Keil RTXRTOS the easy way: [>Z| KEIL

by Robert Boys bob.boys@arm.com v 0.4 Tools by ARM

Introduction:

This note describes the process of operating ARM® Keil™ MDK toolkit featuring uVision®. Getting RTX running is
described using the Serial Wire Viewer (SWV) debug technology to view RTX in operation. SWV is available on Cortex-
M3/M4 processors and is supported by Keil. This note describes how to get all the components of this important technology
working with pVision. This article needs MDK® 4.11 or later.

Keil pVision:

pVision is the IDE and is a component of the Keil MDK™ development system.

MDK-ARM™ components include the uVision IDE, ARM Realview® compiler, assembler and RTX™ RTOS.
The Keil ULINK® JTAG/SWD adapter family includes the ULINK2, ULINK-ME and the ULINKpro.
RL-ARM™ contains the sources for RTX plus a TCP/IP stack a FLASH file system, USB and CAN drivers.

Why Use Keil MDK ?
MDK provides these features particularly suited for Actel users:
1. pVision IDE with Integrated Debugger, Flash programmer and the RealView ARM compiler.
A full feature RTOS is included with MDK: RTX by Keil. No royalty payments are required.
Serial Wire Viewer trace capability is included.
RTX Kernel Awareness window. It is updated in real-time and uses no system resources.
Choice of USB adapters: ULINK2, ULINK-ME, ULINKpro and Segger J-Link.
Kernel Awareness for Keil RTX, CMX, Quadros and Micrium. All RTOSs will compile with MDK.
Keil Technical Support is included for one year. This helps you get your project completed faster.

N o o~ WD

Serial Wire Viewer:

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM, CPU
counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into the Cortex-M3.
SWV does not steal any CPU cycles, is non-intrusive and requires no stubs in your source code.

This document details these features:

Serial Wire Viewer (SWV).

Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows.

Breakpoints and Watchpoints (Access Breaks).

RTX Viewer: a kernel awareness program for the Keil RTOS — RTX.

Keil TCP/IP stack — is one component of RL-ARM. A http server example www.keil.com/download/docs/404.asp.

o~ DN e

Keil Contact Information: www.keil.com

USA: North America: Europe and Asia:
Keil, An ARM Company Keil, An ARM Company
Plano, Texas Grasbrunn, Germany
800-348-8051 (Toll Free) +49 89/456040-20
sales.us@keil.com sales.intl@keil.com
support.us@keil.com support.intl@keil.com
1 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and pVision www.keil.com

mailto:sales.us@keil.com�
mailto:sales.intl@keil.com�
mailto:support.us@keil.com�
mailto:support.intl@keil.com�

1) Create a new pVision project called RTX_Demo:

This exercise is designed to work with the NXP LPC1768 but will work with any Cortex-M3 processor that is listed in the

Keil Device Database®. Unlisted devices can be run by selecting Cortex-M3 under “ARM”.

With pVision running and not in debug mode, select Project/New pVision Project.

In the window that opens up named Create New Project go to the folder C:\KeilARM\Boards\Kei\MCB1700.
Right click and create a new folder by selecting New/Folder. Name this folder RTX_Demo.

Double-click on the newly created folder “RTX_Demo” to enter this folder as is shown below.

RN S

10.

11.

12.

13.

14.

Name your project “Demo”.
Click on Save.

The “Select Device for Target 1”
window shown here opens up.

This is the Keil Device Database
which lists all the devices Keil
currently supports.

Locate the NXP directory, open it and
select LPC1768 or the Cortex-M3
processor of your choice. Note the
device features are displayed

Click on OK.

A window will open asking if you
want to copy the default LPC17xx
startup code to your folder and add it
to the project. Click on “Yes”. This
will save you time.

In the Project workspace in the upper

left hand of pVision, open up the
folders by clicking on the “+” beside
each folder.

We have now created a project called
Demo located in the folder
RTX_Demo and the target hardware
called Target 1 with one source file:
startup_LPC17xx.s.

Click once (carefully) on the name
“Target 1” (or twice if not already
highlighted) in the Project Workspace
and rename Target 1 to LPC1700.
Press Enter or click once on a blank
part of the Project workspace to
accept this. Note the Target selector
also changes. Click on the + to open
up the directory structure. You can
create many target hardware
configurations including a simulator
and easily select them. You should se
this structure now:

Create New Projeck

Save in: I 1) RT¥_Dema

o« ® ¥ E-

d

@ Derno,uvpraj

L

e
o

My Documents
by Computer
-
h File name: I j Save I
Save as type: IProiect Files [* uvpraj) j Cancel |
7
x
cru |
Wendor, NP [founded by Philips)
Device: LPC17E8
Toolset: ARM
[rata baze Drescription:
----- £1 LPC1759 ;I ARM 32-bit Cortex-M3 Microcontroller with MPU, CPU clack up to T00MH: « |
..... £ LPC1763 512kB on-chip Flazh ROM with enhanced Flash Memaory Accelerator,
_____ £1 LPC1764 In-System Programming [15P) and In-Application Pragramming [1AF],
. Nested Vectored Internupt Contraller,
E4kB RaM, Nested Vi d | C Il
""" £3 LPC17ES Eight channel General purpoze DMA controller, AHE batrix, APE,
----- £1 LPC1766 i Ethemet 104100 MAC with Bl interface and dedicated DMa,
..... £3 LPC1767 USE 2.0 full-speed Device controller and Host/OTG contraller with Dk,
T 7ED CaM 2.0B with two channels, Four UARTs, one with full Modem interface:
..... C1765 3 3 3
g 1 ? Three |2C serial interfaces, Three SPI/SSP serial interfaces, 125 interface,
""" General purpose /0 ping, 12-bit ADC with 8 channels, 10-bit DAC,
""" £3 LPCHo Four 32-bit Timers with capture/compare, Standard P Timer block,
----- £3 LPC2102 Matar contral Pt for three-phaze Mator control, Quadrature Encader,
..... £ LPC2103 ‘watchdog Timer, Real Time Clock with optional B attery backup,
_____ £1 LPCo10s Swztem Tick Timer, Repetitive Interupt Timer, Brown-out detect circuit,
Power-On Reset, Power Management Unit, Wakeup Interupt Controller, —
""" % LPC2104/01 - Crystal oscillator, 4MHz intemal RC oscillator, PLL, -
4 | B 1 | »
QK I Cancel Help |

LoD

¥4

LPC1700

| Project o x

=23 LPC1700
B9 Source Group 1

The Keil RTX Real Time Operating System and pVision

Copyright © 2010 ARM Ltd. All rights reserved
www.keil.com

2) Select the project files:

1. Using MS Explore (right click on Windows Start icon), copy RTX_Conf_CM.c from C:\KeilARM\Startup to the
C:\KeilARM\Boards\KeiNMCB1700\RTX_Demo folder

2. Copy system_ LPC17xx.c from C:\KeilNARM\Startup\NXP\LPC17xx to the
C:\KeilARM\Boards\KeiNMCB1700\RTX_Demo folder.

3. Inthe Project workspace in the upper left hand of uVision, right-click on “LPC1700” and select “Add Group”.

Name this new group “Configuration” and press Enter.

Make another group and call it Source in the same manner.

Click twice on Source Group 1 and rename it Startup Code.

o~

6. Right-click on “Startup Code” and select Add files to Group “Startup Code...".
7. Select the file system_LPC17xx.c and click on Add and then Close. This will show up in the Project workspace.
8. Right-click on “Configuration” and select Add files to Group “Configuration...”.
9. Select the file RTX_Conf_CM.c and click on Add and then Close.
10. Open File/New (or Ctrl-N) and a new blank file will open up in puVision.
11. Open File/Save As and enter Demo.c. Click on Save. This is your empty source file to contain your main function.
12. Right-click on “Source” and select Add files to Group “Configuration...”.
13. Select the file Demo.c and click on Add and then Close.
14. This concludes setting up the project structure and assigning files to various Groups. You should have this more
complex structure in your Projects workspace:
|Project o xl

[=-223 LPC1700
ES Startup Code
P skartup_LPC17xx.5
systerm_LPCL 7, C
Ea Configaration
RT_Conf_CM.c
Ea Source
Derma.c

15. Click on Project/Manager and select Components, Environment.... And the window below opens up. This is where
you can manage your project structure. You can add and delete Targets, Groups and files as desired. Click on OK
to return to the main menu.

Components, Environment and Books ﬂ
Praject Companents |FOIders.-"Extensions| Booksl
Project T argets: b Sk AE 2 |Groups: x|+ |+
Startup Code startup_LPC1 Fux s
Configuration system_LPC1Pusc
Source
Set az Current Target | Add Files |
R
3 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and pVision www.keil.com

2) Configure pVision for RTX:

Select the Keil Simulator:

1. Select Options For Target &N and select the Debug tab. This is where you can select the Keil Simulator or a debug
adapter to connect to a real target. We will start out by using the simulator so no target hardware is required.

2. Select the simulator by checking “Use Simulator”.

3. Do not close this window yet.

Tell uVision we are using RTX:
1. Click on the Target tab. In the Operating System drop down box, select RTX as shown below.

2. Select Use MicroLib. This selects a compiler mode that will result in much smaller code size.

Note: The memory areas below are where you can set up RAM and ROM for a real target processor. pVision will use this
information to create a scatter file for you if “Use Memory layout from target Dialog” in the Linker tab is selected.

3. All other configuration items in the Options for Target window can be left at their default.
4. Click on OK to close the Options for Target window.
5. Select File/Save All.

=

Device Target |Dutput| Listingl User I CfC++| Agm I Linkell Debugl Utihtiesl

<P (founded by Phiips] LPC1 768

r~ Code Generation

Htal MHz], |12-U
Operating system: IHTX Kemel j [~ Use Cross-Module Optimization
¥ Use MicroLIB I~ EigEndian
I~ Use Lirk-Time Code Gereration
— Read/Only Memorny Area: — ReadMwfrite Memory Area;
default aoff-chip Start Size Startup default off-chip Start Size Mol kit
[ROMI: | | (o " RaMi: | r
[~ ROM2: | | o [T RaM2: | r
I~ ROM3 | | s T R&M3 | r
on-chip an-chip
¥ IROMI: IDxD IUKBDDDD Il ¥ IRA&MIT: IDMDDDDDDD 02000 I
C IROM2: | | « I~ IR&M2 |Dx2007t000 0x3000 r
ak I Cancel | Defaults | Help |

pVision configuration is now complete:

HVision is now completely configured for RTX operation. All we Demo¢ ” 1) RnCont.cmc x | [systemtpiiruce | (1) stotup.t
need is to tell RTX how fast the CPU is running (for timing Colapse 41 | Heb |
information) and to put some source code into Demo.c.

Option | Value
- T‘_ask Configuration
Te” RTX hOW faSt the CPU |S I’Uﬂnlng Mumber of concurrent running tasks [
. N Mumber of tasks with user-provided stack i}
1. Open File/Open and select the file RTX_ Conf CM.c. Task stack size [bytes] 200
. . . . heck Far th k. fl
2. Click the Configuration Wizard tab at the bottom. e i
3. Click on Expand All and this window will open up: I SysTiek Timer Configuration
- Timer clock value [Hz] 100000000
4. Change SYSTICK Timer Configuration Timer clock value 5 Timer tick vakse [us] 10000
to 100000000 (8 zeroes). Timer tick should be 10000. = System Configuration.
=3 R_oundeobln Task switching Icd

5. Note the other items you can change here. Round-Rabin Tineou: [icks] 5
R . . R . ; Mumber of user timers i)
Tip: If you double-click on a filename in the Project workgroup " I5R FIFO Queus size 16 entries

window, you will place that file in the pVision main window and
open it. After afile is in the main window, you can select it by
clicking on its tab.

Tip: Any changes you make here will be reflected in the code in the Text Editor tab and vice versa. You must rebuild your
files in order for any changes to have effect.

4 Copyright © 2010 ARM Ltd. All rights reserved
The Keil RTX Real Time Operating System and pVision www.keil.com

3) Creating the Demo.c Source file to create the RTX program:

A) Description of the program:
1. We will create a simple three task program using RTX.
2. Taskl and Task2 will toggle two respective global variables.
3. The init task will be used to create taskl and task2 and then it will self delete and disappear.
4

Task1 and Task2 will run sequentially in Round Robin mode forever. Tasks are created as standard C functions.
The __ Task keyword tells the compiler to not create an entry and exit code for the tasks. RTX will do this.

B) Entering the source code: (Note: comments are optional) Remember, all C source code is case sensitive !
1. Open the file Demo.c you created. Either by clicking on its tab or by double-clicking on it in the Project window.
2. Add these lines:

#include <RTL.h> /* RTX header file */

#include <LPC17xx.H> /* LPC17xx definitions (or your own part) */
3. Create two global variables:

unsigned int counta = O; /* counta and countb used in RTX demo */

unsigned int countb = O;
4. Create your Task 1:
__task void taskl (void) {/* _ _task is a RTX keyword. */

for (G:) { /* Infinite loop — runs while taskl runs. */
counta++; /* Increment global variable counta. */
}

}

5. Create your Task 2:
__task void task2 (void) {

for (G3) {
countb++;
T

b

6. Create the Init Task: This task’s job is to create the other two tasks that will actually run. We will call it init.
__task void init (void) {

os_tsk_create (taskl, 1); /* Creates taskl with priority 1 (default)*/
os_tsk_create (task2, 1); /* Creates task2 with priority 1 (default)*/
os_task _delete_self (; /* Goes away and taskl starts */

}
7. Create the main() function:
int main (void) {
Systemlnit(); /* initialize the Coretx-M3 processor */
os_sys_init(init); /* Start the init task */
}
8. Select File/Save All. This saves all your source files and the project for complete recall later.

All you need to do now is to compile the files, enter debug mode and run it !

This is a working minimal RTX project. This is Round Robin and each task will run for 50 msec before it switches to the
next task that is ready and has a same or higher priority. The switching time can be changed in the file RTX_Conf_CM.c as
Round Robin Timeout (ticks). You can see that it is really easy to get RTX working.

So, let’s get RTX running and see how it works.

5 Copyright © 2010 ARM Ltd. All rights reserved
The Keil RTX Real Time Operating System and pVision www.keil.com

3) Compiling Demo.c and the other source files:

1
2
3.
4

Enter Debug mode by clicking on its icon. @

Start the program by clicking on the RUN icon.
Note: you can stop the program with the STOP icon. o Leave it running.

LA

Tip: You are currently using the simulator therefore you do not need to use the Load icon ¥# to program any memory. This
is also true if you are running in RAM in a real target and have configured this properly. You enter debug mode directly.

LOAD

If you want to run the program in Flash and have configured it properly, you will need to use the Load icon #* or have the
Update Target before Debugging selected in the Flash programmer configuration window before entering debug mode.

4) unVision Features useful to view and control RTX operation:
A) Watch window:
We will use the watch window to monitor the two global variables we created: counta and countb.

1.

2.
3.
4

Note: We are using the simulator here. On my computer the tasks change

Open a Watch window if it is not already open: open View/Watch Window and select Watch 1.
Locate counta in Demo.c and block it using the mouse. Click on counta and drag it into Watch 1 and release.

0x006

similarly, drag countb into Watch 1. waicht x|
The values of counta and countb will alternatively increment as Hame [vakie |
each of its respective task runs as shown here: [geunia 0xO0BLIE 30

Double-click on counta or countb while it is incrementing. Enter 0
and press the Enter key. You can modify Watch or Memory
window values on the fly without stealing any CPU cycles. This

works with the simulator or on a real Cortex-M target processor. & Call Stack | [Locals [@Watch1

state every 5 or 6 seconds. This helps us view RTX in slow motion. On a real target RTX will run much faster.
B) Memory window:

1.
2.
3.

6.

Open Memory 1 (if not already open) by selecting View/Memory windows and select Memory 1.
Drag counta into this Memory window (or enter it manually).

Note the value in counta is used to point to a physical memory address. Address: [tcounta D:I
This is useful working with pointers. 0x10000008: O11EEDS0 01044E98 1000009C
o . 0x10000014: 100000SC 00000001 1000009C

Add and ampersand “&” in front of counta and now you will see the 0x10000020: 00050211 00000210 00000000

; 0x1000002C: 00000000 1000003C 1000015
contents of the variable counta. 0x10000038: 00000030 100000CC 00000000 =]
Right click in the Memory window and select Unsigned and then Ecall stack | [l Locals | G@watch 1 | [Memory 1
Long.

Now counta is displayed as a 32 bit number and so is countb since it is adjacent in memory to counta.

C) Hardware Breakpoints: (there are usually 6 on a Cortex-M3)

1.

Set a hardware breakpoint by double-clicking next to the line incrementing counta in Demo.c. This will create a red
box as shown here and presently the program will stop here once Task1 starts to run.

0911 task void taskl (void) {

The yellow arrow is the Program Counter contents. 10 for (] ¢
11 countat+:
Click on RUN several times and note counta increments each time. L.
Remove this breakpoint and set one on countb++. Click on RUN and note the 125' Lask void taskz (void) (
program will stop once Task2 runs. 6] for ;i1 ¢
R . . 17 counth++:
Remove this breakpoint and click on RUN. B

TIP: You can add variables to the Watch and Memory windows while the program is running. You can also set breakpoints
“on the fly” as well as many other uVision features. This is also true when using a real target processor.

6 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and pVision www.keil.com

D) Watchpoints: (also called Access Breaks)
It is possible to stop the program when a variable equals a user specified value. This is very useful during debugging.

1. Stop the program by clicking on the STOP icon. @ =

Cunent Breakpoints:

2. Open Debug/Breakpoints or press Ctrl-B.

3. Enter “counta == 0x3200”, and select “Write” as shown here.
Click on Define to move the Watchpoint to the upper area. Click

Close. i
4. Set counta = 0x0 in the watch window. Click on RUN.
5. Presently the processor will stop when count equals 0x3200. e Fw—_,"tjmm e ":::t[
6. Open the Breakpoint window and select Kill All to remove the Command. | " S B b

Watchpoint. Select Close.

. Define | KillSelected ksl | Cose | Hep |
7. Click on RUN for the next example.

E) Performance Analyzer:

The Performance Analyzer (PA) tells you where your program is spending its time. This can alert you to “time hogs”. PA is
available only with the Keil Simulator or the ULINKpro adapter with an ETM trace equipped processor such as LPC1768.

1. Select View/Analysis Windows and select Performance Analyzer.
2. Open Demo + and then the next Demo + to see the window displayed here:

3. If you select Functions in the
Show: box, Taskl and Task2 Show [Mocdee x|
H Module/Function Calls TimelSec)
are treated as functions. o S
4. With Show: set to Modules, ¥ : nam.
stop the processor and o::l ick e ! e
e main 1 0.250 ps
on the RESET icon. R&T L =2 0y
~ spstem_LPC17xx 42700 ps
5. Click on RUN and watch the B bt
1 [rt_Tasl 26820 ps
changes as various modules by e
are run. Note the various r_Tier 148000
.. Hal_CM3 830 s
statistics gathered. B 1 MemBos 2780 45
- startup_LPC17u 0.050 ps

- sharhin | PO Tus i

@D\:a::imlﬂ;' ‘E Perfarmance Analyzer ﬂ Logic Analyzer | ﬂln:tlu-:tmn Trace ‘ JES-;mI:DI: | RTX Tasks and System | Event Viewer

F) Execution Profiling (EP):

Execution Profiling displays how many times a function has been called or the total time spent in the function. EP works
with the simulator or with the ULINKpro with an ETM trace equipped processor such as LPC1768 or many STM32 parts.

1. Select Debug and select Execution profiling and either Show Times or Show Calls. An extra column opens in the

source and disassembly window as shown to the right: 03 [task void taskl (voidl {
2. Hold the cursor over a time or a call and a display window appears ! 1 for (:7) f
. . 11 281383663 COunta++;
showing both calls and times as shown here: 19 \
Time: Calls: Average: ﬁ 4
34,510 5 290084014 * 0120 ps - El_ task void taskz (void)
16 1+ for (;:) {
17 281183400 % counth++;
18 }
14 H

TIP: You can group times or calls by blocking the source text of interest.
Right click on this block and select Outlining. Various options are provided in this menu to configure this feature.

7 Copyright © 2010 ARM Ltd. All rights reserved
The Keil RTX Real Time Operating System and pVision www.keil.com

G) RTX Tasks and System window:

This is one of two RTX kernel awareness windows available. The information displayed is obtained from the Cortex-M3
DAP (Debug Access Port) which reads and writes memory locations through the JTAG or SWD ports nearly always non-
intrusively. The Watch and Memory windows use this same ARM CoreSight technology.

1. Open Debug/OS Support and select RTX
Tasks and System. This window opens: — o= Z
Topel alue
2. As RTX runs this will be updated. & System S T
] Timerbumber 0 |
3. Note the State of the tasks changing. ICEIer NI
Round Robin Timeout: 50.000 mSec
4. The information located in the Value area s S 0
- - . ACK W Ser-provide ACK:
is derived from the file RTX_Conf CM.c. Stadk Overflow Chedk Ves
Task Usage: Available: 6, Used: 2
C_he_Ck t_he Screen On page 4 and See UserTlmjrs: Available: 0, Used: 0
similar items listed.
= Tasks jo} Mame Priority State Delay Event Value Event Mask Stack Load
255 | os_idle_demon 0 Ready 32%
3 task2 1 Ready 32%
2 taskl 1 Running 0%

@,Dlsassemhl}-‘ ‘ RTX Tasks and System

H) RTX Event Viewer

Event Viewer provides a graphical representation of how long and when individual tasks run. Event Viewer runs in the
simulator and when on a target processor it uses Serial Wire Viewer (SWV). SWV must be properly configured.

1. Select Debug/OS Support and select Event Viewer. No configuration is need for the simulator.

2. Click on the All icon and then use + and — to get a display similar to that below. You might need to wait a few
seconds to pass through a few task state changes. Event Viewer updates automatically while the program is running.

3. Note the init task ran once which is what we would expect

4. Hold the mouse the mouse over a task bar and the displayed task information is shown. In this case task1 is running
and lasts for about 50 msec. This is result of the Timer .
. Click somewhere to create the red cursor and additional information concerning elapsed times is displayed in Time:
6. If you change the value of the Round Robin Timeout value (5 is default) in RTX_Conf_CM.c and rebuild your
project and run it again, these times will be different. This is an interesting experiment to try. Afterwards, make
sure you return the timeout value back to 5. The Round Robin Timeout is equal to the number stated times the tick
value found in RTX_Conf_CM.c. The tick value in Cortex-M3 processors is usually 10 msec by default.

' ® Q€ a
Min Time: 0.002204 = Max Time: 0.947821 ¢ Range: 0500000 ¢ Gid: 0.025000 ¢
it 1
task] — — — —— ——
task2 —— ——
taskl: Begin End Delta Elapsed
0102202 5 0152202 5 49.99997 ms 0483679 5.
Min Max Average Called
33.69473 ms 49.99999 ms 48.36794 ms 10
Mouse Pas Cursor Delta
Time: 0.152060 s 0102542 5 49.51797 ms = 20,1947 Hz
f f f f ; ; f f f f ; i f f f ; ; f f f f ; ; f f f f ; ; f f
00s 15540 5 0.250000 = 0.500000 5
4| | »

@lDlsassemmy | ﬂ Logic Analyzer ‘ Q Instruction Trace | JESy'anIs | RTX Tasks and System Event Viewer

8 Copyright © 2010 ARM Ltd. All rights reserved
The Keil RTX Real Time Operating System and pVision www.keil.com

5) Explanation of Demo.c Source Code:

At this point you have a minimal RTX program running. RTX is capable of many more features and we will start to evaluate
them. First, here is a description of what Demo.c is doing:

Program starts running at the main() function.

The Cortex-M3 system is initialized.

Task init is then called.

init creates task1 and task2 and then deletes itself. init will not run again except after a system RESET.
init starts the first task which is task1.

taskl runs forever. We have included no code to tell it to pass control to task2.

After 50 msec, the Round Robin Timeout forces taskl to end and task2 to start.

8. After another 50 msec, task?2 is forced to stop and taskl runs again. This continues forever.

Tasks of equal priority will be run in Round Robin when they enter the ready state. Higher priority tasks will preempt (or
interrupt) a running task. Lower priority tasks will not run.

It might be more intuitive if Round Robin Timeout was called Round Robin Task Switching Time. There are other ways to
switch tasks, but first, let’s talk a bit about the Idle Demon (or perhaps more correctly Idle Daemon).

N o o~ wdh e

6) ldle Demon

If no tasks are ready to run then RTX will execute its idle demon. This is located in the file RTX_Conf CM.c. You can
insert user code to run during this idle time. We will put a variable into the idle demon so we can detect when it is being
executed. The idle demon itself is created automatically by the RTX kernel.

1. Stop DO the program if it is running.
2. Near the top of file RTX_Conf_CM.c insert this global variable: unsigned int countIDLE = 0;
Just after the #include <RTL.h> line is a good place.
3. Inthe idle demon code (which starts near line 141 in RTX_Conf_CM.c) enter: countIDLE++;
4. Your code will look like this:
__ task void os_idle_demon (void) {
/* The idle demon is a system task, running when no other task is ready */
/* to run. The "os_xxx" function calls are not allowed from this task. */

for (53) {
/* HERE: include optional user code to be executed when no task runs.*/
countIDLE++;

}
}

6. Drag countIDLE into the Watch 1 window or enter it manually.

M ame Walue

7. Click on RUN . The Watch 1 window will update but countIDLE T ooty TR 6455
will not increment. This means the Idle Demon is never executed. o B
This window is shown here:

<double-click or F2 to add:
8. This variable will only increment while the Idle Demon is running and
serves as a good test.

9. The Idle Demon is reserved priority 0 (the lowest).

TIP: You can edit the source files while in either Debug or Edit mode, but you
must compile them while in Edit mode only.

9 Copyright © 2010 ARM Ltd. All rights reserved
The Keil RTX Real Time Operating System and pVision www.keil.com

7) Switching Tasks:

We have already seen how we can switch the tasks Round Robin based on time only. RTX has some other methods to switch

tasks.

A) Cooperative Task Switching: os_tsk_pass();

When the Pass command is used the next ready task of the same priority is run.

1. Stop @ the program if it is running.

2. Add the line os_tsk_pass(); just after the counta++; line in Taskl:
__task void taskl (void) {

for (G3) {

counta++;

os_tsk_pass(Q);

}
}

4. Click on RUN .

5. Note the variable counta increments by one and passes control to want X

Task2 which increments until the timeout occurs. Hame Value
. - "counta (00000001
6. Then Task2 times out and control passes back to Task1 and the 000026730
(x00000000
process rEpea}ts forev-er. i Lo : cdouble-click or F2 to add:
7. The Event Viewer will also show the different timings. As shown
below, Task1 now runs for a mere 2.37 usec.
8. Ifyou add os_tsk_pass(); to Task2 in the same way, task2 will run
for only one cycle and passes control to Taskl1 and the cycle repeats.
= Build Output | EWatch 1
@ Q@ @ n
9. The bo_ttom Event Viewer shown Min Time: 0.002208 5 Maw Time: 0.453639 5 Frange: 0.500000 s Gridk 0.025000
below illustrates counta and countb .
incremented only once and then S T
control is passed to the next ready task. task2
This continues Round Robin forever. eE BEgn T e Frapecd
. . . 2.221420 2.223790 2370000 2595000
10. The variables in the Watch window e Mo verage | called
aISO increment equa"y Now. 2.370000 ps 2620000 ps 2.595000 ps 10
. Mouse Pos Cursar Delta
11. Delete the line os_tsk_pass(); for Time: 2223374ms 0458115 0.1435885=696439Hz |
the next exercise. abs T Tpmims T osoo0ms
«| | »
® Q@@ u
tin Time: 0.045263 5 Max Time: 0.130801 s Fange: 50.00000 ps Gind: 2.500000 ps
Imt . L e e e e e . . - . L e e e e e
task2 - — — — — - - . .
task2: Begin End Delta Elapsed .
0.116662 5 0116665 5 2610000 ps 4276947 ms| .
Min Max Average Called
2.610000 ps 4670000 ps 2610601 ps 16383
Mouse Pas Cursar Delta
. 0116661 SN0 000000 s M 01166611~ 67150 | |
D.11BISBID s T EEEEE D.1I1 S|88:5 . D.‘i 1 é?T D 3
[l | 3
10 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and pVision

www.keil.com

B) Delay: os_dly wait (ticks);
The Delay function pauses the calling task by the amount of ticks passed as the argument. Control will switch to the next
task ready else passes to the idle demon. After the specified number of ticks has expired, the calling task will be placed in the
ready state. The delay does not use up processing time with a loop.

1. Stop DO the program if it is running.

1. Add the line os_dly wait (3); just before the line counta++; in Taskl:

2. Add the line os_dly_wait (2); just before the line countb++; in Task2:

3. Note: make sure you have removed os_tsk_pass(); from the previous exercise.

‘"}
4. Exit debug mode @ and rebuild 2 the files. Re-enter debug mode.

5. Click on RUN .
What is Happening:

1. Inthe Watch window note that counta and countb increment but much more slowly than before. Note that RTX has
automatically created the Idle Demon task. Most of the CPU time is spent in the idle demon.time. You can use the
Performace Analyzer to confirm this.

2. Taskl is paused for 2 ticks (20 msec) and is put in the Wait_Dly state.
This is shown as Wait_Dly state box in the Tasks and System window.

3. IfReady, Task2 runs and countb is incremented once, if not Ready, Idle
demon runs.

4. Task? is paused for 3 ticks (30 msec). This is shown as Dly_Wait in the
Tasks and System window.

5. If Ready, Task1 runs and countb is incremented once, if not, the Idle
demon runs.

Walle
0x00000002
000000001
0x0004442C

- ¢double-click or F2 to add:

1. Open the Event Viewer and using the All, + and — icons adjust the range to get a window similar to this one:

In the Event Viewer, place a cursor

i
on a task2 tick and hold the cursor ‘.;Jv SO
On the n_eXt taSI_(z event _The _tlme Min Time: 0002212 5 Max Time: 0150478 = Range: 0100000 = Grid: 0.005000 5
Delta will be displayed: in this case o
20 msec (2 * 10 msec). ol e
3. Repeat on Task1 and note the time - e T =7 -
. . . Time: 0.102331 s 5214092 ms 2018970 ms = 49.5302 Hz | -
delta is 30 msec. This confirms the
operation of os_dly_wait for times o
of 2 and 3 ticks. podos T 17/ R
. . . 4 | _»lJ
4' Run the program Wh_lle VIeWIng =] Build Output | Event Viewer | RTX Tasks and System |
these windows to gain an
understanding of how the tasks are
switched. =
Property Value
TIP: Atask with an os_dly_wait can also = sy = -
wait for an event to be passed to it. LS 10000 e
5' When done’ remove the tWO :::::2‘1; User-provided Stack: ;00
instances of os_dly_wait for the Stack Overflow Ched ves
. Task Usage: Available: 6, Used: 2
next exercise. UserTimers Avaiable; 0, Useg: 0
=) Tasks ju) Name Priority State Delay Event Value Event Mask Stack Load
255 | os_idle_demon L] Running 0%
3 task2 1 ‘Wait_DLY 2 32%
2 taskl 1 ‘Wait_DLY 3 32%
] Build Output | Event Viewer RTX Tasks and System
11 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and pVision

www.keil.com

C) Periodic Task Execution: os_itv_set (ticks) and os_itv_wait ();
This function determines a periodic wake-up interval with os_itv_set. Then we put the task to sleep with os_itv_wait.

2.

N o o g~

9.

Stop @ the program if it is running.

Add the line os_itv_set (3); just before the line for (;;) { in Taskl:
Add the line os_itv_set (2); just before the line for (;;) { in Task2:
Add the line os_itv_wait (); just before the line counta++; in Taskl:
Add the line os_itv_wait (); just before the line countb++; in Task2:

Note: make sure you have removed os_tsk_pass(); and os_dly_wait from the previous exercises.

Click on RUN .

What is Happening:

1.

10.
11.

...to be continued...

In the Watch window note that counta and countb increment but much more slowly than before. Task1 runs fewer
times (counta increments slower than countb) than Task?2.

Note that RTX has automatically created the Idle Demon task. Most of the CPU time is spent in the idle demon.time

Task1 is put to sleep for 3 ticks (30 msec) and is put in the Wait_ITV
state as shown in the state box in the Tasks and System window. Name Yalue

- . 1 0x0000000F
If Ready, Task2 runs and countb is incremented once, if not Ready, s Fenes
Idle demon runs.

Fo "pountlDLE 0x00330 48F
i R L. - ¢ double-click or F2 ta add>

Task2 is put to sleep for 2 ticks (20 msec). This is shown as

Wait_ITV in the Tasks and System window.

If Ready, Task1 runs and countb is incremented once, if not, the Idle demon runs.

Open the Event Viewer and using the All, +
and — icons adjust the range to get a window -
. . . Min Time: 0.002212 5 Max Time: 0.457301 & Range: 0100000 s Grid: 0.005000 =
similar to this one: w |
. askl
In the Event Viewer, place a cursor on a C I I
task? tick and hold the cursor on the next * |
task2 event. The time Delta WiII be Tim 0382074 5 0362074 5 20.00000 ms = 50 Hz
displayed: in thiscase 20 msec (2 * 10 msec). | | 00
Ioor [ror
Repeat on Task1 and note the time delta is 30 | =~ **f=a e -
msec. This confirms the operation of T 5uid Dutpot || Event Viewer | R+ Tosks and Sstem

os_itv_set for times of 2 and 3 ticks
respectively.

Run the program while viewing these windows to gain an understanding of how the tasks are switched.

Remove the 4 instances of functions os_itv_set
and os_itv_wait for the next execise. E

Property Value
=) system

0
10,000 mSec
50.000 mSec
Stack Size: 200

Stack with User-provided Stack: 0
Stack Overflow Cheek: Yes

Task Usage: Available: 6, Used: 2
User Timers: Available: 0, Used: 0

=) Tasks

3 [task2 1 |waitmv |2 | | [32% |
2 Jtask |1 |waitmv |3 | | |32 |

F] Build Output | Event Viewer ~RTX Tasks and System

12 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and pVision www.keil.com

	Keil RTX RTOS the easy way:
	Introduction:
	Keil µVision:
	Why Use Keil MDK ?
	Serial Wire Viewer:
	Keil Contact Information: www.keil.com
	1) Create a new µVision project called RTX_Demo:
	2) Select the project files:
	2) Configure µVision for RTX:
	3) Creating the Demo.c Source file to create the RTX program:
	3) Compiling Demo.c and the other source files:
	4) µVision Features useful to view and control RTX operation:
	5) Explanation of Demo.c Source Code:
	6) Idle Demon
	7) Switching Tasks:

