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Abstract 

Hardware-software codesign is presented for a 
safety-critical embedded computer system. The system is 
applied for endoscope control and navigation. The 
embedded system architecture provides high 
performance computing for real-time implementation of 
machine vision algorithms and fault-tolerance for patient 
safety. It consists of five processor cores, local memory, 
I/O interface and multi-port shared memory. The 
hardware and software system architectures are co-
designed. A virtual hardware is developed to execute the 
application and system software tasks. The system is 
designed and modeled sing VHDL and Eaglei toolset. We 
have limited system verification to co-verification of 
system hardware architecture and fault-tolerance 
strategies. Co-verification results indicate that the 
system performance degrades gracefully under various 
fault scenarios. 
Keywords: Hardware-software codesign, High 
performance embedded systems; Automatic endoscope. 

 
 

1. INTRODUCTION 
 

The applications of embedded computer systems 
range from sophisticated aircraft flight control to 
consumer electronics. The high volume embedded 
applications include home appliances, automobiles, 
parking systems, cellular phones, toys, and many other 
devices that contain some sort of µ-controller. On the 
other extreme are safety-critical applications like fly-by-
wire aircrafts, high-rise building elevators and medical 
instruments. The essential features of safety-critical 
embedded systems like endoscope are high performance, 
fault-tolerance and adaptability of the system. The 
architects of such system are facing high throughput and 
reliability demands that have never before been required 
of these systems. The system architecture has to provide 

fault-tolerant hardware support that can be programmed 
to implement software fault-tolerant strategies [1, 2]. 

 
The design of embedded system has adapted the brute 

force approach in the past.  Hardware and software were 
designed separately while correctness and compatibility 
of two domains are sorted at the integration stage. 
Hardware-software integration problems lead to either 
large number of design iterations or non-optimal system 
architecture. Hardware-software codesign approach 
speeds up an intuitively serial design process by 
developing hardware and software concurrently. It is best 
suited to embedded system design and helps system 
designers to meet the design and development deadlines 
[3, 4]. Hardware-software codesign shortens the 
development cycle, minimize bugs, manage cost, and 
produce competitive embedded systems. 

 
The high performance embedded system presented in 

this paper is employed for endoscope control. Endoscope 
is a medical instrument used for diagnosing UGI, colon 
and bronchus diseases as shown in Figure 1. We have 
been concentrating on the automation of colonoscopy. It 
requires high performance computation for real-time 
implementation of machine vision algorithms and fault-
tolerance support for patient safety. High performance 
computing and fault-tolerance can be accomplished by a 
hardware engine of heterogeneous multiple processor. 
During conventional colonoscopy, the consultant 
advances the endoscope progressively while controlling 
its tip by judging the direction from a stream of colon 
images. The deepest area in colon (lumen) corresponds 
to the dark region near the center of colon images as 
shown in Figure 2. Lumen is an important navigational 
landmark for colonoscope control and navigation. We 
have investigated a number of methods to identify the 
lumen in the past [5]. Magnetic 3D imaging is also being 
introduced to support doctors during colonoscopy 
procedures [6]. Attempts are also made to navigate the 
endoscope using collision avoidance technique [7]. 
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Fig. 1. Conventional endoscope 

 
We have employed standard industrial and parallel 

computer systems for endoscope navigation in the past 

[5]. However, it is observed that a dedicated embedded 
system is needed for such safety-critical applications. 
The main objectives of our research are to develop a 
fault-tolerant and high performance embedded system 
architecture. The software architecture to be realized by 
the embedded system includes task scheduling, inter-
processor communication, image feature extraction and 
building a search space representation of colon. 
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Fig. 2. Typical colon images 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Endoscope control embedded  system 
 
 

2.1 Embedded Computer Architecture 
 

The embedded computer system consists of five 
nodes, which are fully connected by ten dual port 
memories DPij as shown in Figure 4. High performance 
interconnection network provides efficient inter-
processor communication. There are three compute 
processor cores (WPi) for computational intensive tasks 
and two IO processor cores (IPx) for real-time control. 

The IP processors support fault tolerance and recovery 
from failures in addition to task scheduling and load 
balancing. Both IP processors are capable of serving as 
system controller, however at a given time, one of them 
is designated as controller for system monitoring. The 
other IP monitors the designated controller and take over 
the role of controller when the designated controller fails. 

 
The system nodes are self-checking and in the case of 

a failure they isolate themselves. A watchdog timer 
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detects a node failure while failure of DP memories and 
their interface is detected during message transfer. The 
processor interconnection network provides alternate 
routes for inter-processor communication. A number of 
fault-tolerant strategies are used for fault detection, 
containment and system recovery. The failure of node 
components is handled as a single fault. The interrupting 
capabilities of a faulty processor is disabled and its 
access to DP memories is also inhibited. The system 
controller broadcasts the failure to healthy nodes and 
invokes a diagnostic process. The failed node is put into 
service for a transient fault. Otherwise, it is kept out of 
the system and its tasks are re-scheduled. A node with a 
faulty program memory is utilized in a degraded mode 
by executing its critical tasks from DP memory blocks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Embedded processor architecture 

 
The processor architecture supports various software 

and hardware fault-tolerance configurations. Three 
compute processors can be connected in TMR (triple 
modular redundant) mode while one of the IP processor 
serves as a voter. The other IP processor provides the 
input data to the TMR module as shown in Figure 5a. 
The architecture is flexible and one can configure both 
IP processors as a duplex voter for the TMR 
configuration as shown in Figure 5b. 
 
2.2 Endoscope Control 
 

The embedded system processor architecture can be 
envisaged having two partitions: computing and IO as 
illustrated in Figure 4. IO partition interfaces with 

endoscope sensors and issues tip movement commands. 
IO partition digitizes colon images and passed on to 
computing partition. Computing partition executes 
machine vision algorithms, detects the lumen and builds 
a search space representation. IO partition generates 
digital pulses for two motors for controlling endoscope 
tip in two concentric perpendicular directions. The tip 
direction movements are fed back to IO partition using 
analog input channels. Left-right and up-down tip 
movements are first translated into voltages that are 
finally converted by analog to digital conversion module. 
The feedback of tip movements forms a servo control 
mechanism where the servo loop is completed by a 
software process being executed by IO partition. 
 
 
 
 
 
 
 
 
 
 

 

(a) Triple Modular redundancy  
 
 
 
 
 
 
 
 
 
 
 

 

 (b) Duplex voter 
 

Fig. 5. TMR configurations 
 
2.3 Hardware Software Codesign 
 

Hardware-software co-design problem can be broken 
up into design specification, hardware/software 
partitioning and estimation of system performance. The 
design specification for describing system level behavior 
is a challenging problem. It needs high abstraction yet 
requires fine details to reduce ambiguities during 
synthesis. Embedded system is partitioned by using 
design constrains in terms of cost, power consumption, 
silicon size, speed, etc. After partitioning, the design 
comes down to hardware-software co-simulation. A co-
simulation tool, Seamless uses instruction set simulator 
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and a target processor model to create a virtual hardware 
environment. A more abstract approach is used by Eaglei 
to simulate the functional behavior of the system. 

 
We have employed Eaglei for hardware-software co-

verification of the embedded system. The software 
execution environment interacts with a VHDL based 
hardware model having Virtual Software Processor 
(VSP). VSPs are functional description of µ-processor 
cores divided into two halves that communicate with the 
hardware and software design entities. It allows the 
fetch/execute cycles to be handled by the software 
application running at the workstation speed, thereby 
freeing the HDL simulator to handle rest of the hardware 
on demand from the software application. Two types of 
processor cores: Oak DSP for computing and 
ARM7TDMi for IO partition. Other hardware modules 
are implemented in VHDL. System and application 
software tasks are coded in C language. 

 

The main components of the IO and compute nodes 
include a virtual software processor, watchdog timer, 
private and dual-port memory interfaces. IP processors 
also contain processor-timer one each for the rest of 
system nodes that helps IP nodes to monitor other system 
nodes. A system status is kept at each node in a 4X5 2-D 
register. The contents of status register, kept at IP5 are 
shown in Table 1. The ‘Available’ column field when set 
to ‘1’ represents the node availability. The “Busy” field 
when set indicates a busy node that is unable to accept 
new tasks. The ‘Reset’ field when set implies that the 
node is currently being diagnosed. The ‘TaskID’ field 
provides the tasks details a node is executing. The node 
status register given in table indicates that IP4, WP1 and 
WP3 are available, DP15 is faulty; WP1 and WP3 are 
processing tasks 3 and 2 respectively.  
 

 
Table 1. Status Register of IP5 

 

System 
Node 

Available 
(1/0) 

Busy 
(1/0) 

Reset 
(1/0) 

Availability 
Com-module (1/0) 

Task 
ID 

IP4 1 1 0 0 - 
WP1 1 1 0 1 3 
WP2 1 0 1 0 - 
WP3 1 1 0 0 2 

 
 

3. TESTING AND VERIFICATION 
 

A subset of endoscope control application is selected 
to verify fault-tolerance features of system architecture. 
It consists of a suit of matrix manipulation algorithms 
that are the basic building block of image analysis. The 
application is partitioned into tasks to be executed by 
compute processors. IP node provides support for fault-
tolerance, task scheduling and endoscope control. A 
dedicated process that executes concurrently along with 
application tasks facilitates fault-injection. We present 
the verification results of a few representative failure 
scenarios. One of the healthy IP nodes (IP4) becomes the 
system controller while the other takes the role of backup 
controller (IP5) at startup. Figure 6 shows the 
verification of system startup where each node checks 
itself and test the integrity of its DP memories.  

 
A permanent fault is simulated by injecting a fault in 

WP1 node, in the next fault-scenario being presented in 
Figure 7. The controller (IP4) detects the node failure, 
activates the corresponding processor-timer while 
resetting the faulty node. After a time-out, if WP1 cannot 

recover, it is declared faulty and controller removes it 
from the system. The application tasks being executed by 
the faulty nodes are re-assigned to other healthy nodes. 
However, if the faulty node recovers within a time-out, 
system controller puts the recovered node into the 
system. Inter-processor communication is the key to 
achieving high performance from a multiple processor 
system. The embedded processor system is tested and 
verified to handle the failure of DP memories and their 
interface. The results are presented for DP14 or its 
interface failure with WP1 and/or WP4 nodes. A fault is 
injected in DP14 memory module. WP1 detects the fault 
successfully during a message transfer as given in Figure 
8. It reports the failure to IP4 by using DP24 and DP12 
modules. 

 
A temporary fault is also injected in the system 

controller (IP4) to verify the fault-tolerance for IP nodes. 
Figure 9 presents the fault detection and system recovery 
from the system controller failure. The backup controller 
(IP5) monitors IP4 and detects its failure. Then it 
establishes itself as a new system controller and starts 
diagnosing IP4. 
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Fig. 6. Verification of system startup 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. System recovery from permanent fault in WP1 node 
 
 

4. CONCLUDING REMARKS 
 

The embedded computer architecture is modeled 
using Eaglei tool set that provides virtual software 
processors to build a multiprocessor virtual hardware 
system. Embedded system software is executed for 
hardware software co-verification. The system 
architecture is improved to fulfill the application 
requirements. Hardware-software co-verification results 
indicate that embedded system degrades gracefully for 

different fault scenarios. The system would require only 
two fault-free communicating nodes (one in each 
partition) for the system to be considered operational. In 
the extreme case, even one healthy IP node keeps the 
embedded system operational at lowest level of 
performance. The main goal of this research is to design 
and develop an SOC level high performance embedded 
system. The system will be co-verified using Seamless 
from the hard real-time point of view. 
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Fig. 8. Communication module DP14 failure and system recovery 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Temporary fault at system controller IP4 
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