

Nios II IDE Help System

UG-N2IDEHELP-1.0

Nios II IDE Version: 6.0
Document Version: 1.0
Document Date: May 2006

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

http://www.altera.com/

Altera Corporation ii

Table Of Contents
About This Document...1

Welcome to the Nios II IDE...3

What's New in the Nios II IDE v6.0 ..6

Tutorials .. 16

About Tutorials... 16

Creating a C/C++ Application Project .. 17

Building the Project... 19

Running the Project .. 20

Debugging the Project ... 23

Editing the Project Properties ... 32

Creating Projects... 34

About Nios II IDE Projects.. 34

About the Nios II IDE Managed-Make Build Environment .. 36

Creating a New Project .. 42

Importing, Exporting and Sharing Projects and Files .. 46

Configuring Projects... 48

About Project Properties .. 48

Configuring Project Properties .. 49

Choosing and Configuring an Operating System .. 50

Choosing and Configuring Middleware Software Components... 51

Configuring Project Dependencies ... 52

Editing Code ... 54

About Editing Code ... 54

Building Projects ... 55

About Building Projects.. 55

Building a Project ... 56

Running and Debugging Projects ... 57

About Running and Debugging Projects.. 57

Configuring the FPGA .. 59

Running and Debugging on Hardware .. 61

Running and Debugging on the ISS ... 63

Running on the ModelSim Simulator .. 65

Running and Debugging Multiprocessor Collections .. 66

Viewing Execution Trace .. 68

Viewing Disassembly... 70

Profiling Execution Performance... 72

About Profiling with the Nios II IDE ... 72

Profiling C Code.. 73

Table Of Contents

Altera Corporation iii

Storing Firmware on the Target Board .. 75

About Storing Firmware... 75

Programming Flash ... 76

Features and Terms Reference .. 78

Advanced Debugging Features by FS2 ... 78

C-to-Hardware Acceleration (C2H) Compiler ... 79

Hardware Abstraction Layer (HAL) .. 80

Hardware Simulation with ModelSim.. 81

Hardware Target .. 82

Host-Based File System... 83

Instruction Set Simulator (ISS)... 85

Lightweight TCP/IP Stack... 87

MicroC/OS-II RTOS ... 88

Multiprocessor Nios II Systems ... 89

Run/Debug Configuration... 90

Valid Project Names .. 91

Zip Read-Only File System ... 92

GUI Reference .. 93

Flash Programmer Dialog Box... 93

Import Wizard.. 95

New Project Wizard... 96

New Project Wizard .. 96

New C/C++ Application (New Project Wizard) .. 97

New System Library (New Project Wizard) ... 99

New Managed Library (New Project Wizard) ... 100

New Advanced C/C++ Project (New Project Wizard).. 101

Preferences Dialog Box.. 102

Preferences Dialog Box ... 102

Nios II Page (Preferences Dialog Box) ... 103

New Projects Page (Preferences Dialog Box) .. 104

Trace Page (Preferences Dialog Box)... 105

Profiling Perspective.. 106

Profiling Perspective ... 106

Call Hierarchy View (Profiling Perspective) ... 107

Editor View (Profiling Perspective) .. 108

Samples - Function Total View (Profiling Perspective) .. 109

Samples - Line By Line View (Profiling Perspective)... 110

Project Properties Dialog Box.. 111

Properties Dialog Box ... 111

Associated System Library Page (Properties Dialog Box) .. 113

Nios II IDE Help System

iv Altera Corporation

Builders Page (Properties Dialog Box) ... 114

C/C++ Build Page (Properties Dialog Box) ... 115

C/C++ Documentation Page (Properties Dialog Box) ... 117

Project References Page (Properties Dialog Box)... 118

System Library Page (Properties Dialog Box).. 119

RTOS Options Dialog Box (System Library Properties Page)...................................... 122

Software Components Dialog Box (System Library Properties Page) 123

Run/Debug Dialog Box .. 124

Run/Debug Dialog Box.. 124

Common Tab (Run/Debug Dialog Box) .. 126

Debugger Tab (Run/Debug Dialog Box) ... 127

ISS Settings Tab (Run/Debug Dialog Box) ... 129

Launch ModelSim Tab (Run Dialog Box) .. 131

Main Tab (Run/Debug Dialog Box) .. 132

Source Tab (Run/Debug Dialog Box)... 133

Target Connection Tab (Run/Debug Dialog Box) ... 134

Views.. 135

C/C++ Projects View (C/C++ Perspective) .. 135

Call Hierarchy View (Profiling Perspective) ... 139

Disassembly View (Debug Perspective) ... 140

Editor View (Profiling Perspective) .. 141

Samples - Function Total View (Profiling Perspective) .. 142

Samples - Line By Line View (Profiling Perspective)... 143

Trace View (Debug Perspective) ... 144

Workspace Launcher Dialog Box ... 145

Troubleshooting .. 146

Altera Corporation 1

 About This Document

This document provides complete reference for the Nios II integrated development
environment (IDE), including details of the IDE design flow and tutorials on using the IDE. This
document is based on the HTML content of the Nios II IDE help system. Altera provides this
content as a PDF file to make it accessible as a stand-alone document outside of the Nios II
IDE.

The content for this document was developed as an interactive help system. However, the PDF
file does not provide the interactive functionality. In specific, this document does not provide
hyperlinks to related documentation. Use the following guidelines to find related
documentation listed in individual topics:

• Related Nios II IDE Help Topics are included in this PDF file.

• Related Eclipse Workbench User Guide Help Topics are available at
http://help.eclipse.org/help30.

• Related C/C++ Development (CDT) User Guide Help Topics are available at
http://www.eclipse.org/cdt.

• Related Topics on the Web provide specific URLs to locate the documents on the
Internet.

How to Contact Altera

For the most up-to-date information about Altera products, go to the Altera world-wide
website at www.altera.com. For technical support on this product, go to
www.altera.com/mysupport. For additional information about Altera products, consult the
sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/
(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

www.altera.com/mysupport/
+1 408-544-8767
7:00 a.m. to 5:00 p.m.
(GMT -8:00)
Pacific Time

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com literature@altera.com

Non-technical customer
service

(800) 767-3753 +1 408-544-7000
7:00 a.m. to 5:00 p.m.
(GMT -8:00)
Pacific Time

FTP site ftp.altera.com ftp.altera.com

Nios II IDE Help System

2 Altera Corporation

© 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
 Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork
rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by
Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any
published information and before placing orders for products or services.

Altera Corporation 3

 Welcome to the Nios II IDE

The Nios II integrated development environment (IDE) is the primary software development
tool for the Nios II family of embedded processors. The Nios II IDE provides a consistent
development platform that works for all Nios II processor systems. You can accomplish all
software development tasks within the Nios II IDE, including editing, building, debugging, and
profiling programs. The IDE allows you to create single-threaded programs as well as complex
applications based on a real-time operating system (RTOS) and middleware libraries available
from Altera and third-party vendors.

Design Flow:

A typical design flow with the Nios II IDE comprises the following stages:

• Create a project

• Configure the project properties

• Edit code

• Build the project

• Run and debug the project

• Profile execution performance

• Store the project firmware on a target board

Not all stages are required, depending on the particular design. At any stage, you can
return to a previous stage.

Getting Started:

The following help topics and cheat sheets help you to understand and start using the
Nios II IDE quickly.

• Quick-Start Tutorial
This cheat sheet guides you through the process of creating a new project,
compiling it, and running it on a Nios II development board.

To start the Nios II Quick-Start Tutorial, do the following:

1. On the Help menu, click Cheat Sheets... .

2. Click Nios II IDE Quick-Start Tutorial.

3. Click OK.

• Software Development Tutorial
This tutorial guides you through the complete software development process in
detail. You will compile, run, debug, set breakpoints, edit project properties, and
more.

• Nios II IDE Tour Cheat Sheet
This cheat sheet introduces you to the significant features of the IDE.

To start the Nios II IDE Tour cheat sheet, do the following:

1. On the Help menu, click Cheat Sheets... .

2. Click Nios II IDE Tour.

3. Click OK.

Nios II IDE Help System

4 Altera Corporation

Workbench, Perspectives, and Views:

The Nios II IDE is based on the popular Eclipse IDE framework and the Eclipse C/C++
Development Toolkit (CDT) plug-ins. The Nios II IDE inherits much of its behavior from
Eclipse, including the concepts of workbench, perspectives, and views.

The Eclipse graphical interface is called the workbench. Each Eclipse workbench window
contains one or more perspectives. Each perspective provides a set of capabilities aimed at
accomplishing a specific type of task. For example, the C/C++ perspective provides
facilities for editing and compiling C/C++ projects. Perspectives in the workbench
comprise one or more views. Views help you to organize and navigate the information in
your workbench. For example, the Registers view in the Debug perspective allows you to
inspect and edit the values of processor registers while debugging a project.

The Nios II IDE primarily uses the C/C++ and Debug perspectives, and also provides a
profiling perspective.

Projects and Workspace:

Nios II IDE projects are groups of files treated as a unit, containing source code,
makefiles, object files, libraries, and other related files. Projects contain the resources you
need to create, build, run, and debug within the Nios II IDE.

The Nios II IDE stores your projects in a directory called a workspace. You can define one
or more workspaces, as well as select the workspace to use for the current IDE session
using the Workspace Launcher dialog box.

Customizing Nios II IDE Preferences:

The Nios II IDE provides preferences to customize the IDE. The Eclipse IDE framework
offers user preference pages for all the Eclipse C/C++ Development Toolkit (CDT) plug-
ins. User preference pages let you define and control the look, feel, and behavior of your
workbench. Some preference pages are part of the standard Eclipse environment and
other preference pages are specific to the Nios II IDE.

The following Nios II IDE preferences pages affect how the Nios II IDE builds, stores, runs,
and debugs projects.

• Nios II Page (Preferences Dialog Box)

• New Projects Page (Preferences Dialog Box)

• Trace Page (Preferences Dialog Box)

Getting Help

The Nios II IDE provides an extensive help system that covers all aspects of the Nios II IDE.
This page you are reading right now is part of the IDE help system.

There are two ways to open the help system:

• Click Help Contents on the IDE Help menu to launch the help system, then click
Nios II IDE Help in the Contents pane. You can browse through topics in the
Contents pane, or use the Search box to search for a specific term across all help
topics.

• On Windows systems you can also press F1 at any point in the IDE to display context
sensitive help for the current window. A tool-tip appears with a simple description of
the window. If help is available for the window, you will see a Nios II Help link. Click
the link to jump to the topic in the help system.

Welcome to the Nios II IDE

Altera Corporation 5

Note: The Nios II IDE help system might not function properly on browsers older than
Firefox 1.0.7, Internet Explorer 6.0, Mozilla 1.7.12, Netscape Navigator 8.1, and Opera
8.5.1. In some older browsers, expandable text indicated by does not work. Click

 Show All in the upper-right corner to expand all text in the topic.

In addition to Altera-specific content, the Nios II IDE help system includes the Eclipse
Workbench User Guide and the CDT C/C++ Development User Guide. Altera-specific content
overrides any information found in the Eclipse or CDT user guides. Specifically, Eclipse and
CDT help topics relating to creating, building, and debugging projects are invalid. See the
Nios II IDE Help topics instead.

The help browser only works while the Nios II IDE is running. If the browser stays open after
you close the IDE, the navigation stops working.

 Related Nios II IDE Help Topics
• About Tutorials

 Related Eclipse and CDT Help Topics
• Workbench User Guide > Concepts > Help system
• C/C++ Development User Guide > Concepts > Perspectives available to C/C++

developers
• Workbench User Guide > Tasks > Working with perspectives
• Workbench User Guide > Reference > Preferences
• C/C++ Development User Guide > Reference > C/C++ preferences

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
programs for the Nios II processor.

• Nios II literature web page at www.altera.com/literature/lit-nio2.jsp - Contains all
documentation related to the Nios II processor.

• Eclipse Homepage at www.eclipse.org

Altera Corporation 6

 What's New in the Nios II IDE v6.0

Below are the most significant changes to the Nios II IDE for the v6.0 release.

Feature Description

Nios II C-to-
Hardware
Acceleration
(C2H)
Compiler
support

The Nios II IDE provides the user interface for Altera's new C2H Compiler,
enabling you to easily convert processor-intensive C functions to hardware
accelerators.

Refer to the Nios II C2H Compiler User Guide for more information.

Floating-point
instruction
software
support

The Nios II processor 6.0 provides hardware-accelerated floating-point
instructions. The compiler recognizes if the Nios II processor core has floating-
point hardware enabled, and emits appropriate instructions to take advantage of
the hardware.

What's New in the Nios II IDE v6.0

Altera Corporation 7

Refer to the Using Nios II Floating-Point Custom Instructions Tutorial for more
information.

Help System
Improvements

The help system for the Nios II IDE is reorganized, and has improved usability to
help you quickly find the information you need. (The page you are reading now is
part of the help system.) You can browse through topics in the Contents pane,
which is now arranged in order of the development flow, or use the Search box
to search for a specific term across all help topics.

What's New in the Nios II IDE v5.1:

Below are the most significant changes to the Nios II IDE for the v5.1 release:

Profiling
perspective

The Nios II IDE Profiling perspective allows you to conveniently analyze
GNU profiling (gprof) data stored in a gmon.out data file. The display
features of the Profiling perspective make the data much easier to read
and analyze, compared to reading the standard gprof text output.

Flash
programmer

The Nios II flash programmer has improved usability making it easier to
use the flash programmer on custom systems. While the flash
programmer GUI did not change, the background operation has
changed significantly. See the Nios II Flash Programmer User Guide.

Nios II
Device
Drivers
project
location
change

Device drivers for installed SOPC Builder components are now
referenced in linked folders within each system library project. The
Nios II IDE accommodates drivers for components, regardless of where
the components are installed. The system library contains one Device
Drivers folder for each path containing SOPC Builder components.

Nios II IDE Help System

8 Altera Corporation

What's New in the Nios II IDE v5.0:

Below are the most significant changes to the Nios II IDE for the v5.0 release:

New welcome
page

The Nios II IDE now opens with a new Welcome page. It contains
several pages for you to learn about the Nios II IDE, read tutorials, and
learn what's new in this release.

Cheat sheets You can now learn about the Nios II IDE with cheat sheets. Cheat
sheets provide step by step guidance on how to use the Nios II IDE, and
can automatically perform actions for you. To view the cheat sheets,
choose Window > Help > Cheat Sheets in the Nios II IDE.

What's New in the Nios II IDE v6.0

Altera Corporation 9

New look and
feel

The workbench has a new look and feel. Here are some of the things to
notice:

• Title bars and tabs for views and editors look different.

• Title bars and tabs for views and editors include maximize and
restore options.

• Views also include a minimize option.

• The perspectives toolbar has greater flexibility.

o The toolbar can be docked on the top right (default), top
left or left.

o Perspective buttons include text for quickly identifying
the current perspective.

Right-click on a perspective icon to set these preferences.

• Drag and drop now offers better feedback while dragging.

• The workbench includes many other minor items such as
fastview style, status bar style, border widths, shading, etc...

Nios II IDE Help System

10 Altera Corporation

Run tasks in
the
background

The Nios II IDE now offers a higher level of responsiveness, with
support for performing builds, searches, and launches in the
background.

Productivity improvements include the following:

• Progress view

• Status line entry showing what's running in the background

• Dialog box for showing operations that you can optionally run in
the background

Open external
files

You can now open and edit files that are not in the IDE workspace,
using the File > Open External File... feature.

Simplified
build
commands &
new "make
clean..."
option

There is now a simplified set of build commands in the Project menu.
The new Clean... command replaces the previous Rebuild All and
Rebuild Project commands. The Build Project command in the
Project menu is smarter, and builds out-of-date prerequisite projects
used by the selected project. A new Build Working Set submenu lets
you choose a set of projects to be built; this command brings all
projects in that working set up to date, building any prerequisite
projects that are not in the working set if (and only if) required. You can

What's New in the Nios II IDE v6.0

Altera Corporation 11

quickly toggle auto-build on and off with Build Automatically.

Exclude
source files
from a C/C++
Nios II
project build

You can now control which source files are compiled when building a
C/C++ project by using the new Exclude from Build feature. To
exclude a file, select a C/C++ file in a Nios II C/C++ project, right click,
and turn on Properties > C/C++ Build > Exclude from build.

System
library source
code
navigation
improvements

You can now open header files, typedefs and structs declared in system
library source files, from the C/C++ Outline view. This is now possible
because the system library include paths are added to the Nios II IDE
search list.

Build before
launch is now
a global
preference
setting

The setting to automatically build a C/C++ application before launching
a run/debug session has moved from the individual run/debug
configuration dialog box to the global preference setting Window >
Preferences > Run/Debug > Launch > Build (if required) before
launching.

Nios II IDE Help System

12 Altera Corporation

Stack, heap &
exception
stack memory
assignment

You now can individually specify memory sections for the stack, heap
and exception stack. This setting is available on the system library
project's Properties > System Library page.

Stack
overflow
checking

The Nios II IDE and compiler now allow you to perform run-time stack
memory overflow checks. Turn on Run time stack checking in the
system library project System Library properties page.

Emulate
multiply and
divide
instructions

You can now disable the software emulation of multiply and divide
instructions, resulting in reduced code size. Turn on Emulate multiply
and divide instructions in the system library project System Library
properties page.

Host based
file system

The host based file system is a new software component that allows
allows the target processor to read from and write to files on the host
computer in the C/C++ application project directory.

What's New in the Nios II IDE v6.0

Altera Corporation 13

Open type Use Open Type to open up the declaration of C/C++ classes,
structures, unions, typedefs, enumerations and namespaces.
Specifically, you can open declarations from the Nios II Device Drivers
project.

Mixed C/C++
source
disassembly
debug view

You can now view interleaved C/C++ source code and disassembly
code. To open the Disassembly view, choose Window > Show View >
Other... > Debug > Disassembly.

Nios II IDE Help System

14 Altera Corporation

Start
debugging
from the
program
entry point

You can now start a debug session and pause the program at the
program entry point. This is typically _start or the reset address. To
break at the program entry point, open the appropriate run/debug
configuration, from the Run > Debug... menu, select the Debug tab,
and turn on Break at program entry point.

Persistent
settings
across debug
sessions

Many debug settings now persist between debug sessions, including
expressions, breakpoints, global data watchpoints, and global variables.

Disabling and
skipping
breakpoints

The Breakpoints view now has checkboxes for quickly disabling and re-
enabling breakpoints. The new Skip All Breakpoints button turns off
all breakpoints in the workspace. The Window > Preferences >
Run/Debug page also offers a setting to skip breakpoints during run-
to-line operations.

New Nios II
IDE
Executable
(nios2-
ide.exe)

The new Nios II IDE executable uses the environment variables
SOPC_KIT_NIOS2 and QUARTUS_ROOTDIR to construct the runtime
environment when starting up.

As a result, the Tools Location page (Window > Preferences >
Nios II > Tool Locations) is no longer required, and has been
removed.

What's New in the Nios II IDE v6.0

Altera Corporation 15

Session
workspace
path

The Nios II IDE stores your projects in a directory called a workspace.
Each user can now define a separate workspace to keep their
environments separated as desired. Additionally, workspaces allow
more than one instance of the Nios II IDE to run simultaneously, with
each instance pointing to a different workspace.

Altera Corporation 16

Tutorials

 About Tutorials

The Nios II IDE provides tutorials so beginning Nios II developers can get familiar with the
development environment, user interface, and software development process. The following
sections describe tutorials available in the Nios II IDE. The Altera website also provides
tutorials that Nios II developers might find useful.

Quick-Start Tutorial:

This tutorial guides you through the process of creating a new project, compiling it, and
running it on a Nios development board. You will create a new C/C++ application project,
and compile a hello world program.

To start the Nios II quick-start tutorial, do the following:

1. On the Help menu, click Cheat Sheets.....

2. Click Nios II Quick-Start Tutorial.

3. Click OK.

Software Development Tutorial:

This tutorial provides the information you need to create, build, and debug a C/C++
application and its associated system library. The tutorial steps you through running and
debugging Nios II software on a target board and the instruction set simulator. It also
explains various options available for configuring your project.

The tutorial is part of this help system and contains the following topics:

• Creating a C/C++ Application Project - Create a C/C++ application project
containing your application code and corresponding build settings.

• Building the Project - Build your C/C++ application project.

• Running the Project - Set up a run/debug configuration and run your application
code on a target board or the instruction set simulator.

• Debugging the Project - Debug your code, set breakpoints, step though your code,
and view memory contents.

• Editing the Project Properties - Edit your application project and system library
properties.

Use the links near the bottom of each tutorial page to advance to the next and previous
tutorial pages.

 Related Topics on the Web
• Nios II Hardware Development Tutorial at

www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
• Literature: Nios II Processor at www.altera.com/literature/lit-nio2.jsp - Contains links

to several tutorials and other "how to" information.

Tutorials

Altera Corporation 17

 Creating a C/C++ Application Project

A C/C++ application project contains your program code and corresponding build settings. In
this tutorial you create a C/C++ application project for the full featured hardware design
provided in the Nios II Embedded Design Suite (EDS). The example C program exercises the
visible output devices on a Nios development board, such as the LEDs and LCD screen.

Follow the steps below to create a C/C++ application project using the New Project wizard.

1. On the File menu, point to New, and then click C/C++ Application. The New
Project wizard appears.

2. Type tutorial as the name of the project in the Name box.

3. Accept the default location for the Nios II C/C++ application project by leaving Use
Default Location on. The default location is shown in the Location box. The name of
the project directory is the project name, tutorial.

Note: When on, the Nios II IDE creates the new project directory in the default
location specified in the New Projects preference page. At installation, the
default location is the <SOPC Builder system path>/software directory. Altera
recommends using this location because it keeps software files in proximity to the
system hardware files. Turning off Use Default Location allows you to specify an
alternative project location in the Location box.

4. Click Browse next to the SOPC Builder System box, and browse to the following
directory:

<Nios II EDS install path>/examples/verilog/<Nios development
board>/full_featured

5. Select the SOPC Builder system file (.ptf) in this directory (e.g. full_1c20.ptf) and
click Open. You return to the New Project wizard, with data appearing in the SOPC
Builder System and CPU boxes.

Note: The SOPC Builder system file describes the CPUs, memories, and
peripherals contained in a Nios II hardware system. SOPC Builder generates the
file, and the Nios II IDE uses it when building projects, downloading code, and
communicating with the target hardware. For designs targeting custom hardware,
obtain an SOPC Builder system from the hardware designer.

Note: If your SOPC Builder system has more than one Nios II CPU, you can select
a specific CPU for the project in the CPU box. Since the full_featured example
design contains only one CPU (named "cpu"), only one CPU is available in the list.

7. Select the Count Binary project template in the Select Project Template list. The
Count Binary example continuously sends a counting pattern to the LEDs, the seven
segment display, and the LCD display on the Nios development board.

Note: Each template is a collection of software files and project settings that
serve as a base for the new project. The Nios II IDE automatically copies the
source files into the new project's directory. You can add your own source code to
the project later.

8. Click Finish to exit the wizard. The New Project wizard closes, and you return to the
Nios II IDE workbench.

7.

Nios II IDE Help System

18 Altera Corporation

Note: The New Project wizard actually creates two projects when you click
Finish:

o The C/C++ application project tutorial contains your source code.

o The system library project tutorial_syslib contains drivers and library
files for the selected SOPC Builder system. The system library project
serves as a board support package for the target hardware.

8.

In the IDE workbench you can browse the software files in a project using the C/C++ Projects
view in the left-hand pane of the IDE. Double-clicking a file in the C/C++ Projects view opens
the file in the IDE editor.

Note: The left-hand pane in the IDE has two views: C/C++ Projects view and the
Navigator view. Click the C/C++ Projects tab at the top of the pane to display the C/C++
Projects view. This view is appropriate for most C/C++ development activity.

Now, you are ready to build your C/C++ application project.

Next: Building the Project

 Related Nios II IDE Help Topics

• Importing and Exporting Files and Projects - Contains details on importing C files into
the Nios II IDE.

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Tasks > Writing code - Describes how to

customize and use the C/C++ editor.

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
programs for the Nios II processor.

Tutorials

Altera Corporation 19

 Building the Project

Building a project in the Nios II IDE compiles and links all the source code associated with the
project and the system library project. The result of building is an executable file (.elf) that
you can run or debug.

Use one of the following methods to build the project:

• Right-click on the project in the C/C++ Projects view, and click Build Project.

• Click the project in the C/C++ Projects view, then click Build Project on the Project
menu.

 Note: Make sure you build the application project tutorial, not the system library
tutorial_syslib. Building the system library does not create an executable file.

When building a project, the Nios II IDE first builds all other projects that the current project
references. Therefore, the system library project is usually built first. Building a project the
first time might take a few minutes while the Nios II IDE builds the system library.
Subsequent builds are faster.

In the IDE workbench, the Console view displays messages generated by the GCC tool-chain
during compilation. The Problems view displays any warnings or errors. (In this example,
there are no errors.)

 Note: If building the project generates warnings or errors, the Problems view appears
automatically. You can double-click each row to jump to the line of code that caused the
warning/error.

 Note: The information displayed in the Console and Problems views depends on the
project selected in the C/C++ Projects view. If you accidentally select a different project,
you will see unexpected (or no) text in the Console and Problems views.

After successfully building the project, you can download and run the application on your
development board. Refer to Running the Project for instructions. To debug your application
on the board, refer to Debugging the Project.

Next: Running the Project

Previous: Creating a C/C++ Application Project

 Related Nios II IDE Help Topics
• C/C++ Projects View (C/C++ Perspective) - Contains details on options available by

right-clicking in the C/C++ Projects view.

Nios II IDE Help System

20 Altera Corporation

 Running the Project

Running a project in the Nios II IDE executes the project code so you can analyze the output.
You can run a project on these different targets using the Nios II IDE:

• Nios II hardware

• Nios II instruction set simulator (ISS)

• ModelSim hardware simulator

This tutorial discusses running on a Nios development board (i.e., a Nios II hardware target)
and on the ISS.

Running has the following basic steps.

To configure the hardware: (not necessary for the ISS)

When targeting Nios II hardware, you must configure the FPGA on the development board
with your project's associated SOPC Builder system. The factory-programmed SOPC
Builder system (i.e. the FPGA hardware design) on the Nios development board is different
than your project's SOPC Builder system. Therefore, your executable code will not run
unless you configure the FPGA with the expected SOPC Builder system.

 Note: You only need to configure the FPGA when you reset the board or if the SOPC
Builder system file changes. Normally, you configure the FPGA once after you apply
power to the board, and the configuration persists through the duration of the Nios II
IDE session.

To configure the FPGA, perform the following steps:

1. Click the tutorial project in the C/C++ Projects view.

2. Perform one of the following actions to launch the Quartus II Programmer. The
Quartus II Programmer is a tool for configuring Altera FPGAs via a JTAG download
cable, such as the USB Blaster.

o On Windows, click Quartus II Programmer... on the Tools menu.

o On Linux, launch the Quartus II software, and click Programmer on the
Tools menu.

3. Click Add File... in the Quartus II Programmer to browse to the FPGA
configuration file (.sof) for your project. The Select Programming File dialog
box appears.

4. Browse to <Nios II EDS install path>/examples/verilog/<Nios development
board>/full_featured, which is the location of the full_featured example
hardware design that corresponds to your Nios development board.

5. Click the file full_featured.sof, then click Open. You return to the Quartus II
Programmer.

6. Turn on the Program/Configure checkbox for the target device.

7. Click Start. When the progress meter progresses to 100%, configuration is
complete.

Tutorials

Altera Corporation 21

 Note: If Start is not enabled, click Hardware Setup to configure your Altera
download cable.

8. Close or minimize the Quartus II Programmer and return to the Nios II IDE.

 Note: If you are targeting a board other than the Nios development board, you need
to configure the Quartus II programmer differently, as specified by the board designer.
You can save the Quartus II configuration settings to a chain descriptor file (.cdf),
eliminating the need to configure the Quartus II programmer every time you configure
the device.

The board is now configured, and ready to run the project's executable code.

To run the project:

You can run your project on your target hardware, or on the ISS.

Running on Hardware

After configuring the target hardware, perform these steps to download and run the
executable code:

1. Right-click the tutorial project in the C/C++ Projects view.

2. Point to Run As, and then click Nios II Hardware. After a moment, the
board's LEDs, seven-segment display, and LCD screen count from 0x00 to 0xff,
pause, and then repeat.

The Console view in the IDE also displays the following:

* Hello from Nios II! *
* Counting from 00 to ff *

00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f,

Congratulations! The program is running on your development board.

 Note: If nothing displays on the LCD screen, disconnect the CompactFlash card, and
repeat the steps. The CompactFlash and LCD screen share lines on the Nios
development board, sometimes causing conflicts.

When targeting Nios II hardware, the Run As command does the following:

1. Creates a default run/debug configuration for the target board.

 Note: This step usually completes automatically without user intervention. If it
cannot (the most common cause is that you have multiple JTAG download
cables installed), the IDE displays an error message, and you must manually
set up a run configuration.

2. Builds the project. If the project is not up-to-date, then the IDE builds it first to
generate an up-to-date executable file.

Nios II IDE Help System

22 Altera Corporation

3. Establishes communication with the target board, and verifies that the expected
SOPC Builder system is configured in the FPGA. If the FPGA is not configured
properly, you should repeat the steps to configure the hardware.

4. Downloads the executable file (.elf) to memory on the target board.

5. Instructs the Nios II CPU to begin executing the code.

After using the Run As command once, to run again click Run on the toolbar.

Running using the ISS

To run using the ISS, perform these steps to run the executable code:

1. Right-click the tutorial project in the C/C++ Projects view.

2. Point to Run As, and then click Nios II Instruction Set Simulator. After a
moment, output displays in the Console view. The count output appears very
slowly because there are delay loops (usleep function calls) in the code.

 Note: The ISS does not model the LED, seven-segment display, or LCD peripherals.
Only the console output displays in the Console view.

To analyze the output:

Program output appears on the development board and in the Console view of the Nios II
IDE. The Console view maintains a terminal I/O connection with a communication device
connected to the Nios II processor in the SOPC Builder system, such as a JTAG UART.
When the Nios II program writes to stdout or stderr, the Console view displays the text.
The Console view can also accept character input from the host keyboard, which is sent to
the CPU and read as stdin. (The count_binary.c program does not read any input, so
typing in the Console view when running this project has no effect.)

To terminate the terminal connection to the target, click Terminate in the Console
view. Terminating only disconnects the host from the target; the target CPU continues
executing.

After successfully running the project, you are ready to learn how to use the debugger in the
next section of the tutorial.

Next: Debugging the Project

Previous: Building the Project

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Instruction Set Simulator (ISS) - Contains details on the capabilities and limitations of

the ISS.
• C/C++ Projects View (C/C++ Perspective) - Contains details on options available by

right-clicking in the C/C++ Projects view.

 Related Topics on the Web

• AN 351: Simulating Nios II Embedded Processor Designs at
www.altera.com/literature/an/an351.pdf - Contains details on ModelSim simulation.

Tutorials

Altera Corporation 23

Debugging the Project

The Nios II IDE contains an integrated debugger that allows you to debug your program on
Nios II hardware or on the instruction set simulator (ISS). This topic introduces the main
features of the debugger. The tutorial assumes you are working with a Nios II hardware
target. The process is the same for debugging on the ISS, with the exception of steps that
involve the target hardware.

Note: When debugging on Nios II hardware, the FPGA on the development board must be
configured with your project's associated SOPC Builder system. If you configured the
FPGA before running your project in the previous tutorial step, you do not have to
reconfigure the FPGA again unless you reset the board or remove power. If you need to
configure the FPGA, follow the steps to configure the hardware in the Running the Project
tutorial topic.

These sections describe how to control the flow of a debug session.

To display line numbers next to each line of code in the editor:

1. Click Preferences on the Window menu.

2. Expand C/C++, and click Editor.

3. Click the Appearance tab.

4. Turn on Show line numbers.

5. Click OK.

To download executable code and start the debugger:

1. Right-click the tutorial project in the C/C++ Projects view, point to Debug As,

and then click Nios II Hardware.

Note: To debug on the ISS instead, point to Debug As, and then click

 Nios II Instruction Set Simulator. The count_binary.c program used in
this tutorial primarily interacts with hardware on the development board which
cannot be simulated using the ISS. Some of the steps below do not work with
the ISS for this program.

2. If the Confirm Perspective Switch dialog box appears, click Yes.

After a moment, you see the main() function of the Count Binary design in the editor.
There is a blue arrow next to the first line of code, as shown below, indicating that
execution is stopped on this line. Note that the exact line numbers might vary on your
screen.

Nios II IDE Help System

24 Altera Corporation

Notice that the perspective of the Nios II IDE changed from the C/C++ Development
perspective to the Debug perspective. A perspective is a different configuration of the
Nios II IDE workbench. Refer to Related Topics for more information about perspectives.
You can switch between perspectives anytime by pointing to Open Perspective on the
Window menu or by clicking on the shortcut buttons on the far-left column of the Nios II
IDE window border.

When targeting Nios II hardware, the Debug As command does the following:

1. Creates a default run/debug configuration for the target board.

Note: This step usually completes automatically without user intervention. If it
cannot, the IDE displays an error message and you must manually set up a
run/debug configuration. The most common reason for manual intervention is
having multiple JTAG download cables installed. In this case you need to select
one manually.

2. Builds the project. If the project is not up-to-date, then the IDE builds it first to
generate an up-to-date executable file.

3. Establishes communication with the target board, and verifies that the expected
SOPC Builder system is configured in the FPGA.

4. Downloads the executable file (.elf) to memory on the target board.

5. Sets a breakpoint at main().

6. Instructs the Nios II CPU to begin executing the code.

After using the Debug As command once, you can click Debug on the toolbar to start
the debugger again.

To resume and suspend execution:

• Click Resume in the Debug view to resume execution. You can also resume
execution by pressing F8.

• Click Suspend in the Debug view to suspend execution. If the processor
suspends outside the scope of the current file, the IDE opens the source file
corresponding to the current program counter.

• Click Terminate in the Debug view to end the debug session and disconnect
from the target.

Note: The Debug buttons are context sensitive, depending on the currently highlighted
selection in the Debug view. Make sure you select an item under Nios II Elf
Debugger, as shown below, to ensure you are debugging the desired thread.

Tutorials

Altera Corporation 25

Refer to Related Topics for more information about the Debug view.

If you accidentally terminate the debug session, or the download cable connection is

interrupted, you can easily start a new debugging session by clicking Debug on the
toolbar.

To step through the C/C++ code line by line:

• Click Step Into. If executing a line of code that calls a function, the debugger
steps into the function. Otherwise it executes the line of code and suspends on the
next line in the current function. You can also step into a function by pressing F5.

• Click Step Over. If executing a line of code that calls a function, the debugger
executes the entire called function and suspends on the next line in the current
function. Otherwise it executes the line of code and suspends on the next line in
the current function. You can also step over a line of code by pressing F6.

• Click Step Return. The debugger finishes executing the current function,
returns to the calling function, and suspends on the next line in the calling
function. You can also step return from a function by pressing F7.

To use breakpoints and watchpoints:

You can set breakpoints on specific lines of code, remove breakpoints, or disable them
temporarily. Enabled breakpoints suspend execution when the processor reaches that line
of code.

To set a breakpoint for this example:

1. If the processor is running, select Thread [0] (Running) in the Debug view and

click Suspend. You can only add breakpoints while the processor is suspended.

2. Click the count_binary.c tab in the editor.

3. On the Edit menu, click Find/Replace....

4. Type count == 0xff in the Find box, then click Find. The editor displays the
appropriate line of code.

5. Click Close in the Find/Replace dialog box.

6. Double-click in the margin next to the line if(count == 0xff) to set a
breakpoint. You can also right-click the margin and click Toggle Breakpoint. The

 breakpoint symbol appears in the margin, as shown below.

Nios II IDE Help System

26 Altera Corporation

Note: You must click in the margin to the left of the line of code. Clicking
within the editor does not affect breakpoints.

7. Click Resume in the Debug view. The processor resumes and then suspends
just before executing the line of code with the breakpoint. The editor displays an
arrow in the margin next to the suspended line of code. It might take a moment
for the program to execute to the breakpoint. Resume again to iterate through the
loop another time.

To remove a breakpoint:

1. Double-click the breakpoint symbol in the margin. You can also right-click the

 breakpoint symbol, and then click Toggle Breakpoint.

To disable a breakpoint:

1. Right-click the breakpoint symbol, and then click Disable Breakpoint.
Disabling temporarily prevents a breakpoint from suspending the processor while
leaving it in place for future reference.

To use Breakpoints view:

1. Click the Breakpoints tab in the upper-right pane of the Debug perspective to
display the Breakpoints view. This view displays the location and status of all
breakpoints you have previously set on specific lines in the code every time the
processor hits a breakpoint or suspends. Values that have changed since the last
time the processor suspended display in red.

2. Right-click a breakpoint in the list, and then click Enable, Disable, or Remove to
change the status of the breakpoint.

The Breakpoints view also displays watchpoints. Refer to Related Topics for more
information about debugging with watchpoints.

Several default views in the Debug perspective help you to organize, navigate, and analyze
your project during a debug session. The Nios II IDE updates each view every time the
processor hits a breakpoint or suspends. Values that have changed since the last time the
processor suspended display in red.

To view disassembly:

When the processor suspends, Disassembly view automatically appears. You can also open
the Disassembly view from the Window menu by pointing to Show View, and clicking
Disassembly. This view displays the assembly language instructions interleaved with the
C/C++ source code.

Tutorials

Altera Corporation 27

• Click Instruction Stepping Mode in the Debug view toolbar to allow single
stepping through the individual assembly instructions. Stepping through assembly
code advances the instruction pointer in the Disassembly view. Because multiple
assembly instructions represent a single line of C/C++ code, the instruction
pointer might not advance in the C/C++ Editor view with each step through the
assembly instructions.

• Click Instruction Stepping Mode a second time to return to single stepping
in the Editor view at the C/C++ statement level.

Note: If you do not have the source code for a function, stepping through the code
automatically uses Disassembly view regardless of whether instruction stepping mode
is on or off.

To view stack trace:

The Debug view displays the program execution stack and dynamically updates it as you
step through code. Any time the processor suspends, the Debug view displays the name of
the suspended function, and the sequence of function calls that led up to the current
program counter. This view provides a snapshot of your current position within the
program execution.

Refer to Related Topics for more information about the Debug view.

To view execution trace:

On the Window menu, point to Show View, and then click Trace. When executing a
program on a Nios II hardware target, the Trace view displays the exact execution trace of
the program running in hardware. This view provides a snapshot of the specific code that
executed to arrive at the current position.

To track variables:

Click the Variables tab in the upper-right pane of the Debug perspective to display the
Variables view. You can also point to Show View on the Window menu, and then click
Variables.

Local Variables

The Variables view automatically displays all variables local to the scope where the
processor is suspended. Use the Variables view to track and change variable values on-
the-fly during a debug session. This is useful to test your program's response to specific
conditions, or to force a loop index to skip over a loop.

The Variables view is context sensitive, depending on the currently selected function in the
Debug view's stack trace display. Selecting different functions allows you to see the
variables (and their current values) defined at each level of the stack trace.

Note: Hovering the mouse over a variable in the source code displays the variable's
value as a tool-tip. This is often the easiest way to see the value of a variable in the
current scope.

To change the value of a variable, right-click the variable name and then click Change
Value.... This opens the Set Value dialog box, which allows you to specify a new value
for the variable.

Global Variables

Nios II IDE Help System

28 Altera Corporation

You can also selectively display global variables, which are variables defined outside the
scope of all functions, but are available from within any function. In the count_binary.c
example, to track the global variable count in the Variables view, do the following:

1. If the processor is running, click Thread [0] (Running) in the Debug view, and

click Suspend.

2. Right-click in the Variables view and then click Add Global Variables..., or

click Add Global Variables on the Variables view toolbar.

3. Scroll down and turn on count.

4. Click OK. The variable count and its current value appears in the Variables view.
Because count is declared as a char type, it displays in ASCII format by default in
the Variables view.

Now, every time execution suspends, the Variables view displays the value for the variable
count.

Variables Display Format

You can change the display format of variable values appearing in the Variables view in
two ways. For example, to change the display format of a single variable to hexadecimal,
do the following:

1. Right-click the variable, point to Format, and then click Hexadecimal. The
format of the value changes.

To change the display format of all variables to hexadecimal, do the following:

1. On the Window menu, click Preferences.

2. Expand C/C++, Debug.

3. Select Hexadecimal in the Default variable format list.

4. Click OK to close the Preferences dialog box.

The format of the values for local variables changes the next time you resume
execution. The format of the values for global variables changes the next time you restart
the debug session.

Refer to Related Topics for more information about variables.

To track watch expressions:

Click the Expressions tab in the upper-right pane of the Debug perspective to display the
Expressions view. You can also point to Show View on the Window menu, and then click
Expressions. This view displays user-specified C expressions evaluated at the current
scope. When the processor suspends, the Expressions view evaluates each of the
expressions, and displays the value.

In the count_binary.c example, to track the arbitrary expression count==5 in the
Expressions view, do the following:

1. If necessary, use a breakpoint to stop execution on the line if(count == 0xff
), as described in the breakpoints section of this topic.

Tutorials

Altera Corporation 29

2. Highlight the expression count == 0xff in the code.

3. Right-click and then click Add Watch Expression.... The Add Watch
Expression dialog box appears with the Expression to watch box automatically
filled in with the selected text: count==0xff.

4. Change Expression to watch to count==5.

5. Click OK. The expression appears in the Expressions view in
the upper-right window.

Now, every time execution suspends at a breakpoint, the Expressions view evaluates the
expression count==5. If execution suspends when count equals 5, then count==5
evaluates true, signified by the expression count==5=1.

You can assign an IDE preference to show expressions values in a different format, such
as hexadecimal, as described in variables section of this topic. However, you must restart
the debug session to force the format to change. Refer to Related Topics for more
information about expressions.

To view and edit registers:

Click the Registers tab in the upper-right pane of the Debug perspective to display the
Registers view. You can also point to Show View on the Window menu, and then click
Registers. This view displays the contents of registers.

To edit the contents of a particular register, right-click it in the Registers view and click

 Change Value....

Note: Altera recommends that you do not manually edit register values, because it
could cause your program to behave unpredictably.

You can assign an IDE preference to show register values in a different format, such as
hexadecimal, as described in variables section of this topic. However, you must restart the
debug session to force the format to change. Refer to Related Topics for more information
about registers.

To view and edit memory:

Click the Memory tab in the upper-right pane of the Debug perspective to display the
Memory view. You can also point to Show View on the Window menu, and then click
Memory. This view displays the contents of memory.

The Memory view has four tabs, Memory 1 to Memory 4, which allows you to track
multiple locations in memory without having to continually type in addresses by hand. The
Address box accepts constants and expressions, which allows you to search for a memory
location by symbolic name.

Nios II IDE Help System

30 Altera Corporation

The following steps demonstrate various uses of the Memory view.

1. If the processor is running, click Thread [0] (Running) in the Debug view, and

then click Suspend.

2. In the Memory view, click the Memory 1 tab.

3. Type 0x00 in the Address box and click Evaluate. Note the contents.

4. Right-click in the memory contents area, point to Memory Unit Size, and then
click 4 bytes.

5. Click the Memory 2 tab.

6. Type &count in the Address box and click Evaluate. This displays memory
contents at the location where variable count is stored.

7. Click on the left edge of the top-left-most byte displayed in the Memory view.
(Clicking sets the insertion point. Do not highlight the byte.)

8. Type a value, such as 66. This updates the memory contents as you type. To move
to the next byte, use the right-arrow key. You can also scroll to the right edge of
the Memory view, click in the ASCII field, and type characters.

Note: When you use the Memory view to edit memory contents, the Nios II IDE writes
each hexadecimal digit to memory as you type it, i.e., 4 bits at a time. Or, if you click
in the ASCII area and type, data is written 8 bits at a time. While this is acceptable for
modifying memory, it is generally not suitable for accessing a peripheral's registers.
Currently, there is no way to write 32 bits at a time.

If the memory region displayed is located in read-only memory, the Nios II IDE does not
respond to attempts to edit the memory content. The Memory view is set to refresh itself
automatically; however, you can also manually refresh by right-clicking in the Memory

view, and then clicking Refresh.

Refer to Related Topics for more information about memory.

Next: Editing the Project Properties

Previous: Running the Project

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Instruction Set Simulator (ISS) - Contains details on the capabilities and limitations of

the ISS.
• Advanced Debugging Features by FS2

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Reference > C/C++ Views and Editors > Debug

view > Debug view
• C/C++ Development User Guide > Tasks > Running and Debugging > Adding

expressions
• C/C++ Development User Guide > Tasks > Running and Debugging > Debugging a

program > Adding watchpoints
• C/C++ Development User Guide > Tasks > Running and Debugging > Working with

memory
• C/C++ Development User Guide > Tasks > Running and Debugging > Working with

registers

Tutorials

Altera Corporation 31

• C/C++ Development User Guide > Tasks > Running and Debugging > Working with
variables

• Workbench User Guide > Tasks > Working with perspectives

Nios II IDE Help System

32 Altera Corporation

 Editing the Project Properties

A project's Properties dialog box controls how the program interacts with the system
hardware and how the Nios II IDE builds the application. Settings available vary for each
project type. Due to the way the Nios II IDE separates and associates C/C++ application
projects and system library projects, settings in a system library project can significantly
impact the C/C++ application project.

To view and modify C/C++ application project properties:

Right-click on the project in the C/C++ Projects view and click Properties, or click the
project in the C/C++ Projects view and then click Properties on the Project menu. The
Nios II IDE automatically sets most C/C++ application properties correctly for you.

To view and modify system library properties associated with a C/C++ application project:

Right-click a C/C++ application project, and then click System Library Properties.
Alternatively, you can right-click the system library project directly, and then click
Properties. System library properties specify how your program interacts with the
underlying hardware.

To reduce code footprint by editing system library properties:

This example reduces the code size of your executable program by adjusting the system
library properties. A significant reduction in code size is possible beyond the reduction
shown here, and the system library properties control more than code footprint. This
section simply demonstrates one way that editing system library properties can impact
your system.

First, rebuild the project and determine the original code size. Perform the following steps:

1. If a debug session is still running, click Terminate in the Debug view to
disconnect from the target.

2. Click the C/C++ Development perspective icon in the margin near the left edge
of the window.

3. Click the tutorial project in the C/C++ Projects view, and then click Clean.... on
the Project menu. The Clean? dialog box appears.

4. Select Clean selected projects.

5. Turn off Start a build immediately.

6. Click OK.

7. Right-click the tutorial project in the C/C++ Projects view, and choose Build
Project.

When the build completes, you can see the size of the resulting executable code, displayed
in the Console view:

Info: (tutorial_project.elf) 78 KBytes program size (code + initialized
data).

Tutorials

Altera Corporation 33

Note: The program size you see might differ depending on your target SOPC
Builder system.

Next, change the system library settings to reduce code size. Perform the following steps:

1. Right-click the tutorial project in the C/C++ Project view, and click System
Library Properties. The Properties dialog box appears.

2. Click System Library in the left-hand pane. The System Library page appears.

3. Turn off Clean exit (flush buffers) - This option affects how the program
behaves after main() returns. This example program, similar to most embedded
programs, never returns from main(). Therefore, the program has no need for any
post-main() code.

4. Turn on Reduced device drivers - This option causes each device driver in the
system library to link in a reduced foot-print version of its driver, if it has one. In
this example, the JTAG UART switches to a smaller, polled-operation driver (by
default it is interrupt-driven), which executes slower but has a smaller code foot-
print. The LCD driver's response to this option is to include no driver, and
therefore the LCD will stop functioning.

5. Click OK to accept these settings. You return to the Nios II IDE workbench.

6. Right-click the tutorial project in the C/C++ Projects view, and click Build
Project.

When the build completes, you can see the size of the resulting executable code, displayed
in the Console view:

Info: (tutorial_project.elf) 53 KBytes program size (code + initialized
data).

Congratulations! You have completed the Software Development Tutorial.

You can learn more about the Nios II IDE in the Nios II IDE Help, and by reading the Nios II
documentation located at <Nios II EDS install path>/documents/index.htm. On Windows,
you can click Start, point to Programs, Altera, Nios II, and then click Nios II
Documentation.

Previous: Debugging the Project

 Related Nios II IDE Help Topics
• Properties Dialog Box
• System Library Page (Properties Dialog Box)

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
programs for the Nios II processor.

Altera Corporation 34

Creating Projects

 About Nios II IDE Projects

An individual Nios II IDE project is a group of files treated as a unit, containing source code,
makefiles, binaries, and other related files. The Nios II IDE provides four project types.

C/C++ application project:

A C/C++ application project contains a C/C++ program, usually including a project's
main() function. Building a C/C++ application project results in an executable file (.elf)
that you can run on target hardware, the Nios II instruction set simulator (ISS), and the
ModelSim hardware simulator. A C/C++ application project depends on a single system
library project and might reference functions in a managed library project.

A C/C++ application project is a Nios II IDE managed-make project. The Nios II IDE
creates the necessary makefiles and manages the project for you.

System library project:

A system library project serves as a board-support package for the target hardware. A
system library project contains all settings that affect how a program interacts with the
target, including the hardware abstraction layer (HAL) code. C/C++ application projects
depend on a system library project, making the application code portable to other Nios II
systems. Multiple C/C++ applications can share a single system library.

A system library project contains automatically-generated code based on hardware-
specific information contained in two files provided by the hardware designer. Both of
these files are generated during the normal hardware development flow. SOPC Builder
generates the files, and the Nios II IDE uses them to create and build projects.

• The FPGA configuration file (.sof) - This binary file contains the hardware design
for the target FPGA. After downloading the .sof file to the board, the FPGA
behaves as specified by the hardware design, which in this case, includes a Nios II
processor system.

• The SOPC Builder system file (.ptf) - This file contains a description of the Nios II
processor system, including CPU cores, memories, and peripherals. The hardware
image of the SOPC Builder system is included in the FPGA configuration file.

After building a system library project, the Device Drivers directories found in the C/C++
Projects view under the system library project contain symbolic links to shared source
code, for example, the HAL system library and peripheral device drivers. These links allow
the Editor view to display shared code, so you can set breakpoints in the code. Do not
alter or delete anything in these directories.

Managed library project:

A managed library project can contain reusable, general purpose functions that multiple
C/C++ application projects can share. A library containing common arithmetical functions
is one example. Building a managed library project results in a .a library file. The Nios II
IDE manage these library projects for you. Managed library projects typically do not have
dependencies on a system library project. You can reference managed library projects
from C/C++ application projects or from other managed library projects.

Creating Projects

Altera Corporation 35

Advanced C/C++ project:

Using an advanced C/C++ project gives you total control over the build process. However,
creating and managing the makefile becomes your responsibility. The advanced C/C++
project can contain any files required by the makefile, and the result of building the
project is whatever you specify in the makefile. An Advanced C/C++ project is the same
as a standard make project in the Eclipse C/C++ Development Toolkit (CDT).

A typical executable program consists of two or more individual projects working in
conjunction. The most common combination is a C/C++ application project that depends on a
system library project.

Project properties control how the project builds and functions. Project dependencies allow a
project to reference other projects that reside in your workspace.

 Related Nios II IDE Help Topics
• About the Nios II IDE Managed-Make Build Environment
• Creating a New Project

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - The chapters related to the
hardware abstraction layer (HAL) system library contain details on system libraries
and the structure of Nios II software projects.

• Nios II Hardware Development Tutorial at
www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

Nios II IDE Help System

36 Altera Corporation

 About the Nios II IDE Managed-Make Build Environment

This topic describes the Nios II IDE build environment for building programs based on the
hardware abstraction layer (HAL) system library. If you are a typical user, the Nios II IDE
completely manages the build environment for you, relieving you of the need to understand
the inner workings of this managed-make environment.

Internally, the Nios II IDE uses a standard GNU GCC compiler tool chain to compile projects.
The Nios II IDE managed make environment translates your settings and actions in the GUI
into variables and rules in makefiles. The Nios II IDE manages the contents of the makefiles
associated with a project so that you do not need to know anything about makefiles. The
Nios II IDE provides a helpful interface for building complex embedded programs, but there is
no hidden magic to how the Nios II IDE builds projects; in the end, executable software files
are generated by running make.

The Nios II IDE manages the complex task of building software for the Nios II soft-core
processor architecture, which can change from project to project. You might find it useful to
understand how the Nios II IDE manipulates makefiles if you need to separate the process of
building your project from the graphical user interface.

This topic assumes that you are familiar with:

• Using the IDE to build projects and browse through project source files
• HAL development concepts described in the Nios II Software Developer's Handbook
• Makefile usage and syntax
• The GCC compiler toolchain

For a full understanding of the inner workings of the build environment, opening and reading
the makefiles is as important as the information contained in this topic. Examples of all of the
makefiles discussed in this topic are located in the directory of any existing project created
with the Nios II IDE, or in the directory where the Nios II Embedded Design Suite (EDS) is
installed.

The following sections provide more details about the Nios II IDE managed-make build
environment.

HAL-Based Projects:

An executable program based on the HAL is constructed using two projects:

• A system library project - The system library project is used to build a library
which contains all of the system-specific device drivers, and HAL system routines.
This library is automatically configured to match the associated SOPC Builder
system hardware.

• An application project - The application project builds the user's application
software, and links it with a system library project.

The Nios II IDE manages the build process for both of these classes of project using the
makefiles described in this document.

Configuration information is communicated to the build process using the following files:

• SOPC Builder system file (.ptf) - The SOPC Builder system describes the
hardware configuration, and is generated by SOPC Builder. Every system library is
associated to exactly one SOPC Builder system.

Creating Projects

Altera Corporation 37

• .stf file - The .stf file describes a project's software configuration, and is
generated by the Nios II IDE. The .stf file contains the information captured
through the System Library properties page in the IDE.

• .cdtbuild file - The .cdtbuild file describes a project’s tool chain options, and is
generated by the Nios II IDE. The .cdtbuild file contains the information captured
through the C/C++ Build properties page in the IDE.

The .ptf, .stf, and .cdtbuild files are machine-generated files. You should not edit them
by hand.

HAL Source Code:

HAL source code is provided in a distributed form, meaning that the source is distributed
through a number of components. There is no single directory that contains all of the
source used to build the HAL system library. Which components are used to build the
system library is dependent on the system configuration (i.e. the SOPC Builder system and
.stf files).

All components provided with the Nios II Embedded Design Suite (EDS) are located in the
<Nios II EDS install path>/components and <SOPC Builder path>/components
directories.

All system libraries are built using the altera_hal component, which provides the core
HAL functionality, and the processor component, altera_nios2, which contains processor-
specific definitions for accessing the hardware. Additional components might also be
included which provide device drivers, operating system extension, and/or additional
system software (e.g. file systems).

Each component provides a makefile fragment, component.mk, which described the
source files it provides, and how they should be built into the system. This is described in
more detail below.

Makefile Overview:

The HAL build system locates the source code supplied by the components using the SOPC
Builder system, and information supplied by the user through the Nios II IDE. This is
achieved using a number of individual makefiles. At the top level of the build process are
the makefiles generated by the Nios II IDE. These include makefile fragments supplied
with the altera_hal component. These fragments define the source code to build, and the
rules which are to be applied. Figure 1 and Figure 2 below illustrate which files are
included into the top level makefile for application projects and system library projects.

Figure 1. The structure of a makefile for application projects

Nios II IDE Help System

38 Altera Corporation

Figure 2. The structure of a makefile for system library projects

Creating Projects

Altera Corporation 39

The following section describes the function of each of these included files. For detailed
implementation details, refer to the individual file concerned.

makefile

Both application and system projects contain at their top level a makefile generated by
the Nios II IDE. This makefile is stored within the project.

This file contains the information supplied through the IDE in the form of make variables.
For example, compiler flags defined by the user are added to the CFLAGS variable, e.g.
CFLAGS = -O0 -g --Wall

See the comments in the generated makefile for a complete list of the available
variables.

The intention is that these variables should be generically applicable regardless of which
operating system is being used. The rules which combine and use these variables are
supplied in two files: system.mk and app.mk.

The last line of a Nios II IDE generated makefile includes one of these two files. An
application project includes app.mk, and a system library project includes system.mk.
These are described below.

app.mk

This file is included into the top level makefile for application projects, and is supplied in
the build directory of the altera_hal component; app.mk is responsible for defining the
rules used to build the project. In practice this file defers the rule definitions to the
included file: app_rules.mk. app.mk only configures variables required by
app_rules.mk.

The key feature of this file is that it includes the auto-generated file, generated_all.mk,
to obtain a list of the components built into the library. generated_all.mk defines four

Nios II IDE Help System

40 Altera Corporation

lists of components being used, which are combined here to form the COMPONENTS
variable.

COMPONENTS is then used to construct: the include search path, and a list of the makefile
fragments supplied by the various components. These are then used by app_rules.mk.

system.mk

This file is included into the top level makefile for system library projects, and is supplied
in the build directory of the altera_hal component. It is responsible for defining the rules
used to build the system library project.

In practice this file defers the rule definitions to the included file, system_rules.mk;
system.mk restricts itself to simply configuring variables required by system_rules.mk.

The key feature of this file is that it includes the auto-generated file, generated_all.mk,
to obtain a list of the components to build into the library. generated_all.mk defines four
lists of components being used, which are combined here to form the COMPONENTS
variable.

COMPONENTS is then used to construct the source search path, the include search path, and
a list of the makefile fragments supplied by the various components. These are then used
by system_rules.mk.

generated_all.mk

The file generated_all.mk is generated from the contents of the SOPC Builder system
and .stf files, and is stored within the system library project. The rule used to generate
generated_all.mk is defined in gtf_rules.mk.

This file defines a list of make variables which are used by both application and system
projects. In particular this file defines the following variables:

• COMPONENTS_PROCESSOR

• COMPONENTS_OS

• COMPONENTS_SOFTWARE

• COMPONENTS_DEVICE_DRIVERS

These four variables provide a white space separated list of all of the components which
are to be used to build this system.

These lists are used by both app.mk and system.mk to construct search paths for
include and source files, and also to locate all of the component.mk files that are to be
included into the makefile. See below for a description of the component.mk files.

app_rules.mk

This file provides the common rules which are shared between HAL application projects
and HAL-based operating system (e.g. MicroC/OS-II) application projects. It defines the
all and clean rules, and then includes the files gnu_rules.mk and gtf_rules.mk.

app_rules.mk includes the auto-generated file generated_app.mk which defines all of
the "post .elf" build rules, such as the rules used to build flash programming files. The
content of generated_app.mk is dependent upon the system configuration and is
generated based on the settings in the SOPC Builder system and .stf files.

app_rules.mk is also responsible for ensuring that the build for the associated system
library project is up to date before proceeding with the build for the application project.

This file is located in the build directory of the altera_hal component.

system_rules.mk

This file provides the common rules which are shared between HAL application projects
and HAL-based operating system (e.g. MicroC/OS-II) system projects. It defines the all
and clean rules, and includes the files gnu_rules.mk and gtf_rules.mk.

Creating Projects

Altera Corporation 41

This file is located in the build directory of the altera_hal component.

generated_app.mk

The file generated_app.mk is generated from the contents of the SOPC Builder system
and .stf files, and is stored in the system library project. The rule used to generate
generated_app.mk is defined in gtf_rules.mk.

This file defines all of the rules that are to be run as a part of the build process after the
.elf file has been created, for example the rules to build flash programming files.

common.mk

This file defines some useful define statements common to both system library and
application projects. It redefines the SOPC_KIT_NIOS2 environment variable so that it is
defined with a UNIX rather than DOS path as required by the GNU tool chain. It also
supplies the location of the .stf file to use.

This file is located in the build directory of the altera_hal component.

component.mk

Each component supplies a makefile fragment named component.mk within the
component's HAL/src directory. This fragment defines a list of the source files that are to
be built into the system library. In addition it optionally defines any additional rules and/or
make variables that are required for the component to be integrated into the build
process. See the description of component.mk in the Nios II Software Developer's
Handbook.

gnu_rules.mk

This file defines the rules for the GNU tools that are used for compiling, archiving, linking,
and generating the objdump file. It is located in the build directory of the
altera_halcomponent.

gtf_rules.mk

This file defines the rules for generating files which are dependent on the .stf and SOPC
Builder system, i.e. generated_app.mk, generated_all.mk, generated.sh,
generated.x, alt_sys_init.c and system.h. It is located in the build directory of the
altera_halcomponent.

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - The chapters related to the
hardware abstraction layer (HAL) system library contain details on system libraries
and the structure of Nios II software projects.

Nios II IDE Help System

42 Altera Corporation

 Creating a New Project

To create a new project in the Nios II IDE:

1. On the File menu, point to New, and then click Project.... The New Project
wizard appears and presents a list of all project types available.

2. Expand Altera Nios II in the Wizards list. A list of the four Nios II project types
appears.

3. Click the desired project type.

4. Click Next.

Each of the four types of projects has a different set of wizard pages. The flow of the wizard
differs, depending on which project type you select.

To create a C/C++ application project:

Follow these steps using the C/C++ Application pages of the New Project wizard.

1. Type a meaningful valid project name in the Name box. If you do not supply a
name, the Nios II IDE creates one for you when you select a project template in
step 5.

2. Specify a location for the Nios II C/C++ application project by doing one of the
following.

• Turn on Use Default Location. The default location is shown in the
Location box. The name of the project directory is the project name. The
Nios II IDE creates the new project directory in the default location
specified in the New Projects preference page.

Note: After installing the Nios II IDE, the default location is the
<SOPC Builder system path>/software directory. Altera
recommends using this location, because it keeps software files in
proximity to the system hardware files. This can help when sharing
project files with other people.

• Turn off Use Default Location and specify an alternative project location
in the Location box. You can click the Browse... button next to the
Location box to browse the file system.

3. Specify the SOPC Builder system file (.ptf) that describes your target hardware in
SOPC Builder System. You can click the Browse... button next to the SOPC
Builder System list to browse the file system for a .ptf file. Previously used
systems appear in the drop-down list.

4. Select a specific CPU for the project in the CPU list. If your SOPC Builder system
has only one CPU, the Nios II IDE sets CPU automatically.

5. Select a project template in the Select Project Template list. As you click the
project templates, information about each template appears in the Description
and Details boxes. Each template is a collection of software files and project
settings that serve as a base for the new project. You can add your own source
code to the project later.

Note: Use the Blank Project template to avoid copying any files into the new

Creating Projects

Altera Corporation 43

project.

6. If you want the Nios II IDE to create a default associated system library for you,
skip to step 9.

7. Click Next. The next page of the wizard appears, showing options for an
associated system library project.

8. Specify how you want to associate the C/C++ application project to a system
library by doing one of the following.

• Click Create a new system library named: <application project
name>_syslib. This option creates a default HAL system library project
to accompany your C/C++ application project. This option is usually
desirable for single-threaded Nios II programs.

• Click Select or create a system library, then select an existing system
library in the Available System Library Projects list. Alternatively, you
can click New System Library Project... to create a new system library
project.

Note: Multiple C/C++ application projects can depend on the same
system library. This can be desirable, for example, if the system library
includes a large operating system that takes effort to configure once,
and you rarely configure it again.

9. Click Finish. The Nios II IDE creates new directories for your C/C++ application
project and system library project. The IDE copies the template source files into
the project directories, and adds your projects to the list of available projects in
the C/C++ Projects view.

To create a system library project:

Follow these steps using the System Library page of the New Project wizard.

1. Type a meaningful valid project name in the Name box.

2. Specify a location for the Nios II system library project by doing one of the
following.

• Turn on Use Default Location. The default location is shown in the
Location box. The name of the project directory is the project name. The
Nios II IDE creates the new project directory in the default location
specified in the New Projects preference page.

Note: After installing the Nios II IDE, the default location is the
<SOPC Builder system path>/software directory. Altera
recommends using this location because it keeps software files in
proximity to the system hardware files. This can help when sharing
project files with other people.

• Turn off Use Default Location and specify an alternative project location
in the Location box. You can click the Browse... button immediately
adjacent to the Location box to browse the file system.

3. Specify the SOPC Builder system file (.ptf) that describes your target hardware in
SOPC Builder System. The SOPC Builder system file (.ptf) defines the CPUs and
peripherals included in the SOPC Builder system. You can click the Browse...
button next to the SOPC Builder System list to browse the file system for a .ptf
file. Previously used systems appear in the drop-down list.

Nios II IDE Help System

44 Altera Corporation

4. Select a specific CPU for the project in the CPU list. If your SOPC Builder system
has only one CPU, the Nios II IDE sets CPU automatically.

5. Select an RTOS in the Type of RTOS list.

6. Click Finish. The Nios II IDE creates a new directory for your system library
project, and adds your project to the list of available projects in the C/C++
Projects view.

Note: After creating a new system library project, you generally need to use the
System Library page of the Properties dialog box to configure the system library to
interact with the target hardware appropriately.

To create a managed library project:

Follow these steps using the Managed Library page of the New Project wizard.

1. Type a meaningful valid project name in the Name box.

2. Specify a location for the Nios II system library project by doing one of the
following.

• Turn on Use Default Location. The default location is shown in the
Location box. The name of the project directory is the project name. The
Nios II IDE creates the new project directory in the Nios II IDE workspace
folder, unless you have previously set another custom default location on
the New Projects preference page.

• Turn off Use Default Location and specify an alternative project location
in the Location box. You can click the Browse... button immediately
adjacent to the Location box to browse the file system.

3. Click Finish. The Nios II IDE creates a new directory for your managed library
project, and adds your project to the list of available projects in the C/C++
Projects view.

Note: After creating a new managed library project, you need to use the Project
References pageof the Properties dialog box for a C/C++ application project to
associate the library with the application.

To create an advanced C/C++ project:

An advanced C/C++ project is the same as a standard make project in the Eclipse C/C++
Development Toolkit (CDT). Refer to Related Topics for more information about standard
make projects.

Once your new project exists, you can edit the code, create new files within the Nios II IDE, or
import files into your project from outside the Nios II IDE.

 Related Nios II IDE Help Topics
• About Nios II IDE Projects
• About the Nios II IDE Managed-Make Build Environment
• Configuring Project Dependencies - Contains details on referencing libraries.

Creating Projects

Altera Corporation 45

• New Project Wizard
• New C/C++ Application (New Project Wizard)
• New System Library (New Project Wizard)
• New Advanced C/C++ Project (New Project Wizard)
• New Managed Library (New Project Wizard)
• New Projects Page (Preferences Dialog)

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Getting Started > CDT Standard Make Tutorial

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - The chapters related to the
hardware abstraction layer (HAL) system library contain details on system libraries
and the structure of Nios II software projects.

Nios II IDE Help System

46 Altera Corporation

 Importing, Exporting and Sharing Projects and Files

The Nios II IDE allows you to import and export existing projects, folders, and files. Importing
and exporting projects allows you to and archive projects and share projects with other
designers. Importing files allows you to associate files on your hard drive with a Nios II IDE
project.

To import files and folders:

Use an external file management tool (such as Windows Explorer) to "drag and drop" files
and folders onto the project folder in the C/C++ Projects view of the Nios II IDE. The
Nios II IDE automatically recognizes files and folders in the project folder and associates
them with the project. After copying, you might have to right-click the project in the
C/C++ Projects view, and then click Refresh for the Nios II IDE to recognize the files.

Alternatively, you can copy files and folders into the project directory with an external file
management tool, and then click Refresh in the C/C++ Projects view to have the Nios II
IDE to recognize the files.

To import projects:

1. Copy the project directory where you want it to exist on the host file system.

2. In the Nios II IDE on the File menu, click Import.... The Import wizard appears.

3. Select Existing Altera Nios II Project into Workspace in the Select an
import source list.

4. Click Next. The Import Project From File System page appears.

5. Click Browse....

6. Navigate to the directory that contains the .project file for the project you wish to
import. Nios II project directories contain a .stf file and a .project file.

7. Click OK.

8. Click Finish. The Nios II IDE adds the project to the list of available projects in the
C/C++ Projects view.

Importing projects from an earlier version of the Nios II IDE might prompt you to convert
the project files to the new version. Converted projects will no longer load in previous
versions of Nios II IDE.

Importing previously built projects might prompt you to delete the build contents of the
project. Click Yes to prepare for a clean build when you next build the project.

Note: Avoid spaces in project names. Build problems might occur later if the project
name contains spaces.

To export projects:

Use an external file management tool (such as Windows Explorer) to copy the project
directory elsewhere. Files in the project directory and its subdirectories contain related
information about a project. You export a project by copying all of these files to another

Creating Projects

Altera Corporation 47

location. If you are concerned about size, you do not need to copy the Release or Debug
directories, because the build process will recreate them.

To see where a project resides, right-click on the project in the C/C++ Projects view and
then click Properties. The Info page of the Properties dialog box appears, displaying
the project's location.

Note: Common files that the project references, such as the software components
directories, are not exported as part of the project. If you want to archive them, you
have to copy them manually.

To share software projects:

You can share Nios II IDE projects with other Nios II IDE users by either copying files, or
using the CVS source control system. Refer to Related Topics for more information about
the CVS source control system.

To share software projects by copying files, use the import and export steps described in
this topic. Passing project files to another Nios II IDE user requires that you:

• Have the same version of the Nios II Embedded Design Suite (EDS) installed as
the other IDE user.

• Use the default locations for the C/C++ application project and system library
project when you create the projects. The default location keeps the software files
in a fixed location relative to the SOPC Builder system file (.ptf), so that the
Nios II IDE can find everything it needs to build the project.

• Include both the C/C++ application project and the system library project
directories.

• Include the FPGA configuration file (.sof) and SOPC Builder system file (.ptf),
which describe the target hardware.

• Optionally include any run/debug configurations associated with the project.

Note: Run/debug configurations by default reside separate from the project
files to keep project directories clutter free. To store a run/debug configuration
with its project, making it easier to track when sharing projects, select Shared
on the Common tab of the desired run/debug configuration and specify the
project's path in the Location box.

• Do not include the build directory, typically named "Debug" or "Release". The
contents of these directories will be re-generated on the new machine.

 Related Nios II IDE Help Topics
• About Nios II IDE Projects

 Related Eclipse and CDT Help Topics
• Workbench User Guide > Reference > Import Wizard
• Workbench User Guide > Concepts > Team Programming with CVS

Altera Corporation 48

Configuring Projects

 About Project Properties

Project properties control how the Nios II IDE builds a project and how programs interact with
the system hardware at runtime. The Nios II IDE offers multiple project types, and project
properties depend on the project type.

For executable application projects, properties such as preprocessor and compiler settings
determine how the project builds. For system library projects, properties affect how the
application program interacts with the target. Because all C/C++ application projects depend
on a system library project, system library project properties significantly impact the compiled
results of a C/C++ application project. For this reason, the system library properties are
typically the most important settings for a Nios II IDE project.

You configure RTOS and middleware software component settings as part of the system library
properties.

 Related Nios II IDE Help Topics
• Configuring Project Properties
• Choosing and Configuring an Operating System
• Choosing and Configuring Middleware Software Components
• Configuring Project Dependencies
• Properties Dialog Box

Configuring Projects

Altera Corporation 49

 Configuring Project Properties

Project properties control how the Nios II IDE builds the project and how the program
interacts with the system hardware at runtime.

To configure a project's properties:

1. Right-click on the project in the C/C++ Projects view, and click Properties. The
Properties dialog box appears.

2. Click the page titles in the left-hand pane to view and edit project properties, as
described in the Properties dialog box topics.

Note: For C/C++ application projects, the most important project settings
generally relate to the application's interaction with the hardware. You specify
these settings in the System Library page of the Properties dialog box for the
system library project associated with your application.

3. Click OK to close the Properties dialog box.

 Related Nios II IDE Help Topics
• About Project Properties
• Properties Dialog Box

Nios II IDE Help System

50 Altera Corporation

 Choosing and Configuring an Operating System

By default, the Nios II IDE uses the hardware abstraction layer (HAL) single-threaded runtime
environment. You can optionally include a real-time operating system (RTOS) as part of your
system library project. Altera provides the MicroC/OS-II RTOS, and other vendors can provide
their own OS as a plug-in.

You add and configure OS options using the System Library page of the Properties dialog
box.

To enable MicroC/OS-II for your project:

1. Right-click the C/C++ application project in the C/C++ Projects view.

2. Click System Library Properties. The Properties dialog box appears.

3. Click System Library in the left-hand pane of the Properties dialog box.

4. Select MicroC/OS-II in the RTOS drop-down list.

5. Click Apply to save the new RTOS setting. A warning appears to confirm that you
really want to reset the RTOS options to their defaults.

6. Click Yes.

7. Click RTOS Options.... The MicroC/OS-II RTOS Options dialog box appears.
The Nios II Software Developer's Handbook briefly describes the RTOS options. For
full details on configuring the MicroC/OS-II kernel, see Chapter 17: MicroC/OS-II
Configuration Manual of the book MicroC/OS-II: The Real-Time Kernel, Second
Edition by Jean Labrosse (CMP Books).

8. Click OK to save the settings and close the MicroC/OS-II RTOS Options dialog
box.

9. Click OK to close the Properties dialog box.

The system library will include the MicroC/OS-II kernel the next time you build the project.
Your program code can use the MicroC/OS-II API.

 Related Nios II IDE Help Topics
• MicroC/OS-II RTOS
• System Library Page (Properties Dialog Box)

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
Nios II programs based on MicroC/OS-II.

• Using MicroC/OS-II RTOS with the Nios II Processor Tutorial at
www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf - Contains step-by-
step instructions on creating MicroC/OS-II applications.

Configuring Projects

Altera Corporation 51

 Choosing and Configuring Middleware Software Components

Software components are middleware software modules that the Nios II IDE recognizes and
can automatically link into a software project. You add and configure software components
using the System Library page of the Properties dialog box.

The following software components are available from Altera:

• Host Based File System

• Lightweight TCP/IP Stack

• Zip Read-Only File System

Other vendors can provide their own software components as plug-ins.

To enable a software component:

1. Right-click the system library project in the C/C++ Projects view, and click
Properties. The Properties dialog box for the system library project appears.

2. Click System Library in the left-hand pane.

3. Click Software Components.... The Software Components dialog box appears.

4. Click the software component you wish to enable in the left-hand pane.

5. Turn on Add this software component.

6. Specify the software component settings.

7. Click OK to save the settings and close the Software Components dialog box.

The system library includes the software component the next time you build the project.

 Related Nios II IDE Help Topics
• Host-Based File System
• Lightweight TCP/IP Stack
• Zip Read-Only File System
• System Library Page (Properties Dialog Box)
• Software Components Dialog Box (System Library Properties Page)

Nios II IDE Help System

52 Altera Corporation

 Configuring Project Dependencies

Projects in the Nios II IDE can be dependent on other Nios II IDE projects. C/C++ application
projects inherently depend on a single system library project. C/C++ application projects and
advanced C/C++ projects can also depend on managed library projects. Managed library
projects can depend on other managed library projects. During the build process for a project,
the Nios II IDE first builds all dependent projects.

The Nios II IDE automatically establishes a dependency between the C/C++ application
project and the system library project at the time you create the C/C++ application project.
You do not and should not create project dependencies between C/C++ application projects
and system library projects manually. The Associated System Library page of the
Properties dialog box for your C/C++ application project contains details about this special
dependency. Once the dependency exists, you can change it to reference a different system
library project.

Managed library projects are the most common project dependencies. Making an application
project dependent on a managed library project allows you to do the following:

• Ensure your managed library builds and is up to date when you compile your
application project.

• Call functions in the managed library from your application project.
• Include header files located in a managed library.
• Debug and step into source code located in the managed library.

To change dependence on a system library project:

1. Right-click your C/C++ application project in the C/C++ Projects view, and then
click Properties. The Properties dialog box appears.

2. Click Associated System Library in the left-hand pane.

3. Click Browse.... A list of system library projects appears.

4. Select a system library project.

5. Click OK to close the list of system library projects.

6. Click OK to close the Properties dialog box.

To configure dependence on a managed library project:

1. Right-click your project in the C/C++ Projects view, and then click Properties.
The Properties dialog box appears.

2. Reference the managed library project from your C/C++ application project. This
step ensures that your managed library project builds before your C/C++
application project. It also ensures you can easily step into the managed library
code when debugging your application project.

1. Click Project References in the left-hand pane.

2. Turn on the managed library project you want to reference.

3. Set up the linker options so your C/C++ application project can locate your library.
The C/C++ library of a managed library project is not automatically detected when
you reference the project; you have to explicitly add it.

Configuring Projects

Altera Corporation 53

1. Click C/C++ Build in the left-hand pane.

2. Click the Tool Settings tab.

3. Expand Linker. The General option appears.

4. Click General. The Libraries and Library Paths panes appear.

5. In the Libraries pane, click Add Library and type the name of the
managed library project. Do not press the Browse... button.

6. In the Library Paths pane, click Add Library Path and add the path
to the *.a library file. The library path should include the Debug or
Release folder. Note that you will have to update the library path if you
change the configuration (i.e. Release or Debug) of the managed library
project.

4. Set up the include paths to locate headers from your managed library project. If
your managed library project includes header files you would like to access from
your C/C++ application project, you need to specifically enter the paths to the
header files.

1. On the Tool Settings tab, expand Nios II Compiler. The General option
appears.

2. Click General. The Include Paths pane appears.

3. In the Include Paths pane, click Add Include Path and add the full
or relative path to the folder containing the header files.

5. Click OK to close the Properties dialog box.

 Related Nios II IDE Help Topics
• Properties Dialog Box
• Associated System Library Page (Properties Dialog Box)

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - The chapters related to the
hardware abstraction layer (HAL) system library contain details on system libraries
and the structure of Nios II software projects.

Altera Corporation 54

Editing Code

 About Editing Code

The C/C++ editor, part of the C/C++ Development Toolkit (CDT), provides specialized
features for editing C/C++ files. The editor includes the following features:

• Syntax highlighting

• Code completion

• Code templates

Normally, you use the C/C++ editor in the C/C++ perspective. It is also available in the
Debug perspective. You can invoke the C/C++ editor by opening a file from the C/C++
Projects view.

 Related Nios II IDE Help Topics
• C/C++ Projects View (C/C++ Perspective)

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Concepts > Editing C/C++ files > C/C++ Editor
• C/C++ Development User Guide > Concepts > Code aids > Content Assist -

Describes code completion.
• C/C++ Development User Guide > Concepts > Code aids > Templates - Describes

code templates.
• C/C++ Development User Guide > Concepts > Views in the C/C++ perspective -

Describes the C/C++ perspective.
• C/C++ Development User Guide > Concepts > Debug > Debug information -

Describes the Debug perspective.
• C/C++ Development User Guide > Tasks > Write code - Describes how to customize

and use the C/C++ editor.
• Workbench User Guide > Tasks > Navigating and finding resources - Describes how

to search for text spanning multiple files.

Altera Corporation 55

Building Projects

 About Building Projects

Building a project in the Nios II IDE compiles and links all the source code associated with the
project. Associated code can include other projects that your project depends on, such as a
system library project associated with a C/C++ application project. When building a project,
Nios II IDE first builds all dependent projects that the current project references.

The build process runs a makefile in the background that produces the project output. Project
output depends on the project type:

• C/C++ application projects create executable files (.elf) that you can run or debug.

• System library projects create pre-compiled libraries (.a).

• Managed library projects create pre-compiled libraries (.a).

• Advanced C/C++ projects output depends on your makefile.

When building a C/C++ application project, the Nios II IDE references the SOPC Builder
system file (.ptf) to create executable code that matches the target hardware. After creating a
project based on a specific SOPC Builder system, if the .ptf file changes (as a result of
modifications to the hardware design in SOPC Builder), the system library project must be
rebuilt. The build process will detect an out-of-date .ptf file, and automatically rebuild the
system library project.

If you want to re-target your project to a different SOPC Builder system, you need to create a
new system library project. Edits to your program source code might be necessary if, for
example, the peripherals are named differently in the new SOPC Builder system.

 Related Nios II IDE Help Topics
• Building a Project
• Configuring Project Dependencies
• Nios II Page (Preferences Dialog Box) - Contains settings that affect how the Nios II

IDE builds and runs projects.

Nios II IDE Help System

56 Altera Corporation

 Building a Project

Building a project in the Nios II IDE compiles and links all the source code and libraries
associated with the project. Associated code and libraries might exist in other projects that
your project depends on. You can specify a single project to build or build all projects in your
workspace.

To build a project and update its dependencies:

1. Right-click on the project in the C/C++ Projects view, and click Build Project. The
Nios II IDE first builds any out-of-date projects your project depends on, and then
builds your project.

To build all projects in your workspace:

1. Click Build All on the Project menu. The Nios II IDE builds all projects in your
workspace.

During the build process, the Console view displays messages generated by the GCC tool-
chain during compilation. The Problems view displays any warnings or errors. If building the
project generates warnings or errors, the Problems view appears automatically.

Note: The information displayed in the Console and Problems views depends on the
project selected in the C/C++ Projects view.

 Related Nios II IDE Help Topics
• About Building Projects
• Configuring Project Dependencies

Altera Corporation 57

Running and Debugging Projects

 About Running and Debugging Projects

Running or debugging a project in the Nios II IDE executes the project code so you can
analyze the output. Running a project consists of loading the executable code into the target
environment, and then turning control over to the target environment for code execution.
Debugging consists of loading the executable code into the target environment, and then
interactively communicating with the target environment to pause code execution for step-by-
step analysis using the debugger integrated in Nios II IDE. Refer to the Debugging the Project
tutorial topic to learn about the Nios II IDE integrated debugger and the many views available
in the Debug perspective.

In the Nios II IDE, run and debug sessions are controlled by run/debug configurations. Each
configuration is a group of settings that specifies which project to run or debug, and defines
the target environment. Some additional global run and debug preferences are also available.

The actions required to run or debug a project depend on the type of run/debug configuration.
Configurations are categorized by target type. The following sections describe running and
debugging on the various target types.

Nios II Hardware System:

Running and debugging on a Nios II hardware target allows you to execute code on a
Nios II processor system in hardware. Executing code on a hardware target allows you to
analyze the real-time behavior of your project. When debugging on a hardware target, you
can view execution trace and view disassembly of the program's execution.

Running and debugging on a Nios II hardware target involves the following steps:

1. Creating a run/debug configuration

2. Downloading the FPGA configuration file (.sof) to the target board to configure the
FPGA with the desired SOPC Builder system

3. Downloading the executable software file (.elf) to memory on the target board

4. Executing the code

Nios II Instruction Set Simulator:

Running and debugging on a Nios II instruction set simulator (ISS) target allows you to
execute code in simulation on a host PC. Executing code on the ISS allows you to analyze
the behavior of your project without the need for actual hardware. When debugging on the
ISS, you can view execution trace and view disassembly of the program's execution in the
Console view.

Running and debugging on the ISS involves the following steps:

1. Creating a run/debug configuration

2. Passing the executable software file (.elf) to the ISS

3. Executing the code

ModelSim Simulation of a Nios II System:

Running on a Nios II ModelSim target allows you to execute code on a hardware
simulation of a Nios II processor system. Hardware simulation allows you to simulate

Nios II IDE Help System

58 Altera Corporation

cycle-accurate behavior of a Nios II processor system. ModelSim is only available as a run
target. You cannot interactively debug executable code using the ModelSim simulator.

Running on a Nios II ModelSim target involves the following steps:

1. Creating a run/debug configuration

2. Running the ModelSim simulator with a memory model of the executable software
file (.elf)

3. Viewing the simulation results in ModelSim

Nios II Multiprocessor Collection:

Running and debugging on a Nios II multiprocessor collection target allows you to execute
code simultaneously on multiple Nios II processors in hardware. Executing code on a
hardware target allows you to analyze the real-time behavior of your project. When
debugging on a hardware target, you can view execution trace and view disassembly of
the program's execution.

Running and debugging on a Nios II multiprocessor collection target involves the following
steps:

1. Creating a run/debug configurationfor each project you wish to include in the
collection

2. Creating a run/debug configuration for the multiprocessor collection

3. Downloading the FPGA configuration file (.sof) to the target board to configure the
FPGA with the desired SOPC Builder system

4. Downloading the executable software files (.elf) for all the included projects to
memory on the target board

5. Executing the code

 Related Nios II IDE Help Topics
• Running and Debugging on Hardware
• Running and Debugging on the ISS
• Running on the ModelSim Simulator
• Running and Debugging Multiprocessor Collections
• Run/Debug Configuration
• Run/Debug Dialog Box
• Debugging the Project
• Viewing Disassembly
• Viewing Execution Trace

Running and Debugging Projects

Altera Corporation 59

 Configuring the FPGA

When targeting Nios II hardware, you must configure the FPGA on the target board with your
project's associated SOPC Builder system. The factory-programmed SOPC Builder system (i.e.
the FPGA hardware design) on targets like the Nios development boards is different than your
project's SOPC Builder system. Therefore, your executable code will not run unless you
configure the FPGA with the expected SOPC Builder system.

You only need to configure the FPGA when you reset the board or if the SOPC Builder system
file changes. Normally, you configure the FPGA once after you apply power to the board, and
the configuration persists through the duration of the Nios II IDE session.

 Note: If you are targeting a board other than the Nios development board, you need to
configure the Quartus II programmer differently, as specified by the board designer. In
the Quartus II software, you can save the configuration settings to a chain descriptor file
(.cdf), eliminating the need to configure the Quartus II programmer every time you
configure the device.

To configure the FPGA, use the Quartus II Programmer. The Quartus II Programmer is Altera's
tool for configuring FPGAs via a JTAG download cable, such as the USB Blaster.

To launch the Quartus II Programmer:

• On Windows:

1. Switch to the C/C++ Development perspective, if necessary.

2. Click your project in the C/C++ Projects view.

3. On the Tools menu, click Quartus II Programmer....

• On Linux:

1. Launch the Quartus II software.

2. On the Tools menu, click Programmer.

To configure the FPGA from the Quartus II Programmer:

1. Click Add File... in the Quartus II Programmer. The Select Programming File
dialog box appears.

2. Browse to the location of the hardware design that corresponds to your Nios
development board. For example, the directory used in the software development
tutorial is <Nios II EDS install path>/examples/verilog/<Nios development
board>/full_featured. On Windows, you are likely already in the proper
directory.

3. Select the FPGA configuration file (.sof) for your project and click Open. The
Select Programming File dialog box closes.

4. Turn on the Program/Configure checkbox for the target device.

5. Click Start. When the progress meter progresses to 100%, configuration is
complete.

Nios II IDE Help System

60 Altera Corporation

 Note: If Start is not enabled, click Hardware Setup to configure your Altera
download cable.

6. Close or minimize the Quartus II Programmer and return to the Nios II IDE.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Running and Debugging on Hardware

 Related Topics on the Web
• Nios II Processor Reference Handbook at

www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the JTAG
debug module on the Nios II processor.

Running and Debugging Projects

Altera Corporation 61

 Running and Debugging on Hardware

Running and debugging a Nios II project on a Nios II hardware target involves creating a
run/debug configuration, and then starting the run or debug session. The Nios II IDE can
automatically create a default configuration for you, or you can manually create a
configuration.

Note: Running or debugging on a hardware requires that you first download an FPGA
configuration file (.sof) to the target board to configure the FPGA.

To automatically create a run/debug configuration and start running or debugging:

1. Right-click your project in the C/C++ Projects view.

2. Point to Run As or Debug As, and then click Nios II Hardware. The Nios II
IDE automatically performs the following tasks:

• Creates a default run/debug configuration for the target board, placing it
in the Configurations list under Nios II Hardware in the Run/Debug
dialog box.

• Selects a default JTAG download cable.

 Note: This step usually completes automatically without user
intervention. If it cannot (the most common cause is that you have
multiple JTAG download cables installed), the IDE displays an error
message, and you must manually set up a run configuration.

• Initiates a run or debug session.

To manually create a run/debug configuration and start running or debugging:

1. Right-click your project in the C/C++ Projects view.

2. Click Run... or Debug... on the Run menu. The Run/Debug dialog box appears.

3. Select the Nios II Hardware target type in the Configurations list.

4. Click New. The Nios II IDE performs the following tasks:

• Creates a new hardware target configuration, placing it in the
Configurations list under Nios II Hardware.

• Selects a default JTAG download cable on the Target Connection tab.

• Turns on break at main on the Debugger tab.

5. Click Run or Debug in the lower-right corner of the Run/Debug dialog box to
initiate the run or debug session.

The Nios II IDE performs the following operations when starting a run or debug session:

• Builds the project. If the project is not up-to-date, then the IDE builds it first to
generate an up-to-date executable file.

Nios II IDE Help System

62 Altera Corporation

• Establishes communication with the target board, and verifies that the expected SOPC
Builder system is configured in the FPGA. If the FPGA is not configured properly, you
should repeat the steps to configure the hardware.

• Downloads the executable file (.elf) to memory on the target board.

• Sets a breakpoint at main(). (debugging only)

• Instructs the Nios II CPU to begin executing the code.

• Suspends code execution at main(). (debugging only)

 Note: After using Run As, Run, Debug As, or Debug once, click Run or Debug
on the toolbar to run or debug again.

Program output can appear in the Console view of the Nios II IDE. The Console view maintains
a terminal I/O connection with a communication device, such as a JTAG UART, connected to
the Nios II processor in the SOPC Builder system. When the Nios II program writes to stdout
or stderr, the Console view displays the text. The Console view can also accept character input
from the host keyboard, which is sent to the CPU and read as stdin.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Configuring the FPGA
• Run/Debug Configuration
• Run/Debug Dialog Box
• Viewing Disassembly
• Viewing Execution Trace

Running and Debugging Projects

Altera Corporation 63

 Running and Debugging on the ISS

Using the Nios II IDE, the process to run or debug on the Nios II instruction set simulator
(ISS) is nearly identical to running and debugging on a target hardware. You typically invoke
the ISS as a run or debug target from the Nios II IDE. Alternatively, you can invoke nios2-
iss.exe from a Nios II command shell, although Altera recommends command-line usage only
to advanced users.

To automatically create a run/debug configuration and start running or debugging:

1. Right-click your project in the C/C++ Projects view.

2. Point to Run As or Debug As, and then click Nios II Instruction Set
Simulator. The Nios II IDE automatically performs the following tasks:

• Creates a default run/debug configuration for the ISS target, placing it in
the Configurations list under Nios II Instruction Set Simulator in the
Run/Debug dialog box.

• Initiates a run or debug session.

To manually create a run/debug configuration and start running or debugging:

1. Right-click your project in the C/C++ Projects view.

2. Click Run... or Debug... on the Run menu. The Run/Debug dialog box appears.

3. Select the Nios II Instruction Set Simulator target type in the Configurations
list.

4. Click New. The Nios II IDE performs the following tasks:

• Creates a new ISS target configuration, placing it in the Configurations
list under Nios II Instruction Set Simulator.

• Turns on break at main on the Debugger tab.

5. Click the ISS Settings tab. The ISS Settings tab appears.

6. Adjust any settings you desire to change.

7. Click Run or Debug in the lower-right corner of the Run/Debug dialog box to
initiate the run or debug session.

The Nios II IDE performs the following operations when starting a run or debug session:

• Builds the project. If the project is not up-to-date, then the IDE builds it first to
generate an up-to-date executable file.

• Passes the executable software file (.elf) to the ISS.

• Sets a breakpoint at main(). (debugging only)

• Instructs the Nios II CPU to begin executing the code.

• Suspends code execution at main(). (debugging only)

 Note: After using Run As, Run, Debug As, or Debug once, click Run or Debug
on the toolbar to run or debug again.

Nios II IDE Help System

64 Altera Corporation

When you start a debug session, the Nios II IDE invokes the nios2-iss.exe application. The
Nios II ISS supports all GDB debug facilities, such as the ability to set breakpoints, set
watchpoints, and view memory. Reading uninitialized memory or empty regions in the
memory map returns zero. Depending on the run/debug configuration, the ISS can generate a
warning or an error whenever a read occurs from uninitialized memory. Fetching an instruction
from these locations returns a zero instruction word (equivalent to call 0x0), which generally
causes your program to fail.

The IDE uses nios2-elf-gdb to communicate with nios2-iss.exe over an automatically-
selected TCP/IP port. Invoking nios2-elf-gdb from the command-line also communicates over
a TCP/IP port.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Run/Debug Configuration
• Run/Debug Dialog Box
• Viewing Disassembly
• Viewing Execution Trace

Running and Debugging Projects

Altera Corporation 65

 Running on the ModelSim Simulator

Running on a Nios II ModelSim target allows you to execute code on a hardware simulation of
a Nios II processor system. Hardware simulation allows you to simulate cycle-accurate
behavior of a Nios II processor system. ModelSim is only available as a run target. You cannot
interactively debug executable code using the ModelSim simulator.

ModelSim requires hardware design files, and therefore the ModelSim simulation process is
linked closely with SOPC Builder. You can only run a ModelSim run configuration in the Nios II
IDE if the target SOPC Builder system was generated with the ModelSim simulation option
enabled in SOPC Builder.

Full details of using the ModelSim simulator are beyond the scope of this help system, and are
available online. Refer to Related Topics for more information on ModelSim.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects

 Related Topics on the Web
• AN351: Simulating Nios II Embedded Processor Designs at

www.altera.com/literature/an/an351.pdf - Contains details for ModelSim.

Nios II IDE Help System

66 Altera Corporation

 Running and Debugging Multiprocessor Collections

Multiprocessor collections provide an easy way to run or debug a group of Nios II C/C++
application projects on a Nios II hardware target as a unit. Running or debugging a
multiprocessor collection allows you to download executable code for each project in the
collection and start execution for all processors in a single command.

To run or debug a multiprocessor collection, you must first create a run/debug configuration
for each project you wish to include in the collection and download the FPGA configuration file
(.sof) to the target board to configure the FPGA with the desired SPOC Builder system.

The following steps allow you to create and work with a multiprocessor collection.

To instruct the Nios II IDE to allow multiple active run and debug sessions:

Before you begin using multiprocessor collections, you must turn on the following Nios II
IDE setting. You only have to perform this action once.

1. Click Preferences on the Window menu. The Preferences dialog box appears.

2. Click Nios II in the left-hand pane.

3. Turn on Allow multiple active run/debug sessions.

Note: This setting has side-effects on the behavior of single-processor run and debug

sessions. With this setting on, clicking Run or Debug does not auto-terminate
existing sessions, which can cause start-up errors. You must manually terminate
existing run and debug sessions before starting a new one.

To create a new multiprocessor collection configuration and start program execution:

1. Click Run... or Debug... on the Run menu.

2. Select Nios II Multiprocessor Collection in the Configurations list.

3. Click New to create a new multiprocessor collection.

4. On the Main tab, turn on the Nios II hardware target configurations you want to
include in the multiprocessor collection.

5. You can change the name of your new multiprocessor collection in the Name box.

6. Click Run or Debug to start running or debugging all Nios II hardware target
configurations in the multiprocessor collection.

Each processor begins executing code as soon as code finishes downloading. In the case of
a debug session, each processor breaks at the start of main(). The Debug view displays a
separate process for the multiprocessor collection in addition to a process for each of the
individual Nios II hardware target configurations.

To manage multiprocessor debug sessions:

The following commands are available to control all processors simultaneously in the
debug session:

• To start all processes simultaneously, click Resume.

Running and Debugging Projects

Altera Corporation 67

• To terminate all processes simultaneously, select the multiprocessor collection

process in the Debug view, and click Terminate.

Note: A debug process for a multiprocessor collection remains active as long
as any of the associated Nios II hardware target configuration processes are
active. If one of the debug processes fails to start correctly or terminates early,
the other processes will continue running. You must terminate all processes
before attempting to start debugging the multiprocessor collection again.

Other debug commands, such as Suspend and Step, are not available for multiprocessor
collection process. You can control individual processors by selecting the appropriate
process in the Debug view and then using the normal debug commands, such as Resume,
Suspend, Terminate.

Note: The buttons in the Debug view are context sensitive, depending on the process
selected. Be sure you have the correct process selected when using debug commands.

Clicking Debug does not work to restart multiprocessor collections. The button only
restarts the most recently launched Nios II hardware target configuration, not the whole
multiprocessor collection.

To navigate source code in the debugger:

The Debug view provides a convenient mechanism to jump directly to the line of code
where a processor suspends. When you suspend a process, the editor automatically
displays the source file in which the processor stopped.

Note that selecting a different process in the Debug view does not automatically change
the file displayed in the editor. You can double-click on the top-most function in the stack
trace to open the source file in the editor and display the suspended line of code.

To switch the Console view between active target connections:

Depending on the target connection settings for each of the Nios II hardware target
configurations, each processor can communicate character I/O with the Console view. An
independent terminal connection exists for each target processor, but the Console view
displays only one connection at a time. To switch between the active target connections:

1. Click Unpin Console from the Console view's toolbar.

2. Click Display Selected Console and select a Nios II Terminal Window item
corresponding to the desired processor.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Multiprocessor Nios II Systems
• Run/Debug Configuration

 Related Topics on the Web
• Nios II Processor Reference Handbook at

www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the JTAG
debug module on the Nios II processor.

Nios II IDE Help System

68 Altera Corporation

 Viewing Execution Trace

The Nios II IDE provides methods to trace code execution for Nios II hardware and Nios II
instruction set simulator (ISS) targets during debug sessions. Trace methods display a
sequential list of the instructions executed prior to the processor suspending.

When debugging a program on a Nios II hardware target, the Trace view in the Debug
perspective displays the exact execution trace of the program running in hardware. The Nios II
trace preferences affect how the Trace view collects and displays data.

When debugging a program on a ISS target, the ISS can display execution trace in the
Console view, or you can optionally redirect the output to a file. The ISS trace preferences
affect how the ISS collects and displays data.

To view trace data for Nios II hardware targets:

1. Start a debug session with a Nios II hardware target. Code displays in the Debug
perspective and processor execution suspends.

2. On the Window menu, point to Show View , and then click Trace. The Trace view
appears.

3. Continue your debug session. The Trace view automatically displays trace data for
the most recently executed instructions whenever processor execution suspends.

To copy trace data onto the clipboard for Nios II hardware targets:

1. Select the desired trace data output in the Trace view. You can either highlight a
portion of the text, or right-click in the Trace view and click Select All.

2. Right-click in the Trace view, and then click Copy.

To view trace data for Nios II instruction set simulator targets:

The following steps require that you first create an ISS run/debug configuration for your
project.

1. On the Run menu, click Debug.... The Run/Debug dialog box appears.

2. Expand Nios II Instruction Set Simulator in the Configurations list. The list of
your ISS run/debug configurations appears.

3. Select your ISS project's run/debug configuration from the Configurations list.

4. Click the ISS Settings tab. The ISS Settings tab appears. The Trace Options
control what trace information to display.

5. Turn on Enable Tracing.

6. Turn on the trace options you want to use.

7. Click Debug in the lower-right corner of the Run/Debug dialog box. Trace data
will display in the Console view.

The following is example output:

[19] 0x010002c8: 0xd839883a mov fp, sp [dstData=0x1fffff0 dstReg=fp]

Running and Debugging Projects

Altera Corporation 69

This line shows the executed instruction has the value 0xd839883a at program counter
location 0x010002c8. The instruction moves the value in sp (0x1fffff0) to fp. When
Instruction Count is on, the ISS counts each instruction executed, and displays the
instruction count (such as [19]).

To direct trace data for Nios II instruction set simulator targets to a file:

The following steps require that you first create an ISS run/debug configuration for your
project.

1. On the Run menu, click Debug.... The Run/Debug dialog box appears.

2. Expand Nios II Instruction Set Simulator in the Configurations list. The list of
your ISS run/debug configurations appears.

3. Select your ISS project's run/debug configuration from the Configurations list.

4. Click the ISS Settings tab. The ISS Settings tab appears. The Trace Options
control what trace information to display.

5. Turn on Enable Tracing.

6. Turn on the trace options you want to use.

7. Turn on Send trace output to file.

8. Specify the name of your output file in the Trace File box. The file will reside in
the application project directory or use Browse... to specify a different location.

9. Click Debug in the lower-right corner of the Run/Debug dialog box. Initial
information and warnings appear in the Console view. All subsequent output writes
to the trace file.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Trace View (Debug Perspective)
• Trace Page (Preferences Dialog Box)
• Run/Debug Configuration

Nios II IDE Help System

70 Altera Corporation

 Viewing Disassembly

Viewing disassembly allows you to analyze the exact instruction-by-instruction execution
during a debug session. You can use the Disassembly view to see mixed C/C++ and assembly
source code, set breakpoints, and single step through your code.

To open Disassembly view:

To view disassembly, start a debug session. The Disassembly view displays in the Debug
perspective automatically.

To step through code:

By default, stepping through the code executes entire C/C++ statements. To step through

individual assembly instructions, click Instruction Stepping Mode in the Debug view
toolbar. In instruction stepping mode, stepping through code advances the instruction
pointer in the Disassembly view to the next assembly instruction. Because multiple
assembly instructions represent a single line of C/C++ code, the instruction pointer might

not advance in the C/C++ Editor view with each instruction step. Click Instruction
Stepping Mode a second time to return to stepping at the C/C++ statement level.

Note: If the IDE cannot locate source code for a function, stepping through the code
automatically uses Disassembly view regardless of whether instruction stepping mode
is on or off.

To set breakpoints on assembly instructions:

Double-click in the margin to the left of the instruction to toggle an address breakpoint on
and off. You can also right-click in the margin, and then click Toggle Breakpoint.

To copy text from the Disassembly view:

You can highlight and copy text in the Disassembly view by using the keyboard shortcut
(e.g. Type Ctrl-C to copy on Windows).

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Debugging the Project - This page of the Software Development Tutorial contains

debugging instructions.
• Disassembly View

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Concepts > Debug > Breakpoints - Contains

details on adding breakpoints.

 Related Topics on the Web

Running and Debugging Projects

Altera Corporation 71

• Nios II Processor Reference Handbook at
www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the
Nios II instruction set.

Altera Corporation 72

Profiling Execution Performance

 About Profiling with the Nios II IDE

The GNU profiler (gprof) collects information about which functions call other functions during
program execution, and tracks the time spent in each function. Profiling tells you information
about the efficiency of your program by showing you where and how your program spends its
time. Profiling can help you determine where to optimize your code to improve execution
performance.

The Profiling perspective in the Nios II IDE provides a convenient and useful way to analyze
the GNU profiling data. Many display features of the perspective's views make the data much
easier to read and analyze, compared to reading the standard gprof text output.

 Related Nios II IDE Help Topics
• Profiling C Code
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Profiling Execution Performance

Altera Corporation 73

 Profiling C Code

To use the GNU profiler, you must compile and link your program with the profiling library,
execute the program to generate a gmon.out profile data file, and run gprof to parse the
profile data. The following sections describe how to accomplish the tasks.

To collect profiling data:

1. Switch to the C/C++ Development perspective, if necessary.

2. Right-click your project in the C/C++ Projects view, and then click System
Library Properties.

3. In the Properties dialog box, click System Library.

4. Turn on Link with profiling library.

5. Click OK.

6. Right-click your project in the C/C++ Projects view, point to Run As, and then
click Nios II Hardware.

After program execution completes, the file <project directory>/<build configuration
directory>/gmon.out contains the profiling information.

 Note: Execution must return from main() to create the file; if you terminate the run or
debug session, all profiling information is lost.

To analyze profiling data:

The nios2-elf-gprof utility converts the binary gmon.out data file and displays the
profiling information in a readable format. You can launch the nios2-elf-gprof utility
automatically with the Profiling perspective in the Nios II IDE.

To view the profiling data, perform the following steps:

1. In the C/C++ Projects view, locate the generated gmon.out file in the <build
configuration directory> (typically Release or Debug) of your project.

2. Double-click the gmon.out file to automatically switch to the Profiling perspective
and display the gmon.out data.

You can also launch the nios2-elf-gprof utility from the command line manually.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective
• Call Hierarchy View (Profiling Perspective)
• Editor View (Profiling Perspective)
• Samples - Function Total View (Profiling Perspective)
• Samples - Line By Line View (Profiling Perspective)

 Related Topics on the Web

Nios II IDE Help System

74 Altera Corporation

• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Altera Corporation 75

Storing Firmware on the Target Board

 About Storing Firmware

After you have successfully built and debugged an application, you might want to store the
executable file (.elf) as firmware in your target hardware. You might store firmware in the
target at the end of the development process when the firmware is ready to release to
manufacturing. Alternatively, you might store firmware during the development process as
part of a test procedure.

The following sections discuss the two broad approaches to storing the firmware in the
hardware.

Storing Firmware in On-Chip Memory

Depending on the target FPGA architecture, you can design Nios II systems to initialize on-
chip memory immediately after FPGA configuration. If you configure the system library
project to place program code or data into on-chip memory, the Nios II IDE automatically
creates memory initialization files for the FPGA. The Nios II IDE stores these files in the
same location as the SOPC Builder system file (.ptf). When you are ready to release your
project's executable code, you must send the memory initialization file(s) back to the
hardware designer to include them in the FPGA design.

Memory initialization file names take the form: <name of memory>.hex.

Programming Firmware in Flash Memory

You can program your Nios II executable file directly to a flash memory in your
development hardware.

The Nios II IDE flash programmer provides an easy way to program flash memory devices
on the target board using an Altera download cable, such as the USB Blaster. The flash
programmer programs executable software files (.elf) and FPGA hardware configuration
files (.sof) into flash memory. The flash programmer can also program binary data files.

The flash programmer can program two kinds of devices:

• Common flash interface (CFI) compliant flash memories

• Altera EPCS serial configuration devices

 Related Nios II IDE Help Topics
• Programming Flash
• Flash Programmer Dialog

 Related Topics on the Web
• Nios II Flash Programmer User Guide at

www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Nios II IDE Help System

76 Altera Corporation

 Programming Flash

You can program flash memory with software files, FPGA configuration files, and data files.
Programming flash memory enables your hardware to load software and FPGA configurations
at startup time. You can program flash memory connected to an FPGA using the Nios II IDE
flash programmer.

You manage programming flash memory using flash programmer configurations. A flash
programmer configuration is a group of settings that affect the flash programming process for
a specific hardware target. You can create multiple flash programmer configurations, each of
which has its own programming parameters. This is useful if you are working on multiple
projects or targeting multiple boards. You can also set up a flash programmer configuration to
program a combination of file types, allowing you to program two or three files in one
operation.

Note: To run the flash programmer, the files to program into flash must reside in a
Nios II application project. The associated SOPC Builder system must include flash
memory and specify a target board.

To open the flash programmer and create a flash programmer configuration:

1. On the Tools menu, click Flash Programmer.... The Flash Programmer dialog
box opens.

2. Click New, which creates a new flash programmer configuration. A new flash
programmer configuration appears in the Configurations list.

3. Enter a unique, meaningful name for the new configuration in the Name box.

To specify files to program into flash memory:

1. In the Configurations list, click a flash programmer configuration.

2. Click the Main tab.

3. Turn on Program software into flash memory.

4. Specify the desired project in the Project box. The flash programmer will
automatically find the Nios II ELF Executable for your project.

Note: In order for the flash programmer to program an FPGA configuration,
you must specify a software project, even if you are not programming an
executable file into flash memory. The flash programmer uses the target board
setting in the SOPC Builder system associated with the software project to
determine the available flash memories and FPGA configuration locations.

5. If you are not programming an executable file into flash memory, turn off
Program software into flash memory.

6. If you have an FPGA configuration to program into flash memory, use the following
steps:

1. Turn on Program FPGA configuration data into hardware-image
region of flash memory.

2. Specify the data file in the FPGA configuration (.sof) box.

Storing Firmware on the Target Board

Altera Corporation 77

3. If your hardware supports multiple FPGA configurations, specify the FPGA
configuration location in Hardware Image.

7. If you have a data file to program into flash memory, use the following steps:

1. Turn on Program a file into flash memory.

2. Specify the file to program to flash in the File box.

3. In the Memory list, select the flash memory device.

4. In theOffset box, type the offset within the flash memory device to place
the base of the data.

To specify programming cable and target flash memory device:

1. In the Configurations list, click a flash programmer configuration.

2. Click the Target Connection tab.

3. In the JTAG cable list, select the JTAG cable attached to your target board. If you
only have one cable, the automatic value automatically identifies your cable. If
your cable is not shown in the list, make sure that it is installed correctly, and click
Refresh to add it to the list.

4. In the JTAG device list, select the Nios II system to program. If you only have
one Nios II system connected to your JTAG cable, the automatic value
automatically identifies your system. If your Nios II system is not shown in the
list, make sure that the hardware is installed correctly, and click Refresh to add it
to the list.

To program flash memory on the target board:

1. In the Configurations list, click a flash programmer configuration. Settings on the
Main and Target Connection tabs must be legal values to proceed.

2. Click Program Flash in the lower-right corner of the dialog box to begin
programming the flash. The flash programming process might take several
minutes, depending on the size of the data to download.

If your project is not up to date, the Nios II IDE automatically builds your project before
programming it into flash memory. To turn off the automatic build, on the
Windowmenu,click Preferences,thenexpand Run/Debug,click Launching, and turn off
Build (if required) before launching.

The flash programmer automatically appends boot-loader code to the front of the
programming data if it is needed.

 Related Nios II IDE Help Topics
• About Storing Firmware
• Flash Programmer Dialog

 Related Topics on the Web
• Nios II Flash Programmer User Guide at

www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Altera Corporation 78

Features and Terms Reference

 Advanced Debugging Features by FS2

The FS2 console from First Silicon Solutions, Inc. (FS2) provides additional advanced
debugging features for Windows users. During a debug session, the Nios II IDE automatically
launches the FS2 console when the Debugger Tab (Run/Debug Dialog Box) Use FS2 console
window for trace and watchpoint support setting is on. This feature is not available on
Linux.

 Related Topics on the Web
• First Silicon Solutions, Inc. at www.fs2.com

Features and Terms Reference

Altera Corporation 79

 C-to-Hardware Acceleration (C2H) Compiler

The Nios II C-to-Hardware Acceleration (C2H) Compiler is a tool that allows you to create
custom hardware accelerators directly from ANSI C source code. A hardware accelerator is a
block of logic that implements a C function in hardware, which often improves the execution
performance by an order of magnitude. Using the C2H Compiler, you can develop and debug
an algorithm in C targeting a Nios II processor, and then quickly convert the algorithm to a
hardware accelerator implemented in a field programmable gate array (FPGA).

 Related Topics on the Web
• Nios II C2H Compiler User Guide at

www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

Nios II IDE Help System

80 Altera Corporation

 Hardware Abstraction Layer (HAL)

The Nios II hardware abstraction layer (HAL) runtime library is a lightweight runtime
environment that provides a simple device driver interface for programs to communicate with
the underlying hardware. The HAL application program interface (API) is integrated with the
ANSI C standard library. The HAL API allows you to access devices and files using familiar C
library functions, such as printf(), fopen(), fwrite(), etc.

The HAL serves as a board-support package for Nios II processor systems, providing a
consistent interface to the peripherals in your embedded systems. The Nios II integrated
development environment (IDE) generates the HAL system library for you automatically. The
Nios II IDE generates a custom HAL system library to match the hardware configuration.
Changes in the hardware configuration automatically propagate to the HAL device driver
configuration, preventing bugs that might otherwise appear due to subtle changes in the
underlying hardware.

 Related Nios II IDE Help Topics
• System Library (Properties Dialog Box)
• About the Nios II IDE Managed-Make Build Environment

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains information on the
HAL system library.

Features and Terms Reference

Altera Corporation 81

 Hardware Simulation with ModelSim

The Nios II development environment is integrated with the ModelSim hardware simulator,
which allows the Nios II IDE to launch programs on a hardware simulation of a Nios II
processor system. Hardware simulation allows you to simulate cycle-accurate behavior of a
Nios II processor system. Using your PC, you can see how an SOPC Builder system will behave
in hardware, including signals internal to the processor and interface signals to the outside
world.

ModelSim simulation is generally the domain of hardware engineers. ModelSim requires
hardware design files, and therefore the ModelSim simulation process is linked closely with
SOPC Builder. You can only launch ModelSim from the Nios II IDE if the target SOPC Builder
system was generated in SOPC Builder with the ModelSim simulation option enabled.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Running on the ModelSim Simulator

 Related Topics on the Web
• AN351: Simulating Nios II Embedded Processor Designs at

www.altera.com/literature/an/an351.pdf - Contains details for ModelSim.

Nios II IDE Help System

82 Altera Corporation

 Hardware Target

A Nios II hardware target is a printed circuit board (PCB) with an Altera FPGA containing a
Nios II system. Altera and other companies provide a number of Nios II hardware targets in
the form of development boards. Many other companies develop their own proprietary
hardware targets.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Running and Debugging on Hardware

 Related Topics on the Web
• Nios II home page at www.altera.com/nios2 - Contains all Nios II processor-related

information, including details on Altera development boards.

Features and Terms Reference

Altera Corporation 83

 Host-Based File System

The host-based file system enables programs executing on a target board to read and write
files stored on the host computer. The Nios II IDE transmits file data over the Altera download
cable. Your program accesses the host based file system using the ANSI C standard library I/O
functions, such as fopen() and fread(). The host-based file system is a software component
which you add to your system library.

The following features and restrictions apply to the host based file system:

• The host-based file system makes the C/C++ application project directory and its
subdirectories available to the hardware abstraction layer (HAL) file system on the
target hardware.

• The target processor can access any file in the project directory. Be careful not to
corrupt project source files.

• The host-based file system only operates while debugging a project. It cannot be used
for run sessions.

• Host file data travels between host and target serially through the Altera download
cable, and therefore file access time is relatively slow. It takes approximately 10 ms
per call to the host. For higher performance, use buffered I/O (fread(), fwrite(),
etc.), and increase the buffer size for large files.

You configure the host-based file system using the Software Components dialog box. The
host-based file system has the following setting:

• Mount-point box - Specifies the mount point within the HAL file system. For example,
if you name the mount point /mnt/host and the project directory on you host
computer is /software/project1, the code fopen("/mnt/host/foo.dat", "r"); in
a HAL-based program opens the file /software/project1/foo.dat.

Example Programs:

The Host File System project template in the New Project wizard contains one example
of using the host-based file system.

Below is another example program that uses the host-based file system to read and
display its own source code.

/*
 * "hello_hostfs.c" example.
 *
 * This example reads the file "hello_hostfs.c" (ie this file) from the
 * project directory on the host and writes it to the STDOUT stream.
 * It runs on any design which includes a hostfs software component,
 * with any RTOS (or no RTOS) and requires a STDOUT device in your
 * system's hardware.
 *
 */

#include <stdio.h>

int main()
{
 FILE * hostfile = fopen("/mnt/host/hello_hostfs.c", "r");
 char buffer[1024];

 while (fgets(buffer, sizeof(buffer), hostfile) != NULL)
 {

Nios II IDE Help System

84 Altera Corporation

 fprintf(stdout, "%s", buffer);
 }

 fclose(hostfile);

 printf("That's all folks\n");

 return 0;
}

 Related Nios II IDE Help Topics
• Choosing and Configuring Middleware Software Components
• Software Components Dialog Box (System Library Properties Page)

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on accessing
files using the HAL API and the ANSI C standard library.

Features and Terms Reference

Altera Corporation 85

 Instruction Set Simulator (ISS)

The Nios II instruction set simulator (ISS) allows you to execute and debug Nios II programs
in simulation on a host PC. The ISS simulates software executing on a Nios II processor core
connected to a limited set of peripherals. The simulation is at the functional level, and all
operations complete in one cycle. It is not a cycle-accurate simulation, and therefore
performance benchmarking on the ISS gives optimistic results. On a modern Windows PC, the
ISS runs at about 300K instructions per second when simulating code on the fast example
design provided in the Nios II Embedded Design Suite.

The ISS can produce an execution trace. The trace output appears in the Console view, and
you can optionally redirect it to a file. It is common to output trace data to a file, because
trace tends to produce a large amount of information.

ISS-supported SOPC Builder components:

• All Nios II processor cores: Nios II/f, Nios II/s, Nios II/e

• Interval timer core

• JTAG UART core

• UART core

• On-chip memory (RAM/ROM)

• SDRAM controller core

• IDT71V416 SRAM (1 MB SRAM mounted on Nios development board)

• EPCS serial flash controller core, with limitations.

If any unsupported components are present in the system, the ISS displays a warning
message at the start of the run or debug session. The ISS ignores writes to unsupported
components during simulation. Reading from an unsupported component during simulation
returns zero.

SOPC Builder system requirements:

The Nios II ISS simulates a Nios II processor system described by an SOPC Builder system
file (.ptf). The Nios II ISS makes the following assumptions about the SOPC Builder
system:

• SOPC Builder successfully generated the .ptf file.

• All memories with initialized content are initialized from one .elf file.

• The system contains exactly one Nios II CPU. The ISS does not support
multiprocessor systems.

• The system has one clock domain.

• The system has one address map. (This is true for all Nios II systems created by
SOPC Builder.)

ISS limitations:

• Simulations are functional only, and not cycle-accurate.

Nios II IDE Help System

86 Altera Corporation

• The ISS does not model Nios II instruction and data caches, and will not find bugs
involving cache initialization, flushing, or bypassing.

• The ISS does not support reading or writing tightly coupled memories connected
to the Nios II processor.

• The ISS does not support custom instructions.

• The ISS models the Nios II ienable register as a complete 32-bit register. In
hardware (both on a target board and in HDL simulation), all bits associated with
unused interrupt inputs are always zero.

• The EPCS Serial Flash Controller core only supports boot-from-flash behavior. If
the SOPC Builder system contains an EPCS Serial Flash Controller core, the
simulation does not model the full behavior of the EPCS device. The ISS only
models the first 1 Kbytes of the controller's register map as a block of ROM. In the
case that the processor resets to the EPCS controller address (the typical boot-
from-flash scenario), the simulation relies on the fact that RAMs are pre-initialized.
Therefore, the controller's boot-loader does not need to copy code from EPCS
memory to RAM. Instead, the controller simply jumps directly to RAM.

You can run or debug on the ISS from the Nios II IDE or from the Nios II Command Shell
command line, although Altera recommends command-line usage only to advanced users.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Running and Debugging on the ISS

Features and Terms Reference

Altera Corporation 87

 Lightweight TCP/IP Stack

The lightweight IP (lwIP) TCP/IP stack is a small-footprint implementation of the transmission
control protocol/internet protocol (TCP/IP) suite. The focus of the lwIP TCP/IP implementation
is to reduce resource usage while providing a full scale TCP/IP. Altera provides the Lightweight
IP (lwIP) TCP/IP Stack as a software component plug-in for the Nios II IDE.

The lwIP TCP/IP stack is a software component which you add to your system library. You
configure the lwIP TCP/IP stack using the Software Components dialog box. In order to use
the lwIP TCP/IP stack, you must base your system library project on the MicroC/OS-II RTOS.
If your system library project is not based on the MicroC/OS-II RTOS, the Software
Components dialog box will not allow you to add the lwIP software component.

Your program code can use the sockets API to send data using the Ethernet hardware.

 Related Nios II IDE Help Topics
• Choosing and Configuring Middleware Software Components
• Software Components Dialog Box (System Library Properties Page)
• Choosing and Configuring an Operating System
• MicroC/OS-II RTOS

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
Nios II programs using lwIP, including descriptions of the settings available on this
page.

• Using Lightweight IP for the Nios II Processor Tutorial at
www.altera.com/literature/tt/tt_nios2_lwip_tutorial.pdf - Contains step-by-step
instructions on creating lwIP applications.

Nios II IDE Help System

88 Altera Corporation

 MicroC/OS-II RTOS

MicroC/OS-II is a real-time, multitasking kernel for microprocessors and microcontrollers.
Altera provides the MicroC/OS-II real-time operating system (RTOS) as part of the Nios II
Embedded Design Suite. Evaluation versions of the Nios II Embedded Design Suite do not
include MicroC/OS-II. The Nios II IDE makes it easy to base your C/C++ application project on
MicroC/OS-II. When enabled, the MicroC/OS-II real-time kernel is part of the system library.

Note: You can evaluate MicroC/OS-II at no charge using the Nios development board.
However, you must purchase a license to ship a commercial product based on MicroC/OS-
II.

MicroC/OS-II Thread-Aware Debugging:

When debugging a MicroC/OS-II application, the debugger displays the current state of all
threads within the application, including backtraces and register values. You cannot use
the debugger to change the current thread, so it is not possible to use the debugger to
change threads or to single step a different thread. Thread-aware debugging does not
change the behavior of the application in any way.

 Related Nios II IDE Help Topics
• Choosing and Configuring an Operating System

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
Nios II programs based on MicroC/OS-II.

• Using MicroC/OS-II RTOS with the Nios II Processor Tutorial at
www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf - Contains step-by-
step instructions on creating MicroC/OS-II applications.

Features and Terms Reference

Altera Corporation 89

 Multiprocessor Nios II Systems

The Nios II IDE is capable of running and debugging multiple Nios II processors
simultaneously. Altera hardware development tools automatically connect the JTAG debug
circuitry to the Nios II processor(s). Regardless of where the Nios II processor(s) reside in the
JTAG chain, the Nios II IDE can connect to each processor, download code, and run and
debug. For example, the Nios II IDE supports all of the following cases:

• 1 processor in an FPGA in a JTAG chain of 1 device - This is the simplest single-
processor case. This is the structure used on Nios development boards.

• 1 processor in an FPGA in a JTAG chain of 3 devices - This is a common case, in which
an Altera FPGA co-exists on a board with other devices in the JTAG test chain.

• 2 processors in an FPGA in a JTAG chain of 1 device - This is a common case for multi-
processor Nios II systems, in which multiple CPUs reside on a single FPGA.

• 2 processors, 1 each in 2 FPGAs in a JTAG chain of 2 devices

• 2 processors in separate FPGAs in separate JTAG chains - The two Nios II processor
systems can be on one board, or they can be in entirely separate systems. This case
requires multiple download cables to connect to the separate JTAG chains.

Multiprocessor systems require extra consideration during both hardware and software
development. If multiple processors exist in a single SOPC Builder system, the hardware
designer must consider which memory device(s) to share between the processors.
Furthermore, you must make sure that one processor doesn't store data in the same memory
space that another processor uses for code.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Running and Debugging Multiprocessor Collections

 Related Topics on the Web
• Creating Multiprocessor Nios II Systems Tutorial at

www.altera.com/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
• Quartus II Handbook Volume 5: Embedded Peripherals at

www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf - Contains details on the
mailbox and mutex peripherals for coordinating multiprocessor systems.

• Nios II Processor Reference Handbook at
www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the JTAG
debug module on the Nios II processor.

Nios II IDE Help System

90 Altera Corporation

 Run/Debug Configuration

A run/debug configuration is an IDE-managed file that stores the settings necessary to run or
debug a specific project on a specific target. The available target types are: Nios II hardware,
Nios II instruction set simulator (ISS), Nios II ModelSim, and Nios II multiprocessor collection.
Configurations are categorized by target type and contain settings specific to the target type.
The help topics for the individual tabs in the Run/Debug dialog box describe all of the settings
available.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Run/Debug Dialog Box

Features and Terms Reference

Altera Corporation 91

 Valid Project Names

Nios II IDE project names must be unique and conform to the following rules:

• Alphabetic characters, numeric characters, and the underscore symbol are the only
valid project name characters. Project names cannot contain spaces or special
characters, such as \, +, =.

• The first character in the project name must be alphabetic or the underscore symbol.

• The minimum filename length is one character.

• The maximum filename length is 250 characters.

Nios II IDE Help System

92 Altera Corporation

 Zip Read-Only File System

The zip read-only file system provides access to a simple file system stored in flash memory.
Your program accesses the Zip file system using the ANSI C standard library I/O functions,
such as fopen() and fread(). The zip read-only file system is a software component which
you add to your system library.

The zip read-only file system requires an uncompressed .zip file that contains all of the files
for the zip file system. This zip file must exist in the system library project.

Note: You can drag-and-drop a zip file from the host file system onto your system library
project in the C/C++ Projects view to automatically import the zip file into the system
library project. Alternatively, on the File menu, click Import..., then use File system
(not Zip File) to import the .zip file (not the contents of the zip file) to your system
library.

You configure the zip read-only file system using the Software Components dialog box. The
zip read-only file system has the following settings:

• Flash memory device list - Displays the available target flash devices and allows you
to select a device to program.

• Offset box - Specifies an offset into the flash memory, indicating where to write the
zip file system contents.

• Mount-point box - Specifies the mount point within the hardware abstraction layer
(HAL) file system. For example, if you name the mount point /mnt/zipfs, the code
fopen("/mnt/zipfs/foo", "r"); in a HAL-based program opens the file foo within
the zip file.

• Zip file (must be uncompressed) - Specifies the zip file.

For your program to access files in the zip file system, you must write the project to flash
memory using the flash programmer. As part of the project build process, the Nios II IDE
creates a .flash file that includes the data for the zip file system, and stores it in the Release
or Debug configuration directory of your project.

 Related Nios II IDE Help Topics
• Choosing and Configuring Middleware Software Components
• Software Components Dialog Box (System Library Properties Page)

 Related Topics on the Web
• Nios II Flash Programmer User Guide at

www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Altera Corporation 93

GUI Reference

 Flash Programmer Dialog Box

You open this dialog box by clicking Flash Programmer... on the Tools menu.

The Flash Programmer dialog box lets you program data to flash memory with the flash
programmer. The flash programmer uses a flash programmer configuration, which contains all
the parameters that affect the flash programming process. The Flash Programmer dialog
box includes controls to create flash programmer configurations and set up all the parameters
they contain.

The Flash Programmer dialog box contains the following controls.

• Configurations - Is a list of available flash programmer configurations and allows you
to select an active configuration.

• New - Creates a new flash programmer configuration.

• Delete - Deletes the selected flash programmer configuration.

• Name - Allows you to enter a unique name for a configuration. Name appears only
after you select an existing configuration.

• Apply - Saves your settings in the selected flash programmer configuration.

• Revert - Discards your setting changes, and returns the selected flash programmer
configuration to its previous settings.

• Program Flash - Programs the flash memory using the settings in the selected flash
programmer configuration.

• Close - Closes the Flash Programmer dialog box.

When you select a flash programmer configuration in the Configurations list, tabs appear in
the right side of the dialog box. Each tab presents a group of settings in the selected
configuration. The Flash Programmer dialog box includes the following tabs:

Main Tab:

The Main tab allows you to specify the application project, the content to program, and
other settings for the selected configuration.

The Main tab contains the following settings.

• Program software project into flash memory - When on, the flash
programmer programs the software project into flash memory. When the project is
selected, the dialog box shows you the following read-only values.

• Nios II ELF Executable - The executable file (.elf) to program to flash.
This is the .elf file associated with the project.

• Target Hardware - The target SOPC Builder system and CPU for the
selected project.

• Program FPGA configuration data into hardware-image region of flash
memory - When on, the flash programmer programs FPGA configuration data into
flash memory. The following options specify how the FPGA configuration is
programmed.

• FPGA Configuration (.sof) - Specifies the file that contains the FPGA
configuration data.

Nios II IDE Help System

94 Altera Corporation

• Hardware Image - Specifies the hardware image location in which to
store the FPGA configuration. The contents of this drop-down list depend
on the SOPC Builder target board, which specifies where it expects FPGA
configuration data to reside in flash.

• Program a file into flash memory - When on, the flash programmer programs a
data file into the chosen flash memory device at a given offset. The following
options affect how the file is programmed into flash.

• File - The file to program to flash.

• Memory - The flash memory device.

• Offset - The offset within the flash memory.

Target Connection Tab:

The Target Connection tab specifies the download cable and device for the selected
configuration.

The Target Connection tab contains the following settings.

• JTAG cable - Specifies the Altera download cable (such as the USB Blaster) to use
for communicating with the Nios II processor. If you only have one cable, the
automatic value selects your cable.

• Refresh - Updates the list if you change your JTAG cables while in the
flash programmer dialog box.

• JTAG device - Specifies the device on the selected JTAG chain.

• Refresh - Updates the list if you change your JTAG devices while in the
flash programmer dialog box.

 Related Nios II IDE Help Topics
• About Storing Firmware
• Programming Flash

 Related Topics on the Web
• Nios II Flash Programmer User Guide at

www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

GUI Reference

Altera Corporation 95

 Import Wizard

You open this wizard by clicking Import... on the File menu.

You use the Import wizard to import an existing project that you, or someone else, created in
a different IDE workspace. The first page of the Import wizard presents a list of all import
sources available. The only one of concern to Nios II IDE users is:

• Existing Altera Nios II Project into Workspace - Allows you to browse your hard
drive for existing projects to import.

Note: The Nios II IDE includes the Import and Export wizards, which are part of the
standard Eclipse IDE framework. Do not use these wizards to import or export files, or to
export a project. There are easier methods for importing, exporting and sharing projects
and files.

 Related Nios II IDE Help Topics
• Importing,Exporting and Sharing Projects and Files

Nios II IDE Help System

96 Altera Corporation

New Project Wizard

 New Project Wizard

You open this wizard by pointing to New on the File menu, and then clicking

 Project.....

The New Project wizard guides you through the process of creating a new project. The
wizard consists of several pages that present an ordered sequence of actions to create a
project.

The wizard provides the following controls on all pages:

• Back - Goes back to the previous page of the wizard.

• Next - Advances to the next page of the wizard.

• Finish - Completes the wizard, using default values for any remaining pages.

• Cancel - Cancels the work in progress and closes the New Project wizard.

The first page of the New Project wizard presents a list of all project types available. Project
types specific to the Nios II processor are under the Altera Nios II category. The remaining
pages of the wizard depend on the project type specified. The following New Project wizard
pages correspond to the project types available for the Nios II processor:

• New C/C++ Application - Creates a new project for developing C/C++ programs.

• New System Library - Creates a new system library project for a particular SOPC
Builder system.

• New Advanced C/C++ Project - Creates a skeleton project for developing C/C++
programs, which requires you to create and manage the makefiles.

• New Managed Library Project - Creates a new project for developing C/C++ libraries.

 Related Nios II IDE Help Topics
• About Nios II IDE Projects
• Creating a New Project
• New C/C++ Application (New Project Wizard)
• New System Library (New Project Wizard)
• New Advanced C/C++ Project (New Project Wizard)
• New Managed Library (New Project Wizard)

GUI Reference

Altera Corporation 97

 New C/C++ Application (New Project Wizard)

You open this wizard page by clicking C/C++ Application in the New Project wizard,
and then clicking Next.

The C/C++ Application pages of the New Project wizard allow you to create a new C/C++
application project and an associated system library project.

The first page allows you to specify settings for the C/C++ application project:

The following controls are available.

• Name - Specifies a valid project name for the new project.

• Use Default Location - When on, the IDE creates the new project directory in
the default location specified on the New Projects preference page. Turning off
Use Default Location allows you to specify an alternative project location in the
Location box.

Note: Project directories cannot be nested. You cannot create a new project
inside the directory of an existing project.

• Location - Specifies the base directory where the new project contents will reside.

• Select Target Hardware - These options specify the target hardware.

o SOPC Builder System - Specifies the target SOPC Builder system. The
SOPC Builder system file (.ptf) defines the CPUs and peripherals included
in the SOPC Builder system. Select from the drop-down list of recently
used SOPC Builder systems, or click Browse... to find a specific .ptf file.

o CPU - Specifies the target CPU in the SOPC Builder system. If there is only
one CPU in the system, the Nios II IDE selects it automatically. If there are
multiple CPUs, you must select one from the list.

• Select Project Template - The Nios II Embedded Design Suite (EDS) offers
several ready-made example designs. You can use these as reference designs, or
as the basis for your own projects. The Nios II IDE copies the design files for the
selected template into your project. Each template provides a readme.txt file that
describes the purpose and usage of the design files. Using Blank Project avoids
copying any files into the new project.

The second page allows you to specify settings for the associated system library
project:

The following controls are available.

• Create a new system library named: <application project name>_syslib -
When selected, the Nios II IDE creates a new HAL system library project to
accompany your C/C++ application project. This is the default action, which is
usually desirable for single-threaded Nios II programs.

• Select or create a system library - When selected, you can specify an existing
system library in the Available System Library Projects list, or create a new
system library via the New System Library Project... button. Multiple projects
can use the system library.

Nios II IDE Help System

98 Altera Corporation

o New System Library Project... - Launches a wizard to create a new
system library.

 Related Nios II IDE Help Topics
• Creating a New Project
• New Project Wizard

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - The chapters related to the
hardware abstraction layer (HAL) system library contain details on system libraries
and the structure of Nios II software projects.

GUI Reference

Altera Corporation 99

 New System Library (New Project Wizard)

You open this wizard page by clicking System Library in the New Project wizard, and
then clicking Next.

The System Library page of the New Project wizard allows you to create a new system
library for an SOPC Builder system.

The System Library page contains the following controls.

• Name - Specifies a valid project name for the new project.

• Use Default Location - When on, the IDE creates the new project directory in the
default location specified on the New Projects preference page. Turning off Use
Default Location allows you to specify an alternative project location in the Location
box.

Note: Project directories cannot be nested. You cannot create a new project
inside the directory of an existing project.

• Location - Specifies the base directory where the new project contents will reside.

• Select Target Hardware - These options specify the target hardware.

o SOPC Builder System - Specifies the target SOPC Builder system. Select
from the drop-down list of recently used SOPC Builder systems, or click
Browse... to find a specific .ptf file.

o CPU - Specifies the target CPU in the SOPC Builder system. If there is only
one CPU in the system, the Nios II IDE selects it automatically. If there are
multiple CPUs, you must select one from the list.

• Select Type of RTOS - These options specify the RTOS to build into the system
library. The following are the options available from Altera.

o None (single-threaded) - The Nios II IDE bases the system library on the
Altera hardware abstraction layer (HAL) providing a single-threaded
environment.

o MicroC/OS-II - The Nios II IDE includes both the MicroC/OS-II real-time
kernel and the Altera HAL in the system library. This option is not available in
evaluation versions of the Nios II Embedded Design Suite.

 Related Nios II IDE Help Topics
• About Nios II IDE Projects
• Creating a New Project

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - The chapters related to the
hardware abstraction layer (HAL) system library contain details on system libraries
and the structure of Nios II software projects.

• Nios II home page at www.altera.com/nios2 - Contains an up-to-date list of RTOS
vendors that support the Nios II processor.

Nios II IDE Help System

100 Altera Corporation

 New Managed Library (New Project Wizard)

You open this wizard page by clicking Managed Library Project in the New Project
wizard, and then clicking Next.

The Managed Library Project page of the New Project wizard allows you to create a new
managed library project for developing C/C++ libraries. Managed Library projects typically
contain independent utility functions, and do not have dependencies on a system library
project. You can reference managed library projects from C/C++ application projects or from
other managed library projects.

The Managed Library Project page contains the following controls.

• Name - Specifies a valid project name for the new project.

• Use Default Location - When on, the IDE creates the new project directory in the
Nios II IDE workspace folder, unless you have previously set another custom default
location on the New Projects preference page. Turning off Use Default Location
allows you to specify an alternative project location in the Location box.

Note: Project directories cannot be nested. You cannot create a new project
inside the directory of an existing project.

• Location - Specifies the base directory where the new project contents will reside.

 Related Nios II IDE Help Topics
• Creating a New Project
• New Project Wizard

GUI Reference

Altera Corporation 101

 New Advanced C/C++ Project (New Project Wizard)

You open this wizard page by clicking Advanced C/C++ Project in the New Project
wizard, and then clicking Next.

The Advanced C/C++ Project page of the New Project wizard allows you to create
advanced C/C++ projects. Advanced C/C++ projects are projects that do not manage the
project makefiles for you. This gives you total control over the build process; creating and
managing the makefile becomes your responsibility.

An Advanced C/C++ project is the same as a standard make project in the Eclipse C/C++
Development Toolkit (CDT).

The Advanced C/C++ Project page contains the following controls.

• Name - Specifies a valid project name for the new project.

• Use Default Location - When on, the IDE creates the new project directory in the
default location specified on the New Projects preference page. Turning off Use
Default Location allows you to specify an alternative project location in the Location
box.

Note: Project directories cannot be nested. You cannot create a new project
inside the directory of an existing project.

• Location - Specifies the base directory where the new project contents will reside.

Note: Altera does not recommend using advanced C/C++ projects. Instead, let the
Nios II IDE manage your project for you by using New C/C++ Application.

 Related Nios II IDE Help Topics
• About Nios II IDE Projects
• Creating a New Project

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Concepts > CDT Projects - Contains details on

standard make projects.

Nios II IDE Help System

102 Altera Corporation

Preferences Dialog Box

 Preferences Dialog Box

You open this dialog box by clicking Preferences on the Window menu.

The Preferences dialog box allows you to customize the look, feel, and behavior of the Nios II
IDE workbench.

Certain preference pages are specific to the Nios II IDE. Nios II IDE preferences pages affect
how the Nios II IDE builds, stores, runs, and debugs projects. Other preference pages are part
of the standard Eclipse environment. The Eclipse IDE framework offers user preference pages
for all the Eclipse C/C++ Development Toolkit (CDT) plug-ins.

 Related Nios II IDE Help Topics
• Nios II Page (Preferences Dialog Box)
• New Projects Page (Preferences Dialog Box)
• Trace Page (Preferences Dialog Box)

 Related Eclipse and CDT Help Topics
• Workbench User Guide > Reference > Preferences
• C/C++ Development User Guide > Reference > C/C++ preferences
• C/C++ Development User Guide > Reference > C/C++ preferences > Debug

preferences
• C/C++ Development User Guide > Reference > C/C++ editor preferences

GUI Reference

Altera Corporation 103

 Nios II Page (Preferences Dialog Box)

You open this dialog box by clicking Preferences on the Window menu, and then clicking
Nios II in the left-hand pane.

The Nios II preferences page contains settings that affect how the Nios II IDE builds and runs
projects. The settings are common for all projects.

The Nios II preferences page contains the following settings.

• Show command lines when running 'make' (i.e. Don't use '-s' flag on make) -
When on, the Nios II IDE runs make in verbose mode, displaying all the command
lines that the Nios II IDE executes. The default is off.

• Generate objdump file - When on, the Nios II IDE creates an objdump file when it
builds a project. The default is off.

• Allow multiple active run/debug sessions - When on, you can debug multiple
CPUs at the same time. The default is off.

• Confirm before starting the flash programmer - When on, a confirmation dialog
box appears before the flash programmer writes to flash memory. The default is on.

• Warn about launches in Run mode for C/C++ Application projects using Host-
based File System – When on, the Nios II IDE gives a warning if you attempt to run
(instead of debug) a project containing a host-based file system. The default is on.

 Related Nios II IDE Help Topics
• Preferences Dialog Box
• Multiprocessor Nios II Systems

Nios II IDE Help System

104 Altera Corporation

 New Projects Page (Preferences Dialog Box)

You open this dialog box by clicking Preferences on the Window menu, expanding Nios II
in the left-hand pane, and then clicking New Projects.

The Nios II New Projects preferences page contains settings that specify the default location
where the Nios II IDE saves new projects. The settings on this page affect only the default
choice for new project location; the New Project wizard can override this location later.

The Nios II New Projects preferences page contains the following settings.

• Workspace folder - Uses the Nios II IDE workspace directory you specified in the
Workspace Launcher dialog box at startup. The workspace is the default area for
Nios II IDE projects and other IDE-related settings files. Storing projects in the
workspace directory allows you to upgrade versions of the IDE while keeping the same
projects in your workspace.

• Software folder in the SOPC Builder system folder - Uses the <SOPC Builder
system path>/software directory. This option stores projects with hardware-specific
dependencies in a subdirectory of the SOPC Builder system directory. This option only
applies to system library and C/C++ application projects. Other project types do not
have associated SOPC Builder systems, and default to the Workspace folder option.

• Other location - Uses a custom location. When selected, you must specify the
desired directory path in the Location box.

Note: A Nios II IDE project cannot reside in a subdirectory of another Nios II IDE
project. You must specify a location that does not overlap with any existing
projects.

In all cases, the default location for a new project is the specified path plus the name of the
new project.

 Related Nios II IDE Help Topics
• Preferences Dialog Box
• New Project Wizard

GUI Reference

Altera Corporation 105

 Trace Page (Preferences Dialog Box)

You open this dialog box by clicking Preferences on the Window menu, expanding
Run/Debug in the left-hand pane, and then clicking Trace.

The Nios II Trace preferences page contains settings that affect how the Nios II IDE Trace
view collects and displays data. The settings apply to all projects.

The Trace preferences page contains the following settings.

• Stop trace collection when the buffer is full - When on, trace data collection stops
if the on-chip trace buffer fills up before a breakpoint or watchpoint allows trace data
to be read from the buffer. When off, new trace data overwrites old trace data when
the buffer overflows. The default is off.

• Include load addresses - When on, the data in the Trace view shows data addresses
associated with load instructions. The default is off.

• Include store addresses - When on, the data in the Trace view shows data
addresses associated with store instructions. The default is off.

• Include data values for loads and stores - When on, the data in the Trace view
shows the data values after load or store instructions. This setting is available only if
Include load addresses or Include store addresses are on. The default is off.

 Related Nios II IDE Help Topics
• Preferences Dialog Box
• Viewing Execution Trace
• Trace View (Debug Perspective)

 Related Topics on the Web
• Nios II Processor Reference Handbook at

www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the JTAG
debug module on the Nios II processor.

Nios II IDE Help System

106 Altera Corporation

Profiling Perspective

 Profiling Perspective

You open this perspective by pointing to Open Perspective on the Window menu, clicking
Other..., and then double-clicking Profiling in the Select Perspective list.

The Nios II IDE Profiling perspective allows you to conveniently capture and analyze profiling
data stored in a gmon.out data file. The display features of the Profiling perspective make the
data much easier to read and analyze, compared to reading the standard gprof text output.

By default the Profiling perspective displays four views that work in conjunction with each
other and are the most useful views for analyzing the gmon.out data.

• Editor view which runs gprof on the gmon.out data and displays the results

• Call Hierarchy view

• Samples - Line By Line view

• Samples - Function Total view

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling C Code
• Call Hierarchy View (Profiling Perspective)
• Editor View (Profiling Perspective)
• Samples - Function Total View (Profiling Perspective)
• Samples - Line By Line View (Profiling Perspective)

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

GUI Reference

Altera Corporation 107

 Call Hierarchy View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective. You can also open this
view from the Window menu by pointing to Show View, clicking Other..., expanding
Profiling, and double-clicking Call Hierarchy.

The Call Hierarchy view displays the time spent in each function, based on the standard
gmon.out data, in an easy-to-read tree format. This view also calculates and displays the
percentage of time spent in each function. In this view you can follow the function call
sequences much more easily than reading the gprof output.

There are two ways to view the call hierarchy data.

Top down:

Top down call direction lists the calling functions, with the functions they called nested
below.

The first entry in the Call Hierarchy view is spontaneous. This is a term gprof uses when
it cannot determine what the calling function is. There are two sets of actual time and
percentage time figures for each function. The first set represents the time spent within
the function. The second set represents the total time spent within the function plus all
functions called by that function. Each indented line in the view drills down into the details
of time and percentage spent in each called function. In the top-down mode, when cycles
of recursion exist in your code, a --> symbol appears to the left of the function name
indicating that the called function cycles.

Inverted:

Inverted call direction lists the called functions, with the functions that called them nested
below.

The first entry in the Call Hierarchy view is inverted calls. Actual time and percentage
time figures for each function represent time spent within the function.

To reverse call direction display, right-click in the Call Hierarchy view, and click Toggle Call
Direction.

Note: You can load the source code for functions displayed in this view into the Editor
view. To do this, right-click the file name, and then click Show Source.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Nios II IDE Help System

108 Altera Corporation

 Editor View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective.

When you open the gmon.out file with the Nios II IDE, the IDE automatically calls gprof and
displays the standard gprof text output. This Editor view is for viewing only.

Note: Saving the file with the default gmon.out filename overwrites the original
gmon.out data. If you save the output as a text file, be sure to rename the saved file.

You can change the gprof command line arguments and rerun the nios2-elf-gprof utility. To
do so, right-click anywhere in the Editor view and click Change gprof arguments. Type
comma separated values, such as --help, in the command line box.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

GUI Reference

Altera Corporation 109

 Samples - Function Total View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective. You can also open this
view from the Window menu by pointing to Show View, clicking Other..., expanding
Profiling, and double-clicking Samples - Function Total.

This view uses the gmon.out profiling data to show a breakdown of program execution by
function executed. An entry for each function sampled during profiling appears in a table.

The table consists of the following columns for each table entry. Refer to GNU Profiler
documentation for explanations of each of the columns.

• Function name

• Percent time

• Cumulative time

• Self time

• Number of times called

• Self time per call

• Total time per call

Clicking on the title of any column sorts the data by that column. Clicking a second time
inverts the sort order.

Note: You can load the source code for functions displayed in this view into the Editor
view. To do this, right-click the file name, and then click Show Source.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Nios II IDE Help System

110 Altera Corporation

 Samples - Line By Line View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective. You can also open this
view from the Window menu by pointing to Show View, clicking Other..., expanding
Profiling, and double-clicking Samples - Line By Line.

This view uses the gmon.out profiling data to show a breakdown of program execution by line
of source code executed. An entry for each code line sampled during profiling appears in a
table.

The table consists of the following columns for each table entry. Refer to GNU Profiler
documentation for explanations of each of the columns.

• Function name

• Filename

• Line number

• Percent time

• Cumulative time

• Self time

• Number of times called

• Self time per call

• Total time per call

Clicking on the title of any column sorts the data by that column. Clicking a second time
inverts the sort order.

Note: You can load the source code for functions displayed in this view into the Editor
view. To do this, right-click the file name, and then click Show Source.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

GUI Reference

Altera Corporation 111

Project Properties Dialog Box

 Properties Dialog Box

You open this dialog box by right-clicking a project in the C/C++ Projects view, and clicking
Properties.

This dialog box lets you adjust properties settings for your project. The Properties dialog box
groups similar settings together on pages, and the pages that appear depend on the project
type. The following table describes which properties pages are available for each project type.
Links to Nios II IDE specific topics appear in the table. Click a hyperlink under Properties
Page for more information on a specific page. Properties pages without a hyperlink are native
to the C/C++ Development Toolkit (CDT). Refer to the Related Topics for more information.

Project Type
Properties Page C/C++

Application
System
Library

Advanced
C/C++

Managed
Library

Info o o o o
Associated System Library o
Builders o o o o
C/C++ Build o o o
C/C++ Documentation o o o o
C/C++ File Types o o o o
C/C++ Include Paths and
Symbols

 o

C/C++ Indexer o o o o
C/C++ Make Project o
C/C++ Project Paths o

Project References o o o o

System Library o

Note: For C/C++ application projects, the most important project settings generally
relate to the application's interaction with the hardware. You specify these settings in the
System Library page of the Properties dialog box for the system library project
associated with your application.

 Related Nios II IDE Help Topics
• About Nios II IDE Projects - Contains more information on the four project types.

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Managed

Make Projects > Info
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Managed

Make Projects > File Types
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Standard

Make Projects > C/C++ Include Paths and Symbols
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Managed

Nios II IDE Help System

112 Altera Corporation

Make Projects > Indexer
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Standard

Make Projects > C/C++ Make Project
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Standard

Make Projects > C/C++ Project Paths

GUI Reference

Altera Corporation 113

 Associated System Library Page (Properties Dialog Box)

You open this properties page by clicking Associated System Library in the left-hand
pane of the Properties dialog box for C/C++ application projects.

This page allows you to specify the system library for a C/C++ application project.

• Target - Displays the project type Nios II Application. (This value is read only.)

• System Library - Specifies the associated system library for this application project.
Click Browse to select from the open system library projects.

Note: If you change the system library, you must perform a clean build on the
application project.

• System Library Properties... - Opens the System Library properties page for the
specified system library.

 Related Nios II IDE Help Topics
• Properties Dialog Box

Nios II IDE Help System

114 Altera Corporation

 Builders Page (Properties Dialog Box)

You open this properties page by clicking Builders in the left-hand pane of the Properties
dialog box for C/C++ application, system library, advanced C/C++, and managed library
projects.

This page lists the builders the Nios II IDE uses to build a project. For C/C++ application
projects, system library projects, and managed make projects, Altera Generated Makefile
Builder is always present and must be selected. Altera Generated Makefile Builder is the
tool that manages makefiles for Nios II system libraries. For advanced C/C++ projects, refer
to Related Topics for more information about builders for Eclipse standard make projects.

 Related Nios II IDE Help Topics
• Properties Dialog

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Reference > C/C++ Project Properties > Standard

Make Projects > Builders

GUI Reference

Altera Corporation 115

 C/C++ Build Page (Properties Dialog Box)

You open this properties page by clicking C/C++ Build in the left-hand pane of the
Properties dialog box for C/C++ application, system library, and managed library
projects.

This page allows you to specify compilation, preprocessor, and linking options for the nios2-
elf-gcc compiler and linker. The page is organized in the following sections.

Active Configuration:

This section identifies the current configuration.

• Project Type - Displays the project type Nios II Executable. (This value is read
only.)

• Configuration - Specifies the configuration to build. The Nios II IDE allows you to
control groups of related compilation options as a single build configuration. By
default, there are two build configurations: Release and Debug.

• Manage... - Allows you to add or delete build configurations.

Configuration Settings:

This section describes the configuration settings tabs.

Tool Settings Tab

Clicking on an item on the left-hand side of the tab displays options for that item in the
right half of the tab.

• Nios II Compiler - Displays flags configured within this category for the nios2-
elf-gcc compiler command.

o Preprocessor - Defines symbols for the nios2-elf-gcc preprocessor.
Several advanced HAL system library options are specified as preprocessor
options.

 Defined Symbols - Specifying a symbol here is equivalent to a
#define macro in source code, or supplying -D arguments on the
command line. You can define symbols directly, for example
THING_TO_DEFINE, or as equivalents, such as PI=3.14159.

 Undefined Symbols - Specifying a symbol here is equivalent to a
#undefine macro in source code.

o General - Configures known flags for the compiler. For a complete list of
flags, type nios2-elf-gcc -v --help on a command line or refer to the
GNU tools documentation included with the Nios II Embedded Design Suite
(EDS).

 Compiler Flags - Allows additional command line flags to pass to
the compiler.

 Optimization Level - Configures the compiler optimization level.
Options are -O0 to -O3. The compiler optimizes for both size and
speed.

 Debug Level - Configures the debug level.

Nios II IDE Help System

116 Altera Corporation

 Include Paths - Lists where the compiler searches for C header
files. The Nios II IDE creates a search path including the project
directory, device driver directories, the Newlib standard C library,
etc. Use Include Paths to specify additional paths to find files in
other locations. To add an include path, click New and enter the
path. The paths are searched in the order they appear from top to
bottom. To modify the search order, click on a list entry then click
Move Up and Move Down accordingly.

 Enable All Warnings (-Wall) - Enables additional warnings when
compiling.

• Linker - Displays linker flags configured within this category for the nios2-elf-
gcc compiler command.

o General - Configures known flags for the linker. For additional information
on linker flags, type nios2-elf-ld --help on a command line or see the
Nios II documentation located at <Nios II EDS install
path>/documents/gnu-tools/binutils/ld.html.

Error Parser Tab

This tab gives advanced users control over which types of build errors the Nios II IDE
displays in the Problems view.

Note: Altera strongly recommends leaving these settings at their default values.

Binary Parser Tab

This tab allows advanced users to choose which binary parser to use to read build files in
the IDE.

Note: Altera strongly recommends using the GNU Elf Parser.

 Related Nios II IDE Help Topics
• Properties Dialog Box

GUI Reference

Altera Corporation 117

 C/C++ Documentation Page (Properties Dialog Box)

You open this properties page by clicking C/C++ Documentation in the left-hand pane of
the Properties dialog box for C/C++ application, system library, advanced C/C++, and
managed library projects.

This page lists available HTML-based C/C++ Help Books which provide context-sensitive help
for C/C++ code.

 Related Nios II IDE Help Topics
• Properties Dialog Box

Nios II IDE Help System

118 Altera Corporation

 Project References Page (Properties Dialog Box)

You open this properties page by clicking Project References in the left-hand pane of the
Properties dialog box for C/C++ application, system library, advanced C/C++, and
managed library projects.

This page allows you to specify project dependencies, i.e. other projects that must be built
prior to building the application project. In general, if the current project references another
project, then the other project must be built first.

Important: Do not use this page to link to a system library. The dependency between
the C/C++ application project and the system library project is handled by the Associated
System Library page.

 Related Nios II IDE Help Topics
• Properties Dialog Box

GUI Reference

Altera Corporation 119

 System Library Page (Properties Dialog Box)

You open this properties page by clicking System Library in the left-hand pane of the
Properties dialog box for system library projects.

This page allows you to configure compiler and linker options that affect how your program
interacts with hardware, such as:

• Specifying a device for the stdin, stdout, and stderr channels

• Specifying which sections of code belong in which physical memory

• Adding and configuring software components, such as an RTOS or file system

This page contains groups of settings related to target hardware, system library contents, and
linker script. The following sections describe each group in detail.

Target Hardware:

This section displays the target CPU and SOPC Builder System. These values cannot be
modified. You must make a new system library project if you wish to change these values.

System Library Contents:

This bottom-left group of settings affects the contents included in the system library.
These settings configure the behavior of the HAL system library and the system RTOS, if
any.

• RTOS - Specifies the operating system to base the system on. The MicroC/OS-II
option configures the system library to use the MicroC/OS-II RTOS. Other RTOS
choices are available from other vendors. none (single threaded) configures the
system library with a single-threaded HAL runtime environment. If an option other
than none (single threaded) is selected, the RTOS Options... button is
enabled.

• RTOS Options - Displays configuration options that are specific to the selected
RTOS. Consult the RTOS vendor’s documentation regarding these options.

• stdout, stderr, stdin - Allow you to associate the C stdout, stderr, and stdin
streams to devices in the SOPC Builder system. You can choose any character
mode device for each stream. Setting unused streams to null might reduce the
memory footprint.

• System clock timer - Associates the system clock driver with a timer device in
the SOPC Builder system.

• Timestamp timer - Associates the timestamp driver to a timer device in the
SOPC Builder system. The Timestamp timer and the Periodic system timer
cannot specify the same physical device.

• Max file descriptors - Specifies the maximum number of file descriptors that can
be open simultaneously for accessing character mode devices and file subsystems.
The default is 32. Using a smaller number might reduce the memory footprint.

• Clean exit (flush buffers) - When on, the system library calls exit() upon
returning from main(), which flushes I/O buffers and then calls _exit(). When
off, the system library calls only _exit(). This option increases memory footprint,
and is often undesirable for embedded programs that never return from main().

Nios II IDE Help System

120 Altera Corporation

• Small C library - When on, the system library uses a reduced implementation of
the Newlib ANSI C standard library. Notably, the printf() family of routines
(printf(), fprintf(), sprintf(), etc.) will not support floating-point values. The
reduced library is optimized for smaller memory footprint, although the
implementation might be less time efficient.

• ModelSim only, no hardware support - Turning on this feature allows the
program to take short-cuts for faster ModelSim simulation. For example, in
hardware simulation, memories are pre-initialized with data, making it
unnecessary to load RAM contents from non-volatile storage. This saves millions of
simulated CPU cycles, and saves considerable time in hardware simulation
iterations.

When off, code runs properly on hardware. Turning off this feature also allows you
to simulate true hardware behavior, such as booting from flash.

Important: Only turn on this option if you are simulating a Nios II system on
the ModelSim RTL simulator. When on, your program will not run in hardware.

• Run time stack checking - This option is only available when using the HAL
runtime environment. When on, the compiler inserts a test for stack overflow upon
function entry and when allocating memory on the stack. If an allocation results in
the stack pointer exceeding the stack limit then a break instruction executes.
Enabling this option is equivalent to supplying the -mstack-check option to
nios2-elf-gcc on the command line.

• Reduced device drivers - When on, the compiler includes the reduced version of
device drivers for all devices that provide small drivers. This reduces memory
footprint at the expense of functionality. See documentation associated with each
peripheral for more information.

• Link with profiling library - When on, the build system links in a profiling library
to collect information about which functions call other functions and the amount of
time spent in each function. Refer to Related Topics for more information about
profiling.

• Emulate multiply and divide instructions - When on, the linker includes an
exception handler to emulate multiply and divide instructions on Nios II systems
that do not include hardware multiply or divide hardware. This option increases
memory footprint and might decrease system performance.

• Software Components... - Opens a page listing available software components
that can be built into the software library. See the following documentation for
information on these Altera-provided software components:

o Host Based File System

o Lightweight TCP/IP Stack

o Zip Read-Only File System

Linker Script:

These settings configure the linker script used when building the project.

• Custom linker script - When selected, you create and manage your own linker
script, and specify it here.

 Note: Altera strongly recommends that you use the auto-generated linker
script.

GUI Reference

Altera Corporation 121

• Auto-generated linker script - When selected, the Nios II IDE automatically
creates and manages a linker script that is sufficient for most system compilation
needs. When using this option, you must specify the following:

o Program memory (.text) - Specifies where executable code resides in
physical memory.

o Read-only data memory (.rodata) - Specifies where read-only data
resides in physical memory.

o Read/write data memory (.rwdata) - Specifies where read/write data
resides in physical memory.

o Heap memory - Specifies where the heap resides in physical memory.

o Stack memory - Specifies where the stack resides in physical memory.

o Use a separate exception stack - When on, the exception stack resides
in separate physical memory. Placing the exception stack in a fast memory
improves the performance of exception handling.

 Exception stack memory - Specifies where the exception stack
resides in physical memory, when Use a separate exception
stack is on.

 Maximum exception stack size (bytes) - Specifies the
maximum size of the exception stack, when Use a separate
exception stack is on.

You can also use the __attribute__ declaration in C code to specify which memory to use
for a specific block of code. The Nios II IDE creates a corresponding memory section for
each memory device defined in the SOPC Builder system (see system.h). For example, a
memory device named "on_chip_memory" has an associated memory section named
".on_chip_memory". The follow examples demonstrate how to force a function or a
variable to reside in a specific memory.

/* data using the section attribute should be initialized */
int foo_var __attribute__ ((section (".on_chip_memory"))) = 0;
void bar_func __attribute__ ((section (".sdram"))) (void)
{
 foo++;
}

 Related Nios II IDE Help Topics
• Properties Dialog Box
• About Profiling with the Nios II IDE

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains information on the
HAL system library and the MicroC/OS-II RTOS.

• Using MicroC/OS-II RTOS with the Nios II Processor Tutorial at
www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf - Contains step-by-
step instructions on creating MicroC/OS-II applications.

Nios II IDE Help System

122 Altera Corporation

 RTOS Options Dialog Box (System Library Properties Page)

You open this dialog box by clicking RTOS Options... on the System Library properties
page. The RTOS Options... button is only enabled when something other than none
(single threaded) is selected in the RTOS drop-down list.

The RTOS Options dialog box lets you adjust settings for the RTOS specified in the RTOS
drop-down list on the System Library properties page.

The RTOS Options dialog box contains the following controls.

• RTOS options list - Displays pages of options for the RTOS in the left-hand pane of the
RTOS Options dialog box.

• Restore Defaults - Discards your changes, and returns the dialog box to its previous
settings.

• Apply - Saves your settings.

• OK - Closes the dialog box, saving any settings you changed.

• Cancel - Closes the dialog box, ignoring any settings you changed.

• Help - Displays help information.

When you select a page in the RTOS options list, settings specific to that page appear in the
right side of the dialog box.

 Related Nios II IDE Help Topics
• Choosing and Configuring an Operating System
• MicroC/OS-II RTOS
• System Library Page (Properties Dialog Box)

 Related Topics on the Web
• Nios II Software Developer's Handbook at

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf - Contains details on writing
Nios II programs based on MicroC/OS-II.

• Using MicroC/OS-II RTOS with the Nios II Processor Tutorial at
www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf - Contains step-by-
step instructions on creating MicroC/OS-II applications.

GUI Reference

Altera Corporation 123

 Software Components Dialog Box (System Library Properties Page)

You open this dialog box by clicking Software Components... on the System Library
properties page.

The Software Components dialog box lets you add middleware software components to your
system library.

The Software Components dialog box contains the following controls.

• Software components list - Displays the available software components and allows you
to select a component.

• Add this software component - Indicates that you want to add the software
component to your system library. Turning on this setting enables all the other
settings specific to the selected software component.

• Restore Defaults - Discards your changes, and returns the dialog box to its previous
settings.

• Apply - Saves your settings.

• OK - Closes the dialog box, saving any settings you changed.

• Cancel - Closes the dialog box, ignoring any settings you changed.

• Help - Displays help information.

When you select an page in the software components list, settings specific to that component
appear in the right side of the dialog box.

 Related Nios II IDE Help Topics
• Choosing and Configuring Middleware Software Components
• Host-Based File System
• Lightweight TCP/IP Stack
• Zip Read-Only File System
• System Library Page (Properties Dialog Box)

Nios II IDE Help System

124 Altera Corporation

Run/Debug Dialog Box

 Run/Debug Dialog Box

You open this dialog box by clicking Run... or Debug... on the Run menu.

The Run dialog box allows you to configure and start run sessions, and the Debug dialog box
allows you to configure and start debug sessions. The Run and Debug dialog boxes are
distinct entities, but their controls are nearly identical. This help topic describes both dialog
boxes.

The Run and Debug dialog boxes allow you to manage run/debug configurations. A
run/debug configuration is a group of settings that specify the target type and which project to
run or debug. The available target types are: Nios II hardware, Nios II instruction set
simulator (ISS), Nios II ModelSim, and Nios II multiprocessor collection.

The following sections describe the controls and tabs available on this dialog box.

Run and Debug Controls:

The Run and Debug dialog boxes contains the following controls:

• Configurations - Is a list of available run/debug configurations, grouped by
target type.

• New - Creates a new run/debug configuration. You must first select a target type
in the Configurations list before clicking New.

• Delete - Deletes the selected configuration.

• Name - Allows you to enter a unique name for a configuration. Name appears
only after you select an existing configuration.

• Apply - Saves your settings for the selected configuration.

• Revert - Discards changes for the selected configuration, and returns the
configuration to its previously-saved state.

• Run or Debug - Starts a run or debug session with the selected configuration. The
Run button appears only on the Run dialog box, and the Debug button appears
only on the Debug dialog box.

• Close - Closes the dialog box.

Run and Debug Configuration Tabs:

If you select a specific run/debug configuration in the Configurations list, tabs appear on
the right side of the dialog box. Each tab presents a group of settings related to the
selected configuration. The tabs that appear depend on the target type. The following
table lists which tabs appear for which target type. Click a hyperlink under Tab Name for
more information on a specific tab.

Target Type
Tab Name Nios II

Hardware
Nios II
ISS

ModelSim
Simulator

Multiprocessor
Collection

Main o o o
Target
Connection

o

GUI Reference

Altera Corporation 125

ISS Settings o
Launch
ModelSim

 o

Debugger o o
Source o o
Common o o

Note: The Launch ModelSim tab is not available on the Debug dialog box.

Perspectives Tab:

If you select a target type in the Configurations list, the Perspectives tab appears. The
Perspectives tab allows you to associate a workbench perspective with run and debug
sessions for each target type. When you launch a run/debug configuration, the IDE
automatically switches to the perspective specified here.

This tab has the following settings:

• Debug - Identifies the perspective to use when you start a run session.

• Run - Identifies the perspective to use when you start a debug session.

 Related Nios II IDE Help Topics
• About Running and Debugging Projects
• Main Tab (Run/Debug Dialog)
• Target Connection Tab (Run/Debug Dialog)
• ISS Settings Tab (Run/Debug Dialog)
• Launch ModelSim Tab (Run/Debug Dialog)
• Debugger Tab (Run/Debug Dialog)
• Source Tab (Run/Debug Dialog)
• Common Tab (Run/Debug Dialog)

Nios II IDE Help System

126 Altera Corporation

 Common Tab (Run/Debug Dialog Box)

You open this tab by clicking the Common tab on the Run/Debug dialog box for Nios II
Hardware and Nios II Instruction Set Simulator (ISS) configurations.

The Common tab contains the following settings.

• Type of launch configuration - Specifies where to store the run/debug
configuration. The following options are available:

o Local - Saves the run/debug configuration under the workspace directory.

o Shared - Saves the run/debug configuration within a project in your
workspace, which allows you to commit it to CVS and share it with other
users.

o Location of shared configuration - Specifies where to save the shared
configuration.

• Display in favorites menu - Specifies which run/debug configurations to list in the
special "favorites" section at the top of the Run, Run History and Run, Debug
History menus.

o Run - When on, the run/debug configuration appears in the top section of the
Run, Run History menu.

o Debug - When on, the run/debug configuration appears in the top section of
the Run, Debug History menu.

• Launch in background - Specifies whether the run/debug configuration executes in
the background. When on, you can continue working in the Nios II IDE while your
project is building.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box

GUI Reference

Altera Corporation 127

 Debugger Tab (Run/Debug Dialog Box)

You open this tab by clicking the Debugger tab on the Run/Debug dialog box for Nios II
Hardware and Nios II Instruction Set Simulator (ISS) configurations.

The Debugger tab contains settings that affect the IDE behavior during debug sessions. Some
settings also apply to run sessions. Most settings on this tab are grouped by category.

• Debugger - Allows you to specify the application to use for debugging. The only
choice is the Nios II Elf Debugger.

Download and Reset:

These settings determine if the IDE downloads code to the target and resets the target.
These settings apply to both run and debug sessions.

• Download Program to RAM - Downloads the executable software file (.elf) to
RAM at the start of a debug session.

• Attach to existing program on target (no download) - Attaches the debugger
and console to a process that is already running in hardware.

• Reset target and execute from reset vector (no download) - Allows you to
reset the target, attach the debugger and console to the process already executing
in hardware, and pause the debug session at the reset vector.

Important: This option is explicitly for debugging boot code from flash.

Breakpoints at Start-up:

These settings determine where the debugger suspends at the start of a debug session. If
no checkboxes are on, the debug session executes until it encounters a user-inserted
breakpoint.

• Break at main() - Causes the debugger to break at main(). This is equivalent to
inserting a breakpoint at the first instruction of main().

• Break at alt_main() - Causes the debugger to break at alt_main(). This is
equivalent to inserting a breakpoint at the first instruction of alt_main(). Use this
setting when debugging freestanding C/C++ application projects.

• Break at program entry point – Causes the debugger to break at the program’s
entry point. This is equivalent to inserting a breakpoint at the program’s entry
point, typically _start().

Advanced:

These settings provide access to features that are not standard in the Nios II IDE debug
flow.

• Use FS2 console window for trace and watchpoint support - Turning this
option on launches the FS2 console (provided by First Silicon Solutions, Inc.) at
the start of debug sessions. This option is available only on Windows and is always
disabled on Linux.

Nios II IDE Help System

128 Altera Corporation

• Use the Altera generated initialization script for faster debug performance
- Turning this option off allows you to specify a custom GDB initialization script to
run at the start of debug sessions. This setting has little impact on Nios II
instruction set simulator targets. If you turn this setting off, you must also specify
the GDB command file.

Note: Altera does not recommend turning off this setting for Nios II hardware
targets, because doing so slows down debugging.

• GDB command file - Specifies the GDB initialization script file to use when the
Use the Altera generated initialization script for faster debug performance
setting is off.

Note: If you provide your own script, the commands can interfere with the
normal startup operation of the debugger. For example, do not use the "run"
command in your script.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box
• About Running and Debugging Projects

 Related Topics on the Web
• First Silicon Solutions, Inc. at www.fs2.com

GUI Reference

Altera Corporation 129

 ISS Settings Tab (Run/Debug Dialog Box)

You open this tab by clicking the ISS Settings tab on the Run/Debug dialog box for
Nios II Instruction Set Simulator configurations.

The ISS Settings tab allows you to configure settings specific to the Nios II instruction set
simulator (ISS). Most settings on this tab are grouped by category.

Trace Options:

The following options control how much trace information the ISS reports.

• Enable Tracing - Enables tracing the instruction-by-instruction execution of the
CPU in simulation. The trace information output depends on the remaining trace
options.

• Information - Outputs information about the system and debugging process.

• Disassembly - Outputs the program counter, assembly instructions, and values of
affected registers.

• Registers - Outputs the CPU registers. Registers include the program counter
(PC), r0, at(r1), r2-r23, et, bt, gp, sp, fp, ea, ba, ra, status,
estatus, bstatus, ienable, and ipending.

• Warning - Outputs ISS warnings encountered while simulating.

• Instruction Count - Outputs the instruction number of the currently executing
instruction. This option only has an effect if the Disassembly or Registers
options are on.

• Send trace output to file - When on, the ISS writes trace output to the specified
file.

o Trace File - Specifies where to save trace data. This uses the application
project directory if you do not specify a different location.

• Start tracing from - Specifies the trace entry-point function. The choices are:
main(), alt_main() or the program entry point. This setting defaults to main(),
which allows you to ignore any pre-main() activity. Note that from the program
entry point to the start of main() or alt_main(), as many as several hundred
thousand instructions occur.

Host Communications Devices:

The following options control where the ISS directs the stdio, stdout, and stderr character
streams.

• Use default host communication devices - When on, the ISS uses the
communication devices specified in the system library project. You can turn this
setting off to manually select the host communication device for stdio, stdout, and
stderr. The ISS settings for stdio, stdout, and stderr override the system library
project settings.

• stdout - Specifies the communication device for stdout.

• stderr - Specifies the communication device for stderr.

• stdin - Specifies the communication device for stdin.

Nios II IDE Help System

130 Altera Corporation

Memory Dump:

The following options allow you to save the contents of memory to a file after running a
program on the ISS.

• Enable memory dump - When on, memory contents are dumped to a file after
program execution terminates. The resulting file name is <processor
name>_memdump.out, located in the application project directory.

o Start Address - Specifies the starting address of the memory range to
dump.

o End Address - Specifies the ending address of the memory range to
dump.

Other Settings:

The following are options not associated with any other group of options:

• Summarize system components - When on, the ISS reports details at startup
about the SOPC Builder system components connected to the processor. This
report can be a useful reminder of what components are present in the system,
and which components will not simulate accurately.

• Additional nios2-iss arguments - Specifies the command line arguments to
pass to nios2-iss when launching. This option is for advanced users only.

Note: For details on nios2-iss command line arguments, type nios2-iss --
help from the Nios II command shell. Specify the arguments as if running the
ISS in a Nios II command shell. For example, to launch the terminal window as
a separate window, type -w in the Additional nios2-iss arguments box.

• Uninitialized memory reads - Specifies the ISS behavior when a read from
uninitialized memory occurs. The following options are available.

o Generate Error - Stops execution and generates an error.

o Generate Warning - Generates a warning message, and continues
execution. This option is useful if you know that the data read will not be
used by the processor.

o Ignore - Continues execution without generating any warning.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box
• Instruction Set Simulator (ISS)
• Running and Debugging on the ISS

GUI Reference

Altera Corporation 131

 Launch ModelSim Tab (Run Dialog Box)

You open this tab by clicking the Launch ModelSim tab on the Run dialog box for Nios II
ModelSim configurations.

The Launch ModelSim tab contains general settings about the application project, the
executable code (.elf), and additional settings required for hardware simulation with
ModelSim.

The Launch ModelSim tab contains the following settings.

• Project - Specifies the source application project. The Nios II IDE associates each run
configuration with exactly one application project.

• Target Hardware - Displays the target SOPC Builder System and CPU for the
selected project. These values are read-only for C/C++ Application projects and
changeable for Advanced C/C++ projects.

• ModelSim Path - Displays the location of the ModelSim executable. This display is
read-only. You set the ModelSim path in SOPC Builder by specifying the ModelSim
Directory in the SOPC Builder Setup dialog box found on the SOPC Builder File
menu.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box
• Running on the ModelSim Simulator

 Related Topics on the Web
• AN351: Simulating Nios II Embedded Processor Designs at

www.altera.com/literature/an/an351.pdf

Nios II IDE Help System

132 Altera Corporation

 Main Tab (Run/Debug Dialog Box)

You open this tab by clicking the Main tab on the Run/Debug dialog box for Nios II
Hardware, Nios II Instruction Set Simulator (ISS), and Nios II Multiprocessor Collection
configurations.

The options available on the Main tab depend on the configuration type. The following
sections describe the options for each configuration type.

Nios II Hardware and Nios II ISS Configurations:

For Nios II Hardware configurations and Nios II ISS configurations, the Main tab contains
the following settings.

• Project - Specifies the source application project. The Nios II IDE associates each
run/debug configuration with exactly one application project.

• Nios II ELF Executable - Specifies which executable file (.elf) to download to
the target. This setting is read-only for C/C++ Application projects and changeable
for Advanced C/C++ projects.

• Target Hardware - Displays the target SOPC Builder System and CPU for the
selected project. These values are read-only for C/C++ Application projects and
changeable for Advanced C/C++ projects.

• Validate Nios II system ID before software download - This option is only
enabled if there is a system ID component in your SOPC Builder system. When on,
the Nios II IDE verifies the system ID in the target before downloading code. If the
ID expected by your executable does not match the actual hardware ID, a
mismatch error appears in the Console view.

Note:Validate Nios II System ID before software download is not
available for Nios II ISS configurations.

Nios II Multiprocessor Collection Configurations:

For Nios II Multiprocessor Collection configurations, the Main tab contains the following
settings.

• Select Nios II Hardware configurations to run concurrently - Specifies
multiple run/debug configurations to launch simultaneously.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box
• Hardware Target
• Instruction Set Simulator (ISS)
• Hardware Simulation with ModelSim
• Multiprocessor Nios II Systems

GUI Reference

Altera Corporation 133

 Source Tab (Run/Debug Dialog Box)

You open this tab by clicking the Source tab on the Run/Debug dialog box for Nios II
Hardware and Nios II Instruction Set Simulator (ISS) configurations.

The Source tab specifies where the debugger searches for source files associated with an
executable file. You can specify Nios II IDE project folders and other folders.

Note: If you do not have the source code for a file, you can step through the assembly
instructions in the Disassembly view.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Reference > C/C++ Run and Debug > Source -

Contains details on the Source tab.

Nios II IDE Help System

134 Altera Corporation

 Target Connection Tab (Run/Debug Dialog Box)

You open this tab by clicking the Target Connection tab on the Run/Debug dialog box
for Nios II Hardware configurations.

The Target Connection tab specifies how the IDE communicates with the target hardware.

The Target Connection tab contains the following settings.

• JTAG cable - Specifies the Altera download cable (such as the USB Blaster) to use for
communicating with the Nios II processor. If you have only one cable, the automatic
value displays your cable. If more than one cable is connected, you must select a
specific cable.

o Refresh - Allows you to update the JTAG cable list if you change your JTAG
cables while the Run or Debug dialog box is open.

• JTAG device - Specifies the device in the JTAG chain that contains the Nios II CPU. If
there are multiple devices containing Nios II systems in the JTAG chain, you must
select a specific device.

o Refresh - Allows you to update the JTAG device list if you change your JTAG
cables while the Run or Debug dialog box is open.

• Nios II Terminal communication device - Specifies the component (such as a
JTAG UART) in the SOPC Builder system to use for terminal communication. When the
selected device is a UART device, you must also specify which Host COM port to use.

• Host COM port - Specifies which host COM port to use when the selected Nios II
terminal communication device is a UART device.

 Related Nios II IDE Help Topics
• Run/Debug Dialog Box
• Hardware Target

GUI Reference

Altera Corporation 135

Views

 C/C++ Projects View (C/C++ Perspective)

This view displays as part of the C/C++ perspective by default. You can also open this view
from the C/C++ perspective manually by pointing to Show View on the Window menu,
and then clicking C/C++ Projects.

The C/C++ Projects view presents project resources in the context of C/C++ project
development, providing visual cues and hierarchy to organize the various files in your projects.
Icons in the C/C++ Projects view are not necessarily associated with files in the file system
(i.e. on your hard drive). For example, object file resources display the names of functions
defined in the file.

The resource selected in the C/C++ Projects view affects the information displayed in other
views. Refer to Related Topics for more information about the C/C++ Projects view.

Right-clicking on a project or project resource displays a context-sensitive menu of available
commands for the selected project or project resource. Most tasks related to developing
Nios II programs are available from this context-sensitive menu. The sections below define the
commands available on the context-sensitive menu for projects.

New:

The New submenu allows you to create a new resource (file, folder, or project). New is
also available in the File menu. The following choices are available.

• Project - Opens the New Project wizard, which allows you to create a new
project of any kind.

• Folder - Opens the New Folder wizard to create a new folder.
• File - Opens the New File wizard to create a new file.
• Header File - Opens the New Header File wizard to create a new header file.
• C/C++ Application - Opens directly to the New Project wizard for creating

Nios II C/C++ application projects. This is the recommended way to start a new
Nios II user application.

• Other... - Opens the New wizard to allow you to create the resource of your
choice.

Go Into:

This command limits the C/C++ Projects view display to just the selected project. To

return to displaying all projects, click Back in the C/C++ Projects view toolbar.

Open in New Window:

This command opens a new Nios II IDE window.

Important: Altera does not recommend working on the same project simultaneously
in separate windows. Values set in one window might not propagate to the other
window, and undefined results could occur.

Nios II IDE Help System

136 Altera Corporation

Run As:

The Run As submenu allows you to run the selected project on a Nios II hardware, Nios II
instruction set simulator (ISS), or Nios II ModelSim target. Run As works as an easy
"build and run" shortcut. When Build (if required) before launching is on (on the
Windowmenu's Preferences, Run/Debug, Launching page), Run As executes the
makefile for the selected project, rebuilding any source files or project dependencies which
have changed, before launching the software executable. The Run As submenu is also
available from the Run menu.

Note: If you have more than one programming cable connected to your system, and
have not created a run/debug configuration for your project, choose Run... from the
Run menu (instead of Run As) to first create a run/debug configuration.

Debug As:

The Debug As submenu allows you to debug the selected project on a Nios II hardware or
Nios II instruction set simulator (ISS) target. Debug As works as an easy "build and
debug" shortcut.When Build (if required) before launching is on (on the
Windowmenu's Preferences, Run/Debug, Launching page), Debug As executes the
makefile for the selected project, rebuilding any source files or project dependencies which
have changed, before launching the software executable in the debugger. The Debug As
submenu is also available from the Run menu.

Note: If you have more than one programming cable connected to your system, and
have not created a run/debug configuration for your project, choose Debug... from the
Run menu (instead of Debug As) to first create a run/debug configuration.

Build Project:

This command builds the selected project (i.e. runs make). You can modify build settings
on the C/C++ Build page of the Properties dialog box. Build Project is also available
from the Project menu.

Copy & Paste:

These commands allow you to copy and paste file and folder resources. Copy and Paste
are also available from the Edit menu.

Important: Do not paste entire projects. Projects created by pasting might fail to
build.

Delete:

This command deletes the currently selected resource and removes it from the hard drive.
If the resource is a project, you are given a choice to delete or not delete the project's
contents. Delete is also available from the Edit menu.

Rename & Move...:

GUI Reference

Altera Corporation 137

These commands allow you to rename and move resources. Renaming or moving a
resource might have repercussions on other projects that reference the resource. Rename
and Move... are also available from the File menu.

Important: If you change the name of a system library project, application projects
that depend on that system library will fail to build.

Import:

The Import... command opens the Import wizard, which allows you to import an existing
Nios II IDE project into the workbench. Import... is also available from the File menu.

Export:

The Export... command opens the Export wizard, which is part of the standard Eclipse
IDE framework.

Note: Do not use this wizard to export files or projects. There are easier methods for
importing, exporting and sharing projects and files.

Refresh:

This command refreshes folders in the C/C++ Projects view to reflect the contents of the
file system (i.e. the hard drive). This is sometimes necessary to force the Nios II IDE to
recognize project files you created or changed outside of the Nios II IDE user interface.
Refresh is also available from the File menu.

Close Project:

You can close projects on the Nios II IDE workbench. The project folder icon changes to

, indicating the project is currently closed. Resources of closed projects do not appear in
and are not changeable from the workbench, but they do still reside on the local file
system. Closed projects require less memory. Closing projects can improve build time,
because they are not examined during builds. You can filter closed projects from the

C/C++ Projects view by choosing View from the C/C++ Projects view toolbar, clicking
Filters..., turning on Closed Projects, and clicking OK. Close Project is also available
from the Project menu.

Open Project:

When a project is closed on the Nios II IDE workbench, Close Project changes to Open
Project on this context-sensitive menu. The Open Project command reinstates the
project to open status. Open Project is also available from the Project menu.

Team:

The Eclipse IDE framework supports team-based development using CVS. The Team
submenu provides access to the Eclipse team development features. Refer to Related
Topics for more information about CVS.

Nios II IDE Help System

138 Altera Corporation

Compare with, Replace with & Restore from Local History...:

The Eclipse IDE framework provides advanced tools to track history and compare changes
made to source files. The Compare With and Replace With submenus provide access to
these features. Refer to Related Topics for more information about local history.

Properties:

This command opens the Properties dialog box for the selected project.

System Library Properties:

This command only appears for C/C++ application projects. It opens the Properties
dialog box for the system library project associated with the C/C++ application project
and displays the System Library page.

 Related Eclipse and CDT Help Topics
• C/C++ Development User Guide > Reference > C/C++ Views and Editors > C/C++

Projects view
• Workbench User Guide > Concepts > Team Programming with CVS
• Workbench User Guide > Tasks > Working with local history

GUI Reference

Altera Corporation 139

 Call Hierarchy View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective. You can also open this
view from the Window menu by pointing to Show View, clicking Other..., expanding
Profiling, and double-clicking Call Hierarchy.

The Call Hierarchy view displays the time spent in each function, based on the standard
gmon.out data, in an easy-to-read tree format. This view also calculates and displays the
percentage of time spent in each function. In this view you can follow the function call
sequences much more easily than reading the gprof output.

There are two ways to view the call hierarchy data.

Top down:

Top down call direction lists the calling functions, with the functions they called nested
below.

The first entry in the Call Hierarchy view is spontaneous. This is a term gprof uses when
it cannot determine what the calling function is. There are two sets of actual time and
percentage time figures for each function. The first set represents the time spent within
the function. The second set represents the total time spent within the function plus all
functions called by that function. Each indented line in the view drills down into the details
of time and percentage spent in each called function. In the top-down mode, when cycles
of recursion exist in your code, a --> symbol appears to the left of the function name
indicating that the called function cycles.

Inverted:

Inverted call direction lists the called functions, with the functions that called them nested
below.

The first entry in the Call Hierarchy view is inverted calls. Actual time and percentage
time figures for each function represent time spent within the function.

To reverse call direction display, right-click in the Call Hierarchy view, and click Toggle Call
Direction.

Note: You can load the source code for functions displayed in this view into the Editor
view. To do this, right-click the file name, and then click Show Source.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Nios II IDE Help System

140 Altera Corporation

 Disassembly View (Debug Perspective)

This view is available in the Debug perspective, and automatically displays when execution
suspends at a breakpoint. You can also open this view from the Debug perspective
manually by pointing to Show View on the Window menu, and then clicking
Disassembly.

The Disassembly view, also known as "mixed source" view, displays assembly instructions
interspersed with the associated C/C++ source code. The Disassembly view allows you to
analyze the exact assembly output of the compiler.

Whenever processor execution suspends during a debug session, the Disassembly view
displays mixed C/C++ and assembly source code when available. When the processor
suspends on an instruction with no debugging information available, the Disassembly view
only shows the assembly instructions, omitting the interleaved C/C++ source code. The
Disassembly view highlights the next instruction to execute with an arrow to the left of the
instruction.

The Disassembly view displays the following information:

• Lines of C/C++ source code followed by their assembly translation
• The absolute address and the relative address within the function of each assembly

instruction
• The assembly instructions with their source and destination operands

 Related Nios II IDE Help Topics
• Viewing Disassembly

 Related Topics on the Web
• Nios II Processor Reference Handbook at

www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the
Nios II instruction set.

GUI Reference

Altera Corporation 141

 Editor View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective.

When you open the gmon.out file with the Nios II IDE, the IDE automatically calls gprof and
displays the standard gprof text output. This Editor view is for viewing only.

Note: Saving the file with the default gmon.out filename overwrites the original
gmon.out data. If you save the output as a text file, be sure to rename the saved file.

You can change the gprof command line arguments and rerun the nios2-elf-gprof utility. To
do so, right-click anywhere in the Editor view and click Change gprof arguments. Type
comma separated values, such as --help, in the command line box.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Nios II IDE Help System

142 Altera Corporation

 Samples - Function Total View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective. You can also open this
view from the Window menu by pointing to Show View, clicking Other..., expanding
Profiling, and double-clicking Samples - Function Total.

This view uses the gmon.out profiling data to show a breakdown of program execution by
function executed. An entry for each function sampled during profiling appears in a table.

The table consists of the following columns for each table entry. Refer to GNU Profiler
documentation for explanations of each of the columns.

• Function name

• Percent time

• Cumulative time

• Self time

• Number of times called

• Self time per call

• Total time per call

Clicking on the title of any column sorts the data by that column. Clicking a second time
inverts the sort order.

Note: You can load the source code for functions displayed in this view into the Editor
view. To do this, right-click the file name, and then click Show Source.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

GUI Reference

Altera Corporation 143

 Samples - Line By Line View (Profiling Perspective)

This view automatically displays as part of the Profiling perspective. You can also open this
view from the Window menu by pointing to Show View, clicking Other..., expanding
Profiling, and double-clicking Samples - Line By Line.

This view uses the gmon.out profiling data to show a breakdown of program execution by line
of source code executed. An entry for each code line sampled during profiling appears in a
table.

The table consists of the following columns for each table entry. Refer to GNU Profiler
documentation for explanations of each of the columns.

• Function name

• Filename

• Line number

• Percent time

• Cumulative time

• Self time

• Number of times called

• Self time per call

• Total time per call

Clicking on the title of any column sorts the data by that column. Clicking a second time
inverts the sort order.

Note: You can load the source code for functions displayed in this view into the Editor
view. To do this, right-click the file name, and then click Show Source.

 Related Nios II IDE Help Topics
• About Profiling with the Nios II IDE
• Profiling Perspective

 Related Topics on the Web
• AN 391: Profiling Nios II Systems at www.altera.com/literature/an/an391.pdf
• The GNU Profiler - GNU gprof documentation found at www.gnu.org.

Nios II IDE Help System

144 Altera Corporation

 Trace View (Debug Perspective)

You open this view from the Debug perspective by pointing to Show View on the Window
menu, and then clicking Trace.

The Nios II IDE Trace view displays a disassembly trace of the instructions executed prior to
the current breakpoint or watchpoint, and optionally displays load/store addresses and the
associated data. The Trace view allows you to analyze execution details that are not available
in the source disassembly listing, such as branches taken at runtime, and precisely when
exceptions occurred.

The Trace view is only available in the Debug perspective, and does not automatically display
as part of the Debug perspective. The Trace view only functions when debugging Nios II
hardware targets. If the hardware does not support trace, then the Trace view does not
function. The JTAG debug module on the target processor must be configured to support trace
collection.

During a debug session, the Trace view automatically displays trace data whenever processor
execution suspends. The most recently executed instruction displays at the bottom of the
view.

The Trace view displays the following information:

• Address of the instruction in hex

• C/C++ function containing the suspended instruction, plus a (hex) offset

• The instruction word in hex

• Disassembly of the instruction word

• Load and/or store addresses, and associated data (depending on trace preferences)

Ellipses in the disassembly indicate that the JTAG debug module might have dropped some
instructions while collecting trace data. The trace might not be reliable at that point. The
following disassembly is an example.

0x01000068 <foo+0x24>: 0xdec00204 addi sp, sp, 8
...
0x0100006c <foo+0x28>: 0xf800283a ret

 Related Nios II IDE Help Topics
• Viewing Execution Trace
• Trace Page (Preferences Dialog Box)

 Related Topics on the Web
• Nios II Processor Reference Handbook at

www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf - Contains details on the JTAG
debug module on the Nios II processor.

GUI Reference

Altera Corporation 145

 Workspace Launcher Dialog Box

This dialog box automatically displays when you start the Nios II IDE. You can also open
this dialog box by clicking Switch Workspace... on the File menu.

The Workspace Launcher dialog box lets you select the Nios II IDE workspace to use for the
current IDE session. The Nios II IDE stores your projects in a directory called a workspace.
The workspace is the default area for Nios II IDE projects and other IDE-related settings files.

Each user can define one or more workspaces to keep their environments separated as
desired. Additionally, workspaces allow more than one instance of the Nios II IDE to run
simultaneously, with each instance pointing to a different workspace. If an instance of the
Nios II IDE is already running when you launch another, a warning appears instructing you to
choose a different workspace than the one currently in use.

Storing projects in the workspace directory allows you to upgrade versions of the IDE while
keeping the same projects in your workspace.

The Workspace Launcher dialog box contains the following controls.

• Workspace - Is a list of the previously-identified workspaces.

• Browse... - Allows you to navigate the file system and select a workspace directory.

• Use this as the default and do not ask again - Signals the IDE to use the selected
workspace on future launches.

• OK - Sets the workspace to use and closes the Workspace Launcher dialog box.

• Cancel - Closes the Workspace Launcher dialog box without changing the
workspace. When displayed as part of system startup, cancelling also exits the Nios II
IDE.

 Related Nios II IDE Help Topics
• New Projects Page (Preferences Dialog)

Altera Corporation 146

 Troubleshooting

This topic contains troubleshooting tips for questions and issues that might arise due to non-
intuitive behavior of the Nios II IDE.

Q: How do I get my C/C++ or Debug perspectives to display correctly after
upgrading to the latest version?

A: Switch to the affected perspective, and then click Reset Perspective on the Window
menu.

Q: Sometimes I get the message "An error has occurred. See error log for more
details." Where is this error log located?

A: The error log is located in your workspace directory in the .metadata subdirectory in the
.log file. You can view the error log from the Nios II IDE. Click About Nios II IDE on the
Help menu, then click Configuration Details, then click View Error Log.

Q: Why do I get "Error creating project. Reason: Invalid project description" in the
New Project wizard when I specify a custom project location and click Finish?

A: Nios II IDE project directories can contain only one project, and cannot be nested inside
other project directories. For example, if you have project_1 in directory
/software/project_1, then you cannot create a project_2 in directory
/software/project_1/project_2. If you want to specify a particular directory, but a project
already exists there, you must first delete the old project from the IDE workspace. Right-click
the old project in the C/C++ Projects view, and then click Delete.

When Use Default Location is on, the New Project wizard always creates a new, valid
project directory.

Q: Why doesn't Make Targets view appear in the C/C++ perspective?

A: Since Make Targets view only pertains to advanced projects, the C/C++ and Debug
perspectives do not automatically display the view by default. To display Make Targets view,
point to Show View on the Window menu, click Other..., expand Make, and then double-
click Make Targets.

Q: Why does the source code not display when stepping in the debugger?

A: If you compile a project without the -g compiler option, the IDE cannot display source code
during debug sessions. To add debug information to your project, right-click your project and
then click Properties. Click C/C++ Build. On the Tool Settings tab, expand Nios II
Compiler and click General. Select Default (-g) from the Debug Level list on the right
side.

Q: Why can't I debug systems containing an active watchdog timer?

A: While paused in debug mode, the processor does not stop the watchdog timer. This is a
deliberate choice because in deployed systems the watchdog timer should trigger even if the
processor has hit a break instruction. Unfortunately the paused processor is not able to refresh
the watchdog timer, so the watchdog timer resets the system and your debug connection is
lost. To avoid this, do not enable watchdog timers while debugging.

Troubleshooting

Altera Corporation 147

Q: Why do I see the message "Unable to connect to JTAG UART because another
application is using it" when I try to start a run or debug session?

A: The IDE does not automatically terminate previous run or debug sessions if Allow multiple
active run/debug sessions is on. In this case, you must manually terminate existing
sessions that use the JTAG cable before starting a new session. Alternately, you can click
Preferences on the Window menu, then click Nios II, then turn off Allow multiple active
run/debug sessions.

Q: Why does my project fail to compile after I make changes in SOPC Builder? How
do I get the Nios II IDE to recognize component name changes made in SOPC
Builder?

A: If you change the names of components in the SOPC Builder system, you must update the
system library project to reflect the new component names. Right-click your system library
project and then click Properties. Review the System Library page of the Properties dialog
box to verify that any referenced component names appear correctly, and then rebuild your
system library project. If you renamed the CPU in SOPC Builder, then you must recreate a
system library targeted to the system with the new CPU. Alternatively, you can delete the
system library project (without deleting the contents) and re-import the project, selecting the
new CPU in the process. You might also have to update your application code to reflect the
new component name(s).

Q: Why is the Nios II IDE GUI responsiveness slow?

A: If you have a lot of open projects in the C/C++ Projects view, you might want to disable
the automatic refresh feature. On the Window menu, click Preferences, then click
Workbench, then turn off Refresh workspace automatically. You can manually refresh the
workspace by choosing Refresh on the File menu or pressing F5.

The GUI responsiveness might also be slower while the C/C++ Indexer creates a database of
source and header files when you first start the IDE or after you create a new project.

Q: Why do I get the message "Launch failed. Error starting gdbserver - see console
for details" with no other details on the console, when launching a debug session
with the Nios II ISS target?

A: If you are running an antivirus program with a firewall, it might be blocking the listening
tcp port opened by the nios2-iss executable. You must unblock the nios2-iss.exe program
to enable it to operate through the firewall. Please consult the help section of your antivirus
program, for instructions on how to do this.

	About This Document
	Welcome to the Nios II IDE
	What's New in the Nios II IDE v6.0
	Tutorials
	About Tutorials
	Creating a C/C++ Application Project
	Building the Project
	Running the Project
	Running on Hardware
	Running using the ISS

	Debugging the Project
	To set a breakpoint for this example:
	To remove a breakpoint:
	To disable a breakpoint:
	To use Breakpoints view:
	Variables Display Format

	Editing the Project Properties

	Creating Projects
	About Nios II IDE Projects
	About the Nios II IDE Managed-Make Build Environment
	makefile
	app.mk
	system.mk
	generated_all.mk
	app_rules.mk
	system_rules.mk
	generated_app.mk
	common.mk
	component.mk
	gnu_rules.mk
	gtf_rules.mk

	Creating a New Project
	Importing, Exporting and Sharing Projects and Files

	Configuring Projects
	About Project Properties
	Configuring Project Properties
	Choosing and Configuring an Operating System
	Choosing and Configuring Middleware Software Components
	Configuring Project Dependencies

	Editing Code
	About Editing Code

	Building Projects
	About Building Projects
	Building a Project

	Running and Debugging Projects
	About Running and Debugging Projects
	Configuring the FPGA
	Running and Debugging on Hardware
	Running and Debugging on the ISS
	Running on the ModelSim Simulator
	Running and Debugging Multiprocessor Collections
	Viewing Execution Trace
	Viewing Disassembly

	Profiling Execution Performance
	About Profiling with the Nios II IDE
	Profiling C Code

	Storing Firmware on the Target Board
	About Storing Firmware
	Programming Flash

	Features and Terms Reference
	Advanced Debugging Features by FS2
	C-to-Hardware Acceleration (C2H) Compiler
	Hardware Abstraction Layer (HAL)
	Hardware Simulation with ModelSim
	Hardware Target
	Host-Based File System
	Instruction Set Simulator (ISS)
	Lightweight TCP/IP Stack
	MicroC/OS-II RTOS
	Multiprocessor Nios II Systems
	Run/Debug Configuration
	Valid Project Names
	Zip Read-Only File System

	GUI Reference
	Flash Programmer Dialog Box
	Import Wizard
	 New Project Wizard
	New Project Wizard
	New C/C++ Application (New Project Wizard)
	New System Library (New Project Wizard)
	New Managed Library (New Project Wizard)
	New Advanced C/C++ Project (New Project Wizard)

	 Preferences Dialog Box
	Preferences Dialog Box
	Nios II Page (Preferences Dialog Box)
	New Projects Page (Preferences Dialog Box)
	Trace Page (Preferences Dialog Box)

	 Profiling Perspective
	Profiling Perspective
	Call Hierarchy View (Profiling Perspective)
	Editor View (Profiling Perspective)
	Samples - Function Total View (Profiling Perspective)
	Samples - Line By Line View (Profiling Perspective)

	 Project Properties Dialog Box
	Properties Dialog Box
	Associated System Library Page (Properties Dialog Box)
	Builders Page (Properties Dialog Box)
	C/C++ Build Page (Properties Dialog Box)
	Tool Settings Tab
	Error Parser Tab
	Binary Parser Tab

	C/C++ Documentation Page (Properties Dialog Box)
	Project References Page (Properties Dialog Box)
	System Library Page (Properties Dialog Box)
	RTOS Options Dialog Box (System Library Properties Page)
	Software Components Dialog Box (System Library Properties Page)

	 Run/Debug Dialog Box
	Run/Debug Dialog Box
	Common Tab (Run/Debug Dialog Box)
	Debugger Tab (Run/Debug Dialog Box)
	ISS Settings Tab (Run/Debug Dialog Box)
	Launch ModelSim Tab (Run Dialog Box)
	Main Tab (Run/Debug Dialog Box)
	Source Tab (Run/Debug Dialog Box)
	Target Connection Tab (Run/Debug Dialog Box)

	 Views
	C/C++ Projects View (C/C++ Perspective)
	Call Hierarchy View (Profiling Perspective)
	Disassembly View (Debug Perspective)
	Editor View (Profiling Perspective)
	Samples - Function Total View (Profiling Perspective)
	Samples - Line By Line View (Profiling Perspective)
	Trace View (Debug Perspective)

	Workspace Launcher Dialog Box

	Troubleshooting

