A I:l 1 D A 9. Building Memory
= Subsystems Using SOPC

Q1154006-6.0.0

®

Builder

Introduction

Altera Corporation

May 2006

Most systems generated with SOPC Builder require memory. For
example, embedded processor systems require memory for software
code, while digital signal processing (DSP) systems require memory for
data buffers. Many systems use multiple types of memories. For example,
a processor-based DSP system can use off-chip SDRAM to store software
code, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter describes the process for building a memory subsystem as
part of a larger system created with SOPC Builder. This chapter focuses
on the kinds of memory most commonly used in SOPC Builder systems:

On-chip RAM and ROM

EPCS serial configuration devices

SDRAM

Off-chip RAM and ROM, such as SRAM and common flash interface
(CFI) flash memory

This chapter assumes that you are familiar with the following:

B Creating FPGA designs and making pin assignments with the
Quartus®II software. For details, see the Introduction to Quartus II
Manual.

B Building simple systems with SOPC Builder. For details, see the
Introduction to SOPC Builder and Tour of the SOPC Builder User
Interface chapters in volume 4 of the Quartus I Handbook.

B SOPC Builder components. For details, see the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

B Basic concepts of the Avalon® interface. You do not need extensive
knowledge of the Avalon interface, such as transfer types or signal
timing. However, to create your own custom memory subsystem
with external memories, you need to understand the Avalon
interface. For details, see the Avalon Switch Fabric chapter in volume 4
of the Quartus I1I Handbook and the Avalon Interface Specification.



Quartus Il Handbook, Volume 4

9-2

Example Design

This chapter demonstrates the process for building a system that contains
one of each type memory as shown in Figure 9-1. Each section of the
chapter builds on previous sections, culminating in a complete system.

By following the example design through this chapter, you will learn how
to create a complete memory subsystem for your own custom system.
The memory components in the example design are independent. For a
custom system, you can instantiate exactly the memories you need, and
skip the memories you don't need. Furthermore, you can create multiple
instantiations of the same type of memory, limited only by on-chip
memory resources or FPGA pins to interface with off-chip memory
devices.

Example Design Structure

Figure 9-1 shows a block diagram of the example system.

Altera Corporation
May 2006



Introduction

Figure 9-1. Example D,

esign Block Diagram

JTAG Interface

Altera FPGA

JTAG
Controller

SOPC Builder System

Nios Il =
(o JTAG
Processor =
8 3 UART
Data  Instr. = =
[w] [w] |5

Avalon Switch Fabric

] 5] (] 5]
Avalon SDRAM 1K x 32 bit EPCS
Tristate Bridge Controller On-chip Device
RAM Controller
M Core
A A A
SDRAM EPCS
Interface Interface
\ \
@ Avalon Master Port
M ) q EPCS
SMCXFBI bit 256K x 32 bit 4"é|Dx F?Athl)n Serial Avalon Slave Port
Flash i Memory Chi Centofiaten
Memory y Chip Device

Memory Chip Chip

Altera Corporation
May 2006

In Figure 9-1, all blocks shown below the Avalon switch fabric comprise
the memory subsystem. For demonstration purposes, this system uses a
Nios® II processor core to master the memory devices, and a JTAG UART
core to communicate with the processor. However, the memory

subsystem could be connected to any master component, either on-chip

or off-chip.

9-3



Quartus Il Handbook, Volume 4

Example Design Starting Point

The

The

following elements comprise the example design:

A Quartus II project named quartus2_project.A block diagram file
(BDF) named toplevel_design. toplevel_design is the top-level
design file for quartus2_project. toplevel_design instantiates the
SOPC Builder system module, as well as other pins and modules
required to complete the design.

An SOPC Builder system named sopc_memory_system.
sopc_memory_system is a subdesign of toplevel_design.
sopc_memory_system instantiates the memory components and
other SOPC Builder components required for a functioning system
module.

starting point for this chapter assumes that quartus2_project already

exists, that sopc_memory_system has been started in SOPC Builder, and
that the Nios II core and the JTAG UART core are already instantiated.
This example design uses the default settings for the Nios II/s core and
the JTAG UART core; these settings do not affect the rest of the memory
subsystem. Figure 9-2 shows the starting point in SOPC Builder.

Figure 9-2. Starting Point for the Example Design

1™ pltera SOPC Builder - sopc_memory_system

File Module System  Wiew Tools

System Contents

+ Extra Utilities L
+ Legacy Components
= Memory
@ Cypress CYTC13
@ DDR SDR&M Cort
@ DDR2 SDRAM Co
@ D2
@ EPCS Serial Flast
@ Flash Memary (T
@ DT71V416 SRAN
@ On-Chip Memory
@ SDRAM Controlie
+ Other A

< >

Installed Components

—_————

7] Dane checking for updates.

R S

Help
Nios IT More "cpu" Settings | System Generation
Board Clock (MHZ)
Target: |Unspecified Board L3 clk ISD-D |
Target Device Family: |[Stratix w
Use Module Mame Description Clock Base Enicd IRG
E ch Nos Il Processor - Alte... |clk
instruction_master  |Master port
data_master Master port RGO IRG 31
fta_debug_module  [Slave port 0x00000000 0x000007FF)
jtag_uart JTAG UART clk 0x00000800 0:x00000507(| 1
[ A Move Lp ] [ W Move Dowwn
T T ST ST ST TS ST
e
ar
Exit Mext =

9-4

All sections in this chapter build on this starting point.

Altera Corporation
May 2006



Design Flow

Hardware & Software Requirements

To build a memory subsystem similar to the example design in this
chapter, you need the following:

B Quartus II Software version 5.0 or higher —Both Quartus I Web
Edition and the fully licensed version support this design flow.

B Nios I Embedded Design Suite (EDS) version 5.0 or higher —Both the
evaluation edition and the fully licensed version support this design
flow. The Nios II EDS provides the SOPC Builder memory
components described in this chapter. It also provides several
complete example designs which demonstrate a variety of memory
components instantiated in working systems.

= The Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition are available free for download from the
Altera® website. Visit www.altera.com/download.

This chapter does not go as far as downloading and verifying a working
system in hardware. Therefore, there are no hardware requirements for

the completion of this chapter. However, the example memory
subsystem has been tested in hardware.

i This section describes the design flow for building memory subsystems
esign Flow g g y subsy
with SOPC Builder.

The design flow for building a memory subsystem is similar to other
SOPC Builder designs. After starting a Quartus II project and an SOPC
Builder system, there are five steps to completing the system, as shown in
Figure 9-3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design

3.  Simulation

4. Quartus II project-level design

5. Board-level design

Altera Corporation 9-5
May 2006



Quartus Il Handbook, Volume 4

Figure 9-3. Design Flow

Add memory
component 1

|

Simulation
Add memory

component 2

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| T
| Connect
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Start a SS%rFt,gn . components Connect SOPC Assign FPGA Connect
Quartus Il > ) ! . » Builder system » Pins & compile » FPGA pi
;I?Dri:; Bull‘der i . generate j module to P Quartus ﬁ N to mempgsj
system Add memory Sﬁzg ! Quartus Il project project ! chips
i component N system i i
| i | |
i Add other i i
! components ! !
I I I
| | H/—/ | |
SOPC Builder .
Component-Level Quartus Il Project .
Design sys(ﬁ:?;ﬁvel Level Design Board-Level Design
Component-Level Design in SOPC Builder
In this step, you specify which memory components to use, and you
configure each component to meet the needs of the system. All memory
components are available from the Memory category in the SOPC Builder
list of available components, shown in Figure 9-4.
Figure 9-4. List of Available Memory Components in SOPC Builder
= Memory
@ Cypress CYTC1380C SSRAM
@ DOR SDRAM Controller MegaCore Function - Altera Corporation
@ DDR2 SDRAM Cortroller MegaCore Function - Altera Corporation
@ D2
@ EPCS Setial Flash Controller
@ Flash Memory (Common Flazh Interface)
@ DT71V416 SRAM
@ On-Chip Memory (RAM or RORM)
@ SDRAM Controller
9-6 Altera Corporation

May 2006



Design Flow

Altera Corporation
May 2006

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC
Builder system as a whole. Similar to the process for adding non-memory
SOPC Builder components, you use the SOPC Builder System Contents
tab to do the following:

B Rename the component instance (optional).

®  Connect the memory component to master ports in the system. Each
memory component must be connected to at least one master port.

B Assign a base address.

B Assign a clock domain. A memory component can operate on the
same or different clock domain as the master port(s) that access it.

Simulation

In this step, you verify the functionality of the SOPC Builder system
module. For systems with memories, this step depends on simulation
models for each of the memory components, in addition to the system
testbench generated by SOPC Builder. See “Simulation Considerations”
on page 9-7.

Quartus Il Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest
of the Quartus II project. This step includes wiring the system module to
FPGA pins, and wiring the system module to other design blocks (such
as other HDL modules) in the Quartus II project.

= In the example design in this chapter, the SOPC Builder system
module comprises the entire FPGA design. There are no other
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on
the board. If the SOPC Builder system interfaces with off-chip memory
devices, then you must make board-level design choices.

Simulation Considerations

SOPC Builder can automatically generate a testbench for register transfer
level (RTL) simulation of the system. This testbench instantiates the
system module and can also instantiate memory models for external
memory components. The testbench is plain-text hardware description

9-7



Quartus Il Handbook, Volume 4

9-8

language (HDL), located at the bottom of the top-level system module
HDL design file. To explore the contents of the auto-generated testbench,
open the top-level HDL file, and search on keyword test_bench.

Generic Memory Models

The memory components described in this chapter, except for the SRAM,
provide generic simulation models. Therefore, it is very easy to simulate
an SOPC Builder system with memory components immediately after
generating the system.

The generic memory models store memory initialization files, such as
Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a
directory named <Quartus II project directory>/<SOPC Builder system
name>_sim. When generating a new system, SOPC Builder creates empty
initialization files. You can manually edit these files to provide custom
memory initialization contents for simulation.

1= For Nios II processor users, the Nios Il integrated development
environment (IDE) generates initialization contents
automatically.

Vendor-Specific Memory Models

You can also manually connect vendor-specific memory models to the
system module. In this case, you must manually edit the testbench and
connect the vendor memory model. You might also need to edit the
vendor memory model slightly for time delays. The SOPC Builder
testbench assumes zero delay.

There are special sections of the system module design file that
you can edit safely. You must edit only these sections, because
SOPC Builder overwrites the rest of the system module every
time you generate the system. These sections are marked by the
following text:

CAUTION

Verilog HDL

// <ALTERA NOTE> CODE INSERTED BETWEEN HERE

// add your signals and additional architecture here
// AND HERE WILL BE PRESERVED </ALTERA NOTE>

VHDL

-- <ALTERA NOTE> CODE INSERTED BETWEEN HERE
--add your component and signal declaration here
-- AND HERE WILL BE PRESERVED </ALTERA NOTE>

Altera Corporation
May 2006



On-Chip RAM & ROM

On-Chip RAM &
ROM

Altera Corporation
May 2006

Altera FPGAs include on-chip memory blocks, that can be used as RAM
or ROM in SOPC Builder systems. On-chip memory has the following
benefits for SOPC Builder systems:

B On-chip memory has fast access time, compared to off-chip memory.

B SOPC Builder automatically instantiates on-chip memory inside the
system module, so you do not have to make any manual connections.

B Certain memory blocks can have initialized contents when the FPGA
powers up. This feature is useful, for example, for storing data
constants or processor boot code.

FPGAs have limited on-chip memory resources, which limits the
maximum practical size of an on-chip memory to approximately one
megabyte in the largest FPGA family.

Component-Level Design for On-Chip Memory

In SOPC Builder you instantiate on-chip memory by adding an On-chip
Memory (RAM or ROM) component. The configuration wizard for the
On-chip Memory (RAM or ROM) component has the following options:
Memory Type, Size, and Read Latency.

Memory Type

The Memory Type options define the structure of the on-chip memory.

B RAM (writeable) — This setting creates a readable and writeable
memory.

B ROM (read only) — This setting creates a read-only memory.

B Dual-Port Access — Turning on this setting creates a memory
component with two slave ports, which allows two master ports to
access the memory simultaneously.

B Block Type - This setting forces the Quartus II software to use a
specific type of memory block when fitting the on-chip memory in
the FPGA. The following choices are available:

e Automatic — This setting allows the Quartus II software to
choose the most appropriate memory resource.

e  MS512 - This setting forces the Quartus II software to use M512
blocks.

e  M4K - This setting forces the Quartus II software to use M4K
blocks.

e M-RAM - This setting forces the Quartus II software to use
M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for
larger RAM data buffers. However, M-RAM blocks do not allow
pre-initialized contents at power up.

9-9



Quartus Il Handbook, Volume 4

9-10

Size

The Size options define the size and width of the memory.

B Memory Width — This setting determines the data width of the
memory. The available choices are 8, 16, 32, 64, or 128 bits. Assign
Memory Width to match the width of the master port that accesses
this memory the most frequently or has the most critical timing
requirements.

B Total Memory Size — This setting determines the total size of the
on-chip memory block. The total memory size must be less than the
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon slave
ports. Pipelined access improves fy5x performance, but also adds latency
cycles when reading the memory. The Read Latency option allows you to
specify the number of read latency cycles required to access data. If the
Dual-Port Access setting is turned on, you can specify a different read
latency for each slave port.

SOPC Builder System-Level Design for On-Chip Memory

There are not many SOPC Builder system-level design considerations for
on-chip memories. See “SOPC Builder System-Level Design” on
page 9-7.

When generating a new system, SOPC Builder creates a blank
initialization file in the Quartus II project directory for each on-chip
memory that can power up with initialized contents. The name of this file
is <Name of memory component>.hex.

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model
for the on-chip memory. This model is embedded inside the system
module, and there are no user-configurable options for the simulation
testbench.

You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat.

Altera Corporation
May 2006



On-Chip RAM & ROM

Altera Corporation
May 2006

Quartus Il Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there are no signals to connect to the Quartus II
project.

To provide memory initialization contents, you must fill in the file <Name
of memory component>.hex. The Quartus II software recognizes this file
during design compilation and incorporates the contents into the
configuration files for the FPGA.

Il=~  For Nios II processor users, the Nios Il integrated development
environment (IDE) generates memory initialization file
automatically.

Board-Level Design for On-Chip Memory
The on-chip memory is embedded inside the SOPC Builder system

module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory

This section demonstrates adding a 4 Kbyte on-chip RAM to the example
design. This memory uses a single slave port with read latency of one
cycle.

Figure 9-5 shows the On-Chip Memory (RAM or ROM) configuration
wizard settings for the example design.

9-11



Quartus Il Handbook, Volume 4

Figure 9-5. On-Chip Memory (RAM or ROM) Configuration Wizard

1™ On-chip Memory - onchip_ram &
Mermary Type

() ROM (read-only)

|:| Dual-Port Access

Block Type: |Automatic s
Size

Mernory Wicth: 32 ¥ | hits

Total Memory Size: 4 Khytes »

Read Latency

Slave s1 [1 v

i) Memory will be intialized from onchip_ram.hex
i) Automatically choosing M4k blocks

Cancel Finizh

Figure 9-6 shows the SOPC Builder system after adding an instance of the
on-chip memory component, renaming it to onchip ram, and assigning
it a base address.

Figure 9-6. SOPC Builder System with On-Chip Memory

9-12

Module Mame Description Clock Ease End IR
= epu Mios Il Processar - &ftera C... [clk

instruction_master Master port

data_master Master port RGO IRG 31

e _debug_module Slave port 0x00000000| 0x000007FF) ']
jtag_uart JTAG UART clk 0000008071
on-Chip Memory (RaM or R..clk 0x00001000, 0x00001FFF)

For demonstration purposes, Figure 97 shows the result of generating
the system module at this stage. (In a normal design flow, you generate
the system only after adding all system components.)

Figure 9-7. System Module with On-Chip Memory

‘sopc_memory_system

—clk
»— reset_n

inst3

Altera Corporation
May 2006



EPCS Serial Configuration Device

Because the on-chip memory is contained entirely within the system
module, sopc_memory_system has no I/O signals associated with
onchip_ram. Therefore, you do not need to make any Quartus II project
connections or assignments for the on-chip RAM, and there are no
board-level considerations.

EPCS Serial Many systems use an Altera EPCS serial configuration device to

. . configure the FPGA. Altera provides the EPCS device controller core,
CO nfi gu ration which allows SOPC Builder systems to access the memory contents of the
Device EPCS device. This feature provides flexible design options:

B The FPGA design can reprogram its own configuration memory,
providing a mechanism for in-field upgrades.

B The FPGA design can use leftover space in the EPCS as nonvolatile
storage.

Physically the EPCS device is a serial flash memory device, which has
slow access time. Altera provides software drivers to control the EPCS
core for the Nios II processor only. Therefore, EPCS controller core
features are available only to SOPC Builder systems that include a Nios II
processor.

g For further details on the features and usage of the EPCS device
controller core, see the EPCS Device Controller Core with Avalon Interface
chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an
EPCS Serial Flash Controller component. There is only one setting for
this component: Reference Designator. When targeting a board that
declares a reference designator for the EPCS device, the Reference
Designator setting is fixed.

SOPC Builder uses reference designators to specify a unique identifier for
flash memory devices on the board. This convention is a requirement of

the Nios II EDS, specifically the Nios II Flash Programmer utility.

«®  For details, see the Nios II Flash Programmer User Guide.

Altera Corporation 9-13
May 2006



Quartus Il Handbook, Volume 4

9-14

SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for
EPCS devices:

B Assign a base address.

B Set the IRQ connection to NC (disconnected). The EPCS controller
hardware is capable of generating an IRQ. However, the Nios II
driver software does not use this IRQ, and therefore you can leave
the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of
the core is always named epcs_controller.

Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model:

B Functional simulation does not include the FPGA configuration
process, and therefore the EPCS controller does not model the
configuration features.

B Thesimulation model does not support read and write operations to
the flash region of the EPCS device.

B A Nios II processor can boot from the EPCS device in simulation.
However, the boot loader code is different during simulation. The
EPCS controller boot loader code assumes that all other memory
simulation models are pre-initialized, and therefore the boot load
process is unnecessary. During simulation, the boot loader simply
forces the Nios II processor to jump to start, skipping the boot load
process.

Verification in hardware is the best way to test features related to the
EPCS device.

Quartus Il Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core
in the SOPC Builder system to the dedicated configuration pins on the
FPGA. This connection is invisible to the user. Therefore there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Altera Corporation
May 2006



EPCS Serial Configuration Device

Example Design with an EPCS Device

This section demonstrates adding an EPCS device controller core to the
example design.

Figure 9-8 shows the EPCS Serial Flash Controller configuration wizard
settings for the example design. In this example, the target board declares
a reference designator U59 for the EPCS device on the board.

Figure 9-8. EPCS Serial Flash Controller Configuration Wizard

18 EPGS Serial Flash Controller - epcs_contr... (X]

Eoard Infa

Cancel Finizh

Figure 9-9 shows the SOPC Builder system after adding an instance of the
EPCS controller core and assigning it a base address.

Figure 9-9. SOPC Builder System with EPCS Device

Module Mame Description Clock Base Enicd M
= epu Mios Il Proceszar - &ftera C... |clk

instruction_master Master port

data_master Master port RGO IRG 31

e _debug_module Slave port 0x00000000| 0x000007FF) ']

. jtag_uart JTAG UART clk 0x00000800] 0x00000507|[ 1

onchip_ram On-Chip Mermory (RAM or ... |clk 0x00001000| 0x00001FFF)
[Eepes_controller _PCS Serial Flash Controller [clk

epcs_control_port Slave port 0x00002000) 0x000027FF|[HC

For demonstration purposes only, Figure 9-10 shows the result of
generating the system module at this stage.

Figure 9-10. System Module with EPCS Device

‘sopc_memory_system

—clk
»— reset_n

inst3

Altera Corporation 9-15
May 2006



Quartus Il Handbook, Volume 4

SDRAM

9-16

Because the Quartus II software automatically connects the EPCS
controller core to the FPGA pins, the system module has no I/O signals
associated with epcs_controller. Therefore, you do not need to make any
Quartus II project connections or assignments for the EPCS controller
core.

This chapter does not cover the details of configuration using the EPCS
device. For further information, see Altera's Configuration Handbook.

Altera provides a free SDRAM controller core, which lets you use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM
controller core is necessary, because Avalon signals cannot describe the
complex interface on an SDRAM device. The SDRAM controller acts as a
bridge between the Avalon switch fabric and the pins on an SDRAM
device. The SDRAM controller can operate in excess of 100 MHz.

For further details on the features and usage of the SDRAM controller
core, see the SDRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus II Handbook.

Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on
the board heavily influence the component-level design for the SDRAM
controller. Typically, the component-level design task involves
parameterizing the SDRAM controller core to match the SDRAM
device(s) on the board. You must specify the structure (address width,
data width, number of devices, number of banks, etc.) and the timing
specifications of the device(s) on the board.

For complete details on configuration options for the SDRAM controller
core, see the SDRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus IT Handbook.

SOPC Builder System-Level Design for SDRAM

In SOPC Builder on the System Contents tab, the SDRAM controller looks
like any other memory component. Similar to on-chip memory, there are
not many SOPC Builder system-level design considerations for SDRAM.
See “SOPC Builder System-Level Design” on page 9-7.

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM
simulation model and include the model in the system testbench. To use
the generic SDRAM simulation model, you must turn on a setting in the

Altera Corporation
May 2006



SDRAM

Altera Corporation
May 2006

SDRAM controller configuration wizard. You can provide memory
initialization contents for simulation in the file <Quartus II project
directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternately, you can provide a specific vendor memory model for the
SDRAM. In this case, you must manually wire up the vendor memory
model in the system testbench.

For further details, see “Simulation Considerations” on page 9-7 and
"Hardware Simulation Considerations" in the chapter SDRAM Controller
Core with Avalon Interface in volume 5 of the Quartus II Handbook.

Quartus Il Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals
associated with the SDRAM controller. In the Quartus II project, you
must connect these I/O signals to FPGA pins, which connect to the
SDRAM device on the board. In addition, you might have to
accommodate clock skew issues.

Connecting & Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

Accommodating Clock Skew

As SDRAM frequency increases, so does the possibility that you must
accommodate skew between the SDRAM clock and I/0O signals. This
issue affects all synchronous memory devices, including SDRAM. To
accommodate clock skew, you can instantiate an altpll megafunction
in the top-level Quartus II design to create a phase-locked loop (PLL)
clock output. You use a phase-shifted PLL output to drive the SDRAM
clock and overcome clock-skew issues. The exact settings for the altpll
depend on your target hardware; you must experiment to tune the phase
shift to match the board.

9-17



Quartus Il Handbook, Volume 4

For details, see the altpll Megafunction User Guide.

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the
SDRAM device(s). The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and
multiple devices.

For further details, see the "Example Configurations" section in the
SDRAM Controller Core with Avalon Interface chapter in volume 5 of the
Quartus II Handbook.

Example Design with SDRAM

This section demonstrates adding a 16 Mbyte SDRAM device to the
example design. This SDRAM is a single device with 32-bit data.

Figure 9-11 shows the SDRAM Controller configuration wizard settings
for the example design.

Figure 9-11. SDRAM Controller Configuration Wizard

¥ SPDRAKM Controller - sdram E] ¥ SPDRAKM Controller - sdram E]
Presets: zingle Micron MT4ELCAM3I2E2-7 chip b Presets: zingle Micron MT4ELCAM3I2E2-7 chip b
Tirming Mernory Profil
Drata Wicth Architecture SDRAM Timing Parameters
32 v | Bits Chip Selects: |1 w Banks: |4 v CAS latency cycles O 1 O 2 [O] 3
Address Widths Initialization refresh cycles 2
Rowe |12 Column | 8 lzsue one refresh command every 15623 us
Drel ft hefore intializati 100
Share Pins via Tristate Bridge elay after powerup, before intislization us
. Duration of refresh command (t_rfc) 70 ns
|:| Cortroller shares dofdagm/faddr O pins.
Duration of precharge command (t_rp) 20 ns
"Crrmi WEmas ) (i il i) ACTIVE to READ or WRITE delay (t_rcd) 0 ne
Include a functional memory model in the system testbench. Arcess time it_ac) 55 =
Memory size: 16 MBytes Wirite: recovery time (t_wr, Mo auto precharge) 14 ns
4194304 x 32
128 MEBit=
Cancel Mext = Finizh Cancel = Prev Finish

9-18

Figure 9-12 shows the SOPC Builder system after adding an instance of
the SDRAM controller, renaming it to sdram, and assigning it a base
address.

Altera Corporation
May 2006



SDRAM

Figure 9-12. SOPC Builder System with SDRAM

Module Mame

Ecpu

jtag_uart

onchip_ram
epcs_controller

instruction_master
data_master
e _debug_module

sdram
=1

Description Clock Ease End

Mios I| Processor - Altera Corp... |clk

Master port

Master port RGO IRG 31

Slave port 0x00000000) 0x000007FF)

JTAG UART clk 0x00000800) 0x00000307)

Cn-Chip Memary (RAM or ROM) |clk 0x00001000)  0x00001FFF)

EPCS Serial Flash Controller clk 0x00002000) 0x000027FF)
DRAM Cortroller clk

Slave port 0x01000000) 0x01FFFFFF|

Rl

1

M
|
e

For demonstration purposes, Figure 9-13 shows the result of generating
the system module at this stage, and connecting it in

toplevel_design.bdf.

Figure 9-13. toplevel_design. bdf with SDRAM

sdram_pll

P %=}

inclk frequency: 50,000 MHz
Operation Made: Nomal

cd

el

SDRAM PLL

This FLL introtiucss & phass-shitt which compensates
for board-lsval delays in the clock network. Cther boards
may reguis different settings

inst2

Stratin

deiay_reset_biock

S0pC_rnemory_system

| clock_in  delayed_reset_n
reset_n

Resst Delay: Allows FLL 10 Sabilze (k) ater
reset or devics-canfiguration

et_n

z5_adddr _from_the_sdram{11..0] Ty
z5_ba_from_the_sdram(1..0]
z5_oas_n_from_the_scram i
z5_cke_from_the_sdram I
zs_cs_n_from the_sdram T

SHRA T
T DR D 5
T SORAA RAETH

25 _dy_to_and_from_the_sdram{31..0]
23 _dgm_trom_the_sdram[3..0]
z3_ras_n_from_the_sdram
z5_we_n_from_the_sdram

\THT
THT
i

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of SDRAM-related I/O signals
which must be connected to FPGA pins:

output
output
output
output
output
inout

output
output
output

Altera Corporation
May 2006

[
[

11:
1:

0]
0]

zs_addr_ from the sdram;
zs_ba from the sdram;
zs_cas_n_ from the sdram;
zs_cke from the sdram;

zs_cs n_from the sdram;
zs_dg_to_and from the sdram;
zs_dgm_from the sdram;
zs_ras_n from the sdram;
zs_we_n_from_the sdram;

9

-19



Quartus Il Handbook, Volume 4

As shown in Figure 9-13, toplevel_design.bdf uses an instance of

sdram_pll to phase shift the SDRAM clock by -63 degrees.

toplevel_design.bdf also uses a subdesign delay reset_block to
insert a delay on the reset_n signal for the system module. This delay is
necessary to allow the PLL output to stabilize before the SOPC Builder

system begins operating.

Figure 9-14 shows pin assignments in the Quartus II assignment editor
for some of the SDRAM pins. The correct pin assignments depend on the

target board.

Figure 9-14. Pin Assignments for SORAM

1

Lacation
PIN_AE4

If0 Bank 1/ Standard

LWTTL

General Function

Column

Special Function

Reservec

189 € sDRAM_A[10] PIN_Y11 7 LYTTL Column Ij0
190 € soRAM_A[11] PIN_AE7 7 LYTTL Column Ij0
191 € sDRAM_A[1] PIN_W12 7 LYTTL Column Ij0 PGMO
192 € sDRAM_A[2] PIN_AC11 7 LYTTL Column Ij0 RS
193 € sDRAM_A[3] PIN_W10 7 LYTTL Column Ij0 RURLL
194 € sDRAM_A[4] PIN_AA11 7 LYTTL Column Ij0 PGM1
195 € sDRAM_A[S] PIN_ACLO 7 LYTTL Column Ij0 RONF
196 € sDRAM_A[E] PIN_AE11 7 LYTTL Column Ij0 RUP7
197 € sDRAM_A[7] PIN_ACS 7 LYTTL Column Ij0 FCLKS
198 € sDRAM_A8] PIN_AB10 7 LYTTL Column Ij0 FCLK4
199 € sDRAM_a[9] PIN_¥11 7 LYTTL Colurnn [0
200 € soRAM_BA[0] PIN_AG19 8 LYTTL Column I/0 DQEB4
201 € sDRAM_BA[1] PIN_AF19 8 LYTTL Column I/0 DQEBS
202 € SDRAM_CAS N [PIN_AD1S 8 LYTTL Column I/0 DQER2
203 € SDRAM_CKE PIN_AE1S 8 LYTTL Column I/0 DQEBL
204 € sDRAM_CS N PIN_AGLE 8 LYTTL Column I/0 DQEBD
205 € sDRAM_DOM[D]  [PIN_AE14 7 LYTTL Column Ij0 CLKER
206 € soRAM_DOM[L]  [FIN_¥13 7 LYTTL Column Ij0 CLK7n
207 € sDRAM_DOM[2]  [FIN_AET 7 LYTTL Column Ij0 DQS1E
208 € sDRAM_DOM[E]  [PIN_AGLD 7 LYTTL Column Ij0 DQS3E
9-20 Altera Corporation

May 2006



Off-Chip SRAM & Flash Memory

Off-Chip SRAM
& Flash Memory

Altera Corporation
May 2006

SOPC Builder systems can directly access many off-chip RAM and ROM
devices, without a controller core to drive the off-chip memory. Avalon
signals can exactly describe the interfaces on many standard memories,
such as SRAM and flash memory. In this case, I/O signals on the SOPC
Builder system module can connect directly to the memory device.

While off-chip memory usually has slower access time than on-chip
memory, off-chip memory provides the following benefits:

B Off-chip memory is less expensive than on-chip memory resources.

B The size of off-chip memory is bounded only by the 32-bit Avalon
address space.

B Off-chip ROM, such as flash memory, can be used for bulk storage of
nonvolatile data.

B Multiple off-chip RAM and ROM memories can share address and
data pins to conserve FPGA I/0O resources.

Adding off-chip memories to an SOPC Builder system also requires the
Avalon Tristate Bridge component.

This section describes the process of adding off-chip flash memory and
SRAM to an SOPC Builder system.

Component-Level Design for SRAM & Flash Memory

There are several ways to instantiate an interface to an off-chip memory
device:

B For common flash interface (CFI) flash memory devices, add the
Flash Memory (Common Flash Interface) component in SOPC
Builder.

B For Altera development boards, Altera provides SOPC Builder
components that interface to the specific devices on each
development board. For example, the Nios II EDS includes the
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM,
which appear on Nios development boards.

These components make it easy for you to create memory systems
targeting Altera development boards. However, these components target
only the specific memory device on the board; they do not work for
different devices.

B For general memory devices, RAM or ROM, you can create a custom
interface to the device with the SOPC Builder component editor.
Using the component editor, you define the I/O pins on the memory
device and the timing requirements of the pins.

9-21



Quartus Il Handbook, Volume 4

9-22

In all cases, you must also instantiate the AvalonTristateBridge
component as well. Multiple off-chip memories can connect to a single
tristate bridge.

Avalon Tristate Bridge

A tristate bridge connects off-chip devices to on-chip Avalon switch
fabric. The tristate bridge creates I/ O signals on the SOPC Builder system
module, which you must connect to FPGA pins in the top-level Quartus
II project. These pins represent the Avalon switch fabric to off-chip
devices.

The tristate bridge creates address and data pins which can be shared by
multiple off-chip devices. This feature lets you conserve FPGA pins when
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

B The off-chip device has bidirectional data pins.
B Multiple off-chip devices share the address and/or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the
AvalonTristateBridge component. The Avalon Tristate Bridge
configuration wizard has a single option: To register incoming (to the
FPGA) signals or not.

B Registered — This setting adds registers to all FPGA input pins
associated with the tristate bridge (outputs from the memory
device).

B Not Registered - This setting does not add registers between the
memory device output pins and the Avalon switch fabric.

The Avalon tristate bridge automatically adds registers to output signals
from the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register
delay from the memory device to the FPGA, resulting in higher system
fmax performance. However, in each direction, the registers add one
additional cycle of latency for Avalon master ports accessing memory
connected to the tristate bridge. The registers do not affect the timing of
the transfers from the perspective of the memory device.

For details on the Avalon tristate interface, refer to the Avalon Interface
Specification.

Altera Corporation
May 2006



Off-Chip SRAM & Flash Memory

Altera Corporation
May 2006

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by
adding a Flash Memory (Common Flash Interface) component. If the
flash memory is not CFI compliant, you must create a custom interface to
the device with the SOPC Builder component editor.

The choice of flash device(s) and the configuration of the device(s) on the
board heavily influence the component-level design for the flash memory
configuration wizard. Typically, the component-level design task
involves parameterizing the flash memory interface to match the
device(s) on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address
width and data width) and the timing specifications of the device(s) on
the board.

For details on features and usage, refer to chapter Common Flash Interface
Controller Core with Avalon Interface in volume 5 of the Quartus II
Handbook.

For an example of instantiating the Flash Memory (Common Flash
Interface) component in an SOPC Builder system, see “Example Design
with SRAM & Flash Memory” on page 9-26.

SRAM

To instantiate an interface to off-chip RAM, you perform the following
steps:

1. Create a new component with the SOPC Builder component editor
that defines the interface.

2. Instantiate the new interface component in the SOPC Builder
system.

The choice of RAM device(s) and the configuration of the device(s) on the
board determine how you create the interface component. The
component-level design task involves entering parameters into the
component editor to match the device(s) on the board.

For details on using the component editor, refer to the Component Editor
chapter in volume 4 of the Quartus II Handbook.

9-23



Quartus Il Handbook, Volume 4

9-24

SOPC Builder System-Level Design for SRAM & Flash Memory

In SOPC Builder on the System Contents tab, the Avalon tristate bridge
has two ports:

B Avalon slave port — This port faces the on-chip logic in the SOPC
Builder system. You connect this slave port to on-chip master ports
in the system.

B Avalon tristate master port — This port faces the off-chip memory
devices. You connect this master port to the Avalon tristate slave
ports on the interface components for off-chip memories.

You assign a clock to the Avalon tristate bridge which determines the
Avalon clock cycle time for off-chip devices connected to the tristate
bridge.

You must assign base addresses to each off-chip memory. The Avalon
tristate bridge does not have an address; it passes unmodified addresses
from on-chip master ports to off-chip slave ports.

Simulation for SRAM & Flash Memory

The SOPC Builder output for simulation depends on the type of memory
component(s) in the system:

B Flash Memory (Common Flash Interface) component — This
component provides a generic simulation model. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Flash memory
component name>.dat.

B Custom memory interface created with the component editor — In
this case, you must manually connect the vendor simulation model
to the system testbench. SOPC Builder does not automatically
connect simulation models for custom memory components to the
system module.

B Altera-provided interfaces to memory devices — Altera provides
simulation models for these interface components. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat. Alternately, you can provide a specific vendor
simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system testbench.

For further details, see “Simulation Considerations” on page 9-7.

Altera Corporation
May 2006



Off-Chip SRAM & Flash Memory

Altera Corporation
May 2006

Quartus Il Project-Level Design for SRAM & Flash Memory

SOPC Builder generates a system module with top-level I/O signals
associated with the tristate bridge and the memory interface components.
In the Quartus II project, you must connect the I/O signals to FPGA pins,
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module
HDL to assist the Quartus II fitter with signals that interface with off-chip
devices. An example is below:

reg [ 22: 0] tri state bridge address /* synthesis
ALTERA ATTRIBUTE = "FAST OUTPUT REGISTER=ON" */;

Board-Level Design for SRAM & Flash Memory

Memory requirements largely dictate the board-level configuration of the
SRAM & flash memory device(s). You can lay out memory devices in any
configuration, as long as the resulting interface can be described with
Avalon signals.

A Special consideration is required when connecting the Avalon
address signal to the address pins on the memory devices.

The system module presents the smallest number of address lines
required to access the largest off-chip memory, which is usually less than
32 address bits. Not all memory devices connect to all address lines.

Aligning the Least-Significant Address Bits

The Avalon tristate address signal always presents a byte address. Each
address location in many memory devices contains more than one byte of
data. In this case, the memory device must ignore one or more of the
least-significant Avalon address lines. For example, a 16-bit memory
device must ignore Avalon address [0] (which is a byte address), and
connect Avalon address [1] to the least-significant address line.

9-25



Quartus Il Handbook, Volume 4

Table 9-1 shows the relationship between Avalon address lines and
off-chip address pins for all possible Avalon data widths.

Table 9-1. Connecting the Least-Significant Avalon Address Line

Avalon address Line

Address Line on Memory Device

8-hit Memory | 16-bit Memory | 32-bit Memory | 64-bit Memory | 128-bit Memory
address [0] AO No connect No connect No connect No connect
address[1] A1l A0 No connect No connect No connect
address[2] A2 Al A0 No connect No connect
address [3] A3 A2 A1 A0 No connect
address [4] A4 A3 A2 A1l A0
address [5] A5 A4 A3 A2 A1
address [6] A6 A5 A4 A3 A2
address [7] A7 A6 A5 A4 A3
address [8] A8 A7 A6 A5 A4
address [9] A9 A8 A7 A6 A5
address [10] A10 A9 A8 A7 A6

9-26

Aligning the Most-Significant Address Bits

The Avalon address signal contains enough address lines for the largest
memory on the tristate bridge. Smaller off-chip memories might not use
all of the most-significant address lines.

For example, a memory device with 219 locations uses 10 address bits,
while a memory with 220 locations uses 20 address bits. If both these
devices share the same tristate bridge, then the smaller memory ignores
the ten most-significant Avalon address lines.

Example Design with SRAM & Flash Memory

This section demonstrates adding a 1 Mbyte SRAM and an 8Mbyte flash
memory to the example design. These memory devices connect to the
Avalon switch fabric through an Avalon tristate bridge.

Altera Corporation
May 2006




Off-Chip SRAM & Flash Memory

Altera Corporation
May 2006

Adding the Avalon Tristate Bridge

Figure 9-15 shows the Avalon Tristate Bridge configuration wizard for
the example design. The example design uses registered inputs and
outputs to maximize system fy;4x, which increases the read latency by
two for both the SRAM and flash memory.

Figure 9-15. Avalon Tristate Bridge Configuration Wizard

1™ fvalon Tri-State Bridge - tri_state_bridge

Incorming Sighals

I
O Mot registered

off-chip Frmazx, but also increases latency.

Outgoing address and contral signals are always registered.

Cancel Finizh

Adding the Flash Memory Interface

The flash memory is 8M x 8-bit, which requires 23 address bits and 8 data
bits. Figure 9-16 shows the Flash Memory (Common Flash Interface)
configuration wizard settings for the example design. In this example, the
target board declares a reference designator U5 for the flash device on the
board.

9-27



Quartus Il Handbook, Volume 4

Figure 9-16. Flash Memory Configuration Wizard

Presets: AMDZALY0GS0-120R b |
Size
Adoress Width: 23 V| bits
DataWicth, 3 | bits
Board Info

b= ]

Create an interface to any industry-standard CFI (Common Flash
Intertace)-compliant flash memary device. Select from a list of
tested flash memories, or provide interface & timing information
for & CFl memory which does not appear oh the list.

Atributes | |

Setug: | 40

| Wit | 160 ‘ Halct: | 40 | Units: ris

Systemn Clock 50 MHz
Read Waveforms

Timing granularty is System Clock cycles.

data ::

addrj

aclect I_

readn  aons 130na

‘Wite Viaveforms

data ::

addr:{

aglect I_

weiten aoms |aeoms [ soma

(5] Flash memary capacity: & MBytes (8386608 bytes)

&) Flash memory capacity: & MBytes (8388605 bytes)

Cancel Mext = Finish

Cancel = Prew Finish

Adding the SRAM Interface

The SRAM device is 256K x 32-bit, which requires 18 address bits and 32
data bits. The example design uses a custom memory interface created

with the SOPC Builder component editor. Figure 9-17 — Figure 9-21
shows the settings required on the various component editor tabs to

implement an interface to this SRAM.

9-28

Altera Corporation
May 2006



Off-Chip SRAM & Flash Memory

Figure 9-17. SRAM Interface Component Editor HDL Files Tab

™ Component Editor - SRAM 256K x 32bit
File

Introduction |: HOL Files | Signals || Interfaces | S Files | Companent tizard

[ About HOL Files

HDL Files:

File Marme Info

Syrthesis | Sirmulstion

Acded HOL File...
Top Level Module: | Mo HOL Files s

Remave HOL File

Figure 9-18. SRAM Interface Component Editor Signals Tab

™ Component Editor - SRAM 256K x 32bit

File

Introduction | HOL Files | Sionals | intertaces | SvwFiles | Componert wizard

[ About Sighals

Interface Signal Type Wickth Direction
sram_tristate_slave clata 32 biclir
sram_tristate_slave address 18 input
sram_tristate_slave byteenable_n 4 input
sram_tristate_slave chipselect_n il input
sram_tristate_slave werite_n 1 input
sram_tristate_slave read_n il input

Altera Corporation

May 2006

9-29



Quartus Il Handbook, Volume 4

Figure 9-19. SRAM Interface Component Editor Interfaces Tab

™ Component Editor - SRAM 256K x 32bit
File

Intracuction | HOL Files | Signals | Interfaces | s Files | Component izard

= gvalon_tristate slave “sram_tristate_slave™ (1 of 1)

[Marne: |sram_tristate_slave

Type: |ava|0n_tristate slave w |

= Svalon Tristate Slave Settings

Slave addressing: |Mem0ry (use dynamic bus sizing) |

Minirum Arbitration Shares:

Can receive stderrfstdout:

= &valon Tristate Slave Timing

Setup: Read Vial 0 Hold: |1D |

Units: |n3 M |

Whirite Vit

Pipelined Transfers

[ ] [ ]

Read Waveforms
addreas :{AO
read n Tau

chipaelect f

Figure 9-20. SRAM Interface Component Editor Component Wizard Tah

™ Component Editor - SRAM 256K x 32bit
File

Intraduction | HOL Files | Signals || Interfaces SWFiIes| Componert Wizard

[ About Componert VWizard

Folder: |C:.l’altera.l‘memory_SubSy31em_design.l’sram_258k_x_32b'rt.l’

Clazss Mame: | sram_256k_x_32bit |

Cormporient Name: | SRAM 256K x 326 |

Component YWersion: | 1.0 |

Component Group: | User Logic |

[Marne Default Walue | Editable Type

Parameters:

Toolktip

9-30

Altera Corporation
May 2006



Off-Chip SRAM & Flash Memory

Altera Corporation
May 2006

SOPC Builder System Contents Tab

Figure 9-21 shows the SOPC Builder system after adding the tristate
bridge and memory interface components, and configuring them
appropriately on the System Contents tab. Figure 9-21 represents the
complete example design in SOPC Builder.

Figure 9-21. SOPC Builder System with SRAM & Flash Memory

Module Mame Description Clock Ease End IR
l; cpu ios || Processaor - After... |clk B
ot inztruction_master  Master port
L cata_master Master port IRz 0 IRz 31
ftan_debug_module  |Slave port 0x00000000( 0x000007FF ']
jtag_uart JTAG UART ik 0x00000800] 0000008071
{#] onchip_ram On-Chip Memary (RAM .. |clk 0x00001000( 0x00001FFF I
epcs_controller EPCS Serial Flash Contr... |clk 0x00002000] 0:x000027FF|[HC
{# sdram SDRAM Cortraller clk 0x01000000) 0x01FFFFFF
[ tri_state_bridge Avalon Tri-State Bridge  [clk
o gvalon_slave Slave port
triztate_master Master port
[l ext_flash Flazh Memory (Comman...
=1 Slave port 0x00FFFFFF
= ext_ram SRAM 256K = 32hit
sram_tristate_slave |Slave port 0x00100000( 0:x001FFFFF

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of I/O signals for SRAM and
flash memory which must be connected to FPGA pins:

output chipselect n to the ext ram;
output read n to the ext ram;
output select n to the ext flash;

output [ 22: 0] tri_state_bridge_adaress,-
output [ 3: 0] tri_state bridge byteenablen;
inout [ 31: 0] tri state bridge data;

output tri state _bridge readn;
output write n to_the ext flash;
output write n to_the ext ram;

The Avalon tristate bridge signals which can be shared are named after
the instance of the tristate bridge component, such as
tri state bridge data[31:0].

Connecting & Assigning Pins in the Quartus Il Project

Figure 9-22 shows the result of generating the system module for the
complete example design, and connecting it in toplevel_design.bdf.

9-31



Quartus Il Handbook, Volume 4

Figure 9-22. toplevel_design.bdf with SRAM & Flash Memory

sdrarn_pll SORAM PLL

This PLL infroduces a phase-shift which compensates

) for board-level delays in the clock network, Other hoards

{PLEELOEINPUTES it g I0OKD g foquency a0 000 ke c0 may require different settings

Operation Mode: Hormal &0 SR B E LR

[tk [Ratio [Ph cag)[DE (]

[ v o500
instz Stratix

sape_memary_systern
" |

deiay_reset_biock

—|clock_in  delayed_reset_n et n

PLE.ELEAR N P raset n
=5 _addr_from_the_scram{11..0] UTBIT e SR A 0]
instf zs_ba_from_the_sdram[1 0] UPUT . SORAWMBAT.L]
FEiT SHRA TASTH
Reset Delay: Allows PLL 10 stahiize (ock) after Zs’casgn’:mm’::e’sjmm e
z5_cke_from_the_sdram — X
reset or device-configuration 76 o5 1 from the sdram 1 {1 ok
=5_cloy_to_and_trom_the_sdram{31.0] SORA BRI
zs_dgm_trom_the_sdram(3..0] UL SORA_DOMB.0] )
z5_tas_n_trom_the_sdram UTPUT . SDRAWMRAS_N
zs_we_n_from_the_scram WTPUT __——, SDRALWEN

inst3

Figure 9-23 shows the pin assignments in the Quartus II assignment
editor for some of the SRAM and flash memory pins. The correct pin
assignments depend on the target board.

Figure 9-23. Pin Assignments for SRAM & Flash Memory

To Location Ij0Bank  [If0 Standard  |Gemeral Function | Special Function Reset

743 & sram_BE_N[0] PIN_M18 3 LYTTL Calumn I/0

Zad & sraM_BE_N[1] PIN_F17 3 LYTTL Calumn I/0

745 & sraM_BE_N[Z] PIN_118 3 LYTTL Calumn I/0 RUP3

Z46 & sraM_BE_N[3] PIN_L17 3 LYTTL Calumn I/0 CLK15n

247 € sram_cs N PIN_Ez4 3 LYTTL Calumn I/0 DQaT4

745 & sraM_oE_N PIN_EZ6 3 LYTTL Calumn I/0 DQAT?

z49 € SRAM_WE_N PIN_C24 3 LYTTL Calumn 1/0 DQEaT

Connecting FPGA Pins to Devices on the Board

Table 9-2 shows the mapping between the Avalon address lines and the
address pins on the SRAM and flash memory devices.

Table 9-2. FPGA Connections to SRAM & Flash Memory (Part 1 of 2)

Avalon Address Line Flash Aqdress SRAM Add_ress
(8M x 8-hit Data) (256K x 32-hit data)
tri state bridge address[0] A0 No connect
tri state bridge address|[1] A1l No connect
tri state bridge address[2] A2 A0
9-32 Altera Corporation

May 2006



Off-Chip SRAM & Flash Memory

Table 9-2. FPGA Connections to SRAM & Flash Memory (Part 2 of 2)
. Flash Address SRAM Addr
Avalon Address Line (8M x 8-bit Data) (256K X 3251:iteds:ta)
tri state bridge address|[3] A3 Al
tri state bridge address[4] A4 A2
tri state bridge address|[5] A5 A3
tri state bridge address|[6] A6 A4
tri state bridge address[7] A7 A5
tri state bridge address|[8] A8 A6
tri state bridge address[9] A9 A7
tri state bridge address[10] A10 A8
tri state bridge address[11] A1 A9
tri state bridge address[12] A12 A10
tri state bridge address[13] A13 A1l
tri state bridge address[14] Al14 A12
tri state bridge address[15] A15 A13
tri state bridge address[16] A16 A4
tri state bridge address[17] A17 A15
tri state bridge address[18] A18 A16
tri state bridge address[19] A19 A17
tri state bridge address[20] A20 No connect
tri state bridge address[21] A21 No connect
tri state bridge address[22] A22 No connect
Altera Corporation 9-33

May 2006



Quartus Il Handbook, Volume 4

9-34 Altera Corporation
May 2006



	9. Building Memory Subsystems Using SOPC Builder
	Introduction
	Example Design
	Example Design Structure
	Example Design Starting Point

	Hardware & Software Requirements

	Design Flow
	Component-Level Design in SOPC Builder
	SOPC Builder System-Level Design
	Simulation
	Quartus II Project-Level Design
	Board-Level Design
	Simulation Considerations
	Generic Memory Models
	Vendor-Specific Memory Models
	Verilog HDL
	VHDL



	On-Chip RAM & ROM
	Component-Level Design for On-Chip Memory
	Memory Type
	Size
	Read Latency

	SOPC Builder System-Level Design for On-Chip Memory
	Simulation for On-Chip Memory
	Quartus II Project-Level Design for On-Chip Memory
	Board-Level Design for On-Chip Memory
	Example Design with On-Chip Memory

	EPCS Serial Configuration Device
	Component-Level Design for an EPCS Device
	SOPC Builder System-Level Design for an EPCS Device
	Simulation for an EPCS Device
	Quartus II Project-Level Design for an EPCS Device
	Board-Level Design for an EPCS Device
	Example Design with an EPCS Device

	SDRAM
	Component-Level Design for SDRAM
	SOPC Builder System-Level Design for SDRAM
	Simulation for SDRAM
	Quartus II Project-Level Design for SDRAM
	Connecting & Assigning the SDRAM-Related Pins
	Accommodating Clock Skew

	Board-Level Design for SDRAM
	Example Design with SDRAM

	Off-Chip SRAM & Flash Memory
	Component-Level Design for SRAM & Flash Memory
	Avalon Tristate Bridge
	Flash Memory
	SRAM

	SOPC Builder System-Level Design for SRAM & Flash Memory
	Simulation for SRAM & Flash Memory
	Quartus II Project-Level Design for SRAM & Flash Memory
	Board-Level Design for SRAM & Flash Memory
	Aligning the Least-Significant Address Bits
	Aligning the Most-Significant Address Bits

	Example Design with SRAM & Flash Memory
	Adding the Avalon Tristate Bridge
	Adding the Flash Memory Interface
	Adding the SRAM Interface
	SOPC Builder System Contents Tab
	Connecting & Assigning Pins in the Quartus II Project
	Connecting FPGA Pins to Devices on the Board




