERN0/EXTERN1 input hold time from GCLK falling

Texts EXTERN0/EXTERN1 input setup time to GCLK falling

Tgclkh Minimum GCLK HIGH period

Tgclkl Minimum GCLK LOW period

Tgekf GCLK falling to ECLK falling delay

Tgekr GCLK rising to ECLK rising delay

Thivh HIVECS hold time from GCLK rising

Thivs HIVECS setup time to GCLK rising

Tiabe Delay from IABE rising to IA[31:1]/InM[4:0]/InTRANS driven valid

Tiabh IABORT hold time from GCLK falling

Tiabs IABORT setup time to GCLK falling

Tiabz Delay from IABE falling to IA[31:1]/InM[4:0]/InTRANS high impedance

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter Description

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-17

Tiad IA[31:1] delay from GCLK rising

Tiah IA[31:1] hold time from GCLK rising

Tibkh IEBKPT hold time from GCLK rising

Tibks IEBKPT setup time to GCLK rising

Tidh ID[31:0] hold time from GCLK falling

Tids ID[31:0] setup time to GCLK falling

Timqd InMREQ delay from GCLK rising

Timqh InMREQ hold time from GCLK rising

Tinmd InM[4:0] delay from GCLK rising

Tinmh InM[4:0] hold time from GCLK rising

Tinth Interrupt (nFIQ/nIRQ) hold time from GCLK falling

Tints Interrupt (nFIQ/nIRQ) setup time to GCLK falling

Tinxd INSTREXEC output delay

Tinxh INSTREXEC output hold time

Tirsd IREG[3:0]/SCREG[4:0] output delay from TCK falling

Tirsh IREG[3:0]/SCREG[4:0] hold time from TCK falling

Tisqd ISEQ delay from GCLK rising

Tisqh ISEQ hold time from GCLK rising

Tisyh ISYNC hold time from GCLK falling

Tisys ISYNC setup time to GCLK falling

Titbd ITBIT delay from GCLK rising

Titbh ITBIT hold time from GCLK rising

Titrsd InTRANS delay from GCLK rising

Titrsh InTRANS hold time from GCLK rising

Tltcd LATECANCEL delay from GCLK falling

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter Description

ARM9TDMI AC Characteristics

8-18 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

Tltch LATECANCEL hold time from GCLK falling

Tnwh nWAIT hold time from GCLK rising

Tnws nWAIT setup time to GCLK falling

Tpasd PASS output delay from GCLK rising

Tpash PASS hold time from GCLK rising

Trg0d RANGEOUT0 output delay

Trg0h RANGEOUT0 output hold time

Trg1d RANGEOUT1 output delay

Trg1h RANGEOUT1 output hold time

Trgen RANGEOUT0/RANGEOUT1 falling delay from DBGEN falling

Trsth nRESET hold time from GCLK rising

Trsts nRESET setup time to GCLK rising

Tsdnd SDIN output delay from TCK falling

Tsdnh SDIN hold time from TCK falling

Tshkf SHCLK1BS/SHCLK2BS falling from TCK changing

Tshkr SHCLK1BS/SHCLK2BS rising from TCK changing

Ttapidh TAPID[31:0] hold time to TCK falling

Ttapids TAPID[31:0] setup time to TCK falling

Ttbe Delay from TBE rising, to outputs driven valid

Ttbz Delay from TBE falling, to outputs high impedance

Ttckf TCK1/TCK2 falling from TCK changing

Ttckh Minimum TCK HIGH period

Ttckl Minimum TCK LOW period

Ttckr TCK1/TCK2 rising from TCK changing

Ttdod TDO output delay from TCK falling

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter Description

ARM9TDMI AC Characteristics

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. 8-19

Ttdoh TDO hold time from TCK falling

Ttdsd TDO delay from SDOUTBS changing

Ttdsh TDO hold time from SDOUTBS changing

Ttekf TCK falling to ECLK falling delay

Ttekr TCK rising to ECLK rising delay

Ttoed nTDOEN output delay from TCK falling

Ttoeh nTDOEN hold time from TCK falling

Ttpmd TAPSM[3:0] output delay from TCK falling

Ttpmh TAPSM[3:0] hold time from TCK falling

Tunis UNIEN input setup time to GCLK falling

Tunih UNIEN input hold time to GCLK falling

Table 8-1 ARM9TDMI timing parameters (continued)

Timing parameter Description

ARM9TDMI AC Characteristics

8-20 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-1

Appendix A
ARM9TDMI Signal Descriptions

This chapter lists and describes the ARM9TDMI signals:

• Instruction memory interface signals on page A-2.

• Data memory interface signals on page A-3.

• Coprocessor interface signals on page A-5.

• JTAG and TAP controller signals on page A-6.

• Debug signals on page A-8.

• Miscellaneous signals on page A-10.

ARM9TDMI Signal Descriptions

A-2 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

A.1 Instruction memory interface signals

Table A-1 Instruction memory interface signals

Name Direction Description

IA[31:1] Output Instruction Address Bus. This is the processor instruction address bus. It changes when
GCLK is HIGH.

IABE Input Instruction Address Bus Enable. This is an input which, when LOW, it puts the instruction
address bus, IA[31:1], drivers into a high impedance state. This signal has the same effect on
InTRANS and InM[4:0].
If UNIEN is HIGH this signal is ignored.

IABORT Input Instruction Abort. This is an input which allows the memory system to tell the processor that
the requested instruction memory access is not allowed.

ID[31:0] Input Instruction Data Bus. This input bus should be driven with the requested instruction data
before the end of phase 2 of GCLK.

InM[4:0] Output Instruction Mode. These signals indicate the current mode of the processor and are in the
same form as the mode bits in the CPSR.

InMREQ Output Not Instruction Memory Request.
If LOW at the end of GCLK phase 2, the processor requires an instruction memory access
during the following cycle.

InTRANS Output Not Memory Translate.
When LOW, the processor is in user mode.
When HIGH, the processor is in a privileged mode.

ISEQ Output Instruction Sequential Address. If HIGH at the end of GCLK phase 2, any instruction
memory access during the following cycle is sequential from the last instruction memory
access.

ITBIT Output Instruction Thumb Bit.
When HIGH, the processor is in Thumb state.
When LOW, the processor is in ARM state.

ARM9TDMI Signal Descriptions

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-3

A.2 Data memory interface signals

Table A-2 Data memory interface signals

Name Direction Description

DA[31:0] Output Data Address Bus. This is the processor data address bus. It changes when GCLK is
HIGH.

DABE Input Data Address Bus Enable. When LOW, this input puts the data address bus,
DA[31:0], drivers into a high impedance state. This signal has the same effect on
DnTRANS, DLOCK, DMAS[1:0], DnRW, and DnM[4:0]. If UNIEN is HIGH this
signal is ignored.

DABORT Input Data Abort. This input allows the memory system to tell the processor that the
requested data memory access is not allowed.

DD[31:0] Output Data Output Bus. This output bus is used to transfer write data between the processor
and external memory. The output data will become valid during phase 1 and remain
valid through GCLK phase 2.
If UNIEN is LOW, this is a tristate output bus and is only driven during write cycles.
If UNIEN is HIGH, this bus is always driven.

DDBE Input Data Data Bus Enable. This is an input which, when LOW, puts the Data Data Bus
DD[31:0] into a high impedance state. If UNIEN is HIGH this signal is ignored.

DDEN Output Data Data Bus Output Enabled. This signal indicates when the processor is
performing a write transfer on the Data Data Bus, DD[31:0].

DDIN[31:0] Input Data Input Bus. This input is used to transfer load data between external memory and
the processor. It should be driven with the requested data by the end of GCLK phase
2.

DLOCK Output Data Lock. If HIGH at the end of GCLK phase 2, any data memory access in the
following cycle is locked, and the memory controller must wait until DLOCK goes
LOW before allowing another device to access memory.

DMAS[1:0] Output Data Memory Access Size. These outputs encode the size of a data memory access in
the following cycle. A word access is encoded as 10 (binary), a halfword access as
01, and a byte access as 00. The encoding 11 is reserved.

DMORE Output Data More. If HIGH at the end of GCLK phase 2, the data memory access in the
following cycle will be directly followed by a sequential data memory access.

DnM[4:0] Output Data Mode. The processor mode within which the data memory access should be
performed.
Note that the data memory access mode may differ from the current processor mode.

DnMREQ Output Not Data Memory Request. If LOW at the end of GCLK phase 2, the processor
requires a data memory access in the following cycle.

ARM9TDMI Signal Descriptions

A-4 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

DnRW Output Data not Read, Write.
If LOW at the end of phase 2, any data memory access in the following cycle is a
read.
If HIGH, it is a write.

DnTRANS Output Data Not Memory Translate. If LOW, the next data memory access is to be
performed as a user mode access, if HIGH the data memory access is to performed as
a privileged mode access.
Note that the data memory access mode may differ from the current processor mode.

DSEQ Output Data Sequential Address. If HIGH at the end of phase 2, any data memory access in
the next cycle is sequential from the current data memory access.

Table A-2 Data memory interface signals (continued)

Name Direction Description

ARM9TDMI Signal Descriptions

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-5

A.3 Coprocessor interface signals

For further information on the coprocessor interface refer to Chapter 4 ARM9TDMI
Coprocessor Interface.

Table A-3 Coprocessor interface signals

Name Direction Description

CHSD[1:0] Input Coprocessor Handshake Decode. The handshake signals from the decode stage of
the coprocessors pipeline follower.
Note, if no coprocessor is present in the system, CHSD[1] should be tied HIGH, and
CHSD[0] should be tied LOW.

CHSE[1:0] Input Coprocessor Handshake Execute. The handshake signals from the execute stage of
the coprocessors pipeline follower.
Note, if no coprocessor is present in the system, CHSE[1] should be tied HIGH, and
CHSE[0] should be tied LOW.

LATECANCEL Output Coprocessor Late Cancel. If HIGH during the first memory cycle of a coprocessor
instruction’s execution, the coprocessor should cancel the instruction without having
updated its state.

PASS Output Coprocessor PASS. This signal indicates that there is a coprocessor instruction in the
execute stage of the pipeline, and it should be executed.

ARM9TDMI Signal Descriptions

A-6 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

A.4 JTAG and TAP controller signals

Table A-4 JTAG and TAP controller signals

Name Direction Description

DRIVEOUTBS Output Boundary Scan Cell Enable. This signal is used to control the multiplexers in the scan
cells of an external boundary scan chain. This signal changes in the UPDATE-IR state
when scan chain 3 is selected and either the INTEST, EXTEST, CLAMP or CLAMPZ
instruction is loaded. When an external boundary scan chain is not connected, this
output should be left unconnected.

ECAPCLKBS Output Extest Capture Clock for Boundary Scan. This is a TCK2 wide pulse generated when
the TAP controller state machine is in the CAPTURE-DR state, the current instruction
is EXTEST and scan chain 3 is selected. This signal is used to capture the chip level
inputs during EXTEST. When an external boundary scan chain is not connected, this
output should be left unconnected.

ICAPCLKBS Output Intest Capture Clock. This is a TCK2 wide pulse generated when the TAP controller
state machine is in the CAPTURE-DR state, the current instruction is INTEST and
scan chain 3 is selected. This signal is used to capture the chip level outputs during
INTEST. When an external boundary scan chain is not connected, this output should
be left unconnected.

IR[3:0] Output Tap Controller Instruction Register. These four bits reflect the current instruction
loaded into the TAP controller instruction register. The bits change on the falling edge
of TCK when the state machine is in the UPDATE-IR state.

PCLKBS Output Boundary Scan Update Clock. This is a TCK2 wide pulse generated when the TAP
controller state machine is in the UPDATE-DR state and scan chain 3 is selected. This
signal is used by an external boundary scan chain as the update clock. When an
external boundary scan chain is not connected, this output should be left unconnected.

RSTCLKBS Output Boundary Scan Reset Clock. This signal denotes that either the TAP controller state
machine is in the RESET state, or that nTRST has been asserted. This may be used to
reset external boundary scan cells.

SCREG[4:0] Output Scan Chain Register. These four bits reflect the ID number of the scan chain currently
selected by the TAP controller. These bits change on the falling edge of TCK when the
TAP state machine is in the UPDATE-DR state.

SDIN Output Boundary Scan Serial Input Data. This signal contains the serial data to be applied to
an external scan chain, and is valid around the falling edge of TCK.

SDOUTBS Input Boundary Scan Serial Output Data. This is the serial data out of the boundary scan
chain (or other external scan chain). It should be set up to the rising edge of TCK.
When an external boundary scan chain is not connected, this input should be tied
LOW.

ARM9TDMI Signal Descriptions

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-7

SHCLK1BS Output Boundary Scan Shift Clock Phase 1. This control signal is provided to ease the
connection of an external boundary scan chain. SHCLK1BS is used to clock the
master half of the external scan cells. When the state machine is in SHIFT-DR state,
scan chain 3 is selected, SHCLK1BS follows TCK1. When not in the SHIFT-DR
state, or when scan chain 3 is not selected, this clock is LOW. When an external
boundary scan chain is not connected, this output must be left unconnected.

SHCLK2BS Output Boundary Scan Shift Clock Phase 2. This control signal is provided to ease the
connection of an external boundary scan chain. SHCLK2BS is used to clock the slave
half of the external scan cells. When the state machine is in SHIFT-DR state, scan
chain 3 is selected, SHCLK2BS follows TCK2. When not in the SHIFT-DR state, or
when scan chain 3 is not selected, this clock is LOW. When an external boundary scan
chain is not connected, this output must be left unconnected.

TAPID[31:0] Input TAP Identification. The value on this bus will be captured when using the IDCODE
instruction on the TAP controller state machine.

TAPSM[3:0] Output TAP Controller State Machine. This bus reflects the current state of the TAP controller
state machine. These bits change off the rising edge of TCK.

TCK Input The JTAG clock (the test clock).

TCK1 Output TCK, Phase 1. TCK1 is HIGH when TCK is HIGH, although there is a slight phase
lag due to the internal clock non-overlap.

TCK2 Output TCK, Phase 2. TCK2 is HIGH when TCK is LOW, although there is a slight phase
lag due to the internal clock non-overlap.

TDI Input Test Data Input, the JTAG serial input.

TDO Output Test Data Output, the JTAG serial output.

nTDOEN Output Not TDO Enable. When LOW, this signal denotes that serial data is being driven out
on the TDO output. The nTDOEN signal would normally be used as an output enable
for a TDO pin in a packaged part.

TMS Input Test Mode Select. TMS selects to which state the TAP controller state machine should
change.

nTRST Input Not Test Reset. Active-low reset signal for the boundary scan logic. This pin must be
pulsed or driven LOW after power up to achieve normal device operation, in addition
to the normal device reset (nRESET).

Table A-4 JTAG and TAP controller signals (continued)

Name Direction Description

ARM9TDMI Signal Descriptions

A-8 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

A.5 Debug signals

Table A-5 Debug signals

Name Direction Description

COMMRX Output Communications Channel Receive. When HIGH, this signal denotes that the comms
channel receive buffer contains data waiting to be read by the ARM9TDMI.

COMMTX Output Communications Channel Transmit. When HIGH, this signal denotes that the comms
channel transmit buffer is empty and the ARM9TDMI can write new data to the comms
channel.

DBGACK Output Debug Acknowledge. When HIGH, this signal indicates the ARM9TDMI is in debug
state.

DBGEN Input Debug Enable. This input signal allows the debug features of the ARM9TDMI to be
disabled. This signal should be LOW only when debugging will not be required.

DBGRQI Output Internal Debug Request. This signal represents the debug request signal which is
presented to the processor core. This is a combination of EDBGRQ, as presented to the
ARM9TDMI, and bit 1 of the debug control register.

DEWPT Input Data Watchpoint. This is an input which allows external hardware to halt execution of
the processor for debug purposes. If HIGH at the end of phase 1 following a data
memory request cycle, it will cause the ARM9TDMI to enter debug state.

EDBGRQ Input External Debug Request. When driven HIGH, this causes the processor to enter debug
state after execution of the current instruction completes.

EXTERN0 Input External Input 0. This is an input to watchpoint unit 0 of the EmbeddedICE macrocell
in the processor which allows breakpoints/watchpoints to be dependent on an external
condition.

EXTERN1 Input External Input 1. This is an input to watchpoint unit 1 of the EmbeddedICE macrocell
in the processor which allows breakpoints/watchpoints to be dependent on an external
condition.

IEBKPT Input Instruction Breakpoint. This is an input which allows a external hardware to halt the
execution of the processor for debug purposes. If HIGH at the end of phase 1 following
an instruction memory request cycle, it causes the ARM9TDMI to enter debug state if
the relevant instruction reaches the execute stage of the processor pipeline.

INSTREXEC Output Instruction Executed. Indicates that in the previous cycle the instruction in the execute
stage of the pipeline passed its condition codes, and was executed.

ARM9TDMI Signal Descriptions

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-9

RANGEOUT0 Output EmbeddedICE Rangeout 0. This signal indicates that the EmbeddedICE macrocell
watchpoint unit 0 has matched the conditions currently present on the address, data and
control buses. This signal is independent of the state of the watchpoint’s enable control
bit.

RANGEOUT1 Output EmbeddedICE Rangeout 1. This signal indicates that the EmbeddedICE macrocell
watchpoint unit 1 has matched the conditions currently present on the address, data and
control buses. This signal is independent of the state of the watchpoint’s enable control
bit.

TBE Input Test Bus Enable. When driven LOW, TBE forces the following signals to HIGH
impedance:
DD[31:0]
DA[31:0]
DLOCK
DMAS[1:0]
DnM[4:0]
DnRW
DnTRANS
DMORE
DnMREQ
DSEQ
IA[31:0]
InM[4:0]
InTRANS
InMREQ
ISEQ
ITBIT
LATECANCEL
PASS.
Under normal operating conditions, TBE should be held HIGH at all times.
If UNIEN is HIGH, this signal is ignored.

Table A-5 Debug signals (continued)

Name Direction Description

ARM9TDMI Signal Descriptions

A-10 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

A.6 Miscellaneous signals

Table A-6 Miscellaneous signals

Name Direction Description

BIGEND Input Big-Endian Configuration.
When this input is HIGH, the ARM9TDMI processor treats bytes in memory as being in big-
endian format. When it is LOW, memory is treated as little-endian.

ECLK Output External Clock.
The clock by which the ARM9TDMI is currently being clocked. This clock will reflect any
wait states applied by nWAIT, and once debug state has been entered by the debug clock.

nFIQ Input Not Fast Interrupt request.
This input causes the core to be interrupted if taken LOW, and if the appropriate enable in the
processor is active. The signal is level-sensitive and must be held LOW until a suitable
response is received from the processor. The nFIQ signal may be synchronous or
asynchronous, depending on the state of ISYNC.

GCLK Input Clock.
This clock times all ARM9TDMI memory accesses (both data and instruction), and internal
operations. The clock has two distinct phases—phase 1 in which GCLK is LOW and phase 2
in which GCLK is HIGH. The clock may be stretched indefinitely in either phase to allow
access to slow peripherals or memory. Alternatively, nWAIT may be used with a free running
GCLK to stretch phase 2.

HIVECS Input High Vectors Configuration.
When LOW, the ARM9TDMI exception vectors start at address 0x00000000 (hexadecimal).
When HIGH, the ARM9TDMI exception vectors start at address 0xFFFF0000.

nIRQ Input Not Interrupt Request.
As nFIQ, but with lower priority. May be taken LOW to interrupt the processor when the
appropriate enable is active. The nIRQ signal may be synchronous or asynchronous,
depending on the state of ISYNC.

ISYNC Input Synchronous Interrupts.
When LOW, this input indicates that the nIRQ and nFIQ inputs are to be synchronized by
the processor. When HIGH it disables this synchronization for inputs that are already
synchronous.

nRESET Input Not Reset.
This is a level-sensitive input signal which is used to start the processor from a known
address. The ARM9TDMI processor asynchronously enters reset when nRESET goes LOW.

ARM9TDMI Signal Descriptions

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. A-11

nWAIT Input Not Wait.
When a memory request cannot be processed in a single cycle, the ARM9TDMI can be made
to wait for a number of GCLK cycles by driving nWAIT LOW. Internally, the inverse of
nWAIT is ORed with GCLK, and must only change when GCLK is HIGH. If nWAIT is not
used, it must be tied HIGH.

UNIEN Input Unidirectional Enable.
When HIGH, all ARM9TDMI outputs are permanently driven, (the state of IABE, DABE,
DDBE and TBE is ignored). The DDIN[31:0] and DD[31:0] buses form a unidirectional data
bus.
When LOW, outputs can go tristate and the DD[31:0] bus is only driven during write cycles.
If DD[31:0] and DDIN[31:0] are wired together, they form a bidirectional data bus.

Table A-6 Miscellaneous signals (continued)

Name Direction Description

ARM9TDMI Signal Descriptions

A-12 © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. Index-xiii

Index

The items in this index are listed in alphabetic order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
About testing 6-2
ARM instruction set 1-2
ARM7TDMI

code compatibility 2-2

B
bidirectional data data bus 3-11
BIGEND 3-12
boundary scan chain

controlling external 5-25
boundary scan interface 5-13
breakpoints 5-5

exceptions 5-6
instruction boundary 5-6
prefetch abort 5-6
timing 5-6

busy-wait 4-6, 4-16
abandoned 4-16
interrupted 4-16

C
clocks

core 5-26
DCLK 5-26
GCLK 5-26
internally TCK generated clock 5-

26
memory clock 5-26
switching 5-26
switching during debug 5-27
switching during test 5-28
system reset 5-28

coprocessor
interface block 4-2

coprocessor handshake signals 4-6
encoding 4-8
states 4-6

coprocessor instructions
busy-wait 4-6
CDP 4-13
coprocessor 15 MCRs 4-17
during busy-wait 4-16
during interrupts 4-16
interlocked MCR 4-11
LDC/STC 4-3
MCR/MRC 4-9
privileged instructions 4-15
privileged modes 4-15
types supported 4-2

core state
determining 5-29

D
data abort

handler 2-2
model 2-2

data interface
accessing instruction memory 3-2
data transfers 3-8

Index

Index-xiv © Copyright ARM Limited 2000. All rights reserved. ARM DDI 0180A

data transfer 3-8
16-bit 3-12
32-bit 3-12
8-bit 3-12
aborted 3-8
access timings 3-9
coprocessor transfers 3-9
cycle encoding 3-8
data abort vector 3-8
data cycle 3-8
direction 3-8
endian configuration 3-12
endian effects 3-12
memory access sizes 3-12
size 3-9
size encoding 3-9

DBGACK 5-32
debug

clock switching 5-27
communications channel 5-48
debug scan chain 5-23
entered from ARM state 5-29
entered from Thumb state 5-29
hardware extensions 5-2, 5-4
instruction register 5-13
public instructions 5-14
pullup resistors 5-13
reset 5-13
scan chains 5-22
speed 5-30
state-machine controller 5-13

debug host 5-3
debug interface

signals 5-5
standard 5-2
TAP controller states 5-2

debug request 5-10
debug state 5-2, 5-30

actions of ARM9TDMI 3-3, 5-10
breakpoints 5-5
exiting 5-32
watchpoints 5-7

debug system 5-3

E
EmbeddedICE 5-5, 5-38

accessing hardware registers 5-24
control registers 5-41
debug control register 5-44
debug status register 5-44
functionality 5-38
hardware 5-38
register map 5-38
single stepping 5-47
vector catch register 5-45
vector catching 5-46

EmbeddedICE macrocell 5-1, 5-2, 5-10

EmbeddedICE watchpoint units
debugging 5-11
programming 5-11
testing 5-11

endian effects
data transfer 3-12
instruction fetches 3-7

external scan chains 5-21

F
five-stage pipeline 2-4

H
halting

data interface 3-3
instruction interface 3-3
processor 3-3

I
implementation options 2-2
instruction cycle

counts and bus activity 7-2
data bus instruction times 7-4
multiplier cycle counts 7-4
times 7-2

instruction fetch
16-bit 3-7
32-bit 3-7
aborted 3-5
endian effects 3-7
in ARM state 3-7
in Thumb state 3-7
prefetch abort vector 3-5
timing 3-5

instruction interface
accessing data memory 3-3
instruction address bus 3-5
instruction fetch timing 3-5

instruction set
ARM 1-2
Thumb 1-2

instruction set extension spaces 2-3
interlocks 2-4, 7-5

LDM dependent timing 7-8
LDM timing 7-7
single load timing 7-5
two cycle load timing 7-6

J
JTAG interface 5-11, 5-13, 5-28
JTAG state machine 5-12

L
LATECANCEL 4-6

M
memory accesses 3-2

coprocessor transfer 3-2
internal 3-2
non-sequential 3-2
sequential 3-2

memory configurations
big-endian 3-2
little-endian 3-2
selecting 3-2

memory interface
accesses 3-2
addressing 3-2
data interface 3-1
instruction interface 3-1
performance 3-2
reset behavior 3-13

N
nRESET 3-13
nWAIT 3-3

P
PASS 4-6
PC

return address calculations 5-37
pipeline 2-4

ARM 4-2
coprocessor 4-2
interlock 4-11
interlocks 7-5
pipeline follower 4-2
timing 2-4

processor
halting 3-3

processor core
diagram 1-3
implementation 1-2

processor state
determining 5-29

programmer’s model 2-1
protocol converter 5-3
public instructions within debug

BYPASS 5-16
CLAMP 5-16
CLAMPZ 5-17
EXTEST 5-14
HIGHZ 5-16
IDCODE 5-15
INTEST 5-15
SCAN_N 5-15

Index

ARM DDI 0180A © Copyright ARM Limited 2000. All rights reserved. Index-xv

R
reset

memory interface 3-13

S
scan chains 5-11, 5-22

external 5-21
scan chain 0 5-22
scan chain 0 bit order 6-1, 6-3
scan chain 1 5-23
scan chain 2 5-24
scan chain 3 5-25

serial test and debug 5-12
signals

coprocessor interface A-5
data memory interface A-3
debug A-8
instruction memory interface A-2
JTAG and TAP controller A-6
miscellaneous A-10

single stepping 5-47
SYSSPEED bit 5-31
system speed

instructions 5-31
system state

determining 5-30
scan chain 1 5-30

T
TAP controller 5-11, 5-12, 5-21
TAP state machine 5-26
test

clock switching 5-28
system reset 5-28

test data registers 5-19
ARM9TDMI device ID code

register 5-19
bypass register 5-19
instruction register 5-20
scan chain select register 5-20
scan chains 5-22

testing 6-1
EXTEST 6-2
parallel and serial 6-2
scan chain 0 bit order 6-3
test patterns 6-2

Thumb instruction set 1-2
timing

diagrams 8-2
parameters 8-14

U
unidirectional write data data bus 3-11

V
vector catching 5-46

W
wait states 3-3
watchpoints 5-7

exceptions 5-10
timing 5-7

	ARM9TDMI Technical Reference Manual
	Preface
	About this document
	Intended audience

	Further reading
	ARM publications
	Other reading

	Typographical conventions
	Feedback
	Feedback on this manual
	Feedback on the ARM9TDMI

	1 Introduction
	1.1 About the ARM9TDMI
	1.2 Processor block diagram

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.1.1 Data abort model
	2.1.2 Instruction set extension spaces

	2.2 Pipeline implementation and interlocks

	3 ARM9TDMI Processor Core Memory Interface
	3.1 About the memory interface
	3.1.1 Actions of the ARM9TDMI in debug state
	3.1.2 Wait states

	3.2 Instruction interface
	3.3 Endian effects for instruction fetches
	3.4 Data interface
	3.5 Unidirectional/bidirectional mode interface
	3.6 Endian effects for data transfers
	3.7 ARM9TDMI reset behavior

	4 ARM9TDMI Coprocessor Interface
	4.1 About the coprocessor interface
	4.2 LDC/STC
	4.2.1 Coprocessor handshake encoding

	4.3 MCR/MRC
	4.4 Interlocked MCR
	4.5 CDP
	4.6 Privileged instructions
	4.7 Busy-waiting and interrupts
	4.8 Coprocessor 15 MCRs

	5 Debug Support
	5.1 About debug
	5.2 Debug systems
	5.2.1 The debug host
	5.2.2 The protocol converter
	5.2.3 The ARM9TDMI

	5.3 Debug interface signals
	5.3.1 Entry into debug state on breakpoint
	5.3.2 Breakpoints and exceptions
	5.3.3 Watchpoints
	5.3.4 Watchpoints and exceptions
	5.3.5 Debug request
	5.3.6 Actions of the ARM9TDMI in debug state

	5.4 Scan chains and JTAG interface
	5.5 The JTAG state machine
	5.5.1 Reset
	5.5.2 Pullup resistors
	5.5.3 Instruction register
	5.5.4 Public instructions

	5.6 Test data registers
	5.6.1 Bypass register
	5.6.2 ARM9TDMI device identification (ID) code register
	5.6.3 Instruction register
	5.6.4 Scan chain select register
	5.6.5 Scan chains 0, 1, 2, and 3

	5.7 ARM9TDMI core clocks
	5.8 Clock switching during debug
	5.9 Clock switching during test
	5.10 Determining the core state and system state
	5.10.1 Determining the core state
	5.10.2 Determining system state
	5.10.3 Instructions which may have the SYSSPEED bit set

	5.11 Exit from debug state
	5.12 The behavior of the program counter during debug
	5.12.1 Breakpoint
	5.12.2 Watchpoint
	5.12.3 Watchpoint with another exception
	5.12.4 Watchpoint and breakpoint
	5.12.5 Debug request
	5.12.6 System speed accesses
	5.12.7 Summary of return address calculations

	5.13 EmbeddedICE macrocell
	5.13.1 Register map
	5.13.2 Using the mask registers
	5.13.3 Control registers
	5.13.4 Debug control register
	5.13.5 Debug status register
	5.13.6 Vector catch register

	5.14 Vector catching
	5.15 Single stepping
	5.16 Debug communications channel
	5.16.1 Debug comms channel registers
	5.16.2 Communications via the comms channel

	6 Test Issues
	6.1 About testing
	6.2 Scan chain 0 bit order

	7 Instruction Cycle Summary and Interlocks
	7.1 Instruction cycle times
	7.1.1 Multiplier cycle counts

	7.2 Interlocks

	8 ARM9TDMI AC Characteristics
	8.1 ARM9TDMI timing diagrams
	8.2 ARM9TDMI timing parameters

	Appendix A ARM9TDMI Signal Descriptions
	A.1 Instruction memory interface signals
	A.2 Data memory interface signals
	A.3 Coprocessor interface signals
	A.4 JTAG and TAP controller signals
	A.5 Debug signals
	A.6 Miscellaneous signals

