fAS 0= eda Nios || Hardware Development Tutorial

May 2006, Version 6.0 Tutorial

Table of Contents
1310 11T TN 2
EXAMPIE DESIZN ... eutiiieniiiititei ettt bt e et b et a et e bt et e bt et e bt et e eh bt e eh et h e et bt et h et bt et b e na et 2
Software & HardWare REQUITEIMENES ..........cveiuirieiiiieieiteeieste et este ettt etteteeteesseeteessesseessesseessesseesseseassessesseenseassensesseenseessensesseensenseensenn 3
Nios Il System Development FIOW ...
ANAlyZINg SYSIEM REQUITEIMEIES ... ..eutitieiiiitieitestieie ettt sttt et eet et e et eteettesb e et e esbe et e este st ent e st eneesseenteeseense st enseeseenseseeneenseeseenseaneensesseensens
Defining & Generating the System in SOPC Builder
Quartus I Hardware Development TasKS ... ...c.oouiiiiiiiiiiiecee ettt ettt ettt ettt et b e et sae et enbeebeeaeas
Nios IT IDE Software DeveloOpmEnt TaASKS. .........coiiitiiiiiiitieteit ettt sttt h et sb ettt es et sb et et et es e eseebeebeetenaeneas 7
Running & Debugging Software on the Target BOArd............cciiieiiiiiiiiiciecee ettt ettt sttt ae et e sbeenaennean 8
Varying the DevVelOPMENt FLOW ........cc.oiuiiiiiiiie ettt b et b e bt b et e e bt e st bt e st e e bt e st e bt e st e b e e bt enbeebeebesbeentens 8
Refining the SOftware and HArdWare .........c..ooiiiiiiiiiiii ettt ettt ettt et et b et e b naeas 8
Iteratively Creating @ NI0S LT SYSEIM......ccuiiiiiiiiiiieii ettt b et e h e bttt eat bbbt et es e bt et ebesae e enens 8
Verifying the System with Hardware Simulation TOOIS .......cc.oiiiiiiiiiiiieie ettt ettt st e e 9
Creating the EXamPIe DESIgN ..o s 9
INStALL the DESIZN FILES ...c.viiuiiiieiicieee ettt ettt et et e a et et e st e e st eabeeb e ena e e bt e a s e e bt ent e st enteeseente st ente bt eneenseeneebeeneensean 9
ANALYZE SYStEM REQUITEINEGIIES .....e.ttiutetieutetieiteit ettt ettt ettt e bt ettt e et e e bt e be e b e eabesbeeateebeea b e eheenbeeheenbeeseen bt ebeenbesbeenteabtensesteensenbeennenee 10
Start the Quartus II Software and Open the Tutorial Example Design Project .........coeiieiiiiiiiiiiiiiiiiciceniceeeeeseeeee e 10
Start @ NeW SOPC BUILACT SYSIEIM .....couiiiiiiieiieiieiiitieieste ettt ettt e et e et ese et esseeteessesseessesseenseeseenseeseensesseenseaseensesseesseseensesseensensas 11
Define the System i SOPC BUILACT .......ccuiiuiiiiiiieieet et ettt ettt et e b e ae et e st e e bt ene et e eate bt eaeenbeeseenseeseensesseensesseennenne 12
Specify Target FPGA & Clock Settings .. 13
Add the NI0S IT PTOCESSOT COTE ....c.eiiiuiiiieiieiieeiteete ettt ettt ettt et h et sb e bt e bt e bt e bt e st e bt eh e e bt e bt et e ebt e bt ebt et e sbeeseeebeennenee 13
Add the ON-CRIP IMEIMOTY .....eiuiiiieiiiiti ettt ettt ettt et ettt et e e st e bessteate et e esteeseense st ensesseens e st enseeseenseeseenbeeseenseeseeneesseensenseennensean 15
Add the JTAG UART PeTiPRETal......cc.ooiiiiiiiiiiieieieeet ettt et h et et b e eh e bt et e e bt et e s bt e s e e bt estesbe e st enbesseeneeas 16
Add the TIMEr PerIPREIal.......cociiiiiieie ettt e e et e e et e e st e s st e e seeense e seeenseessaeanseeseeenseensseanseenseennseens 17
Add the System ID PEriPRETal ........c.occiiiiiiiiiieiieie ettt ettt et eeteestesseest e seesseeseenseeseensesseensenseesaesseensensessaensens 18
AU TE PTO .tttk h etk h st Eeh et b ek et h sk R b st E et h stk n b bt b et h st et n et et e bt e 19
Specify Base Addresses and Interrupt REGUESE PIIOTIEIES ......eeuvertieiiitiiieiieiieie ettt sttt ettt et e e 20
SPECIEY MOTE NIOS I SEUIMES ...ttt ettt ettt e h et b bt b e e h e e s bt e st e bt eh s et e e bt e bt ebt e bt ebtebeebeenbeebeenne e 22
Generate the SOPC BUIlAer SYSTEIM......ciuiiriieieiiiieiietiet ettt ettt e ete et et e st e e teesaesseeseeseeseesseessenseeseessesseessesseessesseansensenseensens 22
Integrate the SOPC Builder System into QUArtus II PIOJECT .......cviiuiiiiiiiiieiiieiet ettt sttt s e e e e 23
Instantiate the SOPC Builder System Module in the Quartus IT PrOJECT. .....ccuiiiiiiiiiiiiiiiieieeeeeeeee e 24
ASSIZN FPGA PINS 1ottt b et h e a et ea e bt e bt eb e eb e bt e st bt e st e bt e bt e bt e a e bt eh e bt e bt e bt bt e bt e it e 25
Compile the Quartus II Project and Verify Timing 27
Download Hardware Design t0 Target FPGA .......cc.oiiiiiiiee ettt ettt ettt ettt e et st et e e st enbesseenseeneenne e 28
Develop Software Using the NI10S IT IDE .......cooiiiiiiiiiiiiie ettt ettt et ettt et e et et s bt et e ebe et e sbeentesbeenne e 29
Create @ New C/CH+ APPLICAtION PIOJECE....c..iiuiiiiiiiiiieitete ettt ettt b e ettt et i e 29
COMPILE ThE PTOJECL ..vvitiiiieiieie ettt sttt ettt et e st e e st e s s e est e seeseeseeseenseesaesseeseenseesaesseessenseeseensesseanseaseenseaseensensennnensens 30
RUN e PTOGIAIMN ...ttt ettt ettt et e e et e st e e et ea b e et e esbess e emb e es e e st e eseens e est e st e eseenseestenseeseenseeneensesseenseeseansenee 32
Run the Program on Target HATAWATE .........cc.iiiiiiiiiiiii ettt ettt h et e b et e b et e s bt et e bt esbesbe et enbeenaenbeas 32
Run the Program 0N the ISS........oo bt b ettt ettt et b e e bt e be et ebe e bt ebeebesbeebesbeene e 32
TaKiNG the NEXt STEP....cuviirriirirriisiiis iR 33

Altera Corporation 1
TU-N2HWDV-2.1



Introduction

Introduction

Thank you for evaluating the Nios II processor! This tutorial introduces you to the system development flow for
the Nios II processor. This tutorial is a good starting point if you are new to the Nios II processor or the general
concept of building embedded systems in FPGAs. In this tutorial you will build a Nios II hardware system and
create a software program to run on the Nios II system.

Building embedded systems in FPGAs is a broad subject, involving system requirements analysis, hardware
design tasks, and software design tasks. This tutorial guides you through the basics of each topic, with special
focus on the hardware design steps. Where appropriate, the tutorial refers you to further documentation for greater
detail.

<o Ifyouare interested only in software development for the Nios II processor, see the Sofiware Development
Tutorial available from the Nios II IDE help system.

When you complete this tutorial, you will understand the Nios II system development flow, and you will be able
to create your own custom Nios II system.

Example Design

The example design you build in this tutorial demonstrates a small Nios II system for control applications, which
can monitor input stimuli and respond by turning on or off output signals. This Nios II system can also
communicate with a host computer, allowing the host computer to control logic inside the FPGA.

The example Nios II system contains the following:

Nios II/s processor core

On-chip memory

Timer

JTAG UART

8-bit parallel I/O (PIO) pins to control LEDs

System identification peripheral

Figure 1 is a block diagram showing the relationship between the host computer, the target board, the FPGA, and
the Nios II system.

2 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Introduction

Figure 1. Tutorial Example Design

Target Board

Altera FPGA vee
Nios Il System
Debug
ks Control_| jos /s Fe 8
g Core |Data 8 PIO
i< Qo
8 &
c S
S JTAG E System
10-pin = Character | UART (2] 1D
JTAG 110 5
Header E
| Timer < ongh'p

Other
Logic
Clock

Oscillator

Altera Corporation
May 2006

As shown in Figure 1, other logic can exist within the FPGA alongside the Nios II system. In fact, most FPGA
designs with a Nios II system also include other logic. A Nios II system can interact with other on-chip logic,
depending on the needs of the overall system. For the sake of simplicity, the example design in this tutorial does
not include other logic in the FPGA.

Software & Hardware Requirements

This tutorial requires you to have the following software:

Altera Quartus II software version 5.0 or later — The software must be installed on a Windows or Linux
computer that meets the Quartus II minimum requirements.

Nios IT development tools version 5.0 or later

Design files for the example design — A hyperlink to the design files appears next to this document on the
Nios II literature page. Visit www.altera.com/literature/lit-nio2.jsp.

You can build the example design in this tutorial whether you own a development board or not. This tutorial

allows you to choose from the following target board options:

No board — If you do not have a target board, you can still use the tutorial, but you will not witness the
example design running on hardware. Instead, you will simulate software running on the Nios II instruction
set simulator (ISS).

Nios development board — 1f you have an Altera Nios II development kit, use the board included in the kit. In
this case, you also must have the DC power supply and download cable provided with the kit, such as the
USB-Blaster™ cable. The following Altera kits are supported:

@® Nios I Development Kit, Stratix® IT Edition
@® Nios II Development Kit, Stratix Edition

@® Nios IT Development Kit, Stratix Professional Edition

Nios Il Hardware Development Tutorial



Nios Il System Development Flow

@® Nios II Development Kit, Cyclone™ II Edition

@® Nios II Development Kit, Cyclone Edition

Nios II Evaluation Kit

«o For information on Nios development kits, visit www.altera.com/devkits.

B Custom board — You can use this tutorial with any board that meets the following requirements:

The board must have an Altera FPGA.

The FPGA must meet the following density requirements, depending on the device family:
®  Stratix [I EP2S15 device or larger

® Stratix EP1S10 device or larger

® Cyclone II EP2C20 device or larger

® Cyclone EP1CI12 device or larger

An oscillator must drive a constant clock frequency to an FPGA pin. The maximum frequency limit
depends on the speed grade of the FPGA. Frequencies of 50 MHz or less should work for most boards;
higher frequencies might work.

The board must have a 10-pin header connected to the dedicated JTAG pins on the FPGA to provide a
communication link to the Nios II system.

FPGA 1/0 pins can optionally connect to 8 (or fewer) LEDs to provide a visual indicator of processor
activity.

You must have an Altera USB Blaster download cable, revision B or higher. Prior cables might exhibit
communication errors when connecting to the Nios II processor. Revision B cables (or later) have a
clearly-marked revision label; earlier cables do not.

Nios Il System Development Flow

This section discusses the complete design flow for creating a Nios 11 system and prototyping it on a target board.
Figure 2 shows the Nios II system development flow.

4 Altera Corporation

Nios Il Hardware Development Tutorial May 2006



Nios Il System Development Flow

Figure 2. Nios Il System Development Flow

Analyze System
Requirements

—
——— v "
Nios Il Custom
Cores > Define & Generate < '”s"§°t'°”
& System in SOPC Builder c
Standard P qs;om I
Peripherals eripnera
) Logic
—
v
< Altera
v
Hardware
Integrate SOPC Develop Abstraction
Custom »| Builder System Software < Layer
Hardware (o GuErus T with the &
Modules Pl Nios Il IDE Peripheral
) Drivers
v
v —
Assign Pin
. User C/C++
opatons. v
: ode an
Hiiﬂrgmee?ts Run/Debug Custom
DS Software Using Libraries
Constrgints Rl sl —
IDE
\4
Compile Hardware
Design for Target
Board A4
Download
Software
4 Executable
to Nios Il
Download FPGA »
; > System on
De5|gé10t§r'5arget Target Board

Run/Debug Software
on Target Board

\ 4

Refine Software
and Hardware

The Nios II development flow consists of three types of development: hardware design steps, software design
steps, and system design steps, involving both hardware and software. For simpler Nios II systems, one person
might perform all steps. For more complex systems, separate hardware and software designers might be
responsible for different steps. System design steps involve both the hardware and software, and might require
input from both sides. In the case of separate hardware and software teams, it is important to know exactly what
files and information must be passed between teams at the points of intersection in the design flow.

The design steps in this tutorial focus on hardware development, and provide only a simple introduction to
software development. For further details on the software development process, Altera recommends that you read
the Sofiware Development Tutorial available from the Nios II IDE help system after you complete this tutorial.

Altera Corporation 5
May 2006 Nios Il Hardware Development Tutorial



Nios Il System Development Flow

®.e The Software Development Tutorial and complete IDE reference are included in the Nios IT IDE help system. To

open the Nios II IDE help system, click Help Contents on the Help menu. To see the tutorials, click Nios I1 IDE
Help in the Contents pane, and then click Tutorials.

Analyzing System Requirements

The development flow begins with predesign activity which includes an analysis of the application requirements,
such as:

What computational performance does the application require?
How much bandwidth or throughput does the application require?

What types of interfaces does the application require?

Does the application require multithreaded software?

Based on the answers to these questions, you can determine the concrete system requirements, such as:

Which Nios II processor core to use: smaller or faster?
What peripherals does the design require? How many of each kind?

Which real-time operating system (RTOS) to use, if any?

Where can hardware acceleration logic dramatically improve system performance? For example:
@® Could adding a DMA peripheral eliminate wasted processor cycles copying data?

@® Could a custom instruction replace the critical loop of a DSP algorithm?

Answers to these questions involve both the hardware and software teams.

Defining & Generating the System in SOPC Builder

After analyzing the system hardware requirements, you use the SOPC Builder tool which is included in the Altera
Quartus II software. Using SOPC Builder you specify the Nios II processor core(s), memory, and other peripherals
your system requires. SOPC Builder automatically generates the interconnect logic to integrate the components in
the hardware system.

You can select from a list of standard processor cores and peripherals provided with the Nios II development tools.
You can also add your own custom hardware to accelerate system performance. You can add custom instruction
logic to the Nios II core which accelerates CPU performance, or you can add a custom peripheral which offloads
tasks from the CPU. This tutorial covers adding standard processor and peripheral cores, but does not cover

adding custom logic to the system.

The primary outputs of SOPC Builder are the following:

B SOPC Builder system file (.ptf) — This file stores the hardware contents of the SOPC Builder system. The
Nios II IDE requires the .ptf file to compile software for the target hardware.

B Hardware description language (HDL) files — These files are the hardware design files which describe the
SOPC Builder system. The Quartus II software uses the HDL files to compile the overall FPGA design.

6 Altera Corporation

Nios Il Hardware Development Tutorial May 2006



Nios Il System Development Flow

«e For further details on the Nios II processor, see the Nios II Processor Reference Handbook. For further details on
SOPC Builder and developing custom peripherals, see the Quartus Il Handbook Volume 1: Design & Synthesis.
For further details on custom instructions, see the Nios II Custom Instruction User Guide.

Quartus Il Hardware Development Tasks

Using the Quartus II software, you perform all tasks required to create the final FPGA hardware design. After you
generate the Nios II system using SOPC Builder, you integrate it into the overall Quartus II project.

As shown in Figure 1, most FPGA designs include logic outside the Nios II system. You can integrate your own
custom hardware modules into the FPGA design, or you can integrate other ready-made intellectual property (IP)
design modules available from Altera or 3rd party IP providers. This tutorial does not cover adding other logic
outside the Nios II system.

Using the Quartus II software, you also assign pin locations for I/O signals, specify timing requirements, and
apply other design constraints. Finally, you compile the Quartus II project to produce an FPGA configuration file

(.sof).

You download the FPGA configuration file to the FPGA on the target board using an Altera download cable, such
as the USB-Blaster. After configuration, the FPGA behaves as specified by the hardware design, which in this
case is a Nios II processor system.

«e For further information on using the Quartus II software, see the Quartus Il Tutorial in the Quartus II help system,
and the Introduction to Quartus Il Manual and the Quartus Il Handbook, available at www.altera.com.

Nios Il IDE Software Development Tasks

Using the Nios II IDE, you perform all software development tasks for your Nios II processor system. After you
generate the system with SOPC Builder, you can begin designing your C/C++ application code immediately with
the Nios II IDE. Altera provides peripheral drivers and a hardware abstraction layer (HAL) which allows you to
write Nios II programs quickly and independently of the low-level hardware details. In addition to your
application code, you can design and reuse custom libraries in your Nios II IDE projects.

If you do not have a target board for software development, you can run and debug your code with the Nios II
instruction set simulator (ISS). The ISS simulates the processor, memory, and stdin/stdout/stderr streams,
which allows you to verify program flow and algorithm correctness. As soon as you have a target board with an
Altera FPGA configured with the Nios II system, you can download your software to the board using an Altera
download cable, such as the USB-Blaster.

To start a new C/C++ application project, the Nios II IDE requires the SOPC Builder system file (.ptf). Software
designers might also require the FPGA configuration file (.sof) to configure the FPGA before running and
debugging the application project on target hardware.

The IDE can produce several outputs, listed below. Not all projects require all of these outputs.

B system.h file — system.h defines symbols for referencing the hardware in the system. The IDE automatically
creates this file when you create a new project.

B Software executable (.elf) — An .elf file is the result of compiling a C/C++ application project, which you can
download directly to the Nios II processor.

Altera Corporation 7
May 2006 Nios Il Hardware Development Tutorial



Nios Il System Development Flow

B Memory initialization files (.hex) — Some on-chip memories can power up with predefined memory contents.
The IDE generates initialization files for on-chip memories that support initialization of contents.

B Flash programming data — The IDE includes a flash programmer, which allows you to write your program to
flash memory. The flash programmer adds appropriate boot code to allow your program to boot from flash
memory. You can also use the flash programmer to write arbitrary data to flash memory.

This tutorial focuses only on downloading the .elf file directly to the Nios II system.

For complete details on developing software for the Nios II processor, see the Nios II Software Developer's
Handbook and the Nios II IDE help system.

Running & Debugging Software on the Target Board

The Nios II IDE provides complete facilities for downloading software to a target board, and running or
debugging the program on hardware. The IDE debugger allows you to start and stop the processor, step through
code, set breakpoints, and analyze variables as the program executes.

For details on running and debugging Nios II programs, see the Software Development Tutorial available from the
Nios II IDE help system.

Varying the Development Flow

The development flow is not strictly linear. This section describes common variations.

Refining the Software and Hardware

After running software on the target board, you might discover that the Nios II system requires higher
performance. In this case, you can return to software design steps to make improvements to the software algorithm.
Alternately, you can return to hardware design steps to add acceleration logic. If the system performs multiple
mutually exclusive tasks, you might even decide to use two (or more) Nios II processors that divide the workload
and improve the performance of each individual processor.

lteratively Creating a Nios Il System

A common technique for building a complex Nios II system is to start with a simpler SOPC Builder system, and
iteratively add to it. At each iteration you can verify that the system performs as expected. You might choose to
verify the fundamental components of a system, such as the processor, memory, and communication channels,
before adding more complex components. When developing a custom peripheral or a custom instruction, first
integrate the custom logic into a minimal system to verify that it works as expected; later you can integrate the
custom logic into a more complex system.

The Nios II development tools provide several working Nios II reference designs, which you can use as a starting
point for your own designs. After installing the Nios II development tools, see the directory <NVios II kit
path>/examples/verilog or the directory <Nios II kit path>/examples/vhdl.

8 Altera Corporation

Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the Nios II system, using tools such as the
ModelSim RTL simulator. Hardware simulation is useful for certain cases, including the following:

B To verify the cycle-accurate performance of a Nios II system before target hardware is available.
B To verify the functionality of a custom peripheral or a Nios II custom instruction before trying it on hardware.
A hardware simulation step is not shown in Figure 2. If you are building a Nios II system based on the standard

peripherals provided with the Nios II Embedded Design Suite, the easiest way to verify functionality is to
download the hardware and software directly to a development board.

<o For details on performing hardware simulation for Nios II system, see AN351: Simulating Nios II Embedded
Processor Designs.

Creating the Example Design

This section guides you through the Nios II development flow to create a working example design. You will
perform the following steps:

1. Install the Design Files.

2. Analyze System Requirements (see page 10).

3. Start the Quartus II Software and Open the Tutorial Example Design Project (see page 10).
4. Start a New SOPC Builder System (see page 12).

5. Define the System in SOPC Builder (see page 12).

6. Integrate the SOPC Builder System into Quartus II Project (see page 23).

7. Download Hardware Design to Target FPGA (see page 28).

8. Develop Software Using the Nios II IDE (see page 29).

9. Run the Program (see page 32).

Install the Design Files

Before you proceed, you must install the Quartus II software and the Nios II development tools. You must also
download tutorial design files from the Altera web site. The design files provide a ready-made Quartus II project
to use as a starting point. The design files are associated with the link to this document on the Nios II literature
page at www.altera.com/literature/lit-nio2.jsp.

Perform the following steps to set up the design environment:

1. Locate the zipped design files on the Altera web site. A different set of design files exists for each Altera
Nios development board.

2. Download the design files by performing one of the following steps:

Altera Corporation 9
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

a. Ifyou have a Nios development board, download the files that match your development board.

b. If'you have a custom board, download the files that most closely match your board. For example, if your
board has a Stratix II device, download the Stratix II design files (niosII_stratixII_2s60_es.zip).

c. Ifyou do not have a board, you can use any of the design files.

3. Unzip the contents of the zip file to a directory on your computer. Do not use spaces in the directory path
name.

The remainder of this tutorial refers to this directory as the <Design Files Directory>.

Analyze System Requirements

This section describes the system requirements for the tutorial example design. The goals for the design are the

following:

B Demonstrate a simple Nios I processor system that you can use for control applications.

B Build a practical, real-world system, while providing an educational experience for the reader.

B Demonstrate the most common and effective techniques to build practical, custom Nios II systems.

B Build a Nios II system that works on any board with an Altera FPGA. The entire system must use only on-

chip resources, and not rely on the target board.

B The design should conserve on-chip logic and memory resources so it can fit in a wide range of target FPGAs.

These goals lead to the following design decisions:

B The Nios II system uses only the following inputs and outputs:
@® One clock input, which can be any constant frequency.
@ Eight optional outputs to control LEDs on the target board.
B The design uses the following peripherals:
Nios II/s core with 2 Kbytes of instruction cache
20 Kbytes of on-chip memory
Timer

[

[ )

[

® JTAGUART
@® 8 output-only parallel I/O (PIO) pins
[ )

System ID register

<o For complete details on these and other peripherals, see the Quartus II Handbook Volume 5: Embedded
Peripherals.

Start the Quartus Il Software and Open the Tutorial Example Design Project

To start, you open the Quartus II project for the tutorial example design. This Quartus II project serves as an easy
starting point for the Nios II development flow. The Quartus II project contains all settings and design files
required to create the FPGA configuration file.

10 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design
I EEEEEEEEE——

To open the Quartus II project, perform the following steps:
1. Start the Quartus II software.

On Windows computers, click Start, point to Programs, Altera, and then click Quartus II <version>. On
Linux computers, type quartus at a shell command-prompt, assuming the Quartus II program directory is
in the search path.

2. On the File menu, click Open Project. Be careful not to mistake Open for Open Project. The Open Project
dialog box appears.

3. Browse to <Design Files Directory>.
4. Select the file nios2_quartus2_project.qpf and click Open. The Quartus II software opens the project.

5. If the Quartus II software does not automatically display the block diagram file (BDF) See Figure 3.
nios2_quartus2_project.bdf. Perform the following steps:

a.  On the File menu, click Open. The Open dialog box appears.
b. Browse to <Design Files Directory>.
c. Select the file nios2_quartus2_project.bdf and click Open.

Figure 3 shows the BDF nios2_quartus2_project.bdf.

Figure 3. Example Design Block Diagram File

& nios2_quartus?_project. bdf EE®
~

Niosll Quartusll Project -- Nios Il, Cyclone 1C20

Thig iz the top level for the HW tutarisl
on the Miosll Cyclone 1020 Development Board

Targeted for the Ninsll Cyclone 1020 development board

BB L] ™

The BDF contains an input pin for the clock input and eight output pins to drive LEDs on the board. Next, you
will create a new SOPC Builder system, which will ultimately connect to these pins.

Start a New SOPC Builder System

You use SOPC Builder to generate the Nios II processor system, adding the desired peripherals, and configuring
how they connect together. Perform the following steps to start a new SOPC Builder system:

1. On the Tools menu in the Quartus II software, click SOPC Builder. SOPC Builder starts and displays the
Create New System dialog box.

2. Type first nios2 system asthe System Name.

Altera Corporation 11
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

3. Select either Verilog or VHDL as the Target HDL. If you do not have a preference, accept the default. Later
when you generate the system, SOPC Builder outputs design files in the language you select.

4. Click OK. The SOPC Builder GUI appears, displaying the System Contents tab.

Figure 4 shows the SOPC Builder GUI in its initial state.

Figure 4. SOPC Builder GUI

LM jltera SOPC Builder - first_nios2_system
File Module System View Tools Help

| System Corterts || System Generation

b5l Attera SOPC Builder A
= B3 Creete Mew Componert Terget Clock (MHz)
= Avalon Components Board: Unspecified Board . clk 500
@ oz Il Processor - Altera Corpora
= Bridges Device Family: Cyclone v

@ Avalon To AHE Bridge

@ Avalon Tri-State Bridge
+ Communication
® Display
= EP1C20 Hios Development Board
& EP1510 Hios Development Board
# EP1540 Hios Development Board
# EP2C35 Hios Development Board
# EP2560 DSF Board Stratix |l Editiol
+ EP2560 Hios Development Board
+ Ethernet

Use tociule Marme Description Clock Basze Encl

v
4 >

Installed Components

@ | | W O

. >

i) Done checking for updstes

Define the System in SOPC Builder

You use SOPC Builder to define the hardware characteristics of the Nios II system, such as which Nios II core to
use, and what peripherals to include in the system. SOPC Builder does not define software behavior, such as
where in memory to store instructions or where to send the stderr character stream.

In this section, you will perform the following steps:

1. Specify target FPGA and clock settings.

2. Add the Nios II core, on-chip memory, and other peripherals.

3. Specify base addresses and interrupt request (IRQ) priorities.

4.  Specify more Nios II settings.

5. Generate the SOPC Builder system.

The SOPC Builder design process does not need to be linear. The design steps in this tutorial are presented in the

most straight-forward order for a new user to understand. However, you can perform SOPC Builder design steps
in a different order.

12 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

Specify Target FPGA & Clock Settings

The Target and Clock settings specify the SOPC Builder system's relationship to other devices in the system.
Perform the following steps:

1. Specify the target board and device family by performing one of the following steps:

a. Ifyou are targeting an Altera Nios development board, select the appropriate board in the Board list.
SOPC Builder automatically fills in Device Family.

b. Ifyou are targeting a custom board, select Unspecified Board in the Board list, then select the Device
Family that matches the Altera FPGA on your board.

c. Ifyou do not have a target board, select the board in the Board list that matches the tutorial design files
you are using.

2. Specify the Clock (MHz) frequency as shown in Table 1. c1k is the default clock input name for the SOPC
Builder system. The frequency you specify for c1k must match the oscillator that drives the FPGA.

Table 1. Clock Frequency for Target Boards

Target Board Frequency
Nios Development Board (all versions), or no board 50
Nios Evaluation Board (Cyclone EP1C12) 24
Custom board Same as oscillator on board

If you specify an Altera Nios development board, SOPC Builder presents a new tab labeled Board Settings. This
tutorial uses all the default values on the Board Settings tab.

Add the Nios Il Processor Core

Next, you begin to add hardware components to the SOPC Builder system. As you add each component, you
configure it appropriately to match the design specifications.

In this section you add the Nios II/s core and configure it to use 2 Kbytes of on-chip instruction cache memory.
For educational purposes, the tutorial example design uses the Nios II/s "standard" core, which provides a
balanced trade-off between performance and resource utilization. In reality, the Nios II/s core is more powerful
than necessary for most simple control applications.

Perform the following steps to add a Nios II/s core to the system:

1. Inthe list of available components (on the left-hand side of the System Contents tab), select Nios
II Processor — Altera Corporation under the Avalon Components category.

2. Click Add. The Altera Nios II configuration wizard appears, displaying the Nios II Core tab.

3. Specify the following settings (see Figure 5):

@ Nios II Core: Nios II/s
@® Hardware Multiply: None
@ Hardware Divide: Off

Altera Corporation 13
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

Figure 5. Nios Il Configuration Wizard - Nios Il Core Tab

&
H hs__H_ED'E_' Caches & Tightly Coupled Memoties | JTAG Debug Module | Custom hetructions
Select & Nioz Il core:
ONios lli/e @ Nios lifs CNios IIf
. RISC RISC RISC
Nios I 32-bit 32-bit 32-hit
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Farily: Cyclone Hardware Multiphy Hardweare Muliply
Hardware Divide Hardware Divide
fsystem: 50 MHz Barrel Shifter
Data Cache
Dynamic Branch Prediction
Performance &t 50 MHz Upto 7 DMIPS Up to 23 DMIPS Up to 49 DMIPS
Logic Usage BO0-700 LE= 1200-1400 LE= 1400-1500 LE=
Memory Usage Twvo Mdk= Two M4k= + cache Thres Maks + cache
Hardwware hultiply: |Mone > |:| Hardvweare Divide
4.  Click Next. The Caches & Tightly Coupled Memories tab appears.
5. Specify the following settings (see Figure 6):
@® Instruction Cache: 2 Kbytes
@® Include Tightly Coupled Instruction Master Port(s): Off
Figure 6. Nios Il Configuration Wizard — Caches & Tightly Coupled Memories Tab
M pltera Nios Il - cpu_0 E]

Nios I Core | Caches & Tightly Caupled Memaries | JTAG Debug Module | Custom Instructions
Instructions Data

Instruction Cache:

D Include tightly coupled instruction master port(s).

Cancel = Prev Mext = Finish

6. Do not change any settings on the JTAG Debug Module tab or the Custom Instructions tab.

7. Click Finish. You return to the SOPC Builder System Contents tab, and an instance of the Nios II core
named cpu_0 now appears in the table of available components.

As aresult of adding the Nios II core, SOPC Builder presents an additional tab titled Nios II More "cpu_0"
Settings, which allows you to further configure the Nios II core. Error messages appear in the SOPC Builder
Messages window. These messages are normal; you will fix them in later steps.

14 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

<o For further details on configuring the Nios II core, see the Implementing the Nios II Processor in SOPC Builder
chapter of the Nios I Processor Reference Handbook. Y ou can right-click on epu_0 for a list of documentation
links. This SOPC Builder feature is available for all components.

Add the On-Chip Memory

Processor systems require at least one memory for data and instructions. This example design uses one 20 Kbyte
on-chip memory for both data and instructions. To add the memory, perform the following steps:

1. Inthe list of available components, expand the Avalon Components, Memory category, and then click On-
Chip Memory (RAM or ROM).

2. Click Add. The On-Chip Memory configuration wizard appears.
3. Type 20 in the Total Memory Size box to specify a memory size of 20 Kbytes (see Figure 7)

4. Ifyou are targeting a Stratix or Stratix I device, select M4K in the Block Type list. (For other device
families you cannot change Block Type.)

5. Do not change any of the other default settings.

Figure 7. On-Chip Memory Configuration Wizard

I® Op-chip Memory - onchip_memory_0

Metmory Type
(%) RaM (vvriteskle) ) ROM (read-only)

[ ] Dual-Port Access

Size

Mernory Yidth: 32 ¥ hitz

Total Memory Size: 20 Whytes

Read Latency

Slave s1 |1 #

i) Metrory will be intislized from onchip_memory_0L.hex
i) Automatically choosing MAK blocks (the only available block type)

6.  Click Finish. You return to the SOPC Builder System Contents tab, and an instance of the on-chip memory
named onchip_memory_0 now appears in the table of available components.

Altera Corporation 15
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

I SOPC Builder automatically connects the instruction and data master ports on the Nios II core to
the memory slave port (see Figure 8). When building a system, always verify that SOPC Builder's

automatic connections are appropriate for your system requirements.

Figure 8. System Contents Tab with the Nios Il Core and On-Chip Memory

Target Clock (MHz)
EBoard: |Mios Development Board, Cyclone (EP1C200 | # clk 0.0
Use Module Mame Descriptian Clock Easze End IR
[E cpu_D Mioz Il Processor - Al |clk
instruction_master  |Master port
r~—t data_master master port IR 0 IR 31|«
b—+ jtao_debun_module |Slave part 0100000000 0::000007FF
= onchip_memony 0 [on-Chip Memaory (R [clk
— Slave port 0x00008000|0:x0000CFFF

Builder chapter of the Quartus Il Handbook Volume 4: SOPC Builder.

Add the JTAG UART Peripheral

®.e For further details on connecting memory to Nios II systems, see the Building Memory Subsystems Using SOPC

The JTAG UART provides a convenient way to communicate character data with the Nios II processor through

the USB-Blaster download cable. Perform the following steps to add the JTAG:

1. In the list of available components, expand the Avalon Components, Communication category, and then

click JTAG UART.
2. Click Add. The JTAG UART configuration wizard appears.

3. Do not change the default settings (see Figure 9).

16
Nios Il Hardware Development Tutorial

Altera Corporation
May 2006



Creating the Example Design

Figure 9. JTAG UART Configuration Wizard

M JTAG UART - jtag_uart_0

Write FIFO [ data from Awalon to JTAG )

Depth: |54 hd IR Threshold: a

|:| Construct using registers instead of memory blocks

Read FIFO [ data from JTAG to Avalon

Depth: |54 w IR Threshold: a

|:| Construct uzing registers instead of memory blocks

Mext = Finizh

Click Finish. You return to the SOPC Builder System Contents tab, and an instance of the JTAG UART
named jtag_uart_0 now appears in the table of available components.

I SOPC Builder automatically connects the data master port on the Nios II core to the JTAG UART
slave port. (The instruction master port does not connect to the JTAG UART, because the JTAG
UART is not a memory device and cannot feed instructions to the Nios II processor.) When
building a system, always verify that SOPC Builder's automatic connections are appropriate for
your system requirements.

®.e For further details on the ITAG UART, see the JTAG UART Core with Avalon Interface chapter of the Quartus Il

Handbook Volume 5: Embedded Peripherals.

Add the Timer Peripheral

Most control systems use a timer peripheral to enable precise calculation of time. The Nios II hardware abstraction

layer requires a timer to provide a periodic system clock tick.

Perform the following steps to add the timer:

1.

Altera Corporation
May 2006

In the list of available components, expand the Avalon Components, Other category, and then click
Interval timer.

17
Nios Il Hardware Development Tutorial



Creating the Example Design

2. Click Add. The Avalon Timer configuration wizard appears.

3. Do not change the default settings (see Figure 10).

Figure 10. Timer Configuration Wizard

9 pvalon Timer - timer_0 E]
Titneout Period
Initial Period: 1| maes W

Input Clock Fregquency: 50 MHz

Hardware Options
Preset Configurations:  |Full-festured W
Registers
Wiiteable period
Readable snapstot
Start/Stop control bits

Output Signals
|:| Tirmeout pulse (1 clock wide)
|:| System reset on timeout (Watchdog)

—

4.  Click Finish. You return to the SOPC Builder System Contents tab, and an instance of the interval timer

named timer_0 now appears in the table of available components.
5. Right-click timer_0 and click Rename.

6. Typesys_clk timer and press Enter.

s It is a good habit to give memorable names to hardware peripherals. Nios II programs use these
symbolic names to access the peripheral hardware. Therefore, your choice of peripheral names can make
Nios II programs easier to read and understand.
“ . e For further details on the timer, see the Timer Core with Avalon Interface chapter of the Quartus Il Handbook
Volume 5: Embedded Peripherals

Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading software compiled for a different Nios II
system. For example, web server software cannot run on a Nios II system lacking an Ethernet MAC. If the system

18 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

includes the system ID peripheral, the Nios II IDE prevents you from downloading programs compiled for a
different system.

Perform the following steps to add the system ID peripheral:

1. In the list of available components, expand the Avalon Components, Other category, and then click System
ID Peripheral.

2. Click Add.... You return to the SOPC Builder System Contents tab, and an instance of the system ID
peripheral named sysid now appears in the table of available components.

The system ID peripheral has no user-configurable options, and therefore it doesn't have a configuration
wizard.

<o For further details on the system ID peripheral, see the System ID Core with Avalon Interface chapter of the
Quartus II Handbook Volume 5: Embedded Peripherals.

Add the PIO

PIO signals provide an easy method for Nios II processor systems to receive input stimuli and drive output signals.
Complex control applications might use hundreds of PIO signals which the Nios II processor can monitor. This
example design uses 8 PIO signals to drive LEDs on the board.

Perform the following steps to add the PIO. Perform these steps even if your target board doesn't have LEDs.

1. Inthe list of available components, expand the Avalon Components, Other category, and then click PIO
(Parallel I/0).

2. Click Add. The Avalon PIO configuration wizard appears.

3. Do not change the default settings (see Figure 11). By coincidence, the configuration wizard defaults to an 8-
bit output-only PIO, which exactly matches the needs for the example design.

Altera Corporation 19
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

Figure 11. PIO Configuration Wizard

™ fvalon PIO - pio_0 %]

g | bits
PIC wvictth must be between 1 and 32 bits
Direction
{:} Bidirectional (tri-state) ports
{:!' Input ports only

{:} Bath input and output ports

() Qutput ports only

4.  Click Finish. You return to the SOPC Builder System Contents tab, and an instance of the PIO named pio_0
now appears in the table of available components.

5. Right-click pio_0 and click Rename.

6. Type led pio and press Enter.

A Nios II software uses this name to access the peripheral. You must name the PIO led_pio, or else
programs written for this Nios I system will fail to work in later steps.

= It is a good habit to give descriptive names to hardware peripherals.

®.e For further details on the PIO, see the PIO Core with Avalon Interface chapter of the Quartus Il Handbook
Volume 5: Embedded Peripherals.

Specify Base Addresses and Interrupt Request Priorities

At this point, you have added all the necessary hardware components to the system. Now you must specify how
the components interact to form a system. In this section, you assign base addresses for each slave peripheral, and
assign interrupt request (IRQ) priorities for the JTAG UART and the timer.

20 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

SOPC Builder provides the Auto-Assign Base Addresses command which makes assigning peripheral base
addresses easy. For many systems, including this example design, Auto-Assign Base Addresses is adequate.
However, you can adjust the base addresses to suit your needs. Below are some guidelines for assigning base
addresses:

B Nios II processor cores can address a 31-bit address span. You must assign base address between
0x00000000 and 0x7FFFFFFF.

B Nios II programs use symbolic constants to refer to addresses. Do not worry about choosing address values
that are easy to remember.

B Address values that differentiate peripherals with only a one-bit address difference produce more efficient
hardware. Do not worry about compacting all base addresses into the smallest possible address range,
because this can create less efficient hardware.

B SOPC Builder does not attempt to align separate memory components in a contiguous memory range. For
example, if you want an on-chip RAM and an off-chip RAM to be addressable as one contiguous memory
range, you must explicitly assign base addresses.

SOPC Builder also provides an Auto-Assign IRQs command which will connect IRQ signals to produce valid
hardware results. However, assigning IRQs effectively requires an understanding of how software responds to
them. Because SOPC Builder does not deal with software behavior, it cannot make educated guesses about the
best IRQ assignment.

The Nios II hardware abstraction layer interprets low IRQ values as higher priority. The timer peripheral must
have the highest IRQ priority to maintain the accuracy of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following steps:

1. On the System menu, click Auto-Assign Base Addresses to make SOPC Builder assign functional base
addresses to each component in the system. The Base and End values in the table of active components
might change, reflecting the addresses that SOPC Builder reassigned.

2. Click the IRQ value for the jtag uart_0 component to select it.

3. Type 16 and press Enter to assign a new IRQ value.

Figure 12 shows the state of the SOPC Builder System Contents tab with the complete system.

Figure 12. System Contents Tab with Complete System

Target Clock (MHz)
Board: [Mios Development Board, Cyclone (EP1C20) clk S0.0
Uze Mocdule: Matre Descrigtion Clock Baze Enid IRG
B cpu_0 Mios | Processar - |clk
instruction_master  [Master port

s~ data_master Master port IRG 0 IR 3

p—t jtag_debug_module  |Slave port 0x00008000)  0x000057FF
onchip_memory_0 |On-Chip Memory (. |clk 0x00000000 0:x00004FFF
jtag_uart_0 JTAG UART clk 0x00008830| 0x00003337 [16
sy=s_clk_timer Iriterval tirmer clk 0x00008800| Qx0000531F) | 1
sysid Syatern ID Periphe. . |clk 0x00008838 0x0000533F
led pio 12 (Parallel 1100 clk 0x00008320| 0x0000332F

Altera Corporation 21

May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design
I EEEEEEEEEEE——

Specify More Nios Il Settings

At this point, you have configured the peripherals to form a coherent system. There are a few final Nios II

processor settings that depend on the overall configuration of the system. For each Nios II processor in the system

SOPC Builder displays a separate tab for these system-dependent Nios II settings.

For the tutorial example design, there is only one Nios II core named cpu_0, and therefore SOPC Builder presents

one tab labeled Nios II More "cpu_0" Settings (see Figure 13).

Figure 13. Nios Il More "cpu_0" Settings Tab

I Altera SOPC Builder - first_nios2_system

File Module  System  Yiew Tools Help

System Contents | Board Settings | Mios IL More "cpu_0" Settings || System Generation

Proceszor Configuration

Hios ll’'s Core
2-Kbvyte Instruction Cache (64 lines, 32 bytesiline, 13 tag bitsline)
JTAG Debug Module (S bre akpoints)

Proceszor Function hlemoary Madule Offzet Address

Reset Address onchip_mermary_0 000000000 | 0x00000000
Exception Address ohchip_metnory_0 000000020 |0x00000020
Ereak Location cpu_Oiftag_debug_module 000000020 |0=00003020

“ou can change Hios Il software settings, such as data memory, host communication, and
debugging communication, in the System Library properties of the Mios || IDE.

I:‘ Legacy SDK support. Generate headers, libraries, and memory contents with Mios SDK interfaces.

v Do not change the default settings on the Nios II More "cpu_0" Settings tab; they are appropriate for

the tutorial example design.

For further details on configuring the Nios II core, see the Implementing the Nios II Processor in SOPC Builder

chapter of the Nios Il Processor Reference Handbook.

Generate the SOPC Builder System
You are now ready to generate the SOPC Builder system. Perform the following steps:

1. Click the System Generation tab.

2. Turn off Simulation. Create simulator project files, which saves time because this tutorial does not cover

the hardware simulation flow.

3. Click Generate. The system generation process begins.

The generation process can take several minutes. When it completes, the System Generation tab displays a

message "SUCCESS: SYSTEM GENERATION COMPLETED." (see Figure 14).

4.  Click Exit and return to the Quartus II software.

22 Altera Corporation

Nios Il Hardware Development Tutorial

May 2006



Creating the Example Design

Figure 14. Successful System Generation

1™ pltera SOPC Builder - first_nios2_system
File Module System Wiew Tools Help

System Contents | Board Seftings | Nios II More "cpu_0" Seftings | Systemn Generation

Options

BB rur rios 11DE

HOL. Generste system module logic in Verilog.

|:| Simulstion. Creste simulator project files,

S0PC Builder database : C:/NiosII_Tutorial/niosII_cyclone_lca0/first niosZ_systen
dyaten HDL Model @ Ci/NiosII_Tutorial/niosIl_cyclone_lczZ0/firat niozs_syatem.w
Systen Generation Script @ Ci/NiosII_Tutorial/niesII_cyclone lc20/first niosz svs

# Z005.05.12 14:05:24 () SUCCEZS: SYATEM GENERATION COMPLETED.

Press 'Exit' to exit.

£ >
D) cpu_D was generated with full capabilities and must be compiled in Quartus || with the same license. L
D) cpu_b: defaulting Reset Address, Exception Address to onchip_memory 0 o

Altera Corporation
May 2006

Congratulations! You have finished creating the Nios II processor system. After generation completes, you are
ready to integrate the system into the Quartus II hardware project and use the Nios II IDE to develop software.

For further details on generating systems with SOPC Builder, see the Quartus II Handbook Volume 4: SOPC
Builder. For details on hardware simulation for Nios II system, see AN351: Simulating Nios Il Embedded

Processor Designs.

Integrate the SOPC Builder System into Quartus Il Project

In this section you will perform the following steps to complete the hardware design:

B Instantiate the SOPC Builder system module in the Quartus II project.

B Assign FPGA pins.

B Compile the Quartus II project

B Verify timing

s You can skip ahead to "Develop Software Using the Nios II IDE" on page 29 if you do not have a target

board. Alternately, you can read this section to familiarize yourself with more of the hardware design
flow. However, the steps in this section do not affect the outcome of the tutorial if you do not have a
target board.

For further information on using the Quartus II software, see the Quartus II Tutorial in the Quartus II help system,
and both the Introduction to Quartus Il Manual and the Quartus I Handbook, available at www.altera.com.

23
Nios Il Hardware Development Tutorial



Creating the Example Design

Instantiate the SOPC Builder System Module in the Quartus Il Project.

SOPC Builder outputs a design entity called the system module. The tutorial example design uses the block
diagram file (BDF) method of design entry, so you will instantiate a system module symbol first_nios2_system
into the BDF.

s How you instantiate the system module depends on the design entry method of the overall Quartus II
project. For example, if you were using Verilog HDL for design entry, you would instantiate the Verilog
module first_nios2_system defined in the file first_nios2_system.v.

To instantiate the system module in the BDF, perform the following steps:

1.  Double click in the empty space between the input and output pins. The Symbol dialog box appears.
2. Under Libraries:, expand Project.

3. Click first_nios2_system. The Symbol dialog box displays the first nios2_system symbol.

4. Click OK. You return to the BDF. The first nios2_system symbol tracks with your mouse pointer.
5. Connect the inputs on the symbol with the wires on the left-hand side of the BDF.

6. Click the left mouse button to drop the symbol in place.

7. If your target board has LEDs that the Nios II system can drive, perform the following step to connect the
LEDG/(7..0] output pins to the first nios2 system.

v Click and drag LEDG][7..0] to connect it with the port out_port_from_the led pio[7..0] on the
first_nios2_system symbol.

Figure 15 shows the complete BDF using the LED pins.

Figure 15. Complete BDF

= nios2_quartus?_project. bdf

first_nins2_system

R BB R "

reset_n

o port 1 e 7.0 B e

inst

8. Ifyou are targeting a custom board that does not have LEDs, you must delete the LEDG[7..0] pins. To delete
the pins, perform the following steps:

a.  Left click the output symbol LEDG[7..0] to select it.
b.  Press Delete.

9. To save the completed BDF file, click Save on the File menu.

24 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

Assign FPGA pins

If you are targeting a custom board, you must assign a specific target device and then assign FPGA pin locations
to match the pinout of your board.

= Skip ahead to section “Compile the Quartus II Project and Verify Timing” on page 27. If you are
targeting a Nios development board. The provided Quartus II project files already contain appropriate
assignments for Nios development boards.

You must know the pin layout for the custom board to complete this section. You also must know other
requirements for using the board, which are beyond the scope of this document.

To assign the device, perform the following steps:
1. On the Assignments menu, click Device. The Settings dialog box appears.
2. Inthe Family list, select the FPGA family that matches your board.

3. Click No if a dialog box asks, "Device family selection has changed. Do you want to remove all location
assignments?"

4. Under Target Device sclect Specific device selected in 'Available devices' list.
5. Under Available devices select the exact device that matches your board.

6. Click No if a dialog box asks, "Altera recommends removing all location assignments when changing the
device. Do you want to remove all location assignments?"

7. Click OK to accept the device assignment.

Figure 16 shows an example of the Settings dialog box assigning a Cyclone device.

Altera Corporation 25
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

Figure 16. Assigning a Device in the Quartus Il Settings Dialog Box

Select the family and device vou want to target for compilation.

Eamily: | Cpclone j Device & Pin Options...

Target device
" Auto device selected by the Fitter from the 'Yevailable devices' list

(¢ Specific device selected in Avallable devices' list
~

Ayailable devices: Show in ‘Available devices' list

EP1CET144C7 "~
EP1CET14417

EP1CET144CH

EP1C12F25606

EP1C12F256CT . lﬁ
EP1C12F25617 Spesd grade: | Any

EPTC1zF256C8 Core voltage: 1.9

EP1C12F324CE i
EP1C12F22407 [v Show advanced devices
EP1C12F32417

EP1C12F324C8 Migrati il

EP1C] 2u240|:5 Igration cormpatibmiy
EP1C120240C7 0 rnigration devices selected
EP1CI2024017

EP1C120240C8 Migration Devices. .. |
EP1C20F324CE
EP1C20F324C7
EFI1C20F 32417
EF1C20F324C8
EF1C20F400CE =]
EF1C20F400C7F

EFPI1C20F40017 [

EF1C20F400C3 w

Package: Ay -

Pin count: Ay -

To assign the FPGA pin locations, perform the following steps:

1. On the Assignments menu, click Pins. The Quartus IT Assignment Editor appears. The Quartus II project has
many ready-made assignments appropriate for a Nios development board, which you must reassign to suit
your board.

2. Inthe Assignment Editor click the To column heading to sort the pin assignments by name.

3. Scroll down until the pin PLD_CLOCKINPUT][1] appears in the Assignment Editor.

4. Double-click in the Location cell for pin PLD_CLOCKINPUT[1]. A list of available pin locations appears.

5. Select the appropriate FPGA pin that connects to the oscillator on the board (see Figure 17.).

26 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

Figure 17. Assigning Pins with the Quartus Il Assignment Editor

4 Quartus Il - C:/MNiosll_Tutorial/niosl|_cyclone_1c20/nios2_quartus2_project - nios2_quartus2_project - [Assignment Editor]

& Fle Edt View Project Assignments Processing Tools tindow Help NEE?
O & & k? |[niog2_guarusz_project ¥ 2@ A SR
e Ehiavigato; s P8 nios2_quartus2_project bdf | € compilation Report - Flow Summary | @ assignment Editor }
Entity
iy Cyclone: EPIC20F400C7 A & coegory: |[ Pm ] § w|[en & riming| # Loge options
>
B~ nios2_auaitus2proiect | | @ |3 5 1opomaton: | Assians alocation on the device For the current node(s) andjor pin(s).
 first_rios2_systeming! Fi
3
oo skd_huesld_hub_inst Ed: 4| [P ks J
kil [re « Location 1joBank 1j Standard General Function Speci
= |1z |€ PLo_cLkout PIN_LE 1 LYTTL Row /O PLL1_
1= || (125 B*PLD_CLOCKINFUIT LYTTL
€ |1z °PLD_CLOCKINPUT[L] ] -1 LYTTL Dedicated Clack.
= ||[127 €FPLD_CS N PR I8 FORak? | Raw i VD570 -~
o 128 € PLD_DATA[0] P 19 0 Bank3  Rowifo b7
bl e < PLD_MSEL[O] ey 120 O fank?  Row it VD577
¥ ||[130 € PLD_MSEL[1] HoBank I Row o NESOMETD
i (18t < PLD_RECONFIGREQ. .. Dedicated Ciock LA
7 132 € PROTO1_CLKOUT O Bank T Dedicated Clock CLRTAVRSCLK T
A |13 | € proTo1_to[16] P OBk Dedtated Cock  CLAGVDSCLEZD
134 <> PROTO1_IO[19] PRLATS HOBankF  Row i3 L2580
135 |€ProT01_10[72] oI 18 HOBank3  Row i 11BN
d 5 136 & PROTOL 10[23] K18 OBk Row o VREFIET
L T e HORank I Row o ASDOMASDE
EANEE T LE Q0 Bankl  Rowifo PULE BT
PRLLTF HORank 3 Rowiio P2 S
ﬂ A L34 [Ofank 3 Dediated Clock  CIRZAVDSCLZD
2 HoBanki  Rowifo L105E5n
9 B T HORank I Row o LS50
&I\ Sustem ) Processing {_Extaliio o A Waring A Cilical¥anna | o 17y ok Rowdio iy
& [Message Ed O fank I Rowifo L5T 50
= e HOBank I Row o J =T
For Help, press F1 PR O Bank 1 Row If9 LVDs1dn e [NUM

Altera Corporation
May 2006

6. Ifyou connected the LED pins in the BDF, repeat steps 3 to 5 to assign appropriate pin locations for each of
the LED outputs pins: LEDG[0], LEDG[1], LEDG[2], LEDG][3], LEDG[4], LEDG[5], LEDG[6],
LEDG[7].

7. On the File menu, click Save to save the assignments.

8. Close the Assignment Editor.

Depending on the board, you might have to make more assignments for the project to function correctly.

e You can damage the board if you fail to account for the board design. Consult with the maker of the
board to ensure that the following conditions will not damage the board:
B After power-up all unused I/O pins on the FPGA will enter a high-impedance state.
B The IO banks are configured for the 3.3V LVTTL I/O standard. The board must supply 3.3V to the FPGA's
VCCIO pins.
B The LEDG]7..0] outputs will drive 3.3V.

For further details on making assignments in the Quartus II software, see the Quartus II Handbook Volume 2:
Design Implementation & Optimization.

Compile the Quartus Il Project and Verify Timing

At this point you are ready to compile the Quartus II project and verify that the resulting design meets timing
requirements.

You must compile the hardware design to create an FGPA configuration file that you can download to the board.
After the compilation completes, you must analyze the timing performance of FPGA design to verify that the
design will work in hardware.

Perform the following steps:

1. On the Processing menu, click Start Compilation.

27
Nios Il Hardware Development Tutorial



Creating the Example Design

2. The Quartus II Status utility window displays progress. The compilation process can take several minutes.
When compilation completes, a dialog box displays the message "Full compilation was successful."

3. Click OK. The Quartus II software displays the Compilation Report window.
4. Expand the Timing Analyzer category of the Compilation Report window.
5. Click Summary.

6.  Check the frequency listed in the Actual Time cell associated with PLD _CLOCK]1]. This is the maximum
frequency (Fyax) that this FPGA design is capable of running.

If the Actual Time frequency for PLD_CLOCK]1] is less than the oscillator frequency on the board,
this design will not operate in hardware. You must make Quartus II timing assignments to optimize the

CAUTION

clock, or reduce the oscillator frequency driving the FPGA.

Congratulations! You have finished integrating the Nios II system into the Quartus II project. You are ready to
download the FPGA configuration file to the target board.

<o For further details on meeting timing requirements in the Quartus II software, see the Quartus II Handbook
Volume 1: Design & Synthesis.

Download Hardware Design to Target FPGA

In this section you will download the FPGA configuration file (.sof) to the target board. Perform the following
steps:

1. Connect the board to the host computer with the download cable, and apply power to the board.

2. On the Tools menu in the Quartus II software, click Programmer. The Programmer window appears and
automatically displays the appropriate configuration file (nios2_quartus2_project.sof).

3. Click Hardware Setup in the top-left corner of the Programmer window to verify your download cable
settings. The Hardware Setup dialog box appears.

4.  Select the appropriate download cable in the Currently selected hardware list. If the appropriate download
cable does not appear in the list, you must first install drivers for the cable.

5. Click Close.
6. Turn on Program/Configure for nios2_quartus2_project.sof (seeFigure 18).

7. Click Start. The Progress meter sweeps to 100% as the Quartus II software configures the FPGA.

28 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

Figure 18. Quartus Il Programmer Window

1l nios 2_quartus?_project.cdf

éa Hardware Setup...| | USE-Blaster [USE-0]

Made: [aT4G [
Progress: 0%
W Start File Device Uszercode Eroongﬁrgam;’ Werify

hios2_guartus2_project. sof EP1C20F400 003CEFE7 FFFFFFFF

m Auta Detect < >

At this point, the Nios II system is configured and alive in the FPGA, but it does not yet have a program in
memory to execute.

Develop Software Using the Nios Il IDE

In this section you will start the Nios II integrated development environment (IDE) and compile a simple C
language program. This section presents only the most basic software development steps to demonstrate software
running on the hardware system you created in previous sections.

e Foracomplete tutorial on using the Nios II IDE to develop programs, see the Sofiware Development Tutorial
available from the IDE help system.

In this section you will perform the following actions:
1. Create a New C/C++ Application Project
2. Compile the Project.

To perform this section, you must have the SOPC Builder system file (.ptf) you created in “Define the System in
SOPC Builder" on page 12.

Create a New C/C++ Application Project
In this section you will create a new Nios II C/C++ Application Project. Perform the following steps:

1. Start the Nios I IDE. On Windows computers, click Start, point to Programs, Altera, Nios I1 EDS
<version>, and then click Nios II IDE. On Linux computers, run the executable file <Nios II kit
path>/bin/nios2-ide.

2. When the Workspace Launcher dialog box appears, click OK to accept the default workspace location.

3. On the File menu, point to New, and then click C/C++ Application to open the New Project wizard.

4.  Click Browse under Select Target Hardware. The Select Target Hardware dialog box opens.

5. Browse to <Design Files Directory>.

6. Select first_nios2_system.ptf.

7.  Click Open. You return to the New Project wizard, and the SOPC Builder System and CPU fields are now

filled in.

Altera Corporation 29
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

8. Select Count Binary in the Select Project Template list. The Name field automatically updates to
count_binary_0. See Figure 19.

9.  Click Finish.

Figure 19. Nios Il IDE New Project Wizard

. Mew Project &)

C/C++ Application
™ L

Click Finish to create this project with a default system library = c ‘

Tarne: | count_binary_0

v Use Default Location

Select Target Hardware

SOPC Builder Swstem: |C:'|,NinsII_TutnriaIIninsII_cycIone_lc2D'|,First_nios2_system.ptF j Browse. .,

CPL: |cpu_D ﬂ

Select Project Template

Blank. Project ~ Descripkion
Board Diagnostics
Custom Insktruckion Tutorial

Displays count of 0 ta Ff

Count Binary Details

azﬁzslgsggstanding This example exercises the push-buttons, LCD, LEDs,
Hello LED and seven-segment display peripherals by displaying a
Hello Microc/os-11 count of 0'to fF. ¥ou can run this example on the

Hello Warld standard or full-featured hardware example designs. It
Hello Warld Small can run on a HAL or uC/i03 11 based system,

Mernary Tesk
Simple Socket Server
Tightly_Coupled_Mermaries w

Mext = | Finish | Cancel

The Nios II IDE displays two new projects in the C/C++ Projects view on the left-hand side of the workbench:
count_binary_0 and count_binary_0_syslib. count_binary_0 is your C/C++ application project, and
count_binary_0_syslib is a system library that encapsulates the details of the Nios II system hardware.

= The left-hand pane of the IDE workbench has two tabbed views: The C/C++ Projects view and the
Navigator view. Click the C/C++ Projects tab to display the C/C++ Projects view. This view is
appropriate for most C/C++ development activity.

Compile the Project
In this section you will compile the project to produce an executable software image. For the example tutorial
design, you must first adjust the project settings to minimize the memory footprint of the software, because your

Nios II hardware system contains only 20 Kbytes of memory.

Perform the following steps:

30 Altera Corporation

Nios Il Hardware Development Tutorial May 2006



Creating the Example Design

1. Right-click count_binary_0 and click System Library Properties. The Properties for
count_binary 0 syslib dialog box opens.

2. Click the System Library page.

3. The System Library page contains all settings related to how the program interacts with the underlying
hardware. Therefore, the settings here reflect names you specified when creating the Nios II hardware in
section "Define the System in SOPC Builder" on page 12).

4.  Change the following settings which affect the size of the compiled executable (see Figure 20).

a.  Turn off Clean exit (flush buffers).

b.  Turn on Small C library.

5. Click OK to close the Properties dialog box and return to the IDE workbench.

Figure 20. System Library Properties

J Properties for, count_binary_0_syslib

Info System Library
Builders

JC4++ Buid Target Hardware
CJT++ Documentatian SOPC Builder Syskem: |
C/C++ File Types

CJC++ Indexer CPL: |

Project References
System Library Contents

RTOS: |n0ne (single-threaded) j
Jiirg |

stdout: |jtag_uart_D j
stderr: |jtag_uart_D ﬂ
stdin: |jtag_uart_0 j
Swskem clock timer: |sys_c|k_timer j
Timestamp kimer |n0ne j
Max file descriptars: | 32

I Clean exit (flush buffers) ™ Reduced device drivers

v Small C library I Link with profiling library

I™ Modelsim only, no hardware support [ Emulate mulkiply and divide instructions

I Run time stack checking

Software Components. ..

“ . e For further details on the system library see the Nios II Software Developer's Handbook.

To compile the project, perform the following step:

v Right-click the count_binary_0 project in the C/C++ Projects view and click Build Project.

The Build Project dialog box appears, and the IDE begins compiling the project. When compilation
completes, the message "Build completed" appears in the Console view.

Altera Corporation 31
May 2006 Nios Il Hardware Development Tutorial



Creating the Example Design

Run the Program

In this section you will run the program to see the compiled code execute. You can run the program on target
hardware, on the Nios II instruction set simulator (ISS), or both.

Run the Program on Target Hardware

In this section you will download the program to target hardware and execute it.

= If you do not have a target board, skip ahead to "Run the Program on Target Hardware” on page 32. To
proceed, you must have completed the steps in "Download Hardware Design to Target FPGA" on page
28.

To download the software executable to the target board, perform the following steps:

1. Right-click the count_binary_0 project, point to Run As, and then click Nios Il Hardware. The IDE
downloads the program to the FPGA on the target board and starts execution.

When the target hardware starts executing the program, the Console view displays character I/O output (see
Figure 21). If you connected LEDs to the Nios II system in "Integrate the SOPC Builder System into Quartus
II Project” on page 23, then the LEDs blink in a binary counting pattern.

2. Click Terminate (the red square) on the toolbar at the upper-right hand corner of the Console view to
terminate the run session. When you click Terminate, the IDE disconnects from the target hardware and
leaves the Nios II processor running.

Figure 21. Console View Displaying Nios Il Hardware Output

Problems | Propertiss BENe =0 4 % | REA |4 B~-=0
-<terminated > count_binary_0 Nios II HW configuration [Mios IT Hardware] Mios IT Terminal Window (571705 12:57 PM)
niosiZ-terminal: connected to hardware target using JTALG UART on cshle -
niosi-terminal: "USE-Blaster [USE-0]", dewvice 1, instance 0O

niosiZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)

FEEE LR AE AL R AT RN ERGRAR LA S

* Hello fromw Nios II! it
* Counting from 00 to ££ *
o o o o R o o o
oo, o1, 02, 03, 04, 0S5, 06, 07, 08, 09, 0Oa, O0Ob, Oc, o0Od, Oe, O0Of,

You can make edits to the count_binary.c program in the IDE and repeat these two steps to witness your changes
executing on the target board. If you rerun the program, buffered characters from the previous run session might
display in the Console view before the program begins executing.

«e For information on running and debugging programs on target hardware, see the Software Development Tutorial
available from the Nios II IDE help system.

Run the Program on the ISS
In this section you will run the count_binary_0 program on the Nios II ISS. Perform the following steps:

1. Right-click the count_binary_0 project, point to Run As, and then click Nios II Instruction Set Simulator.

32 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Taking the Next Step

2. When the ISS starts executing the program, the Console view displays character I/O output from the program.
See Figure 22. The count output appears very slowly because there are delay loops in the code.

3. Click the Terminate button (the red square) on the toolbar at the upper-right hand corner of the Console view
to terminate the ISS session.

Figure 22. Console View Displaying Instruction Set Simulator Output

Problems | Properties SNl 4 BR & ||t B-=08
count_binary_0 Mios 11 155 configuration [Mios IT Instruction Set Simulator] Mios IT Instruction Set Simulatesesi17/05 12:24 PM)
Warning : SOPC Builder system component sysid is not supported simulator. ~

Simulation may be incorrect if your software attempts Lo access it
Warning : SOPC Builder system component led pio is not supported by the simulato
r. Simulation may be incorrect if your software attempts to access it

o o o o R o o o
* Hello fromw Nios II! it
* Counting from 00 to ££ *

FEEE LR AE AL R AT RN ERGRAR LA S

oo, o0i, 02, 03, 04, 05, 06, 07, 08, 09, Oa, Ob, Oz, O0d, O=, Of,

You can make edits to the count_binary.c program in the IDE and repeat these two steps to witness your changes
executing on the ISS.

< For information on running and debugging programs on the ISS, see the Software Development Tutorial available
from the Nios II IDE help system.

Taking the Next Step

Congratulations! You have completed building a Nios II hardware system and running software on it. Through
this tutorial, you have familiarized yourself with the steps for developing a Nios II system:

Analyzing system requirements
Defining and generating Nios II system hardware in SOPC Builder

Integrating the SOPC Builder system into a Quartus II project

|
|
|
B Compiling the Quartus II project & verifying timing
B Creating a new project in the Nios I IDE

B Compiling the project

|

Running the software on the ISS and target hardware

The following documents provide next steps to further your understanding of the Nios II processor:

B Nios Il Software Developer's Handbook — This handbook provides complete reference on developing
software for the Nios II processor.

B Software Development Tutorial available from the Nios II IDE help system — This tutorial teaches in detail
how to use the Nios II IDE to develop, run, and debug new C/C++ application projects.

B Nios Il IDE Help System — The help system in the IDE provides complete reference on features of the IDE.
To open the help system, click Help Contents on the Help menu, then click the Nios I IDE Help book in
the Contents pane.

Altera Corporation 33
May 2006 Nios Il Hardware Development Tutorial



Taking the Next Step

B Nios II Processor Reference Handbook — This handbook provides complete reference for the Nios II
processor hardware.

B Quartus Il Handbook Volume 5: Embedded Peripherals — This handbook contains details on the peripherals

provided free as part of the Nios II development tools.

Quartus II Handbook Volume 4: SOPC Builder — This volume provides complete reference on using SOPC
Builder, including topics such as building memory subsystems and creating custom components.

For a complete list of all documents available for the Nios II processor, visit the Nios II literature page at
www.altera.com/nios2.

34 Altera Corporation
Nios Il Hardware Development Tutorial May 2006



Taking the Next Step

© 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
/N |:E=. ﬁ)/ \ Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or
- - service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S.

101 Innovation Drive and other countries. All other product or service names are the property of their respective holders. Altera

San Jose, CA 95134 products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights,
(408) 544-7000 and copyrights. Altera warrants performance of its semiconductor products to current specifications in
www.altera.com accordance with Altera’s standard warranty, but reserves the right to make changes to any products and
Applications Hotline: services at any time without notice. Altera assumes no responsibility or liability arising out of the application or
(800) 800-EPLD use of any information, product, or service described herein except as expressly agreed to in writing by Altera.

Literature Services:

. Altera customers are advised to obtain the latest version of device specifications before relying on any published
literature@altera.com

information and before placing orders for products or services.

T.8. EN TS0 9001

Altera Corporation 35
May 2006 Nios Il Hardware Development Tutorial


mailto:literature@altera.com

	Introduction  
	Example Design 
	Software & Hardware Requirements 

	Nios II System Development Flow 
	Analyzing System Requirements 
	Defining & Generating the System in SOPC Builder 
	Quartus II Hardware Development Tasks 
	Nios II IDE Software Development Tasks 
	Running & Debugging Software on the Target Board 
	Varying the Development Flow 
	Refining the Software and Hardware 
	Iteratively Creating a Nios II System 
	Verifying the System with Hardware Simulation Tools 


	Creating the Example Design 
	Install the Design Files 
	Analyze System Requirements 
	Start the Quartus II Software and Open the Tutorial Example Design Project 
	Start a New SOPC Builder System 
	Define the System in SOPC Builder 
	Specify Target FPGA & Clock Settings 
	Add the Nios II Processor Core 
	Add the On-Chip Memory 
	Add the JTAG UART Peripheral 
	Add the Timer Peripheral 
	Add the System ID Peripheral 
	Add the PIO 
	Specify Base Addresses and Interrupt Request Priorities 
	Specify More Nios II Settings 
	Generate the SOPC Builder System 

	Integrate the SOPC Builder System into Quartus II Project 
	Instantiate the SOPC Builder System Module in the Quartus II Project. 
	Assign FPGA pins 
	Compile the Quartus II Project and Verify Timing 

	Download Hardware Design to Target FPGA 
	Develop Software Using the Nios II IDE 
	Create a New C/C++ Application Project 
	Compile the Project 

	Run the Program 
	Run the Program on Target Hardware 
	Run the Program on the ISS 


	Taking the Next Step 

