

Hardware Software Codesign of a Safety-Critical Embedded Computer System
for an Automatic Endoscope

Gul N. Khan and Matthew Jin
Electrical and Computer Engineering, Ryerson University,
350 Victoria Street, Toronto, Ontario, Canada M5B 2K3

gnkhan@ee.ryerson.ca

Abstract

Hardware-software codesign is presented for a
safety-critical embedded computer system. The system is
applied for endoscope control and navigation. The
embedded system architecture provides high
performance computing for real-time implementation of
machine vision algorithms and fault-tolerance for patient
safety. It consists of five processor cores, local memory,
I/O interface and multi-port shared memory. The
hardware and software system architectures are co-
designed. A virtual hardware is developed to execute the
application and system software tasks. The system is
designed and modeled sing VHDL and Eaglei toolset. We
have limited system verification to co-verification of
system hardware architecture and fault-tolerance
strategies. Co-verification results indicate that the
system performance degrades gracefully under various
fault scenarios.
Keywords: Hardware-software codesign, High
performance embedded systems; Automatic endoscope.

1. INTRODUCTION

The applications of embedded computer systems
range from sophisticated aircraft flight control to
consumer electronics. The high volume embedded
applications include home appliances, automobiles,
parking systems, cellular phones, toys, and many other
devices that contain some sort of µ-controller. On the
other extreme are safety-critical applications like fly-by-
wire aircrafts, high-rise building elevators and medical
instruments. The essential features of safety-critical
embedded systems like endoscope are high performance,
fault-tolerance and adaptability of the system. The
architects of such system are facing high throughput and
reliability demands that have never before been required
of these systems. The system architecture has to provide

fault-tolerant hardware support that can be programmed
to implement software fault-tolerant strategies [1, 2].

The design of embedded system has adapted the brute

force approach in the past. Hardware and software were
designed separately while correctness and compatibility
of two domains are sorted at the integration stage.
Hardware-software integration problems lead to either
large number of design iterations or non-optimal system
architecture. Hardware-software codesign approach
speeds up an intuitively serial design process by
developing hardware and software concurrently. It is best
suited to embedded system design and helps system
designers to meet the design and development deadlines
[3, 4]. Hardware-software codesign shortens the
development cycle, minimize bugs, manage cost, and
produce competitive embedded systems.

The high performance embedded system presented in

this paper is employed for endoscope control. Endoscope
is a medical instrument used for diagnosing UGI, colon
and bronchus diseases as shown in Figure 1. We have
been concentrating on the automation of colonoscopy. It
requires high performance computation for real-time
implementation of machine vision algorithms and fault-
tolerance support for patient safety. High performance
computing and fault-tolerance can be accomplished by a
hardware engine of heterogeneous multiple processor.
During conventional colonoscopy, the consultant
advances the endoscope progressively while controlling
its tip by judging the direction from a stream of colon
images. The deepest area in colon (lumen) corresponds
to the dark region near the center of colon images as
shown in Figure 2. Lumen is an important navigational
landmark for colonoscope control and navigation. We
have investigated a number of methods to identify the
lumen in the past [5]. Magnetic 3D imaging is also being
introduced to support doctors during colonoscopy
procedures [6]. Attempts are also made to navigate the
endoscope using collision avoidance technique [7].

Proceedings of the 2002 IEEE Canadian Conference
On Electrical and Computer Engineering - 657 -
0-7802-xxxx-x/02/$10  2002 IEEE

mailto:gnkhan@ee.ryerson.ca

- 658 -

Fig. 1. Conventional endoscope

We have employed standard industrial and parallel

computer systems for endoscope navigation in the past

[5]. However, it is observed that a dedicated embedded
system is needed for such safety-critical applications.
The main objectives of our research are to develop a
fault-tolerant and high performance embedded system
architecture. The software architecture to be realized by
the embedded system includes task scheduling, inter-
processor communication, image feature extraction and
building a search space representation of colon.

Air/water
suction buttons Biopsy

channel Tip

To video
monitor

Left-right
tip control

Up-down

tip control 2. THE EMBEDDED SYSTEM
 To Cold

 light source Lens A block diagram of the endoscope embedded
computer system is illustrated in Figure 3. The system
consists of an embedded computer and I/O modules.
Digital outputs control the endoscope tip while high-
speed analog input channels acquire video/ultrasound
images of colon.

Light

Fig. 2. Typical colon images

Fig. 3. Endoscope control embedded system

2.1 Embedded Computer Architecture

The embedded computer system consists of five
nodes, which are fully connected by ten dual port
memories DPij as shown in Figure 4. High performance
interconnection network provides efficient inter-
processor communication. There are three compute
processor cores (WPi) for computational intensive tasks
and two IO processor cores (IPx) for real-time control.

The IP processors support fault tolerance and recovery
from failures in addition to task scheduling and load
balancing. Both IP processors are capable of serving as
system controller, however at a given time, one of them
is designated as controller for system monitoring. The
other IP monitors the designated controller and take over
the role of controller when the designated controller fails.

The system nodes are self-checking and in the case of

a failure they isolate themselves. A watchdog timer

Embedded Computer
Architecture

Video
Server

DAC - ADC I/O Digital I/O

Endoscope

Monitor

detects a node failure while failure of DP memories and
their interface is detected during message transfer. The
processor interconnection network provides alternate
routes for inter-processor communication. A number of
fault-tolerant strategies are used for fault detection,
containment and system recovery. The failure of node
components is handled as a single fault. The interrupting
capabilities of a faulty processor is disabled and its
access to DP memories is also inhibited. The system
controller broadcasts the failure to healthy nodes and
invokes a diagnostic process. The failed node is put into
service for a transient fault. Otherwise, it is kept out of
the system and its tasks are re-scheduled. A node with a
faulty program memory is utilized in a degraded mode
by executing its critical tasks from DP memory blocks.

Fig. 4. Embedded processor architecture

The processor architecture supports various software

and hardware fault-tolerance configurations. Three
compute processors can be connected in TMR (triple
modular redundant) mode while one of the IP processor
serves as a voter. The other IP processor provides the
input data to the TMR module as shown in Figure 5a.
The architecture is flexible and one can configure both
IP processors as a duplex voter for the TMR
configuration as shown in Figure 5b.

2.2 Endoscope Control

The embedded system processor architecture can be
envisaged having two partitions: computing and IO as
illustrated in Figure 4. IO partition interfaces with

endoscope sensors and issues tip movement commands.
IO partition digitizes colon images and passed on to
computing partition. Computing partition executes
machine vision algorithms, detects the lumen and builds
a search space representation. IO partition generates
digital pulses for two motors for controlling endoscope
tip in two concentric perpendicular directions. The tip
direction movements are fed back to IO partition using
analog input channels. Left-right and up-down tip
movements are first translated into voltages that are
finally converted by analog to digital conversion module.
The feedback of tip movements forms a servo control
mechanism where the servo loop is completed by a
software process being executed by IO partition.

(a) Triple Modular redundancy

 (b) Duplex voter

Fig. 5. TMR configurations

2.3 Hardware Software Codesign

Hardware-software co-design problem can be broken
up into design specification, hardware/software
partitioning and estimation of system performance. The
design specification for describing system level behavior
is a challenging problem. It needs high abstraction yet
requires fine details to reduce ambiguities during
synthesis. Embedded system is partitioned by using
design constrains in terms of cost, power consumption,
silicon size, speed, etc. After partitioning, the design
comes down to hardware-software co-simulation. A co-
simulation tool, Seamless uses instruction set simulator

Output

IP5

Input

IP4

Computing Partition IO Partition

WP1
Voter

WP2 IP4 WP3 WP1 IP5

WP2

WP3

 DP15

 DP25

 DP35

 DP45

Duple x
voter

 DP14

 DP24

 DP34

Output

Input

WP1

WP3

IP4

 DP13

 DP23

WP2
IP5

 DP12

- 659 -

and a target processor model to create a virtual hardware
environment. A more abstract approach is used by Eaglei
to simulate the functional behavior of the system.

We have employed Eaglei for hardware-software co-

verification of the embedded system. The software
execution environment interacts with a VHDL based
hardware model having Virtual Software Processor
(VSP). VSPs are functional description of µ-processor
cores divided into two halves that communicate with the
hardware and software design entities. It allows the
fetch/execute cycles to be handled by the software
application running at the workstation speed, thereby
freeing the HDL simulator to handle rest of the hardware
on demand from the software application. Two types of
processor cores: Oak DSP for computing and
ARM7TDMi for IO partition. Other hardware modules
are implemented in VHDL. System and application
software tasks are coded in C language.

The main components of the IO and compute nodes
include a virtual software processor, watchdog timer,
private and dual-port memory interfaces. IP processors
also contain processor-timer one each for the rest of
system nodes that helps IP nodes to monitor other system
nodes. A system status is kept at each node in a 4X5 2-D
register. The contents of status register, kept at IP5 are
shown in Table 1. The ‘Available’ column field when set
to ‘1’ represents the node availability. The “Busy” field
when set indicates a busy node that is unable to accept
new tasks. The ‘Reset’ field when set implies that the
node is currently being diagnosed. The ‘TaskID’ field
provides the tasks details a node is executing. The node
status register given in table indicates that IP4, WP1 and
WP3 are available, DP15 is faulty; WP1 and WP3 are
processing tasks 3 and 2 respectively.

Table 1. Status Register of IP5

System
Node

Available
(1/0)

Busy
(1/0)

Reset
(1/0)

Availability
Com-module (1/0)

Task
ID

IP4 1 1 0 0 -
WP1 1 1 0 1 3
WP2 1 0 1 0 -
WP3 1 1 0 0 2

3. TESTING AND VERIFICATION

A subset of endoscope control application is selected
to verify fault-tolerance features of system architecture.
It consists of a suit of matrix manipulation algorithms
that are the basic building block of image analysis. The
application is partitioned into tasks to be executed by
compute processors. IP node provides support for fault-
tolerance, task scheduling and endoscope control. A
dedicated process that executes concurrently along with
application tasks facilitates fault-injection. We present
the verification results of a few representative failure
scenarios. One of the healthy IP nodes (IP4) becomes the
system controller while the other takes the role of backup
controller (IP5) at startup. Figure 6 shows the
verification of system startup where each node checks
itself and test the integrity of its DP memories.

A permanent fault is simulated by injecting a fault in

WP1 node, in the next fault-scenario being presented in
Figure 7. The controller (IP4) detects the node failure,
activates the corresponding processor-timer while
resetting the faulty node. After a time-out, if WP1 cannot

recover, it is declared faulty and controller removes it
from the system. The application tasks being executed by
the faulty nodes are re-assigned to other healthy nodes.
However, if the faulty node recovers within a time-out,
system controller puts the recovered node into the
system. Inter-processor communication is the key to
achieving high performance from a multiple processor
system. The embedded processor system is tested and
verified to handle the failure of DP memories and their
interface. The results are presented for DP14 or its
interface failure with WP1 and/or WP4 nodes. A fault is
injected in DP14 memory module. WP1 detects the fault
successfully during a message transfer as given in Figure
8. It reports the failure to IP4 by using DP24 and DP12
modules.

A temporary fault is also injected in the system

controller (IP4) to verify the fault-tolerance for IP nodes.
Figure 9 presents the fault detection and system recovery
from the system controller failure. The backup controller
(IP5) monitors IP4 and detects its failure. Then it
establishes itself as a new system controller and starts
diagnosing IP4.

- 660 -

Fig. 6. Verification of system startup

Fig. 7. System recovery from permanent fault in WP1 node

4. CONCLUDING REMARKS

The embedded computer architecture is modeled
using Eaglei tool set that provides virtual software
processors to build a multiprocessor virtual hardware
system. Embedded system software is executed for
hardware software co-verification. The system
architecture is improved to fulfill the application
requirements. Hardware-software co-verification results
indicate that embedded system degrades gracefully for

different fault scenarios. The system would require only
two fault-free communicating nodes (one in each
partition) for the system to be considered operational. In
the extreme case, even one healthy IP node keeps the
embedded system operational at lowest level of
performance. The main goal of this research is to design
and develop an SOC level high performance embedded
system. The system will be co-verified using Seamless
from the hard real-time point of view.

- 661 -

Fig. 8. Communication module DP14 failure and system recovery

Fig. 9. Temporary fault at system controller IP4

Acknowledgements

This research is supported by a grant from NSERC

Canada. The authors would also like to thank CMC for
providing hardware software co-design CAD tools.

References

[1] Gul N. Khan, "Fault-tolerance evaluation of a high

performance embedded computer system," SAS Research
Link, vol. 4/99, Singapore, pp. 4-5, January 1999.

[2] J. C. Laprie, J. Arlat, C. Beounes and K. Kanoun,
“Definition and analysis of hardware and software fault-
tolerant architectures,” IEEE Computer, vol. 23, no. 7, pp.
39-61, 1990.

[3] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieb, A. S.
Vincentelli and L. Lavagno, "Hardware-software codesign
of embedded systems," IEEE Micro, vol. 14, no. 4, pp. 26-
36, August 1994.

[4] F. Slomka, M. Dorfel, R. Munzenberger and R. Hofmann,
"Hardware/software codesign and rapid prototyping of
embedded systems," IEEE-Design and Test of Computers,
vol.17, no.2, pp.28-38, April-June 2000.

[5] Gul N. Khan and Duncan F. Gillies, "Vision based
navigation system for an endoscope," Image and Vision
Computing, vol. 14, no. 10, pp. 763-772, 1996.

[6] G. D. Bell, R. S. Rowland, M. Rutter, M. Abu-Sada, S.
Dogramadzi and C. Allen, "Colonoscopy aided by
magnetic 3D imaging: Assessing the routine use of a
stiffening sigmoid overtube to speed up the procedure,"
Medical and Biological Engineering and Computing, vol.
37, no. 5, pp.605-611, Sept. 1999.

[7] S. D'Attanasio, O. Tonet, G. Megali, M. C. Carrozza and
P. Dario, "A semi-automatic handheld mechatronic
endoscope with collision-avoidance capabilities," in Proc.
IEEE International Conference on Robotics an
Automation, pp. 1586-1591, 2000.

- 662 -

	Gul N. Khan and Matthew Jin
	
	
	Abstract

	Fig. 5. TMR configurations
	
	
	
	
	2.3 Hardware Software Codesign
	3. TESTING AND VERIFICATION

