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9. Building Memory
Subsystems Using SOPC

Builder

Introduction Most systems generated with SOPC Builder require memory. For 
example, embedded processor systems require memory for software 
code, while digital signal processing (DSP) systems require memory for 
data buffers. Many systems use multiple types of memories. For example, 
a processor-based DSP system can use off-chip SDRAM to store software 
code, and on-chip RAM for fast access to data buffers. You can use SOPC 
Builder to integrate almost any type of memory into your system.

This chapter describes the process for building a memory subsystem as 
part of a larger system created with SOPC Builder. This chapter focuses 
on the kinds of memory most commonly used in SOPC Builder systems:

■ On-chip RAM and ROM
■ EPCS serial configuration devices
■ SDRAM
■ Off-chip RAM and ROM, such as SRAM and common flash interface 

(CFI) flash memory

This chapter assumes that you are familiar with the following:

■ Creating FPGA designs and making pin assignments with the 
Quartus® II software. For details, see the Introduction to Quartus II 
Manual. 

■ Building simple systems with SOPC Builder. For details, see the 
Introduction to SOPC Builder and Tour of the SOPC Builder User 
Interface chapters in volume 4 of the Quartus II Handbook. 

■ SOPC Builder components. For details, see the SOPC Builder 
Components chapter in volume 4 of the Quartus II Handbook. 

■ Basic concepts of the Avalon® interface. You do not need extensive 
knowledge of the Avalon interface, such as transfer types or signal 
timing. However, to create your own custom memory subsystem 
with external memories, you need to understand the Avalon 
interface. For details, see the Avalon Switch Fabric chapter in volume 4 
of the Quartus II Handbook and the Avalon Interface Specification.

QII54006-6.0.0
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Example Design 

This chapter demonstrates the process for building a system that contains 
one of each type memory as shown in Figure 9–1. Each section of the 
chapter builds on previous sections, culminating in a complete system. 

By following the example design through this chapter, you will learn how 
to create a complete memory subsystem for your own custom system. 
The memory components in the example design are independent. For a 
custom system, you can instantiate exactly the memories you need, and 
skip the memories you don't need. Furthermore, you can create multiple 
instantiations of the same type of memory, limited only by on-chip 
memory resources or FPGA pins to interface with off-chip memory 
devices.

Example Design Structure

Figure 9–1 shows a block diagram of the example system.
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Figure 9–1. Example Design Block Diagram

In Figure 9–1, all blocks shown below the Avalon switch fabric comprise 
the memory subsystem. For demonstration purposes, this system uses a 
Nios® II processor core to master the memory devices, and a JTAG UART 
core to communicate with the processor. However, the memory 
subsystem could be connected to any master component, either on-chip 
or off-chip.
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Example Design Starting Point

The following elements comprise the example design:

■ A Quartus II project named quartus2_project.A block diagram file 
(BDF) named toplevel_design. toplevel_design is the top-level 
design file for quartus2_project. toplevel_design instantiates the 
SOPC Builder system module, as well as other pins and modules 
required to complete the design.

■ An SOPC Builder system named sopc_memory_system. 
sopc_memory_system is a subdesign of toplevel_design. 
sopc_memory_system instantiates the memory components and 
other SOPC Builder components required for a functioning system 
module.

The starting point for this chapter assumes that quartus2_project already 
exists, that sopc_memory_system has been started in SOPC Builder, and 
that the Nios II core and the JTAG UART core are already instantiated. 
This example design uses the default settings for the Nios II/s core and 
the JTAG UART core; these settings do not affect the rest of the memory 
subsystem. Figure 9–2 shows the starting point in SOPC Builder. 

Figure 9–2. Starting Point for the Example Design

All sections in this chapter build on this starting point. 
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Hardware & Software Requirements

To build a memory subsystem similar to the example design in this 
chapter, you need the following:

■ Quartus II Software version 5.0 or higher –Both Quartus II Web 
Edition and the fully licensed version support this design flow.

■ Nios II Embedded Design Suite (EDS) version 5.0 or higher –Both the 
evaluation edition and the fully licensed version support this design 
flow. The Nios II EDS provides the SOPC Builder memory 
components described in this chapter. It also provides several 
complete example designs which demonstrate a variety of memory 
components instantiated in working systems. 

1 The Quartus II Web Edition software and the Nios II EDS, 
Evaluation Edition are available free for download from the 
Altera® website. Visit www.altera.com/download. 

This chapter does not go as far as downloading and verifying a working 
system in hardware. Therefore, there are no hardware requirements for 
the completion of this chapter. However, the example memory 
subsystem has been tested in hardware.

Design Flow This section describes the design flow for building memory subsystems 
with SOPC Builder.

The design flow for building a memory subsystem is similar to other 
SOPC Builder designs. After starting a Quartus II project and an SOPC 
Builder system, there are five steps to completing the system, as shown in 
Figure 9–3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design 

3. Simulation 

4. Quartus II project-level design 

5. Board-level design 



9–6  Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Figure 9–3. Design Flow

Component-Level Design in SOPC Builder

In this step, you specify which memory components to use, and you 
configure each component to meet the needs of the system. All memory 
components are available from the Memory category in the SOPC Builder 
list of available components, shown in Figure 9–4.

Figure 9–4. List of Available Memory Components in SOPC Builder
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SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC 
Builder system as a whole. Similar to the process for adding non-memory 
SOPC Builder components, you use the SOPC Builder System Contents 
tab to do the following:

■ Rename the component instance (optional).
■ Connect the memory component to master ports in the system. Each 

memory component must be connected to at least one master port.
■ Assign a base address. 
■ Assign a clock domain. A memory component can operate on the 

same or different clock domain as the master port(s) that access it.

Simulation

In this step, you verify the functionality of the SOPC Builder system 
module. For systems with memories, this step depends on simulation 
models for each of the memory components, in addition to the system 
testbench generated by SOPC Builder. See “Simulation Considerations” 
on page 9–7. 

Quartus II Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest 
of the Quartus II project. This step includes wiring the system module to 
FPGA pins, and wiring the system module to other design blocks (such 
as other HDL modules) in the Quartus II project. 

1 In the example design in this chapter, the SOPC Builder system 
module comprises the entire FPGA design. There are no other 
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on 
the board. If the SOPC Builder system interfaces with off-chip memory 
devices, then you must make board-level design choices.

Simulation Considerations 

SOPC Builder can automatically generate a testbench for register transfer 
level (RTL) simulation of the system. This testbench instantiates the 
system module and can also instantiate memory models for external 
memory components. The testbench is plain-text hardware description 



9–8  Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

language (HDL), located at the bottom of the top-level system module 
HDL design file. To explore the contents of the auto-generated testbench, 
open the top-level HDL file, and search on keyword test_bench. 

Generic Memory Models

The memory components described in this chapter, except for the SRAM, 
provide generic simulation models. Therefore, it is very easy to simulate 
an SOPC Builder system with memory components immediately after 
generating the system. 

The generic memory models store memory initialization files, such as 
Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a 
directory named <Quartus II project directory>/<SOPC Builder system 
name>_sim. When generating a new system, SOPC Builder creates empty 
initialization files. You can manually edit these files to provide custom 
memory initialization contents for simulation. 

1 For Nios II processor users, the Nios II integrated development 
environment (IDE) generates initialization contents 
automatically. 

Vendor-Specific Memory Models 

You can also manually connect vendor-specific memory models to the 
system module. In this case, you must manually edit the testbench and 
connect the vendor memory model. You might also need to edit the 
vendor memory model slightly for time delays. The SOPC Builder 
testbench assumes zero delay. 

c There are special sections of the system module design file that 
you can edit safely. You must edit only these sections, because 
SOPC Builder overwrites the rest of the system module every 
time you generate the system. These sections are marked by the 
following text:

Verilog HDL
// <ALTERA_NOTE> CODE INSERTED BETWEEN HERE
//  add your signals and additional architecture here
// AND HERE WILL BE PRESERVED </ALTERA_NOTE>

VHDL
-- <ALTERA_NOTE> CODE INSERTED BETWEEN HERE
--add your component and signal declaration here
-- AND HERE WILL BE PRESERVED </ALTERA_NOTE>
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On-Chip RAM & 
ROM 

Altera FPGAs include on-chip memory blocks, that can be used as RAM 
or ROM in SOPC Builder systems. On-chip memory has the following 
benefits for SOPC Builder systems:

■ On-chip memory has fast access time, compared to off-chip memory. 
■ SOPC Builder automatically instantiates on-chip memory inside the 

system module, so you do not have to make any manual connections.
■ Certain memory blocks can have initialized contents when the FPGA 

powers up. This feature is useful, for example, for storing data 
constants or processor boot code. 

FPGAs have limited on-chip memory resources, which limits the 
maximum practical size of an on-chip memory to approximately one 
megabyte in the largest FPGA family. 

Component-Level Design for On-Chip Memory 

In SOPC Builder you instantiate on-chip memory by adding an On-chip 
Memory (RAM or ROM) component. The configuration wizard for the 
On-chip Memory (RAM or ROM) component has the following options: 
Memory Type, Size, and Read Latency. 

Memory Type

The Memory Type options define the structure of the on-chip memory. 

■ RAM (writeable) – This setting creates a readable and writeable 
memory. 

■ ROM (read only) – This setting creates a read-only memory.
■ Dual-Port Access – Turning on this setting creates a memory 

component with two slave ports, which allows two master ports to 
access the memory simultaneously.

■ Block Type – This setting forces the Quartus II software to use a 
specific type of memory block when fitting the on-chip memory in 
the FPGA. The following choices are available:
● Automatic – This setting allows the Quartus II software to 

choose the most appropriate memory resource.
● M512 – This setting forces the Quartus II software to use M512 

blocks.
● M4K – This setting forces the Quartus II software to use M4K 

blocks.
● M-RAM – This setting forces the Quartus II software to use 

M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for 
larger RAM data buffers. However, M-RAM blocks do not allow 
pre-initialized contents at power up. 
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Size

The Size options define the size and width of the memory. 

■ Memory Width – This setting determines the data width of the 
memory. The available choices are 8, 16, 32, 64, or 128 bits. Assign 
Memory Width to match the width of the master port that accesses 
this memory the most frequently or has the most critical timing 
requirements. 

■ Total Memory Size – This setting determines the total size of the 
on-chip memory block. The total memory size must be less than the 
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon slave 
ports. Pipelined access improves fMAX performance, but also adds latency 
cycles when reading the memory. The Read Latency option allows you to 
specify the number of read latency cycles required to access data. If the 
Dual-Port Access setting is turned on, you can specify a different read 
latency for each slave port.

SOPC Builder System-Level Design for On-Chip Memory

There are not many SOPC Builder system-level design considerations for 
on-chip memories. See “SOPC Builder System-Level Design” on 
page 9–7. 

When generating a new system, SOPC Builder creates a blank 
initialization file in the Quartus II project directory for each on-chip 
memory that can power up with initialized contents. The name of this file 
is <Name of memory component>.hex. 

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model 
for the on-chip memory. This model is embedded inside the system 
module, and there are no user-configurable options for the simulation 
testbench. 

You can provide memory initialization contents for simulation in the file 
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory 
component name>.dat.
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Quartus II Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system 
module, and therefore there are no signals to connect to the Quartus II 
project.

To provide memory initialization contents, you must fill in the file <Name 
of memory component>.hex. The Quartus II software recognizes this file 
during design compilation and incorporates the contents into the 
configuration files for the FPGA.

1 For Nios II processor users, the Nios II integrated development 
environment (IDE) generates memory initialization file 
automatically. 

Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system 
module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory 

This section demonstrates adding a 4 Kbyte on-chip RAM to the example 
design. This memory uses a single slave port with read latency of one 
cycle. 

Figure 9–5 shows the On-Chip Memory (RAM or ROM) configuration 
wizard settings for the example design.
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Figure 9–5. On-Chip Memory (RAM or ROM) Configuration Wizard

Figure 9–6 shows the SOPC Builder system after adding an instance of the 
on-chip memory component, renaming it to onchip_ram, and assigning 
it a base address.

Figure 9–6. SOPC Builder System with On-Chip Memory

For demonstration purposes, Figure 9–7 shows the result of generating 
the system module at this stage. (In a normal design flow, you generate 
the system only after adding all system components.)

Figure 9–7. System Module with On-Chip Memory
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Because the on-chip memory is contained entirely within the system 
module, sopc_memory_system has no I/O signals associated with 
onchip_ram. Therefore, you do not need to make any Quartus II project 
connections or assignments for the on-chip RAM, and there are no 
board-level considerations.

EPCS Serial 
Configuration 
Device

Many systems use an Altera EPCS serial configuration device to 
configure the FPGA. Altera provides the EPCS device controller core, 
which allows SOPC Builder systems to access the memory contents of the 
EPCS device. This feature provides flexible design options:

■ The FPGA design can reprogram its own configuration memory, 
providing a mechanism for in-field upgrades.

■ The FPGA design can use leftover space in the EPCS as nonvolatile 
storage. 

Physically the EPCS device is a serial flash memory device, which has 
slow access time. Altera provides software drivers to control the EPCS 
core for the Nios II processor only. Therefore, EPCS controller core 
features are available only to SOPC Builder systems that include a Nios II 
processor. 

f For further details on the features and usage of the EPCS device 
controller core, see the EPCS Device Controller Core with Avalon Interface 
chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an 
EPCS Serial Flash Controller component. There is only one setting for 
this component: Reference Designator. When targeting a board that 
declares a reference designator for the EPCS device, the Reference 
Designator setting is fixed.

SOPC Builder uses reference designators to specify a unique identifier for 
flash memory devices on the board. This convention is a requirement of 
the Nios II EDS, specifically the Nios II Flash Programmer utility.

f For details, see the Nios II Flash Programmer User Guide.
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SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for 
EPCS devices:

■ Assign a base address.
■ Set the IRQ connection to NC (disconnected). The EPCS controller 

hardware is capable of generating an IRQ. However, the Nios II 
driver software does not use this IRQ, and therefore you can leave 
the IRQ signal disconnected. 

There can only be one EPCS controller core per FPGA, and the instance of 
the core is always named epcs_controller.

Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model: 

■ Functional simulation does not include the FPGA configuration 
process, and therefore the EPCS controller does not model the 
configuration features.

■ The simulation model does not support read and write operations to 
the flash region of the EPCS device.

■ A Nios II processor can boot from the EPCS device in simulation. 
However, the boot loader code is different during simulation. The 
EPCS controller boot loader code assumes that all other memory 
simulation models are pre-initialized, and therefore the boot load 
process is unnecessary. During simulation, the boot loader simply 
forces the Nios II processor to jump to start, skipping the boot load 
process.

Verification in hardware is the best way to test features related to the 
EPCS device. 

Quartus II Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core 
in the SOPC Builder system to the dedicated configuration pins on the 
FPGA. This connection is invisible to the user. Therefore there are no 
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera 
Configuration Handbook. No other connections are necessary.
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Example Design with an EPCS Device 

This section demonstrates adding an EPCS device controller core to the 
example design.

Figure 9–8 shows the EPCS Serial Flash Controller configuration wizard 
settings for the example design. In this example, the target board declares 
a reference designator U59 for the EPCS device on the board.

Figure 9–8. EPCS Serial Flash Controller Configuration Wizard

Figure 9–9 shows the SOPC Builder system after adding an instance of the 
EPCS controller core and assigning it a base address.

Figure 9–9. SOPC Builder System with EPCS Device

For demonstration purposes only, Figure 9–10 shows the result of 
generating the system module at this stage.

Figure 9–10. System Module with EPCS Device
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Because the Quartus II software automatically connects the EPCS 
controller core to the FPGA pins, the system module has no I/O signals 
associated with epcs_controller. Therefore, you do not need to make any 
Quartus II project connections or assignments for the EPCS controller 
core.

f This chapter does not cover the details of configuration using the EPCS 
device. For further information, see Altera's Configuration Handbook. 

SDRAM Altera provides a free SDRAM controller core, which lets you use 
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM 
controller core is necessary, because Avalon signals cannot describe the 
complex interface on an SDRAM device. The SDRAM controller acts as a 
bridge between the Avalon switch fabric and the pins on an SDRAM 
device. The SDRAM controller can operate in excess of 100 MHz. 

f For further details on the features and usage of the SDRAM controller 
core, see the SDRAM Controller Core with Avalon Interface chapter in 
volume 5 of the Quartus II Handbook.

Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on 
the board heavily influence the component-level design for the SDRAM 
controller. Typically, the component-level design task involves 
parameterizing the SDRAM controller core to match the SDRAM 
device(s) on the board. You must specify the structure (address width, 
data width, number of devices, number of banks, etc.) and the timing 
specifications of the device(s) on the board. 

f For complete details on configuration options for the SDRAM controller 
core, see the SDRAM Controller Core with Avalon Interface chapter in 
volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM

In SOPC Builder on the System Contents tab, the SDRAM controller looks 
like any other memory component. Similar to on-chip memory, there are 
not many SOPC Builder system-level design considerations for SDRAM. 
See “SOPC Builder System-Level Design” on page 9–7. 

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM 
simulation model and include the model in the system testbench. To use 
the generic SDRAM simulation model, you must turn on a setting in the 
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SDRAM controller configuration wizard. You can provide memory 
initialization contents for simulation in the file <Quartus II project 
directory>/<SOPC Builder system name>_sim/<Memory component 
name>.dat.

Alternately, you can provide a specific vendor memory model for the 
SDRAM. In this case, you must manually wire up the vendor memory 
model in the system testbench. 

f For further details, see “Simulation Considerations” on page 9–7 and 
"Hardware Simulation Considerations" in the chapter SDRAM Controller 
Core with Avalon Interface in volume 5 of the Quartus II Handbook.

Quartus II Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals 
associated with the SDRAM controller. In the Quartus II project, you 
must connect these I/O signals to FPGA pins, which connect to the 
SDRAM device on the board. In addition, you might have to 
accommodate clock skew issues.

Connecting & Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names 
and directions of the I/O signals in the top-level HDL file for the SOPC 
Builder system module. The file has the name <Quartus II project 
directory>/<SOPC Builder system name>.v or <Quartus II project 
directory>/<SOPC Builder system name>.vhd. You must connect these 
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level 
Quartus II design to match the target board. Depending on the 
performance requirements for the design, you might have to assign 
FPGA pins carefully to achieve performance.

Accommodating Clock Skew 

As SDRAM frequency increases, so does the possibility that you must 
accommodate skew between the SDRAM clock and I/O signals. This 
issue affects all synchronous memory devices, including SDRAM. To 
accommodate clock skew, you can instantiate an altpll megafunction 
in the top-level Quartus II design to create a phase-locked loop (PLL) 
clock output. You use a phase-shifted PLL output to drive the SDRAM 
clock and overcome clock-skew issues. The exact settings for the altpll 
depend on your target hardware; you must experiment to tune the phase 
shift to match the board.
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f For details, see the altpll Megafunction User Guide. 

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the 
SDRAM device(s). The SDRAM controller core can accommodate various 
configurations of SDRAM on the board, including multiple banks and 
multiple devices. 

f For further details, see the "Example Configurations" section in the 
SDRAM Controller Core with Avalon Interface chapter in volume 5 of the 
Quartus II Handbook.

Example Design with SDRAM 

This section demonstrates adding a 16 Mbyte SDRAM device to the 
example design. This SDRAM is a single device with 32-bit data. 
Figure 9–11 shows the SDRAM Controller configuration wizard settings 
for the example design.

Figure 9–11. SDRAM Controller Configuration Wizard

Figure 9–12 shows the SOPC Builder system after adding an instance of 
the SDRAM controller, renaming it to sdram, and assigning it a base 
address.
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Figure 9–12. SOPC Builder System with SDRAM

For demonstration purposes, Figure 9–13 shows the result of generating 
the system module at this stage, and connecting it in 
toplevel_design.bdf. 

Figure 9–13. toplevel_design.bdf with SDRAM

After generating the system, the top-level system module file 
sopc_memory_system.v contains the list of SDRAM-related I/O signals 
which must be connected to FPGA pins:

  output  [ 11: 0] zs_addr_from_the_sdram;
  output  [  1: 0] zs_ba_from_the_sdram;
  output           zs_cas_n_from_the_sdram;
  output           zs_cke_from_the_sdram;
  output           zs_cs_n_from_the_sdram;
  inout   [ 31: 0] zs_dq_to_and_from_the_sdram;
  output  [  3: 0] zs_dqm_from_the_sdram;
  output           zs_ras_n_from_the_sdram;
  output           zs_we_n_from_the_sdram;
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As shown in Figure 9–13, toplevel_design.bdf uses an instance of 
sdram_pll to phase shift the SDRAM clock by -63 degrees. 
toplevel_design.bdf also uses a subdesign delay_reset_block to 
insert a delay on the reset_n signal for the system module. This delay is 
necessary to allow the PLL output to stabilize before the SOPC Builder 
system begins operating. 

Figure 9–14 shows pin assignments in the Quartus II assignment editor 
for some of the SDRAM pins. The correct pin assignments depend on the 
target board.

Figure 9–14. Pin Assignments for SDRAM
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Off-Chip SRAM 
& Flash Memory 

SOPC Builder systems can directly access many off-chip RAM and ROM 
devices, without a controller core to drive the off-chip memory. Avalon 
signals can exactly describe the interfaces on many standard memories, 
such as SRAM and flash memory. In this case, I/O signals on the SOPC 
Builder system module can connect directly to the memory device.

While off-chip memory usually has slower access time than on-chip 
memory, off-chip memory provides the following benefits:

■ Off-chip memory is less expensive than on-chip memory resources. 
■ The size of off-chip memory is bounded only by the 32-bit Avalon 

address space.
■ Off-chip ROM, such as flash memory, can be used for bulk storage of 

nonvolatile data.
■ Multiple off-chip RAM and ROM memories can share address and 

data pins to conserve FPGA I/O resources.

Adding off-chip memories to an SOPC Builder system also requires the 
Avalon Tristate Bridge component. 

This section describes the process of adding off-chip flash memory and 
SRAM to an SOPC Builder system. 

Component-Level Design for SRAM & Flash Memory

There are several ways to instantiate an interface to an off-chip memory 
device:

■ For common flash interface (CFI) flash memory devices, add the 
Flash Memory (Common Flash Interface) component in SOPC 
Builder.

■ For Altera development boards, Altera provides SOPC Builder 
components that interface to the specific devices on each 
development board. For example, the Nios II EDS includes the 
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM, 
which appear on Nios development boards.

These components make it easy for you to create memory systems 
targeting Altera development boards. However, these components target 
only the specific memory device on the board; they do not work for 
different devices.

■ For general memory devices, RAM or ROM, you can create a custom 
interface to the device with the SOPC Builder component editor. 
Using the component editor, you define the I/O pins on the memory 
device and the timing requirements of the pins.
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In all cases, you must also instantiate the AvalonTristateBridge 
component as well. Multiple off-chip memories can connect to a single 
tristate bridge. 

Avalon Tristate Bridge

A tristate bridge connects off-chip devices to on-chip Avalon switch 
fabric. The tristate bridge creates I/O signals on the SOPC Builder system 
module, which you must connect to FPGA pins in the top-level Quartus 
II project. These pins represent the Avalon switch fabric to off-chip 
devices. 

The tristate bridge creates address and data pins which can be shared by 
multiple off-chip devices. This feature lets you conserve FPGA pins when 
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

■ The off-chip device has bidirectional data pins.
■ Multiple off-chip devices share the address and/or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the 
AvalonTristateBridge component. The Avalon Tristate Bridge 
configuration wizard has a single option: To register incoming (to the 
FPGA) signals or not.

■ Registered – This setting adds registers to all FPGA input pins 
associated with the tristate bridge (outputs from the memory 
device).

■ Not Registered – This setting does not add registers between the 
memory device output pins and the Avalon switch fabric.

The Avalon tristate bridge automatically adds registers to output signals 
from the tristate bridge to off-chip devices. 

Registering the input and output signals shortens the register-to-register 
delay from the memory device to the FPGA, resulting in higher system 
fMAX performance. However, in each direction, the registers add one 
additional cycle of latency for Avalon master ports accessing memory 
connected to the tristate bridge. The registers do not affect the timing of 
the transfers from the perspective of the memory device.

f For details on the Avalon tristate interface, refer to the Avalon Interface 
Specification.
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Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by 
adding a Flash Memory (Common Flash Interface) component. If the 
flash memory is not CFI compliant, you must create a custom interface to 
the device with the SOPC Builder component editor.

The choice of flash device(s) and the configuration of the device(s) on the 
board heavily influence the component-level design for the flash memory 
configuration wizard. Typically, the component-level design task 
involves parameterizing the flash memory interface to match the 
device(s) on the board. Using the Flash Memory (Common Flash 
Interface) configuration wizard, you must specify the structure (address 
width and data width) and the timing specifications of the device(s) on 
the board.

f For details on features and usage, refer to chapter Common Flash Interface 
Controller Core with Avalon Interface in volume 5 of the Quartus II 
Handbook.

For an example of instantiating the Flash Memory (Common Flash 
Interface) component in an SOPC Builder system, see “Example Design 
with SRAM & Flash Memory” on page 9–26.

SRAM

To instantiate an interface to off-chip RAM, you perform the following 
steps:

1. Create a new component with the SOPC Builder component editor 
that defines the interface. 

2. Instantiate the new interface component in the SOPC Builder 
system.

The choice of RAM device(s) and the configuration of the device(s) on the 
board determine how you create the interface component. The 
component-level design task involves entering parameters into the 
component editor to match the device(s) on the board. 

f For details on using the component editor, refer to the Component Editor 
chapter in volume 4 of the Quartus II Handbook. 
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SOPC Builder System-Level Design for SRAM & Flash Memory

In SOPC Builder on the System Contents tab, the Avalon tristate bridge 
has two ports:

■ Avalon slave port – This port faces the on-chip logic in the SOPC 
Builder system. You connect this slave port to on-chip master ports 
in the system. 

■ Avalon tristate master port – This port faces the off-chip memory 
devices. You connect this master port to the Avalon tristate slave 
ports on the interface components for off-chip memories.

You assign a clock to the Avalon tristate bridge which determines the 
Avalon clock cycle time for off-chip devices connected to the tristate 
bridge. 

You must assign base addresses to each off-chip memory. The Avalon 
tristate bridge does not have an address; it passes unmodified addresses 
from on-chip master ports to off-chip slave ports. 

Simulation for SRAM & Flash Memory

The SOPC Builder output for simulation depends on the type of memory 
component(s) in the system:

■ Flash Memory (Common Flash Interface) component – This 
component provides a generic simulation model. You can provide 
memory initialization contents for simulation in the file <Quartus II 
project directory>/<SOPC Builder system name>_sim/<Flash memory 
component name>.dat. 

■ Custom memory interface created with the component editor – In 
this case, you must manually connect the vendor simulation model 
to the system testbench. SOPC Builder does not automatically 
connect simulation models for custom memory components to the 
system module.

■ Altera-provided interfaces to memory devices – Altera provides 
simulation models for these interface components. You can provide 
memory initialization contents for simulation in the file <Quartus II 
project directory>/<SOPC Builder system name>_sim/<Memory 
component name>.dat. Alternately, you can provide a specific vendor 
simulation model for the memory. In this case, you must manually 
wire up the vendor memory model in the system testbench.

f For further details, see “Simulation Considerations” on page 9–7. 
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Quartus II Project-Level Design for SRAM & Flash Memory

SOPC Builder generates a system module with top-level I/O signals 
associated with the tristate bridge and the memory interface components. 
In the Quartus II project, you must connect the I/O signals to FPGA pins, 
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names 
and directions of the I/O signals in the top-level HDL file for the SOPC 
Builder system module. The file has the name <Quartus II project 
directory>/<SOPC Builder system name>.v or <Quartus II project 
directory>/<SOPC Builder system name>.vhd. You must connect these 
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level 
Quartus II design to match the target board. Depending on the 
performance requirements for the design, you might have to assign 
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module 
HDL to assist the Quartus II fitter with signals that interface with off-chip 
devices. An example is below:

reg [ 22: 0] tri_state_bridge_address /* synthesis 
ALTERA_ATTRIBUTE =  "FAST_OUTPUT_REGISTER=ON" */;

Board-Level Design for SRAM & Flash Memory

Memory requirements largely dictate the board-level configuration of the 
SRAM & flash memory device(s). You can lay out memory devices in any 
configuration, as long as the resulting interface can be described with 
Avalon signals. 

w Special consideration is required when connecting the Avalon 
address signal to the address pins on the memory devices. 

The system module presents the smallest number of address lines 
required to access the largest off-chip memory, which is usually less than 
32 address bits. Not all memory devices connect to all address lines. 

Aligning the Least-Significant Address Bits

The Avalon tristate address signal always presents a byte address. Each 
address location in many memory devices contains more than one byte of 
data. In this case, the memory device must ignore one or more of the 
least-significant Avalon address lines. For example, a 16-bit memory 
device must ignore Avalon address[0] (which is a byte address), and 
connect Avalon address[1] to the least-significant address line. 
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Table 9–1 shows the relationship between Avalon address lines and 
off-chip address pins for all possible Avalon data widths.

Aligning the Most-Significant Address Bits

The Avalon address signal contains enough address lines for the largest 
memory on the tristate bridge. Smaller off-chip memories might not use 
all of the most-significant address lines.

For example, a memory device with 210 locations uses 10 address bits, 
while a memory with 220 locations uses 20 address bits. If both these 
devices share the same tristate bridge, then the smaller memory ignores 
the ten most-significant Avalon address lines.

Example Design with SRAM & Flash Memory 

This section demonstrates adding a 1 Mbyte SRAM and an 8Mbyte flash 
memory to the example design. These memory devices connect to the 
Avalon switch fabric through an Avalon tristate bridge.

Table 9–1. Connecting the Least-Significant Avalon Address Line

Avalon address Line
Address Line on Memory Device

8-bit Memory 16-bit Memory 32-bit Memory 64-bit Memory 128-bit Memory

address[0] A0 No connect No connect No connect No connect

address[1] A1 A0 No connect No connect No connect

address[2] A2 A1 A0 No connect No connect

address[3] A3 A2 A1 A0 No connect

address[4] A4 A3 A2 A1 A0

address[5] A5 A4 A3 A2 A1

address[6] A6 A5 A4 A3 A2

address[7] A7 A6 A5 A4 A3

address[8] A8 A7 A6 A5 A4

address[9] A9 A8 A7 A6 A5

address[10] A10 A9 A8 A7 A6

... ... ... ... ... ...
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Adding the Avalon Tristate Bridge

Figure 9–15 shows the Avalon Tristate Bridge configuration wizard for 
the example design. The example design uses registered inputs and 
outputs to maximize system fMAX, which increases the read latency by 
two for both the SRAM and flash memory.

Figure 9–15. Avalon Tristate Bridge Configuration Wizard

Adding the Flash Memory Interface

The flash memory is 8M x 8-bit, which requires 23 address bits and 8 data 
bits. Figure 9–16 shows the Flash Memory (Common Flash Interface) 
configuration wizard settings for the example design. In this example, the 
target board declares a reference designator U5 for the flash device on the 
board.
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Figure 9–16. Flash Memory Configuration Wizard

Adding the SRAM Interface

The SRAM device is 256K x 32-bit, which requires 18 address bits and 32 
data bits. The example design uses a custom memory interface created 
with the SOPC Builder component editor. Figure 9–17 – Figure 9–21 
shows the settings required on the various component editor tabs to 
implement an interface to this SRAM.
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Figure 9–17. SRAM Interface Component Editor HDL Files Tab

Figure 9–18. SRAM Interface Component Editor Signals Tab
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Figure 9–19. SRAM Interface Component Editor Interfaces Tab

Figure 9–20. SRAM Interface Component Editor Component Wizard Tab
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SOPC Builder System Contents Tab

Figure 9–21 shows the SOPC Builder system after adding the tristate 
bridge and memory interface components, and configuring them 
appropriately on the System Contents tab. Figure 9–21 represents the 
complete example design in SOPC Builder.

Figure 9–21. SOPC Builder System with SRAM & Flash Memory

After generating the system, the top-level system module file 
sopc_memory_system.v contains the list of I/O signals for SRAM and 
flash memory which must be connected to FPGA pins:

  output           chipselect_n_to_the_ext_ram;
  output           read_n_to_the_ext_ram;
  output           select_n_to_the_ext_flash;
  output  [ 22: 0] tri_state_bridge_address;
  output  [  3: 0] tri_state_bridge_byteenablen;
  inout   [ 31: 0] tri_state_bridge_data;
  output           tri_state_bridge_readn;
  output           write_n_to_the_ext_flash;
  output           write_n_to_the_ext_ram;

The Avalon tristate bridge signals which can be shared are named after 
the instance of the tristate bridge component, such as 
tri_state_bridge_data[31:0].

Connecting & Assigning Pins in the Quartus II Project

Figure 9–22 shows the result of generating the system module for the 
complete example design, and connecting it in toplevel_design.bdf.



9–32  Altera Corporation
 May 2006

Quartus II Handbook, Volume 4

Figure 9–22. toplevel_design.bdf with SRAM & Flash Memory

Figure 9–23 shows the pin assignments in the Quartus II assignment 
editor for some of the SRAM and flash memory pins. The correct pin 
assignments depend on the target board.

Figure 9–23. Pin Assignments for SRAM & Flash Memory

Connecting FPGA Pins to Devices on the Board

Table 9–2 shows the mapping between the Avalon address lines and the 
address pins on the SRAM and flash memory devices.

Table 9–2. FPGA Connections to SRAM & Flash Memory  (Part 1 of 2)

Avalon Address Line Flash Address
(8M x 8-bit Data)

SRAM Address
(256K x 32-bit data)

tri_state_bridge_address[0] A0 No connect

tri_state_bridge_address[1] A1 No connect

tri_state_bridge_address[2] A2 A0
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tri_state_bridge_address[3] A3 A1

tri_state_bridge_address[4] A4 A2

tri_state_bridge_address[5] A5 A3

tri_state_bridge_address[6] A6 A4

tri_state_bridge_address[7] A7 A5

tri_state_bridge_address[8] A8 A6

tri_state_bridge_address[9] A9 A7

tri_state_bridge_address[10] A10 A8

tri_state_bridge_address[11] A11 A9

tri_state_bridge_address[12] A12 A10

tri_state_bridge_address[13] A13 A11

tri_state_bridge_address[14] A14 A12

tri_state_bridge_address[15] A15 A13

tri_state_bridge_address[16] A16 A14

tri_state_bridge_address[17] A17 A15

tri_state_bridge_address[18] A18 A16

tri_state_bridge_address[19] A19 A17

tri_state_bridge_address[20] A20 No connect

tri_state_bridge_address[21] A21 No connect

tri_state_bridge_address[22] A22 No connect

Table 9–2. FPGA Connections to SRAM & Flash Memory  (Part 2 of 2)

Avalon Address Line Flash Address
(8M x 8-bit Data)

SRAM Address
(256K x 32-bit data)
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