
Order this document by
CPU12RM/AD

Rev. 1.0

N
O

N
-

D
I

S
C

L
O

S
U

R
E

 
A

G
R

E
E

M
E

N
T

 
R

E
Q

U
I

R
E

D

CPU12
Reference Manual

HC12HC12HC12

 



 
N

O
N

-
D

I
S

C
L

O
S

U
R

E
 

A
G

R
E

E
M

E
N

T
 

R
E

Q
U

I
R

E
D

Motorola reserves the right to make changes without further notice to
any products herein to improve reliability, function or design. Motorola
does not assume any liability arising out of the application or use of any
product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure
of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for
any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part.



TABLE OF CONTENTS

Paragraph Page

SECTION 1
INTRODUCTION

1.1 CPU12 Features .............................................................................................. 1-1
1.2 Readership....................................................................................................... 1-1
1.3 Symbols and Notation ...................................................................................... 1-2

SECTION 2
OVERVIEW

2.1 Programming Model......................................................................................... 2-1
2.2 Data Types....................................................................................................... 2-5
2.3 Memory Organization....................................................................................... 2-5
2.4 Instruction Queue............................................................................................. 2-5

SECTION 3
ADDRESSING MODES

3.1 Mode Summary................................................................................................ 3-1
3.2 Effective Address ............................................................................................. 3-2
3.3 Inherent Addressing Mode............................................................................... 3-2
3.4 Immediate Addressing Mode ........................................................................... 3-2
3.5 Direct Addressing Mode................................................................................... 3-3
3.6 Extended Addressing Mode............................................................................. 3-3
3.7 Relative Addressing Mode ............................................................................... 3-4
3.8 Indexed Addressing Modes.............................................................................. 3-5
3.9 Instructions Using Multiple Modes ................................................................. 3-10
3.10 Addressing More than 64 Kbytes ................................................................... 3-12

SECTION 4
INSTRUCTION QUEUE

4.1 Queue Description ........................................................................................... 4-1
4.2 Data Movement in the Queue .......................................................................... 4-2
4.3 Changes in Execution Flow.............................................................................. 4-2

SECTION 5
INSTRUCTION SET OVERVIEW

5.1 Instruction Set Description ............................................................................... 5-1
5.2 Load and Store Instructions ............................................................................. 5-1
5.3 Transfer and Exchange Instructions ................................................................ 5-2
5.4 Move Instructions ............................................................................................. 5-3
5.5 Addition and Subtraction Instructions............................................................... 5-3
5.6 Binary Coded Decimal Instructions .................................................................. 5-4
5.7 Decrement and Increment Instructions ............................................................ 5-4
5.8 Compare and Test Instructions ........................................................................ 5-5
5.9 Boolean Logic Instructions ............................................................................... 5-6
5.10 Clear, Complement, and Negate Instructions .................................................. 5-6
CPU12 MOTOROLA

REFERENCE MANUAL iii



Paragraph Page

TABLE OF CONTENTS
5.11 Multiplication and Division Instructions ............................................................ 5-7
5.12 Bit Test and Manipulation Instructions ............................................................. 5-7
5.13 Shift and Rotate Instructions ............................................................................ 5-8
5.14 Fuzzy Logic Instructions................................................................................... 5-9
5.15 Maximum and Minimum Instructions.............................................................. 5-11
5.16 Multiply and Accumulate Instruction............................................................... 5-11
5.17 Table Interpolation Instructions ...................................................................... 5-12
5.18 Branch Instructions ........................................................................................ 5-13
5.19 Loop Primitive Instructions ............................................................................. 5-16
5.20 Jump and Subroutine Instructions.................................................................. 5-17
5.21 Interrupt Instructions ...................................................................................... 5-18
5.22 Index Manipulation Instructions...................................................................... 5-19
5.23 Stacking Instructions ...................................................................................... 5-20
5.24 Pointer and Index Calculation Instructions..................................................... 5-20
5.25 Condition Code Instructions ........................................................................... 5-21
5.26 STOP and WAIT Instructions ......................................................................... 5-21
5.27 Background Mode and Null Operations ......................................................... 5-22

SECTION 6
INSTRUCTION GLOSSARY

6.1 Glossary Information ........................................................................................ 6-1
6.2 Condition Code Changes ................................................................................. 6-2
6.3 Object Code Notation....................................................................................... 6-2
6.4 Source Forms................................................................................................... 6-3
6.5 Cycle-by-Cycle Execution ................................................................................ 6-5
6.6 Glossary ........................................................................................................... 6-8

SECTION 7
EXCEPTION PROCESSING

7.1 Types of Exceptions......................................................................................... 7-1
7.2 Exception Priority ............................................................................................. 7-2
7.3 Resets .............................................................................................................. 7-2
7.4 Interrupts .......................................................................................................... 7-3
7.5 Unimplemented Opcode Trap .......................................................................... 7-5
7.6 Software Interrupt Instruction ........................................................................... 7-6
7.7 Exception Processing Flow.............................................................................. 7-6

SECTION 8
DEVELOPMENT AND DEBUG SUPPORT

8.1 External Reconstruction of the Queue ............................................................. 8-1
8.2 Instruction Queue Status Signals..................................................................... 8-1
8.3 Implementing Queue Reconstruction............................................................... 8-3
8.4 Background Debug Mode ................................................................................ 8-6
8.5 Instruction Tagging......................................................................................... 8-13
 MOTOROLA CPU12

iv REFERENCE MANUAL



Paragraph Page

TABLE OF CONTENTS
8.6 Breakpoints .................................................................................................... 8-14

SECTION 9
FUZZY LOGIC SUPPORT

9.1 Introduction ...................................................................................................... 9-1
9.2 Fuzzy Logic Basics .......................................................................................... 9-1
9.3 Example Inference Kernel................................................................................ 9-7
9.4 MEM Instruction Details ................................................................................... 9-9
9.5 REV, REVW Instruction Details ..................................................................... 9-13
9.6 WAV Instruction Details ................................................................................. 9-22
9.7 Custom Fuzzy Logic Programming ................................................................ 9-26

SECTION 10
MEMORY EXPANSION

10.1 Expansion System Description ...................................................................... 10-1
10.2 CALL and Return from Call Instructions......................................................... 10-3
10.3 Address Lines for Expansion Memory ........................................................... 10-4
10.4 Overlay Window Controls............................................................................... 10-4
10.5 Using Chip-Select Circuits ............................................................................. 10-5
10.6 System Notes................................................................................................. 10-7

APPENDIX A
INSTRUCTION REFERENCE

A.1 Instruction Set Summary..................................................................................A-1
A.2 Opcode Map.....................................................................................................A-1
A.3 Indexed Addressing Postbyte Encoding ..........................................................A-1
A.4 Transfer and Exchange Postbyte Encoding.....................................................A-1
A.5 Loop Primitive Postbyte Encoding ...................................................................A-1

APPENDIX B
M68HC11 TO M68HC12 UPGRADE PATH

B.1 CPU12 Design Goals .......................................................................................B-1
B.2 Source Code Compatibility...............................................................................B-1
B.3 Programmer’s Model and Stacking ..................................................................B-3
B.4 True 16-Bit Architecture ...................................................................................B-3
B.5 Improved Indexing............................................................................................B-6
B.6 Improved Performance.....................................................................................B-9
B.7 Additional Functions.......................................................................................B-11

APPENDIX C
HIGH-LEVEL LANGUAGE SUPPORT

C.1 Data Types...................................................................................................... C-1
C.2 Parameters and Variables............................................................................... C-1
C.3 Increment and Decrement Operators.............................................................. C-3
CPU12 MOTOROLA

REFERENCE MANUAL v



Paragraph Page

TABLE OF CONTENTS
C.4 Higher Math Functions .................................................................................... C-3
C.5 Conditional If Constructs ................................................................................. C-4
C.6 Case and Switch Statements .......................................................................... C-4
C.7 Pointers ........................................................................................................... C-4
C.8 Function Calls ................................................................................................. C-4
C.9 Instruction Set Orthogonality........................................................................... C-5

APPENDIX D
ASSEMBLY LISTING

INDEX

SUMMARY OF CHANGES
 MOTOROLA CPU12

vi REFERENCE MANUAL



LIST OF ILLUSTRATIONS

Figure Page

2-1 Programming Model......................................................................................... 2-1
6-1 Example Glossary Page................................................................................... 6-1
7-2 Exception Processing Flow Diagram ............................................................... 7-7
8-1 Queue Status Signal Timing ............................................................................ 8-2
8-2 BDM Host to Target Serial Bit Timing .............................................................. 8-8
8-3 BDM Target to Host Serial Bit Timing (Logic 1) ............................................... 8-8
8-4 BDM Target to Host Serial Bit Timing (Logic 0) ............................................... 8-9
8-5 Tag Input Timing ............................................................................................ 8-13
9-1 Block Diagram of a Fuzzy Logic System.......................................................... 9-3
9-2 Fuzzification Using Membership Functions...................................................... 9-4
9-3 Fuzzy Inference Engine ................................................................................... 9-8
9-4 Defining a Normal Membership Function....................................................... 9-10
9-5 MEM Instruction Flow Diagram...................................................................... 9-11
9-6 Abnormal Membership Function Case 1........................................................ 9-12
9-7 Abnormal Membership Function Case 2........................................................ 9-13
9-8 Abnormal Membership Function Case 3........................................................ 9-13
9-9 REV Instruction Flow Diagram....................................................................... 9-16
9-10 REVW Instruction Flow Diagram.................................................................... 9-21
9-11 WAV and wavr Instruction Flow Diagram....................................................... 9-25
9-12 Endpoint Table Handling................................................................................ 9-28
CPU12 MOTOROLA

REFERENCE MANUAL vii



MOTOROLA CPU12

viii REFERENCE MANUAL



LIST OF TABLES

Table Page

3-1 M68HC12 Addressing Mode Summary............................................................ 3-1
3-2 Summary of Indexed Operations ..................................................................... 3-6
3-3 PC Offsets for Move Instructions ................................................................... 3-11
5-1 Load and Store Instructions ............................................................................. 5-2
5-2 Transfer and Exchange Instructions ................................................................ 5-3
5-3 Move Instructions ............................................................................................. 5-3
5-4 Addition and Subtraction Instructions............................................................... 5-4
5-5 BCD Instructions .............................................................................................. 5-4
5-6 Decrement and Increment Instructions ............................................................ 5-5
5-7 Compare and Test Instructions ........................................................................ 5-5
5-8 Boolean Logic Instructions ............................................................................... 5-6
5-9 Clear, Complement, and Negate Instructions .................................................. 5-6
5-10 Multiplication and Division Instructions ............................................................ 5-7
5-11 Bit Test and Manipulation Instructions ............................................................. 5-7
5-12 Shift and Rotate Instructions ............................................................................ 5-8
5-13 Fuzzy Logic Instructions................................................................................. 5-10
5-14 Minimum and Maximum Instructions.............................................................. 5-11
5-15 Multiply and Accumulate Instructions............................................................. 5-12
5-16 Table Interpolation Instructions ...................................................................... 5-12
5-17 Short Branch Instructions............................................................................... 5-14
5-18 Long Branch Instructions ............................................................................... 5-15
5-19 Bit Condition Branch Instructions ................................................................... 5-16
5-20 Loop Primitive Instructions ............................................................................. 5-16
5-21 Jump and Subroutine Instructions.................................................................. 5-17
5-22 Interrupt Instructions ...................................................................................... 5-18
5-23 Index Manipulation Instructions...................................................................... 5-19
5-24 Stacking Instructions ...................................................................................... 5-20
5-25 Pointer and Index Calculation Instructions..................................................... 5-21
5-26 Condition Codes Instructions ......................................................................... 5-21
5-27 STOP and WAIT Instructions ......................................................................... 5-22
5-28 Background Mode and Null Operation Instructions........................................ 5-22
7-1 CPU12 Exception Vector Map ......................................................................... 7-1
7-2 Stacking Order on Entry to Interrupts............................................................... 7-5
8-1 IPIPE[1:0] Decoding......................................................................................... 8-2
8-2 BDM Commands Implemented in Hardware.................................................. 8-10
8-3 BDM Firmware Commands............................................................................ 8-11
8-4 BDM Register Mapping .................................................................................. 8-11
8-5 Tag Pin Function ............................................................................................ 8-13
10-1 Mapping Precedence ..................................................................................... 10-2
A-1 Instruction Set Summary..................................................................................A-2
A-2 CPU12 Opcode Map......................................................................................A-20
A-3 Indexed Addressing Mode Summary .............................................................A-22
A-4 Indexed Addressing Mode Postbyte Encoding (xb) .......................................A-23
CPU12 MOTOROLA

REFERENCE MANUAL ix



LIST OF TABLES
A-5 Transfer and Exchange Postbyte Encoding...................................................A-24
A-6 Loop Primitive Postbyte Encoding (lb) ...........................................................A-25
B-1 Translated M68HC11 Mnemonics....................................................................B-2
B-2 Instructions with Smaller Object Code .............................................................B-3
B-3 Comparison of Math Instruction Speeds ........................................................B-10
B-4 New M68HC12 Instructions ...........................................................................B-11
MOTOROLA CPU12

x REFERENCE MANUAL



SECTION 1
INTRODUCTION

This manual describes the features and operation of the CPU12 processing unit used
in all M68HC12 microcontrollers.

1.1 CPU12 Features

The CPU12 is a high-speed, 16-bit processing unit that has a programming model
identical to that of the industry standard M68HC11 CPU. The CPU12 instruction set is
a proper superset of the M68HC11 instruction set, and M68HC11 source code is ac-
cepted by CPU12 assemblers with no changes.

The CPU12 has full 16-bit data paths and can perform arithmetic operations up to 20
bits wide for high-speed math execution.

Unlike many other 16-bit CPUs, the CPU12 allows instructions with odd byte counts,
including many single-byte instructions. This allows much more efficient use of ROM
space.

An instruction queue buffers program information so the CPU has immediate access
to at least three bytes of machine code at the start of every instruction.

In addition to the addressing modes found in other Motorola MCUs, the CPU12 offers
an extensive set of indexed addressing capabilities including:

• Using the stack pointer as an index register in all indexed operations
• Using the program counter as an index register in all but auto inc/dec mode
• Accumulator offsets allowed using A, B, or D accumulators
• Automatic pre- or post-increment or pre- or post-decrement (by –8 to +8)
• 5-bit, 9-bit, or 16-bit signed constant offsets
• 16-bit offset indexed-indirect and accumulator D offset indexed-indirect ad-

dressing

1.2 Readership

This manual is written for professionals and students in electronic design and software
development. The primary goal is to provide information necessary to implement con-
trol systems using M68HC12 devices. Basic knowledge of electronics, microproces-
sors, and assembly language programming is required to use the manual effectively.
Because the CPU12 has a great deal of commonality with the M68HC11 CPU, prior
knowledge of M68HC11 devices is helpful, but is not essential. The CPU12 also in-
cludes features that are new and unique. In these cases, there is supplementary ma-
terial in the text to explain the new technology.
CPU12 INTRODUCTION MOTOROLA

REFERENCE MANUAL 1-1



1.3 Symbols and Notation

The following symbols and notation are used throughout the manual. More specialized
usages that apply only to the instruction glossary are described at the beginning of that
section.

1.3.1 Abbreviations for System Resources

1.3.2 Memory and Addressing

A — Accumulator A
B — Accumulator B
D — Double accumulator D (A : B)
X — Index register X
Y — Index register Y

SP — Stack pointer
PC — Program counter

CCR — Condition code register
S – STOP instruction control bit
X– Non-maskable interrupt control bit
H – Half-carry status bit
I – Maskable interrupt control bit
N – Negative status bit
Z – Zero status bit
V – Two’s complement overflow status bit
C – Carry/Borrow status bit

M — 8-bit memory location pointed to by the effective address of the in-
struction

M : M+1 — 16-bit memory location. Consists of the location pointed to by the
effective address concatenated with the next higher memory loca-
tion. The most significant byte is at location M.

M~M+3
M(Y)~M(Y+3)

— 32-bit memory location. Consists of the effective address of the
instruction concatenated with the next three higher memory
locations. The most significant byte is at location M or M(Y).

M(X) — Memory locations pointed to by index register X
M(SP) — Memory locations pointed to by the stack pointer

M(Y+3) —
Memory locations pointed to by index register Y plus 3,
respectively.

PPAGE — Program overlay page (bank) number for extended memory
(>64K).

Page — Program overlay page
XH — High-order byte
XL — Low-order byte
( ) — Content of register or memory location
$ — Hexadecimal value

% — Binary value
 MOTOROLA INTRODUCTION CPU12

1-2 REFERENCE MANUAL



1.3.3 Operators

1.3.4 Conventions

Logic level one  is the voltage that corresponds to the True (1) state.

Logic level zero  is the voltage that corresponds to the False (0) state.

Set refers specifically to establishing logic level one on a bit or bits.

Cleared  refers specifically to establishing logic level zero on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal changes
from logic level one to logic level zero when asserted, and an active high signal chang-
es from logic level zero to logic level one.

Negated means that an asserted signal changes logic state. An active low signal
changes from logic level zero to logic level one when negated, and an active high sig-
nal changes from logic level one to logic level zero.

ADDR is the mnemonic for address bus.

DATA  is the mnemonic for data bus.

LSB  means least significant bit or bits; MSB, most significant bit or bits.

LSW means least significant word or words; MSW, most significant word or words.

A specific mnemonic within a range is referred to by mnemonic and number. A7 is
bit 7 of accumulator A. A range of mnemonics is referred to by mnemonic and the
numbers that define the range. DATA[15:8] form the high byte of the data bus.

+ — Addition

– — Subtraction

• — Logical AND

+ — Logical OR (inclusive)

⊕ — Logical exclusive OR

× — Multiplication

÷ — Division

M — Negation. One’s complement (invert each bit of M)

: — Concatenate
Example: A : B means: “The 16-bit value formed by concatenat-
ing 8-bit accumulator A with 8-bit accumulator B.”
A is in the high order position.

⇒ — Transfer
Example: (A) ⇒ M means: “The content of accumulator A is
transferred to memory location M.”

⇔ — Exchange
Example: D ⇔ X means: “Exchange the contents of D with those
of X.”
CPU12 INTRODUCTION MOTOROLA

REFERENCE MANUAL 1-3



 MOTOROLA INTRODUCTION CPU12

1-4 REFERENCE MANUAL



SECTION 2
OVERVIEW

This section describes the CPU12 programming model, register set, the data types
used, and basic memory organization.

2.1 Programming Model

The CPU12 programming model, shown in Figure 2-1 , is the same as that of the
M68HC11 CPU. The CPU has two 8-bit general-purpose accumulators (A and B) that
can be concatenated into a single 16-bit accumulator (D) for certain instructions. It also
has two index registers (X and Y), a 16-bit stack pointer (SP), a 16-bit program counter
(PC), and an 8-bit condition code register (CCR).

Figure 2-1 Programming Model

2.1.1 Accumulators

General-purpose 8-bit accumulators A and B are used to hold operands and results of
operations. Some instructions treat the combination of these two 8-bit accumulators
(A : B) as a 16-bit double accumulator (D).

7

15

15

15

15

15

D

IX

IY

SP

PC

A B

NS X H I Z V C

0

0

0

0

0

0

70

CONDITION CODE REGISTER

8-BIT ACCUMULATORS A AND B

16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

OR

HC12 PROG MODEL
CPU12 OVERVIEW MOTOROLA

REFERENCE MANUAL 2-1



Most operations can use accumulator A or B interchangeably. However, there are a
few exceptions. Add, subtract, and compare instructions involving both A and B (ABA,
SBA, and CBA) only operate in one direction, so it is important to make certain the cor-
rect operand is in the correct accumulator. The decimal adjust accumulator A (DAA)
instruction is used after binary-coded decimal (BCD) arithmetic operations. There is
no equivalent instruction to adjust accumulator B.

2.1.2 Index Registers

16-bit index registers X and Y are used for indexed addressing. In the indexed ad-
dressing modes, the contents of an index register are added to 5-bit, 9-bit, or 16-bit
constants or to the content of an accumulator to form the effective address of the in-
struction operand. The second index register is especially useful for moves and in
cases where operands from two separate tables are used in a calculation.

2.1.3 Stack Pointer

The CPU12 supports an automatic program stack. The stack is used to save system
context during subroutine calls and interrupts, and can also be used for temporary
data storage. The stack can be located anywhere in the standard 64-Kbyte address
space and can grow to any size up to the total amount of memory available in the sys-
tem.

The stack pointer holds the 16-bit address of the last stack location used. Normally,
the SP is initialized by one of the first instructions in an application program. The stack
grows downward from the address pointed to by the SP. Each time a byte is pushed
onto the stack, the stack pointer is automatically decremented, and each time a byte
is pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the calling instruc-
tion is automatically calculated and pushed onto the stack. Normally, a return from
subroutine (RTS) or a return from call (RTC) instruction is executed at the end of a
subroutine. The return instruction loads the program counter with the previously
stacked return address and execution continues at that address.

When an interrupt occurs, the current instruction finishes execution (REV, REVW, and
WAV instructions can be interrupted, and resume execution once the interrupt has
been serviced), the address of the next instruction is calculated and pushed onto the
stack, all the CPU registers are pushed onto the stack, the program counter is loaded
with the address pointed to by the interrupt vector, and execution continues at that ad-
dress. The stacked registers are referred to as an interrupt stack frame. The CPU12
stack frame is the same as that of the M68HC11.

2.1.4 Program Counter

The program counter (PC) is a 16-bit register that holds the address of the next instruc-
tion to be executed. It is automatically incremented each time an instruction is fetched.
 MOTOROLA OVERVIEW CPU12

2-2 REFERENCE MANUAL



2.1.5 Condition Code Register

This register contains five status indicators, two interrupt masking bits, and a STOP
instruction control bit. It is named for the five status indicators.

The status bits reflect the results of CPU operation as it executes instructions. The five
flags are half carry (H), negative (N), zero (Z), overflow (V), and carry/borrow (C). The
half-carry flag is used only for BCD arithmetic operations. The N, Z, V, and C status
bits allow for branching based on the results of a previous operation.

In some architectures, only a few instructions affect condition codes, so that multiple
instructions must be executed in order to load and test a variable. Since most CPU12
instructions automatically update condition codes, it is rarely necessary to execute an
extra instruction for this purpose. The challenge in using the CPU12 lies in finding in-
structions that do not alter the condition codes. The most important of these instruc-
tions are pushes, pulls, transfers, and exchanges.

It is always a good idea to refer to an instruction set summary (see APPENDIX A IN-
STRUCTION REFERENCE) to check which condition codes are affected by a partic-
ular instruction.

The following paragraphs describe normal uses of the condition codes. There are oth-
er, more specialized uses. For instance, the C status bit is used to enable weighted
fuzzy logic rule evaluation. Specialized usages are described in the relevant portions
of this manual and in SECTION 6 INSTRUCTION GLOSSARY .

2.1.5.1 S Control Bit

Setting the S bit disables the STOP instruction. Execution of a STOP instruction caus-
es the on-chip oscillator to stop. This may be undesirable in some applications. If the
CPU encounters a STOP instruction while the S bit is set, it is treated like a no-oper-
ation (NOP) instruction, and continues to the next instruction.

2.1.5.2 X Mask Bit

The XIRQ input is an updated version of the NMI input found on earlier generations of
MCUs. Non-maskable interrupts are typically used to deal with major system failures,
such as loss of power. However, enabling non-maskable interrupts before a system is
fully powered and initialized can lead to spurious interrupts. The X bit provides a mech-
anism for enabling non-maskable interrupts after a system is stable.

By default, the X bit is set to one during reset. As long as the X bit remains set, interrupt
service requests made via the XIRQ pin are not recognized. An instruction must clear
the X bit to enable non-maskable interrupt service requests made via the XIRQ pin.
Once the X bit has been cleared to zero, software cannot reset it to one by writing to
the CCR. The X bit is not affected by maskable interrupts.

When an XIRQ interrupt occurs after non-maskable interrupts are enabled, both the X
bit and the I bit are automatically set to prevent other interrupts from being recognized
during the interrupt service routine. The mask bits are set after the registers are
stacked, but before the interrupt vector is fetched.
CPU12 OVERVIEW MOTOROLA

REFERENCE MANUAL 2-3



Normally, an RTI instruction at the end of the interrupt service routine restores register
values that were present before the interrupt occurred. Since the CCR is stacked be-
fore the X bit is set, the RTI normally clears the X bit, and thus re-enables non-
maskable interrupts. While it is possible to manipulate the stacked value of X so that
X is set after an RTI, there is no software method to re-set X (and disable NMI) once
X has been cleared.

2.1.5.3 H Status Bit

The H bit indicates a carry from accumulator A bit 3 during an addition operation. The
DAA instruction uses the value of the H bit to adjust a result in accumulator A to correct
BCD format. H is updated only by the ABA, ADD, and ADC instructions.

2.1.5.4 I Mask Bit

The I bit enables and disables maskable interrupt sources. By default, the I bit is set
to one during reset. An instruction must clear the I bit to enable maskable interrupts.
While the I bit is set, maskable interrupts can become pending and are remembered,
but operation continues uninterrupted until the I bit is cleared.

When an interrupt occurs after interrupts are enabled, the I bit is automatically set to
prevent other maskable interrupts during the interrupt service routine. The I bit is set
after the registers are stacked, but before the interrupt vector is fetched.

Normally, an RTI instruction at the end of the interrupt service routine restores register
values that were present before the interrupt occurred. Since the CCR is stacked be-
fore the I bit is set, the RTI normally clears the I bit, and thus re-enables interrupts.
Interrupts can be re-enabled by clearing the I bit within the service routine, but imple-
menting a nested interrupt management scheme requires great care, and seldom im-
proves system performance.

2.1.5.5 N Status Bit

The N bit shows the state of the MSB of the result. N is most commonly used in two’s
complement arithmetic, where the MSB of a negative number is one and the MSB of
a positive number is zero, but it has other uses. For instance, if the MSB of a register
or memory location is used as a status flag, the user can test status by loading an ac-
cumulator.

2.1.5.6 Z Status Bit

The Z bit is set when all the bits of the result are zeros. Compare instructions perform
an internal implied subtraction, and the condition codes, including Z, reflect the results
of that subtraction. The INX, DEX, INY, and DEY instructions affect the Z bit and no
other condition flags. These operations can only determine = and ≠.

2.1.5.7 V Status Bit

The V bit is set when two’s complement overflow occurs as a result of an operation.
 MOTOROLA OVERVIEW CPU12

2-4 REFERENCE MANUAL



2.1.5.8 C Status Bit

The C bit is set when a carry occurs during addition or a borrow occurs during subtrac-
tion. The C bit also acts as an error flag for multiply and divide operations. Shift and
rotate instructions operate through the C bit to facilitate multiple-word shifts.

2.2 Data Types

The CPU12 uses the following types of data:

• Bits
• 5-bit signed integers
• 8-bit signed and unsigned integers
• 8-bit, 2-digit binary coded decimal numbers
• 9-bit signed integers
• 16-bit signed and unsigned integers
• 16-bit effective addresses
• 32-bit signed and unsigned integers

Negative integers are represented in two’s complement form.

Five-bit and 9-bit signed integers are used only as offsets for indexed addressing
modes.

Sixteen-bit effective addresses are formed during addressing mode computations.

Thirty-two-bit integer dividends are used by extended division instructions. Extended
multiply and extended multiply-and-accumulate instructions produce 32-bit products.

2.3 Memory Organization

The standard CPU12 address space is 64 Kbytes. Some M68HC12 devices support
a paged memory expansion scheme that increases the standard space by means of
predefined windows in address space. The CPU12 has special instructions that sup-
port use of expanded memory. See SECTION 10 MEMORY EXPANSION for more in-
formation.

Eight-bit values can be stored at any odd or even byte address in available memory.
Sixteen-bit values are stored in memory as two consecutive bytes; the high byte occu-
pies the lowest address, but need not be aligned to an even boundary. Thirty-two-bit
values are stored in memory as four consecutive bytes; the high byte occupies the low-
est address, but need not be aligned to an even boundary.

All I/O and all on-chip peripherals are memory-mapped. No special instruction syntax
is required to access these addresses. On-chip registers and memory are typically
grouped in blocks which can be relocated within the standard 64-Kbyte address
space. Refer to device documentation for specific information.

2.4 Instruction Queue

The CPU12 uses an instruction queue to buffer program information. The mechanism
is called a queue rather than a pipeline because a typical pipelined CPU executes
more than one instruction at the same time, while the CPU12 always finishes execut-
ing an instruction before beginning to execute another. Refer to SECTION 4 IN-
STRUCTION QUEUE for more information.
CPU12 OVERVIEW MOTOROLA

REFERENCE MANUAL 2-5



 MOTOROLA OVERVIEW CPU12

2-6 REFERENCE MANUAL



SECTION 3
ADDRESSING MODES

Addressing modes determine how the CPU accesses memory locations to be operat-
ed upon. This section discusses the various modes and how they are used.

3.1 Mode Summary

Addressing modes are an implicit part of CPU12 instructions. APPENDIX A IN-
STRUCTION REFERENCE shows the modes used by each instruction. All CPU12
addressing modes are shown in Table 3-1 .

Table 3-1 M68HC12 Addressing Mode Summary

Addressing Mode Source Format Abbreviation Description

Inherent
INST

(no externally supplied
operands)

INH Operands (if any) are in CPU registers

Immediate
INST #opr8i

or
INST #opr16i

IMM
Operand is included in instruction stream

8- or 16-bit size implied by context

Direct INST opr8a DIR
Operand is the lower 8-bits of an address

in the range $0000 – $00FF

Extended INST opr16a EXT Operand is a 16-bit address

Relative
INST rel8

or
INST rel16

REL An 8-bit or 16-bit relative offset from the current
pc is supplied in the instruction

Indexed
(5-bit offset) INST oprx5,xysp IDX 5-bit signed constant offset from x, y, sp, or pc

Indexed
(pre-decrement) INST oprx3,–xys IDX Auto pre-decrement x, y, or sp by 1 ~ 8

Indexed
(pre-increment) INST oprx3,+xys IDX Auto pre-increment x, y, or sp by 1 ~ 8

Indexed
(post-decrement) INST oprx3,xys– IDX Auto post-decrement x, y, or sp by 1 ~ 8

Indexed
(post-increment) INST oprx3,xys+ IDX Auto post-increment x, y, or sp by 1 ~ 8

Indexed
(accumulator offset) INST abd,xysp IDX

Indexed with 8-bit (A or B) or 16-bit (D)
accumulator offset from x, y, sp, or pc

Indexed
(9-bit offset) INST oprx9,xysp IDX1 9-bit signed constant offset from x, y, sp, or pc

(lower 8-bits of offset in one extension byte)

Indexed
(16-bit offset) INST oprx16,xysp IDX2 16-bit constant offset from x, y, sp, or pc

(16-bit offset in two extension bytes)

Indexed-Indirect
(16-bit offset) INST [oprx16,xysp] [IDX2]

Pointer to operand is found at...
16-bit constant offset from x, y, sp, or pc

(16-bit offset in two extension bytes)

Indexed-Indirect
(D accumulator

offset)
INST [D,xysp] [D,IDX] Pointer to operand is found at...

x, y, sp, or pc plus the value in D
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-1



The CPU12 uses all M68HC11 modes as well as new forms of indexed addressing.
Differences between M68HC11 and M68HC12 indexed modes are described in 3.8 In-
dexed Addressing Modes . Instructions that use more than one mode are discussed
in 3.9 Instructions Using Multiple Modes .

3.2 Effective Address

Each addressing mode except inherent mode generates a 16-bit effective address
which is used during the memory reference portion of the instruction. Effective address
computations do not require extra execution cycles.

3.3 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or all operands
are in internal CPU registers. In either case, the CPU does not need to access any
memory locations to complete the instruction.

Examples:

NOP ;this instruction has no operands

INX ;operand is a CPU register

3.4 Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction stream, and
are fetched into the instruction queue one 16-bit word at a time during normal program
fetch cycles. Since program data is read into the instruction queue several cycles be-
fore it is needed, when an immediate addressing mode operand is called for by an in-
struction, it is already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode operand.
One very common programming error is to accidentally omit the # symbol. This causes
the assembler to misinterpret the following expression as an address rather than ex-
plicitly provided data. For example LDAA #$55 means to load the immediate value $55
into the A accumulator, while LDAA $55 means to load the value from address $0055
into the A accumulator. Without the # symbol the instruction is erroneously interpreted
as a direct addressing mode instruction.

Examples:

LDAA #$55

LDX #$1234

LDY #$67

These are common examples of 8-bit and 16-bit immediate addressing mode. The
size of the immediate operand is implied by the instruction context. In the third exam-
ple, the instruction implies a 16-bit immediate value but only an 8-bit value is supplied.
In this case the assembler will generate the 16-bit value $0067 because the CPU ex-
pects a 16-bit value in the instruction stream.

BRSET FOO,#$03,THERE
 MOTOROLA ADDRESSING MODES CPU12

3-2 REFERENCE MANUAL



In this example, extended addressing mode is used to access the operand FOO,
immediate addressing mode is used to access the mask value $03, and relative ad-
dressing mode is used to identify the destination address of a branch in case the
branch-taken conditions are met. BRSET is listed as an extended mode instruction
even though immediate and relative modes are also used.

3.5 Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing because it is used
to access operands in the address range $0000 through $00FF. Since these address-
es always begin with $00, only the eight low-order bits of the address need to be in-
cluded in the instruction, which saves program space and execution time. A system
can be optimized by placing the most commonly accessed data in this area of memory.
The eight low-order bits of the operand address are supplied with the instruction and
the eight high-order bits of the address are assumed to be zero.

Examples:

LDAA $55

This is a very basic example of direct addressing. The value $55 is taken to be the
low-order half of an address in the range $0000 through $00FF. The high order half of
the address is assumed to be zero. During execution of this instruction, the CPU com-
bines the value $55 from the instruction with the assumed value of $00 to form the ad-
dress $0055, which is then used to access the data to be loaded into accumulator A.

LDX $20

In this example, the value $20 is combined with the assumed value of $00 to form the
address $0020. Since the LDX instruction requires a 16-bit value, a 16-bit word of data
is read from addresses $0020 and $0021. After execution of this instruction, the X in-
dex register will have the value from address $0020 in its high-order half and the value
from address $0021 in its low-order half.

3.6 Extended Addressing Mode

In this addressing mode, the full 16-bit address of the memory location to be operated
on is provided in the instruction. This addressing mode can be used to access any lo-
cation in the 64-Kbyte memory map.

Example:

LDAA $F03B

This is a very basic example of extended addressing. The value from address $F03B
is loaded into the A accumulator.
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-3



3.7 Relative Addressing Mode

The relative addressing mode is used only by branch instructions. Short and long con-
ditional branch instructions use relative addressing mode exclusively, but branching
versions of bit manipulation instructions (BRSET and BRCLR) use multiple addressing
modes, including relative mode. Refer to 3.9 Instructions Using Multiple Modes for
more information.

Short branch instructions consist of an 8-bit opcode and a signed 8-bit offset contained
in the byte that follows the opcode. Long branch instructions consist of an 8-bit pre-
byte, an 8-bit opcode and a signed 16-bit offset contained in the two bytes that follow
the opcode.

Each conditional branch instruction tests certain status bits in the condition code reg-
ister. If the bits are in a specified state, the offset is added to the address of the next
memory location after the offset to form an effective address, and execution continues
at that address; if the bits are not in the specified state, execution continues with the
instruction immediately following the branch instruction.

Bit-condition branches test whether bits in a memory byte are in a specific state. Var-
ious addressing modes can be used to access the memory location. An 8-bit mask op-
erand is used to test the bits. If each bit in memory that corresponds to a one in the
mask is either set (BRSET) or clear (BRCLR), an 8-bit offset is added to the address
of the next memory location after the offset to form an effective address, and execution
continues at that address; if all the bits in memory that correspond to a one in the mask
are not in the specified state, execution continues with the instruction immediately fol-
lowing the branch instruction.

Both 8-bit and 16-bit offsets are signed two’s complement numbers to support branch-
ing upward and downward in memory. The numeric range of short branch offset val-
ues is $80 (–128) to $7F (127). The numeric range of long branch offset values is
$8000 (–32768) to $7FFF (32767). If the offset is zero, the CPU executes the instruc-
tion immediately following the branch instruction, regardless of the test involved.

Since the offset is at the end of a branch instruction, using a negative offset value can
cause the PC to point to the opcode and initiate a loop. For instance, a branch always
(BRA) instruction consists of two bytes, so using an offset of $FE sets up an infinite
loop; the same is true of a long branch always (LBRA) instruction with an offset of
$FFFC.

An offset that points to the opcode can cause a bit-condition branch to repeat execu-
tion until the specified bit condition is satisfied. Since bit condition branches can con-
sist of four, five, or six bytes depending on the addressing mode used to access the
byte in memory, the offset value that sets up a loop can vary. For instance, using an
offset of $FC with a BRCLR that accesses memory using an 8-bit indexed postbyte
sets up a loop that executes until all the bits in the specified memory byte that corre-
spond to ones in the mask byte are cleared.
 MOTOROLA ADDRESSING MODES CPU12

3-4 REFERENCE MANUAL



3.8 Indexed Addressing Modes

The CPU12 uses redefined versions of M68HC11 indexed modes that reduce execu-
tion time and eliminate code size penalties for using the Y index register. In most
cases, CPU12 code size for indexed operations is the same or is smaller than that for
the M68HC11. Execution time is shorter in all cases. Execution time improvements are
due to both a reduced number of cycles for all indexed instructions and to faster sys-
tem clock speed.

The indexed addressing scheme uses a postbyte plus 0, 1, or 2 extension bytes after
the instruction opcode. The postbyte and extensions do the following tasks:

1. Specify which index register is used.
2. Determine whether a value in an accumulator is used as an offset.
3. Enable automatic pre or post increment or decrement.
4. Specify size of increment or decrement.
5. Specify use of 5-, 9-, or 16-bit signed offsets.

This approach eliminates the differences between X and Y register use while dramat-
ically enhancing the indexed addressing capabilities.

Major advantages of the CPU12 indexed addressing scheme are:

•  The stack pointer can be used as an index register in all indexed operations.
• The program counter can be used as an index register in all but autoincrement

and autodecrement modes.
•  A, B, or D accumulators can be used for accumulator offsets.
•  Automatic pre- or post-increment or pre- or post-decrement by –8 to +8
•  A choice of 5-, 9-, or 16-bit signed constant offsets.
•  Use of two new indexed-indirect modes.

— Indexed-indirect mode with 16-bit offset
— Indexed-indirect mode with accumulator D offset

Table 3-2 is a summary of indexed addressing mode capabilities and a description of
postbyte encoding. The postbyte is noted as xb in instruction descriptions. Detailed
descriptions of the indexed addressing mode variations follow the table.

All indexed addressing modes use a 16-bit CPU register and additional information to
create an effective address. In most cases the effective address specifies the memory
location affected by the operation. In some variations of indexed addressing, the ef-
fective address specifies the location of a value that points to the memory location af-
fected by the operation.

Indexed addressing mode instructions use a postbyte to specify X, Y, SP, or PC as the
base index register and to further classify the way the effective address is formed. A
special group of instructions (LEAS, LEAX, and LEAY) cause this calculated effective
address to be loaded into an index register for further calculations.
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-5



3.8.1 5-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 5-bit signed offset which is included in the in-
struction postbyte. This short offset is added to the base index register (X, Y, SP, or
PC) to form the effective address of the memory location that will be affected by the
instruction. This gives a range of –16 through +15 from the value in the base index reg-
ister. Although other indexed addressing modes allow 9- or 16-bit offsets, those
modes also require additional extension bytes in the instruction for this extra informa-
tion. The majority of indexed instructions in real programs use offsets that fit in the
shortest 5-bit form of indexed addressing.

Examples:

LDAA 0,X

STAB –8,Y

For these examples, assume X has a value of $1000 and Y has a value of $2000 be-
fore execution. The 5-bit constant offset mode does not change the value in the index
register, so X will still be $1000 and Y will still be $2000 after execution of these in-
structions. In the first example, A will be loaded with the value from address $1000. In
the second example, the value from the B accumulator will be stored at address $1FF8
($2000 – $8).

Table 3-2 Summary of Indexed Operations

Postbyte
Code (xb)

Source Code
Syntax

Comments
rr; 00 = X, 01 = Y, 10 = SP, 11 = PC

rr0nnnnn
,r
n,r
-n,r

5-bit constant offset  n = –16 to +15
r can specify X, Y, SP, or PC

111rr0zs
n,r
-n,r

Constant offset  (9- or 16-bit signed)
z- 0 = 9-bit with sign in LSB of postbyte(s) -256 < n < 255

1 = 16-bit 0 < n < 65,535
if z = s = 1, 16-bit offset indexed-indirect (see below)
r can specify X, Y, SP, or PC

111rr011 [n,r]
16-bit offset indexed-indirect
rr can specify X, Y, SP, or PC 0 < n < 65,535

rr1pnnnn

n,-r
n,+r
n,r-
n,r+

Auto pre-decrement/increment  or Auto post-decrement/increment ;
p = pre-(0) or post-(1), n = –8 to –1, +1 to +8
r can specify X, Y, or SP (PC not a valid choice)

+8 = 0111
…
+1 = 0000
-1 = 1111
…
-8 = 1000

111rr1aa
A,r
B,r
D,r

Accumulator offset  (unsigned 8-bit or 16-bit)
aa- 00 = A

01 = B
10 = D (16-bit)
11 = see accumulator D offset indexed-indirect

r can specify X, Y, SP, or PC

111rr111 [D,r]
Accumulator D offset indexed-indirect
r can specify X, Y, SP, or PC
 MOTOROLA ADDRESSING MODES CPU12

3-6 REFERENCE MANUAL



3.8.2 9-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 9-bit signed offset which is added to the base
index register (X, Y, SP, or PC) to form the effective address of the memory location
affected by the instruction. This gives a range of –256 through +255 from the value in
the base index register. The most significant bit (sign bit) of the offset is included in the
instruction postbyte and the remaining eight bits are provided as an extension byte af-
ter the instruction postbyte in the instruction flow.

Examples:

LDAA $FF,X

LDAB –20,Y

For these examples assume X is $1000 and Y is $2000 before execution of these in-
structions. (These instructions do not alter the index registers so they will still be $1000
and $2000 respectively after the instructions.) The first instruction will load A with the
value from address $10FF and the second instruction will load B with the value from
address $1FEC.

This variation of the indexed addressing mode in the CPU12 is similar to the M68HC11
indexed addressing mode, but is functionally enhanced. The M68HC11 CPU provides
for unsigned 8-bit constant offset indexing from X or Y, and use of Y requires an extra
instruction byte and thus, an extra execution cycle. The 9-bit signed offset used in the
CPU12 covers the same range of positive offsets as the M68HC11, and adds negative
offset capability. The CPU12 can use X, Y, SP or PC as the base index register.

3.8.3 16-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 16-bit offset which is added to the base index
register (X, Y, SP, or PC) to form the effective address of the memory location affected
by the instruction. This allows access to any address in the 64-Kbyte address space.
Since the address bus and the offset are both 16 bits, it does not matter whether the
offset value is considered to be a signed or an unsigned value ($FFFF may be thought
of as +65,535 or as –1). The 16-bit offset is provided as two extension bytes after the
instruction postbyte in the instruction flow.

3.8.4 16-Bit Constant Indirect Indexed Addressing

This indexed addressing mode adds a 16-bit instruction-supplied offset to the base in-
dex register to form the address of a memory location that contains a pointer to the
memory location affected by the instruction. The instruction itself does not point to the
address of the memory location to be acted upon, but rather to the location of a pointer
to the address to be acted on. The square brackets distinguish this addressing mode
from 16-bit constant offset indexing.

Example:

LDAA [10,X]
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-7



In this example, X holds the base address of a table of pointers. Assume that X has
an initial value of $1000, and that the value $2000 is stored at addresses $100A and
$100B. The instruction first adds the value 10 to the value in X to form the address
$100A. Next, an address pointer ($2000) is fetched from memory at $100A. Then, the
value stored in location $2000 is read and loaded into the A accumulator.

3.8.5 Auto Pre/Post Decrement/Increment Indexed Addressing

This indexed addressing mode provides four ways to automatically change the value
in a base index register as a part of instruction execution. The index register can be
incremented or decremented by an integer value either before or after indexing takes
place. The base index register may be X, Y, or SP (auto-modify modes would not
make sense on PC).

Pre decrement and pre increment versions of the addressing mode adjust the value of
the index register before accessing the memory location affected by the instruction —
the index register retains the changed value after the instruction executes. Post-dec-
rement and post-increment versions of the addressing mode use the initial value in the
index register to access the memory location affected by the instruction, then change
the value of the index register.

The CPU12 allows the index register to be incremented or decremented by any integer
value in the ranges –8 through –1, or 1 through 8. The value need not be related to the
size of the operand for the current instruction. These instructions can be used to incor-
porate an index adjustment into an existing instruction rather than using an additional
instruction and increasing execution time. This addressing mode is also used to per-
form operations on a series of data structures in memory.

When an LEAS, LEAX, or LEAY instruction is executed using this addressing mode,
and the operation modifies the index register that is being loaded, the final value in the
register is the value that would have been used to access a memory operand (premod-
ification is seen in the result but postmodification is not).

Examples:

STAA 1, –SP ;equivalent to PSHA

STX 2, –SP ;equivalent to PSHX

LDX 2,SP+ ;equivalent to PULX

LDAA 1,SP+ ;equivalent to PULA

For a “last-used” type of stack like the CPU12 stack, these four examples are equiva-
lent to common push and pull instructions. For a “next-available” stack like the
M68HC11 stack, PSHA is equivalent to STAA 1,SP– and PULA is equivalent to LDAA
1,+SP. However, in the M68HC11, 16-bit operations like PSHX and PULX require mul-
tiple instructions to decrement the SP by one, then store X, then decrement SP by one
again.
 MOTOROLA ADDRESSING MODES CPU12

3-8 REFERENCE MANUAL



In the STAA 1,–SP example, the stack pointer is pre-decremented by one and then A
is stored to the address contained in the stack pointer. Similarly the LDX 2,SP+ first
loads X from the address in the stack pointer, then post-increments SP by two.

Example:

MOVW 2,X+,4,+Y

This example demonstrates how to work with data structures larger than bytes and
words. With this instruction in a program loop, it is possible to move words of data from
a list having one word per entry into a second table that has four bytes per table ele-
ment. In this example the source pointer is updated after the data is read from memory
(post-increment) while the destination pointer is updated before it is used to access
memory (pre-increment).

3.8.6 Accumulator Offset Indexed Addressing

In this indexed addressing mode, the effective address is the sum of the values in the
base index register and an unsigned offset in one of the accumulators. The value in
the index register itself is not changed. The index register can be X, Y, SP, or PC and
the accumulator can be either of the 8-bit accumulators (A or B) or the 16-bit D accu-
mulator.

Example:

LDAA B,X

This instruction internally adds B to X to form the address from which A will be loaded.
B and X are not changed by this instruction. This example is similar to the following
two-instruction combination in an M68HC11.

ABX
LDAA 0,X

However, this two-instruction sequence alters the index register. If this sequence was
part of a loop where B changed on each pass, the index register would have to be re-
loaded with the reference value on each loop pass. The use of LDAA B,X is more ef-
ficient in the CPU12.

3.8.7 Accumulator D Indirect Indexed Addressing

This indexed addressing mode adds the value in the D accumulator to the value in the
base index register to form the address of a memory location that contains a pointer
to the memory location affected by the instruction. The instruction operand does not
point to the address of the memory location to be acted upon, but rather to the location
of a pointer to the address to be acted upon. The square brackets distinguish this ad-
dressing mode from D accumulator offset indexing.

Example:

JMP [D,PC]
GO1 DC.W PLACE1
GO2 DC.W PLACE2
GO3 DC.W PLACE3
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-9



This example is a computed GOTO. The values beginning at GO1 are addresses of
potential destinations of the jump instruction. At the time the JMP [D,PC] instruction is
executed, PC points to the address GO1, and D holds one of the values $0000, $0002,
or $0004 (determined by the program some time before the JMP).

Assume that the value in D is $0002. The JMP instruction adds the values in D and
PC to form the address of GO2. Next the CPU reads the address PLACE2 from mem-
ory at GO2 and jumps to PLACE2. The locations of PLACE1 through PLACE3 were
known at the time of program assembly but the destination of the JMP depends upon
the value in D computed during program execution.

3.9 Instructions Using Multiple Modes

Several CPU12 instructions use more than one addressing mode in the course of ex-
ecution.

3.9.1 Move Instructions

Move instructions use separate addressing modes to access the source and destina-
tion of a move. There are move variations for most combinations of immediate, ex-
tended, and indexed addressing modes.

The only combinations of addressing modes that are not allowed are those with an im-
mediate mode destination (the operand of an immediate mode instruction is data, not
an address). For indexed moves, the reference index register may be X, Y, SP, or PC.

Move instructions do not support indirect modes, or 9- or 16-bit offset modes requiring
extra extension bytes. There are special considerations when using PC-relative ad-
dressing with move instructions.

PC-relative addressing uses the address of the location immediately following the last
byte of object code for the current instruction as a reference point. The CPU12 normal-
ly corrects for queue offset and for instruction alignment so that queue operation is
transparent to the user. However, move instructions pose three special problems:

1. Some moves use an indexed source and an indexed destination.
2. Some moves have object code that is too long to fit in the queue all at one time,

so the PC value changes during execution.
3. All moves do not have the indexed postbyte as the last byte of object code.

These cases are not handled by automatic queue pointer maintenance, but it is still
possible to use PC-relative indexing with move instructions by providing for PC offsets
in source code.

Table 3-3 shows PC offsets from the location immediately following the current in-
struction by addressing mode.
 MOTOROLA ADDRESSING MODES CPU12

3-10 REFERENCE MANUAL



Example:

1000   18 09 C2 20 00    MOVB  $2000 2,PC

Moves a byte of data from $2000 to $1009

The expected location of the PC = $1005. The offset = +2.

(1005 + 2 (for 2,PC) + 2 (for correction) = 1009)

$18 is the page pre-byte, 09 is the MOVB opcode for ext-idx, C2 is the indexed post-
byte for 2,PC (without correction).

The Motorola MCUasm assembler produces corrected object code for PC-relative
moves (18 09 C0 20 00 for the example shown). Note that, instead of assembling the
2,PC as C2, the correction has been applied to make it C0. Check whether an assem-
bler makes the correction before using PC-relative moves.

3.9.2 Bit Manipulation Instructions

Bit manipulation instructions use either a combination of two or a combination of three
addressing modes.

The BCLR and BSET instructions use an 8-bit mask to determine which bits in a mem-
ory byte are to be changed. The mask must be supplied with the instruction as an im-
mediate mode value. The memory location to be modified can be specified by means
of direct, extended, or indexed addressing modes.

The BRCLR and BRSET instructions use an 8-bit mask to test the states of bits in a
memory byte. The mask is supplied with the instruction as an immediate mode value.
The memory location to be tested is specified by means of direct, extended, or indexed
addressing modes. Relative addressing mode is used to determine the branch ad-
dress. A signed 8-bit offset must be supplied with the instruction.

Table 3-3 PC Offsets for Move Instructions

MOVE Instruction Addressing Modes Offset Value

MOVB

IMM ⇒ IDX + 1

EXT ⇒ IDX + 2

IDX ⇒ EXT – 2

IDX ⇒ IDX
– 1 for 1st Operand
+ 1 for 2nd Operand

MOVW

IMM ⇒ IDX + 2

EXT ⇒ IDX + 2

IDX ⇒ EXT – 2

IDX ⇒ IDX
– 1 for 1st Operand
+ 1 for 2nd Operand
CPU12 ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 3-11



3.10 Addressing More than 64 Kbytes

Some M68HC12 devices incorporate hardware that supports addressing a larger
memory space than the standard 64 Kbytes. The expanded memory system uses fast
on-chip logic to implement a transparent bank-switching scheme.

Increased code efficiency is the greatest advantage of using a switching scheme in-
stead of a large linear address space. In systems with large linear address spaces, in-
structions require more bits of information to address a memory location, and CPU
overhead is greater. Other advantages include the ability to change the size of system
memory and the ability to use various types of external memory.

However, the add-on bank switching schemes used in other microcontrollers have
known weaknesses. These include the cost of external glue logic, increased program-
ming overhead to change banks, and the need to disable interrupts while banks are
switched.

The M68HC12 system requires no external glue logic. Bank switching overhead is re-
duced by implementing control logic in the MCU. Interrupts do not need to be disabled
during switching because switching tasks are incorporated in special instructions that
greatly simplify program access to extended memory.

MCUs with expanded memory treat the 16 Kbytes of memory space from $8000 to
$BFFF as a program memory window. Expanded-memory devices also have an 8-bit
program page register (PPAGE), which allows up to 256 16-Kbyte program memory
pages to be switched into and out of the program memory window. This provides for
up to 4 Megabytes of paged program memory.

The CPU12 instruction set includes CALL and RTC (return from call) instructions,
which greatly simplify the use of expanded memory space. These instructions also ex-
ecute correctly on devices that do not have expanded-memory addressing capability,
thus providing for portable code.

The CALL instruction is similar to the JSR instruction. When CALL is executed, the
current value in PPAGE is pushed onto the stack with a return address, and a new in-
struction-supplied value is written to PPAGE. This value selects the page the called
subroutine resides upon, and can be considered to be part of the effective address.
For all addressing mode variations except indexed indirect modes, the new page value
is provided by an immediate operand in the instruction. For indexed indirect variations
of CALL, a pointer specifies memory locations where the new page value and the ad-
dress of the called subroutine are stored. Use of indirect addressing for both the page
value and the address within the page frees the program from keeping track of explicit
values for either address.

The RTC instruction restores the saved program page value and the return address
from the stack. This causes execution to resume at the next instruction after the orig-
inal CALL instruction.

Refer to SECTION 10 MEMORY EXPANSION for a detailed discussion of memory ex-
pansion.
 MOTOROLA ADDRESSING MODES CPU12

3-12 REFERENCE MANUAL



SECTION 4
INSTRUCTION QUEUE

The CPU12 uses an instruction queue to increase execution speed. This section de-
scribes queue operation during normal program execution and changes in execution
flow. These concepts augment the descriptions of instructions and cycle-by-cycle in-
struction execution in subsequent sections, but it is important to note that queue oper-
ation is automatic, and generally transparent to the user.

The material in this section is general. SECTION 6 INSTRUCTION GLOSSARY con-
tains detailed information concerning cycle-by-cycle execution of each instruction.
SECTION 8 DEVELOPMENT AND DEBUG SUPPORT contains detailed information
about tracking queue operation and instruction execution.

4.1 Queue Description

The fetching mechanism in the CPU12 is best described as a queue rather than as a
pipeline. Queue logic fetches program information and positions it for execution, but
instructions are executed sequentially. A typical pipelined CPU can execute more than
one instruction at the same time, but interactions between the prefetch and execution
mechanisms can make tracking and debugging difficult. The CPU12 thus gains the ad-
vantages of independent fetches, yet maintains a straightforward relationship between
bus and execution cycles.

There are two 16-bit queue stages and one 16-bit buffer. Program information is
fetched in aligned 16-bit words. Unless buffering is required, program information is
first queued into stage 1, then advanced to stage 2 for execution.

At least two words of program information are available to the CPU when execution
begins. The first byte of object code is in either the even or odd half of the word in stage
2, and at least two more bytes of object code are in the queue.

Queue logic manages the position of program information so that the CPU itself does
not deal with alignment. As it is executed, each instruction initiates at least enough pro-
gram word fetches to replace its own object code in the queue.

The buffer is used when a program word arrives before the queue can advance. This
occurs during execution of single-byte and odd-aligned instructions. For instance, the
queue cannot advance after an aligned, single-byte instruction is executed, because
the first byte of the next instruction is also in stage 2. In these cases, information is
latched into the buffer until the queue can advance.

Two external pins, IPIPE[1:0], provide time-multiplexed information about data move-
ment in the queue and instruction execution. Decoding and use of these signals is dis-
cussed in SECTION 8 DEVELOPMENT AND DEBUG SUPPORT .
CPU12 INSTRUCTION QUEUE MOTOROLA

REFERENCE MANUAL 4-1



4.2 Data Movement in the Queue

All queue operations are combinations of four basic queue movement cycles. Descrip-
tions of each of these cycles follows. Queue movement cycles are only one factor in
instruction execution time, and should not be confused with bus cycles.

4.2.1 No Movement

There is no data movement in the instruction queue during the cycle. This occurs dur-
ing execution of instructions that must perform a number of internal operations, such
as division instructions.

4.2.2 Latch Data from Bus

All instructions initiate fetches to refill the queue as execution proceeds. However, a
number of conditions, including instruction alignment and the length of previous in-
structions, affect when the queue advances. If the queue is not ready to advance when
fetched information arrives, the information is latched into the buffer. Later, when the
queue does advance, stage 1 is refilled from the buffer. If more than one latch cycle
occurs before the queue advances, the buffer is filled on the first latch event and sub-
sequent latch events are ignored until the queue advances.

4.2.3 Advance and Load from Data Bus

The content of queue stage 1 advances to stage 2, and stage 1 is loaded with a word
of program information from the data bus. The information was requested two bus cy-
cles earlier but has only become available this cycle, due to access delay.

4.2.4 Advance and Load from Buffer

The content of queue stage 1 advances to stage 2, and stage 1 is loaded with a word
of program information from the buffer. The information in the buffer was latched from
the data bus during a previous cycle because the queue was not ready to advance
when it arrived.

4.3 Changes in Execution Flow

During normal instruction execution, queue operations proceed as a continuous se-
quence of queue movement cycles. However, situations arise which call for changes
in flow. These changes are categorized as resets, interrupts, subroutine calls, condi-
tional branches, and jumps. Generally speaking, resets and interrupts are considered
to be related to events outside the current program context that require special pro-
cessing, while subroutine calls, branches, and jumps are considered to be elements
of program structure.

During design, great care is taken to assure that the mechanism that increases in-
struction throughput during normal program execution does not cause bottlenecks
during changes of program flow, but internal queue operation is largely transparent to
the user. The following information is provided to enhance subsequent descriptions of
instruction execution.
 MOTOROLA INSTRUCTION QUEUE CPU12

4-2 REFERENCE MANUAL



4.3.1 Exceptions

Exceptions are events that require processing outside the normal flow of instruction
execution. CPU12 exceptions include four types of resets, an unimplemented opcode
trap, a software interrupt instruction, X-bit interrupts, and I-bit interrupts. All exceptions
use the same microcode, but the CPU follows different execution paths for each type
of exception.

CPU12 exception handling is designed to minimize the effect of queue operation on
context switching. Thus, an exception vector fetch is the first part of exception pro-
cessing, and fetches to refill the queue from the address pointed to by the vector are
interleaved with the stacking operations that preserve context, so that program access
time does not delay the switch. Refer to SECTION 7 EXCEPTION PROCESSING for
detailed information.

4.3.2 Subroutines

The CPU12 can branch to (BSR), jump to (JSR), or CALL subroutines. BSR and JSR
are used to access subroutines in the normal 64-Kbyte address space. The CALL in-
struction is intended for use in MCUs with expanded memory capability.

BSR uses relative addressing mode to generate the effective address of the subrou-
tine, while JSR can use various other addressing modes. Both instructions calculate a
return address, stack the address, then perform three program word fetches to refill
the queue. The first two words fetched are queued during the second and third cycles
of the sequence. The third fetch cycle is performed in anticipation of a queue advance,
which may occur during the fourth cycle of the sequence. If the queue is not yet ready
to advance at that time, the third word of program information is held in the buffer.

Subroutines in the normal 64-Kbyte address space are terminated with a return from
subroutine (RTS) instruction. RTS unstacks the return address, then performs three
program word fetches from that address to refill the queue.

CALL is similar to JSR. MCUs with expanded memory treat 16 Kbytes of addresses
from $8000 to $BFFF as a memory window. An 8-bit PPAGE register switches mem-
ory pages into and out of the window. When CALL is executed, a return address is cal-
culated, then it and the current PPAGE value are stacked, and a new instruction-
supplied value is written to PPAGE. The subroutine address is calculated, then three
program word fetches are made from that address.

The RTC instruction is used to terminate subroutines in expanded memory. RTC un-
stacks the PPAGE value and the return address, then performs three program word
fetches from that address to refill the queue.

CALL and RTC execute correctly in the normal 64-Kbyte address space, thus provid-
ing for portable code. However, since extra execution cycles are required, routinely
substituting CALL/RTC for JSR/RTS is not recommended.
CPU12 INSTRUCTION QUEUE MOTOROLA

REFERENCE MANUAL 4-3



4.3.3 Branches

Branch instructions cause execution flow to change when specific pre-conditions exist.
The CPU12 instruction set includes short conditional branches, long conditional
branches, and bit-condition branches. Types and conditions of branch instructions are
described in 5.18 Branch Instructions . All branch instructions affect the queue simi-
larly, but there are differences in overall cycle counts between the various types. Loop
primitive instructions are a special type of branch instruction used to implement
counter-based loops.

Branch instructions have two execution cases. Either the branch condition is satisfied,
and a change of flow takes place, or the condition is not satisfied, and no change of
flow occurs.

4.3.3.1 Short Branches

The “not-taken” case for short branches is simple. Since the instruction consists of a
single word containing both an opcode and an 8-bit offset, the queue advances, an-
other program word is fetched, and execution continues with the next instruction.

The “taken” case for short branches requires that the queue be refilled so that execu-
tion can continue at a new address. First, the effective address of the destination is
calculated using the relative offset in the instruction. Then, the address is loaded into
the program counter, and the CPU performs three program word fetches at the new
address. The first two words fetched are loaded into the instruction queue during the
second and third cycles of the sequence. The third fetch cycle is performed in antici-
pation of a queue advance, which may occur during the first cycle of the next instruc-
tion. If the queue is not yet ready to advance at that time, the third word of program
information is held in the buffer.

4.3.3.2 Long Branches

The “not-taken” case for all long branches requires three cycles, while the “taken” case
requires four cycles. This is due to differences in the amount of program information
needed to fill the queue.

Long branch instructions begin with a $18 prebyte which indicates that the opcode is
on page 2 of the opcode map. The CPU12 treats the prebyte as a special one-byte
instruction. If the prebyte is not aligned, the first cycle is used to perform a program
word access; if the prebyte is aligned, the first cycle is used to perform a free cycle.
The first cycle for the prebyte is executed whether or not the branch is taken.

The first cycle of the branch instruction is an optional cycle. Optional cycles make the
effects of byte-sized and misaligned instructions consistent with those of aligned word-
length instructions. Optional cycles are always performed, but serve different purpos-
es determined by instruction alignment. Program information is always fetched as
aligned 16-bit words. When an instruction consists of an odd number of bytes, and the
first byte is aligned with an even byte boundary, an optional cycle is used to make an
additional program word access that maintains queue order. In all other cases, the op-
tional cycle appears as a free cycle.
 MOTOROLA INSTRUCTION QUEUE CPU12

4-4 REFERENCE MANUAL



In the “not-taken” case, the queue must advance so that execution can continue with
the next instruction. Two cycles are used to refill the queue. Alignment determines how
the second of these cycles is used.

In the “taken” case, the effective address of the branch is calculated using the 16-bit
relative offset contained in the second word of the instruction. This address is loaded
into the program counter, then the CPU performs three program word fetches at the
new address. The first two words fetched are loaded into the instruction queue during
the second and third cycles of the sequence. The third fetch cycle is performed in an-
ticipation of a queue advance, which may occur during the first cycle of the next
instruction. If the queue is not yet ready to advance, the third word of program infor-
mation is held in the buffer.

4.3.3.3 Bit Condition Branches

Bit-conditional branch instructions read a location in memory, and branch if the bits in
that location are in a certain state. These instructions can use direct, extended, or in-
dexed addressing modes. Indexed operations require varying amounts of information
to determine the effective address, so instruction length varies according to the mode
used, which in turn affects the amount of program information fetched. In order to
shorten execution time, these branches perform one program word fetch in anticipa-
tion of the “taken” case. The data from this fetch is overwritten by subsequent fetches
in the “not-taken” case.

4.3.3.4 Loop Primitives

The loop primitive instructions test a counter value in a register or accumulator, and
branch to an address specified by a 9-bit relative offset contained in the instruction if
a specified pre-condition is met. There are auto-increment and auto-decrement ver-
sions of the instructions. The test and increment/decrement operations are performed
on internal CPU registers, and require no additional program information. In order to
shorten execution time, these branches perform one program word fetch in anticipa-
tion of the “taken” case. The data from this fetch is overwritten by subsequent fetches
in the “not-taken” case. The “taken” case performs two additional program word fetch-
es at the new address. In the “not-taken” case, the queue must advance so that exe-
cution can continue with the next instruction. Two cycles are used to refill the queue.

4.3.4 Jumps

JMP is the simplest change of flow instruction. JMP can use extended or indexed ad-
dressing. Indexed operations require varying amounts of information to determine the
effective address, so instruction length varies according to the mode used, which in
turn affects the amount of program information fetched. All forms of JMP perform three
program word fetches at the new address. The first two words fetched are loaded into
the instruction queue during the second and third cycles of the sequence. The third
fetch cycle is performed in anticipation of a queue advance, which may occur during
the first cycle of the next instruction. If the queue is not yet ready to advance, the third
word of program information is held in the buffer.
CPU12 INSTRUCTION QUEUE MOTOROLA

REFERENCE MANUAL 4-5



 MOTOROLA INSTRUCTION QUEUE CPU12

4-6 REFERENCE MANUAL



SECTION 5
INSTRUCTION SET OVERVIEW

This section contains general information about the CPU12 instruction set. It is orga-
nized into instruction categories grouped by function.

5.1 Instruction Set Description

CPU12 instructions are a superset of the M68HC11 instruction set. Code written for
an M68HC11 can be reassembled and run on a CPU12 with no changes. The CPU12
provides expanded functionality and increased code efficiency.

In the M68HC12 architecture, all memory and I/O are mapped in a common 64-Kbyte
address space (memory-mapped I/O). This allows the same set of instructions to be
used to access memory, I/O, and control registers. General-purpose load, store, trans-
fer, exchange, and move instructions facilitate movement of data to and from memory
and peripherals.

The CPU12 has a full set of 8-bit and 16-bit mathematical instructions. There are in-
structions for signed and unsigned arithmetic, division and multiplication with 8-bit, 16-
bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD calcu-
lation, and condition code register manipulation. There are also dedicated instructions
for multiply and accumulate operations, table interpolation, and specialized fuzzy logic
operations that involve mathematical calculations.

Refer to SECTION 6 INSTRUCTION GLOSSARY for detailed information about indi-
vidual instructions. APPENDIX A INSTRUCTION REFERENCE contains quick-refer-
ence material, including an opcode map and postbyte encoding for indexed
addressing, transfer/exchange instructions, and loop primitive instructions.

5.2 Load and Store Instructions

Load instructions copy memory content into an accumulator or register. Memory con-
tent is not changed by the operation. Load instructions (but not LEA_ instructions) af-
fect condition code bits so no separate test instructions are needed to check the
loaded values for negative or zero conditions.

Store instructions copy the content of a CPU register to memory. Register/accumula-
tor content is not changed by the operation. Store instructions automatically update
the N and Z condition code bits, which can eliminate the need for a separate test in-
struction in some programs.

Table 5-1  is a summary of load and store instructions.
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-1



5.3 Transfer and Exchange Instructions

Transfer instructions copy the content of a register or accumulator into another register
or accumulator. Source content is not changed by the operation. TFR is a universal
transfer instruction, but other mnemonics are accepted for compatibility with the
M68HC11. The TAB and TBA instructions affect the N, Z, and V condition code bits in
the same way as M68HC11 instructions. The TFR instruction does not affect the con-
dition code bits.

Exchange instructions exchange the contents of pairs of registers or accumulators.

The SEX instruction is a special case of the universal transfer instruction that is used
to sign-extend 8-bit two’s complement numbers so that they can be used in 16-bit op-
erations. The 8-bit number is copied from accumulator A, accumulator B, or the con-
dition codes register to accumulator D, the X index register, the Y index register, or the
stack pointer. All the bits in the upper byte of the 16-bit result are given the value of
the MSB of the 8-bit number.

SECTION 6 INSTRUCTION GLOSSARY contains information concerning other
transfers and exchanges between 8- and 16-bit registers.

Table 5-2  is a summary of transfer and exchange instructions.

Table 5-1 Load and Store Instructions

Load Instructions

Mnemonic Function Operation

LDAA Load A (M) ⇒ A

LDAB Load B (M) ⇒ B

LDD Load D (M : M + 1) ⇒ (A:B)

LDS Load SP (M : M + 1) ⇒ SP

LDX Load Index Register X (M : M + 1) ⇒ X

LDY Load Index Register Y (M : M + 1) ⇒ Y

LEAS Load Effective Address into SP Effective Address ⇒ SP

LEAX Load Effective Address into X Effective Address ⇒ X

LEAY Load Effective Address into Y Effective Address ⇒ Y

Store Instructions

Mnemonic Function Operation

STAA Store A (A) ⇒ M

STAB Store B (B) ⇒ M

STD Store D (A) ⇒ M, (B) ⇒ M + 1

STS Store SP (SP) ⇒ M : M + 1

STX Store X (X) ⇒ M : M + 1

STY Store Y (Y) ⇒ M : M + 1
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-2 REFERENCE MANUAL



5.4 Move Instructions

These instructions move data bytes or words from a source (M1, M : M +11) to a des-
tination (M2, M : M +12) in memory. Six combinations of immediate, extended, and in-
dexed addressing are allowed to specify source and destination addresses (IMM ⇒
EXT, IMM ⇒ IDX, EXT ⇒ EXT, EXT ⇒ IDX, IDX ⇒ EXT, IDX ⇒ IDX).

Table 5-3  shows byte and word move instructions.

5.5 Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit addition can be performed between registers or be-
tween registers and memory. Special instructions support index calculation. Instruc-
tions that add the CCR carry bit facilitate multiple precision computation.

Signed and unsigned 8- and 16-bit subtraction can be performed between registers or
between registers and memory. Special instructions support index calculation. Instruc-
tions that subtract the CCR carry bit facilitate multiple precision computation. Refer to
Table 5-4  for addition and subtraction instructions.

Table 5-2 Transfer and Exchange Instructions

Transfer Instructions

Mnemonic Function Operation

TAB Transfer A to B (A) ⇒ B

TAP Transfer A to CCR (A) ⇒ CCR

TBA Transfer B to A (B) ⇒ A

TFR Transfer Register to Register (A, B, CCR, D, X, Y, or SP) ⇒ A, B, CCR, D, X, Y, or SP

TPA Transfer CCR to A (CCR) ⇒ A

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Exchange Instructions

Mnemonic Function Operation

EXG Exchange Register to Register (A, B, CCR, D, X, Y, or SP) ⇔ (A, B, CCR, D, X, Y, or SP)

XGDX Exchange D with X (D) ⇔ (X)

XGDY Exchange D with Y (D) ⇔ (Y)

Sign Extension Instruction

Mnemonic Function Operation

SEX Sign Extend 8-Bit Operand (A, B, CCR) ⇒ X, Y, or SP

Table 5-3 Move Instructions

Mnemonic Function Operation

MOVB Move Byte (8-bit) (M1) ⇒ M2
MOVW Move Word (16-bit) (M : M + 11) ⇒ M : M + 12
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-3



5.6 Binary Coded Decimal Instructions

To add binary coded decimal operands, use addition instructions that set the half-carry
bit in the CCR, then adjust the result with the DAA instruction. Table 5-5 is a summary
of instructions that can be used to perform BCD operations.

5.7 Decrement and Increment Instructions

These instructions are optimized 8- and 16-bit addition and subtraction operations.
They are generally used to implement counters. Because they do not affect the carry
bit in the CCR, they are particularly well suited for loop counters in multiple-precision
computation routines. Refer to 5.19 Loop Primitive Instructions for information con-
cerning automatic counter branches. Table 5-6 is a summary of decrement and incre-
ment instructions.

Table 5-4 Addition and Subtraction Instructions

Addition Instructions

Mnemonic Function Operation

ABA Add A to B (A) + (B) ⇒ A

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

ADCA Add with Carry to A (A) + (M) + C ⇒ A

ADCB Add with Carry to B (B) + (M) + C ⇒ B

ADDA Add without Carry to A (A) + (M) ⇒ A

ADDB Add without Carry to B (B) + (M) ⇒ B

ADDD Add to D (A:B) + (M : M + 1) ⇒ A : B

Subtraction Instructions

Mnemonic Function Operation

SBA Subtract B from A (A) – (B) ⇒ A

SBCA Subtract with Borrow from A (A) – (M) – C ⇒ A

SBCB Subtract with Borrow from B (B) – (M) – C ⇒ B

SUBA Subtract Memory from A (A) – (M) ⇒ A

SUBB Subtract Memory from B (B) – (M) ⇒ B

SUBD Subtract Memory from D (A:B) (D) – (M : M + 1) ⇒ D

Table 5-5 BCD Instructions

Mnemonic Function Operation

ABA Add B to A (A) + (B) ⇒ A

ADCA Add with Carry to A (A) + (M) + C ⇒ A

ADCB Add with Carry to B (B) + (M) + C ⇒ B

ADDA Add Memory to A (A) + (M) ⇒ A

ADDB Add Memory to B (B) + (M) ⇒ B

DAA Decimal Adjust A (A)10
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-4 REFERENCE MANUAL



5.8 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of registers or be-
tween a register and memory. The result is not stored, but condition codes are set by
the operation. These instructions are generally used to establish conditions for branch
instructions. In this architecture, most instructions update condition code bits automat-
ically, so it is often unnecessary to include separate test or compare instructions. Ta-
ble 5-7  is a summary of compare and test instructions.

Table 5-6 Decrement and Increment Instructions

Decrement Instructions

Mnemonic Function Operation

DEC Decrement Memory (M) – $01 ⇒ M

DECA Decrement A (A) – $01 ⇒ A

DECB Decrement B (B) – $01 ⇒ B

DES Decrement SP (SP) – $0001 ⇒ SP

DEX Decrement X (X) – $0001 ⇒ X

DEY Decrement Y (Y) – $0001 ⇒ Y

Increment Instructions

Mnemonic Function Operation

INC Increment Memory (M) + $01 ⇒ M

INCA Increment A (A) + $01 ⇒ A

INCB Increment B (B) + $01 ⇒ B

INS Increment SP (SP) + $0001 ⇒ SP

INX Increment X (X) + $0001 ⇒ X

INY Increment Y (Y) + $0001 ⇒ Y

Table 5-7 Compare and Test Instructions

Compare Instructions

Mnemonic Function Operation

CBA Compare A to B (A) – (B)

CMPA Compare A to Memory (A) – (M)

CMPB Compare B to Memory (B) – (M)

CPD Compare D to Memory (16-bit) (A : B) – (M : M + 1)

CPS Compare SP to Memory (16-bit) (SP) – (M : M + 1)

CPX Compare X to Memory (16-bit) (X) – (M : M + 1)

CPY Compare Y to Memory (16-bit) (Y) – (M : M + 1)

Test Instructions

Mnemonic Function Operation

TST Test Memory for Zero or Minus (M) – $00

TSTA Test A for Zero or Minus (A) – $00

TSTB Test B for Zero or Minus (B) – $00
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-5



5.9 Boolean Logic Instructions

These instructions perform a logic operation between an 8-bit accumulator or the CCR
and a memory value. AND, OR, and exclusive OR functions are supported. Table 5-
8 summarizes logic instructions.

5.10 Clear, Complement, and Negate Instructions

Each of these instructions performs a specific binary operation on a value in an accu-
mulator or in memory. Clear operations clear the value to zero, complement opera-
tions replace the value with its one’s complement, and negate operations replace the
value with its two’s complement. Table 5-9 is a summary of clear, complement and
negate instructions.

Table 5-8 Boolean Logic Instructions

Mnemonic Function Operation

ANDA AND A with Memory (A) • (M) ⇒ A

ANDB AND B with Memory (B) • (M) ⇒ B

ANDCC AND CCR with Memory (Clear CCR Bits) (CCR) • (M) ⇒ CCR

EORA Exclusive OR A with Memory (A) ⊕ (M) ⇒ A

EORB Exclusive OR B with Memory (B) ⊕ (M) ⇒ B

ORAA OR A with Memory (A) + (M) ⇒ A

ORAB OR B with Memory (B) + (M) ⇒ B

ORCC OR CCR with Memory (Set CCR Bits) (CCR) + (M) ⇒ CCR

Table 5-9 Clear, Complement, and Negate Instructions

Mnemonic Function Operation

CLC Clear C Bit in CCR 0 ⇒ C

CLI Clear I Bit in CCR 0 ⇒ I

CLR Clear Memory $00 ⇒ M

CLRA Clear A $00 ⇒ A

CLRB Clear B $00 ⇒ B

CLV Clear V bit in CCR 0 ⇒ V

COM One’s Complement Memory $FF – (M) ⇒ M or (M) ⇒ M

COMA One’s Complement A $FF – (A) ⇒ A or (A) ⇒ A

COMB One’s Complement B $FF – (B) ⇒ B or (B) ⇒ B

NEG Two’s Complement Memory $00 – (M) ⇒ M or (M) + 1 ⇒ M

NEGA Two’s Complement A $00 – (A) ⇒ A or (A) + 1 ⇒ A

NEGB Two’s Complement B $00 – (B) ⇒ B or (B) + 1 ⇒ B
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-6 REFERENCE MANUAL



5.11 Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit multiplication. Eight-bit
multiplication operations have a 16-bit product. Sixteen-bit multiplication operations
have 32-bit products.

Integer and fractional division instructions have 16-bit dividend, divisor, quotient, and
remainder. Extended division instructions use a 32-bit dividend and a 16-bit divisor to
produce a 16-bit quotient and a 16-bit remainder.

Table 5-10  is a summary of multiplication and division instructions.

5.12 Bit Test and Manipulation Instructions

These operations use a mask value to test or change the value of individual bits in an
accumulator or in memory. BITA and BITB provide a convenient means of testing bits
without altering the value of either operand. Table 5-11 is a summary of bit test and
manipulation instructions.

Table 5-10 Multiplication and Division Instructions

Multiplication Instructions

Mnemonic Function Operation

EMUL 16 by 16 Multiply (Unsigned) (D) × (Y) ⇒ Y : D

EMULS 16 by 16 Multiply (Signed) (D) × (Y) ⇒ Y : D

MUL 8 by 8 Multiply (Unsigned) (A) × (B) ⇒ A : B

Division Instructions

Mnemonic Function Operation

EDIV 32 by 16 Divide (Unsigned)
(Y : D) ÷ (X)

Quotient ⇒ Y
Remainder ⇒ D

EDIVS 32 by 16 Divide (Signed)
(Y : D) ÷ (X)

Quotient ⇒ Y
Remainder ⇒ D

FDIV 16 by 16 Fractional Divide
(D) ÷ (X) ⇒ X

remainder ⇒ D

IDIV 16 by 16 Integer Divide (Unsigned)
(D) ÷ (X) ⇒ X

remainder ⇒ D

IDIVS 16 by 16 Integer Divide (Signed)
(D) ÷ (X) ⇒ X

remainder ⇒ D

Table 5-11 Bit Test and Manipulation Instructions

Mnemonic Function Operation

BCLR Clear Bits in Memory (M) • (mm) ⇒ M

BITA Bit Test A (A) • (M)

BITB Bit Test B (B) • (M)

BSET Set Bits in Memory (M) + (mm) ⇒ M
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-7



5.13 Shift and Rotate Instructions

There are shifts and rotates for all accumulators and for memory bytes. All pass the
shifted-out bit through the C status bit to facilitate multiple-byte operations. Because
logical and arithmetic left shifts are identical, there are no separate logical left shift op-
erations. LSL mnemonics are assembled as ASL operations. Table 5-12 shows shift
and rotate instructions.

Table 5-12 Shift and Rotate Instructions

Logical Shifts

Mnemonic Function Operation

LSL
LSLA
LSLB

Logic Shift Left Memory
Logic Shift Left A
Logic Shift Left B

LSLD Logic Shift Left D

LSR
LSRA
LSRB

Logic Shift Right Memory
Logic Shift Right A
Logic Shift Right B

LSRD Logic Shift Right D

Arithmetic Shifts

Mnemonic Function Operation

ASL
ASLA
ASLB

Arithmetic Shift Left Memory
Arithmetic Shift Left A
Arithmetic Shift Left B

ASLD Arithmetic Shift Left D

ASR
ASRA
ASRB

Arithmetic Shift Right Memory
Arithmetic Shift Right A
Arithmetic Shift Right B

Rotates

Mnemonic Function Operation

ROL
ROLA
ROLB

Rotate Left Memory Through Carry
Rotate Left A Through Carry
Rotate Left B Through Carry

ROR
RORA
RORB

Rotate Right Memory Through Carry
Rotate Right A Through Carry
Rotate Right B Through Carry

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0

C b7 b0

Cb7 b0
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-8 REFERENCE MANUAL



5.14 Fuzzy Logic Instructions

The CPU12 instruction set includes instructions that support efficient processing of
fuzzy logic operations. The descriptions of fuzzy logic instructions that follow are func-
tional overviews. Table 5-13 summarizes the fuzzy logic instructions. Refer to SEC-
TION 9 FUZZY LOGIC SUPPORT for detailed discussion.

5.14.1 Fuzzy Logic Membership Instruction

The MEM instruction is used during the fuzzification process. During fuzzification, cur-
rent system input values are compared against stored input membership functions to
determine the degree to which each label of each system input is true. This is accom-
plished by finding the y value for the current input on a trapezoidal membership func-
tion for each label of each system input. The MEM instruction performs this calculation
for one label of one system input. To perform the complete fuzzification task for a sys-
tem, several MEM instructions must be executed, usually in a program loop structure.

5.14.2 Fuzzy Logic Rule Evaluation Instructions

The REV and REVW instructions perform MIN-MAX rule evaluations that are central
elements of a fuzzy logic inference program. Fuzzy input values are processed using
a list of rules from the knowledge base to produce a list of fuzzy outputs. The REV in-
struction treats all rules as equally important. The REVW instruction allows each rule
to have a separate weighting factor. The two rule evaluation instructions also differ in
the way rules are encoded into the knowledge base. Because they require a number
of cycles to execute, rule evaluation instructions can be interrupted. Once the interrupt
has been serviced, instruction execution resumes at the point the interrupt occurred.

5.14.3 Fuzzy Logic Averaging Instruction

The WAV instruction provides a facility for weighted average calculations. In order to
be usable, the fuzzy outputs produced by rule evaluation must be defuzzified to pro-
duce a single output value which represents the combined effect of all of the fuzzy out-
puts. Fuzzy outputs correspond to the labels of a system output and each is defined
by a membership function in the knowledge base. The CPU12 typically uses single-
tons for output membership functions rather than the trapezoidal shapes used for in-
puts. As with inputs, the x-axis represents the range of possible values for a system
output. Singleton membership functions consist of the x-axis position for a label of the
system output. Fuzzy outputs correspond to the y-axis height of the corresponding
output membership function. The WAV instruction calculates the numerator and de-
nominator sums for a weighted average of the fuzzy outputs. Because WAV requires
a number of cycles to execute, it can be interrupted. The wavr pseudo-instruction
causes execution to resume at the point it was interrupted.
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-9



Table 5-13 Fuzzy Logic Instructions

Mnemonic Function Operation

MEM Membership Function

µ (grade) ⇒ M(Y)
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2, then µ = 0, else
µ = MIN [((A) – P1) × S1, (P2 – (A)) × S2, $FF]

where:
A = current crisp input value
X points to a four byte data structure that describes a trap-

ezoidal membership function as base intercept points
and slopes (P1, P2, S1, S2)

Y points at fuzzy input (RAM location)

See instruction details for special cases

REV MIN-MAX Rule Evaluation

Find smallest rule input (MIN)
Store to rule outputs unless fuzzy output is larger (MAX)

Rules are unweighted

Each rule input is an 8-bit offset from a base address in Y
Each rule output is an 8-bit offset from a base address in Y
$FE separates rule inputs from rule outputs
$FF terminates the rule list

REV can be interrupted

REVW MIN-MAX Rule Evaluation

Find smallest rule input (MIN)
Multiply by a rule weighting factor (optional)

Store to rule outputs unless fuzzy output is larger (MAX)

Each rule input is the 16-bit address of a fuzzy input
Each rule output is the 16-bit address of a fuzzy output
Address $FFFE separates rule inputs from rule outputs
$FFFF terminates the rule list
Weights are 8-bit values in a separate table

REVW can be interrupted

WAV

Calculates Numerator (Sum of Products)
and Denominator (Sum of Weights) for

Weighted Average Calculation
Results Are Placed in Correct Registers

For EDIV immediately After WAV

wavr
Resumes Execution of

Interrupted WAV Instruction
Recover immediate results from stack

rather than initializing them to zero.

Si F i
i 1=

B

∑ Y:D⇒

F i
i 1=

B

∑ X⇒
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-10 REFERENCE MANUAL



5.15 Maximum and Minimum Instructions

These instructions are used to make comparisons between an accumulator and a
memory location. These instructions can be used for linear programming operations,
such as Simplex-method optimization or for fuzzification.

MAX and MIN instructions use accumulator A to perform 8-bit comparisons, while
EMAX and EMIN instructions use accumulator D to perform 16-bit comparisons. The
result (maximum or minimum value) can be stored in the accumulator (EMAXD,
EMIND, MAXA, MINA) or the memory address (EMAXM, EMINM, MAXM, MINM).

Table 5-14  is a summary of minimum and maximum instructions.

5.16 Multiply and Accumulate Instruction

The EMACS instruction multiplies two 16-bit operands stored in memory and accumu-
lates the 32-bit result in a third memory location. EMACS can be used to implement
simple digital filters and defuzzification routines that use 16-bit operands. The WAV
instruction incorporates an 8- to 16-bit multiply and accumulate operation that obtains
a numerator for the weighted average calculation. The EMACS instruction can auto-
mate this portion of the averaging operation when 16-bit operands are used. Table 5-
15 shows the EMACS instruction.

Table 5-14 Minimum and Maximum Instructions

Minimum Instructions

Mnemonic Function Operation

EMIND
MIN of Two Unsigned 16-Bit Values

Result to Accumulator
MIN ((D), (M : M + 1)) ⇒ D

EMINM
MIN of Two Unsigned 16-Bit Values

Result to Memory
MIN ((D), (M : M + 1)) ⇒ M : M+1

MINA
MIN of Two Unsigned 8-Bit Values

Result to Accumulator
MIN ((A), (M)) ⇒ A

MINM
MIN of Two Unsigned 8-Bit Values

Result to Memory
MIN ((A), (M)) ⇒ M

Maximum Instructions

Mnemonic Function Operation

EMAXD
MAX of Two Unsigned 16-Bit Values

Result to Accumulator
MAX ((D), (M : M + 1)) ⇒ D

EMAXM
MAX of Two Unsigned 16-Bit Values

Result to Memory
MAX ((D), (M : M + 1)) ⇒ M : M + 1

MAXA
MAX of Two Unsigned 8-Bit Values

Result to Accumulator
MAX ((A), (M)) ⇒ A

MAXM
MAX of Two Unsigned 8-Bit Values

Result to Memory
MAX((A), (M)) ⇒ M
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-11



5.17 Table Interpolation Instructions

The TBL and ETBL instructions interpolate values from tables stored in memory. Any
function that can be represented as a series of linear equations can be represented by
a table of appropriate size. Interpolation can be used for many purposes, including tab-
ular fuzzy logic membership functions. TBL uses 8-bit table entries and returns an 8-
bit result; ETBL uses 16-bit table entries and returns a 16-bit result. Use of indexed
addressing mode provides great flexibility in structuring tables.

Consider each of the successive values stored in a table to be y-values for the end-
point of a line segment. The value in the B accumulator before instruction execution
begins represents change in x from the beginning of the line segment to the lookup
point divided by total change in x from the beginning to the end of the line segment. B
is treated as an 8-bit binary fraction with radix point left of the MSB, so each line seg-
ment is effectively divided into 256 smaller segments. During instruction execution, the
change in y between the beginning and end of the segment (a signed byte for TBL or
a signed word for ETBL) is multiplied by the content of the B accumulator to obtain an
intermediate delta-y term. The result (stored in the A accumulator by TBL, and in the
D accumulator by ETBL) is the y-value of the beginning point plus the signed interme-
diate delta-y value. Table 5-16  shows the table interpolation instructions.

Table 5-15 Multiply and Accumulate Instructions

Mnemonic Function Operation

EMACS
Multiply and Accumulate (Signed)

16 × 16 Bit ⇒ 32 Bit
((M(X):M(X+1)) × (M(Y):M(Y+1))) + (M ~ M + 3) ⇒ M ~ M + 3

Table 5-16 Table Interpolation Instructions

Mnemonic Function Operation

ETBL
16-Bit Table Lookup and Interpolate

(no indirect addressing modes allowed)

(M : M + 1) + [(B) × ((M + 2 : M + 3) – (M : M + 1))] ⇒ D
Initialize B, and index before ETBL.

<ea> points to the first table entry (M : M + 1)
B is fractional part of lookup value

TBL
8-Bit Table Lookup and Interpolate

(no indirect addressing modes allowed.)

(M) + [(B) × ((M + 1) – (M))] ⇒ A
Initialize B, and index before TBL.

<ea> points to the first 8-bit table entry (M)
B is fractional part of lookup value.
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-12 REFERENCE MANUAL



5.18 Branch Instructions

Branch instructions cause sequence to change when specific conditions exist. The
CPU12 uses three kinds of branch instructions. These are short branches, long
branches, and bit-conditional branches.

Branch instructions can also be classified by the type of condition that must be satis-
fied in order for a branch to be taken. Some instructions belong to more than one clas-
sification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register is in a
specific state as a result of a previous operation.

Unsigned branches are taken when comparison or test of unsigned quantities re-
sults in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities results in
a specific combination of condition code register bits.

5.18.1 Short Branch Instructions

Short branch instructions operate as follows. When a specified condition is met, a
signed 8-bit offset is added to the value in the program counter. Program execution
continues at the new address.

The numeric range of short branch offset values is $80 (–128) to $7F (127) from the
address of the next memory location after the offset value.

Table 5-17  is a summary of the short branch instructions.

5.18.2 Long Branch Instructions

Long branch instructions operate as follows. When a specified condition is met, a
signed 16-bit offset is added to the value in the program counter. Program execution
continues at the new address. Long branches are used when large displacements be-
tween decision-making steps are necessary.

The numeric range of long branch offset values is $8000 (–32,768) to $7FFF (32,767)
from the address of the next memory location after the offset value. This permits
branching from any location in the standard 64-Kbyte address map to any other loca-
tion in the map.

Table 5-18  is a summary of the long branch instructions.
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-13



Table 5-17 Short Branch Instructions

Unary Branches

Mnemonic Function Equation or Operation

BRA Branch Always 1 = 1

BRN Branch Never 1 = 0

Simple Branches

Mnemonic Function Equation or Operation

BCC Branch if Carry Clear C = 0

BCS Branch if Carry Set C = 1

BEQ Branch if Equal Z = 1

BMI Branch if Minus N = 1

BNE Branch if Not Equal Z = 0

BPL Branch if Plus N = 0

BVC Branch if Overflow Clear V = 0

BVS Branch if Overflow Set V = 1

Unsigned Branches

Mnemonic Function Relation Equation or Operation

BHI Branch if Higher R > M C + Z = 0

BHS Branch if Higher or Same R ≥ M C = 0

BLO Branch if Lower R < M C = 1

BLS Branch if Lower or Same R ≤ M C + Z = 1

Signed Branches

Mnemonic Function Relation Equation or Operation

BGE Branch if Greater Than or Equal R ≥ M N ⊕ V = 0

BGT Branch if Greater Than R > M Z + (N ⊕ V) = 0

BLE Branch if Less Than or Equal R ≤ M Z + (N ⊕ V) = 1

BLT Branch if Less Than R < M N ⊕ V = 1
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-14 REFERENCE MANUAL



Table 5-18 Long Branch Instructions

Unary Branches

Mnemonic Function Equation or Operation

LBRA Long Branch Always 1 = 1

LBRN Long Branch Never 1 = 0

Simple Branches

Mnemonic Function Equation or Operation

LBCC Long Branch if Carry Clear C = 0

LBCS Long Branch if Carry Set C = 1

LBEQ Long Branch if Equal Z = 1

LBMI Long Branch if Minus N = 1

LBNE Long Branch if Not Equal Z = 0

LBPL Long Branch if Plus N = 0

LBVC Long Branch if Overflow Clear V = 0

LBVS Long Branch if Overflow Set V = 1

Unsigned Branches

Mnemonic Function Equation or Operation

LBHI Long Branch if Higher C + Z = 0

LBHS Long Branch if Higher or Same C = 0

LBLO Long Branch if Lower Z = 1

LBLS Long Branch if Lower or Same C + Z = 1

Signed Branches

Mnemonic Function Equation or Operation

LBGE Long Branch if Greater Than or Equal N ⊕ V = 0

LBGT Long Branch if Greater Than Z + (N ⊕ V) = 0

LBLE Long Branch if Less Than or Equal Z + (N ⊕ V) = 1

LBLT Long Branch if Less Than N ⊕ V = 1
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-15



5.18.3 Bit Condition Branch Instructions

These branches are taken when bits in a memory byte are in a specific state. A mask
operand is used to test the location. If all bits in that location that correspond to ones
in the mask are set (BRSET) or cleared (BRCLR), the branch is taken.

The numeric range of 8-bit offset values is $80 (–128) to $7F (127) from the address
of the next memory location after the offset value. Table 5-19 is a summary of bit-con-
dition branches.

5.19 Loop Primitive Instructions

The loop primitives can also be thought of as counter branches. The instructions test
a counter value in a register or accumulator (A, B, D, X, Y, or SP) for zero or nonzero
value as a branch condition. There are predecrement, preincrement and test-only ver-
sions of these instructions.

The numeric range of 8-bit offset values is $80 (–128) to $7F (127) from the address
of the next memory location after the offset value. Table 5-20 is a summary of loop
primitive branches.

Table 5-19 Bit Condition Branch Instructions

Mnemonic Function Equation or Operation

BRCLR Branch if Selected Bits Clear (M) • (mm) = 0

BRSET Branch if Selected Bits Set (M) • (mm) = 0

Table 5-20 Loop Primitive Instructions

Mnemonic Function Equation or Operation

DBEQ
Decrement counter and branch if = 0

(counter = A, B, D, X, Y, or SP)

(counter) – 1⇒ counter
If (counter) = 0, then branch

else continue to next instruction

DBNE
Decrement counter and branch if ≠ 0

(counter = A, B, D, X, Y, or SP)

(counter) – 1⇒ counter
If (counter) not = 0, then branch
else continue to next instruction

IBEQ
Increment counter and branch if = 0

(counter = A, B, D, X, Y, or SP)

(counter) + 1⇒ counter
If (counter) = 0, then branch

else continue to next instruction

IBNE
Increment counter and branch if ≠ 0

(counter = A, B, D, X, Y, or SP)

(counter) + 1⇒ counter
If (counter) not = 0, then branch
else continue to next instruction

TBEQ
Test counter and branch if = 0
(counter = A, B, D, X,Y, or SP)

If (counter) = 0, then branch
else continue to next instruction

TBNE
Test counter and branch if ≠ 0
(counter = A, B, D, X,Y, or SP)

If (counter) not = 0, then branch
else continue to next instruction
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-16 REFERENCE MANUAL



5.20 Jump and Subroutine Instructions

Jump instructions cause immediate changes in sequence. The JMP instruction loads
the PC with an address in the 64-Kbyte memory map, and program execution contin-
ues at that address. The address can be provided as an absolute 16-bit address or
determined by various forms of indexed addressing.

Subroutine instructions optimize the process of transferring control to a code segment
that performs a particular task. A short branch (BSR), a jump (JSR), or an expanded-
memory call (CALL) can be used to initiate subroutines. There is no LBSR instruction,
but a PC-relative JSR performs the same function. A return address is stacked, then
execution begins at the subroutine address. Subroutines in the normal 64-Kbyte ad-
dress space are terminated with an RTS instruction. RTS unstacks the return address
so that execution resumes with the instruction after BSR or JSR.

The CALL instruction is intended for use with expanded memory. CALL stacks the val-
ue in the PPAGE register and the return address, then writes a new value to PPAGE
to select the memory page where the subroutine resides. The page value is an imme-
diate operand in all addressing modes except indexed indirect modes; in these modes,
an operand points to locations in memory where the new page value and subroutine
address are stored. The RTC instruction is used to terminate subroutines in expanded
memory. RTC unstacks the PPAGE value and the return address so that execution
resumes with the next instruction after CALL. For software compatibility, CALL and
RTC execute correctly on devices that do not have expanded addressing capability.
Table 5-21  summarizes the jump and subroutine instructions.

Table 5-21 Jump and Subroutine Instructions

Mnemonic Function Operation

BSR Branch to Subroutine
SP – 2 ⇒ SP

RTNH : RTNL ⇒ M(SP) : M(SP+1)
Subroutine address ⇒ PC

CALL Call Subroutine in Expanded Memory

SP – 2 ⇒ SP
RTNH:RTNL⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP
(PPAGE) ⇒ M(SP)
Page ⇒ PPAGE

Subroutine address ⇒ PC

JMP Jump Subroutine Address ⇒ PC

JSR Jump to Subroutine
SP – 2 ⇒ SP

RTNH : RTNL⇒ M(SP) : M(SP+1)
Subroutine address ⇒ PC

RTC Return from Call
M(SP) : M(SP+1) ⇒ PCH : PCL

SP + 2 ⇒ SP

RTS Return from Subroutine

M(SP) ⇒ PPAGE
SP + 1 ⇒ SP

M(SP) : M(SP+1) ⇒ PCH : PCL
SP + 2 ⇒ SP
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-17



5.21 Interrupt Instructions

Interrupt instructions handle transfer of control to a routine that performs a critical task.
Software interrupts are a type of exception. SECTION 7 EXCEPTION PROCESSING
covers interrupt exception processing in detail.

The SWI instruction initiates synchronous exception processing. First, the return PC
value is stacked. After CPU context is stacked, execution continues at the address
pointed to by the SWI vector.

Execution of the SWI instruction causes an interrupt without an interrupt service re-
quest. SWI is not inhibited by global mask bits I and X in the CCR, and execution of
SWI sets the I mask bit. Once an SWI interrupt begins, maskable interrupts are inhib-
ited until the I bit in the CCR is cleared. This typically occurs when an RTI instruction
at the end of the SWI service routine restores context.

The CPU12 uses the software interrupt for unimplemented opcode trapping. There are
opcodes in all 256 positions in the page 1 opcode map, but only 54 of the 256 positions
on page 2 of the opcode map are used. If the CPU attempts to execute one of the un-
implemented opcodes on page 2, an opcode trap interrupt occurs. Traps are essen-
tially interrupts that share the $FFF8:$FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including interrupt ser-
vice routines. RTI first restores the CCR, B:A, X, Y, and the return address from the
stack. If no other interrupt is pending, normal execution resumes with the instruction
following the last instruction that executed prior to interrupt.

Table 5-22  is a summary of interrupt instructions.

Table 5-22 Interrupt Instructions
Mnemonic Function Operation

RTI Return from Interrupt

(M(SP)) ⇒ CCR; (SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ B : A; (SP) + $0002 ⇒ SP

(M(SP) : M(SP+1)) ⇒ XH : XL; (SP) + $0004 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) + $0002 ⇒ SP

(M(SP) : M(SP+1)) ⇒ YH : YL; (SP) + $0004 ⇒ SP

SWI Software Interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)

TRAP Software Interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-18 REFERENCE MANUAL



5.22 Index Manipulation Instructions

These instructions perform 8- and 16-bit operations on the three index registers and
accumulators, other registers, or memory, as shown in Table 5-23 .

Table 5-23 Index Manipulation Instructions

Addition Instructions

Mnemonic Function Operation

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

Compare Instructions

Mnemonic Function Operation

CPS Compare SP to Memory (SP) – (M : M + 1)

CPX Compare X to Memory (X) – (M : M + 1)

CPY Compare Y to Memory (Y) – (M : M + 1)

Load Instructions

Mnemonic Function Operation

LDS Load SP from Memory M : M+1 ⇒ SP

LDX Load X from Memory (M : M + 1) ⇒ X

LDY Load Y from Memory (M : M + 1) ⇒ Y

LEAS Load Effective Address into SP Effective Address ⇒ SP

LEAX Load Effective Address into X Effective Address ⇒ X

LEAY Load Effective Address into Y Effective Address ⇒ Y

Store Instructions

Mnemonic Function Operation

STS Store SP in Memory (SP) ⇒ M:M+1

STX Store X in Memory (X) ⇒ M : M + 1

STY Store Y in Memory (Y) ⇒ M : M + 1

Transfer Instructions

Mnemonic Function Operation

TFR Transfer Register to Register (A, B, CCR, D, X, Y, or SP) ⇒ A, B, CCR, D, X, Y, or SP

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Exchange Instructions

Mnemonic Function Operation

EXG Exchange Register to Register (A, B, CCR, D, X, Y, or SP) ⇔ (A, B, CCR, D, X, Y, or SP)

XGDX EXchange D with X (D) ⇔ (X)

XGDY EXchange D with Y (D) ⇔ (Y)
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-19



5.23 Stacking Instructions

There are two types of stacking instructions, as shown in Table 5-24 . Stack pointer
instructions use specialized forms of mathematical and data transfer instructions to
perform stack pointer manipulation. Stack operation instructions save information on
and retrieve information from the system stack.

5.24 Pointer and Index Calculation Instructions

The load effective address instructions allow 5-, 8-, or 16-bit constants, or the contents
of 8-bit accumulators A and B or 16-bit accumulator D to be added to the contents of
the X and Y index registers, the SP, or the PC. Table 5-25 is a summary of pointer and
index instructions.

Table 5-24 Stacking Instructions

Stack Pointer Instructions

Mnemonic Function Operation

CPS Compare SP to Memory (SP) – (M : M + 1)

DES Decrement SP (SP) – 1 ⇒ SP

INS Increment SP (SP) + 1 ⇒ SP

LDS Load SP (M : M + 1) ⇒ SP

LEAS Load Effective Address into SP Effective Address ⇒ SP

STS Store SP (SP) ⇒ M : M + 1

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Stack Operation Instructions

Mnemonic Function Operation

PSHA Push A (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

PSHB Push B (SP) – 1 ⇒ SP; (B) ⇒ M(SP)

PSHC Push CCR (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

PSHD Push D (SP) – 2 ⇒ SP; (A : B) ⇒ M(SP) : M(SP+1)

PSHX Push X (SP) – 2 ⇒ SP; (X) ⇒ M(SP) : M(SP+1)

PSHY Push Y (SP) – 2 ⇒ SP; (Y) ⇒ M(SP) : M(SP+1)

PULA Pull A (M(SP)) ⇒ A; (SP) + 1 ⇒ SP

PULB Pull B (M(SP)) ⇒ B; (SP) + 1 ⇒ SP

PULC Pull CCR (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

PULD Pull D (M(SP) : M(SP+1)) ⇒ A : B; (SP) + 2 ⇒ SP

PULX Pull X (M(SP) : M(SP+1)) ⇒ X; (SP) + 2 ⇒ SP

PULY Pull Y (M(SP) : M(SP+1)) ⇒ Y; (SP) + 2 ⇒ SP
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-20 REFERENCE MANUAL



5.25 Condition Code Instructions

Condition code instructions are special forms of mathematical and data transfer in-
structions that can be used to change the condition code register. Table 5-26 shows
instructions that can be used to manipulate the CCR.

5.26 Stop and Wait Instructions

As shown in Table 5-27 , there are two instructions that put the CPU12 in an inactive
state that reduces power consumption.

The stop instruction (STOP) stacks a return address and the contents of CPU registers
and accumulators, then halts all system clocks.

The wait instruction (WAI) stacks a return address and the contents of CPU registers
and accumulators, then waits for an interrupt service request; however, system clock
signals continue to run.

Table 5-25 Pointer and Index Calculation Instructions

Mnemonic Function Operation

LEAS
Load Result of Indexed Addressing Mode

Effective Address Calculation
into Stack Pointer

r ± Constant ⇒ SP or
(r) + (Accumulator) ⇒ SP

r = X, Y, SP, or PC

LEAX
Load Result of Indexed Addressing Mode

Effective Address Calculation
into X Index Register

r ± Constant ⇒X or
(r) + (Accumulator) ⇒X

r = X, Y, SP, or PC

LEAY
Load Result of Indexed Addressing Mode

Effective Address Calculation
into Y Index Register

r ± Constant ⇒Y or
(r) + (Accumulator) ⇒ Y

r = X, Y, SP, or PC

Table 5-26 Condition Codes Instructions

Mnemonic Function Operation

ANDCC Logical AND CCR with Memory (CCR) • (M) ⇒ CCR

CLC Clear C Bit 0 ⇒ C

CLI Clear I Bit 0 ⇒ I

CLV Clear V Bit 0 ⇒ V

ORCC Logical OR CCR with Memory (CCR) + (M) ⇒ CCR

PSHC Push CCR onto Stack (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)

PULC Pull CCR from Stack (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

SEC Set C Bit 1 ⇒ C

SEI Set I Bit 1 ⇒ I

SEV Set V Bit 1 ⇒ V

TAP Transfer A to CCR (A) ⇒ CCR

TPA Transfer CCR to A (CCR) ⇒ A
CPU12 INSTRUCTION SET OVERVIEW MOTOROLA

REFERENCE MANUAL 5-21



Both STOP and WAI require that either an interrupt or a reset exception occur before
normal execution of instructions resumes. Although both instructions require the same
number of clock cycles to resume normal program execution after an interrupt service
request is made, restarting after a STOP requires extra time for the oscillator to reach
operating speed.

5.27 Background Mode and Null Operations

Background debug mode is a special CPU12 operating mode that is used for system
development and debugging. Executing BGND when BDM is enabled puts the CPU12
in this mode. For complete information refer to SECTION 8 DEVELOPMENT AND
DEBUG SUPPORT.

Null operations are often used to replace other instructions during software debugging.
Replacing conditional branch instructions with BRN, for instance, permits testing a de-
cision-making routine without actually taking the branches.

Table 5-28  shows the BGND and NOP instructions.

Table 5-27 Stop and Wait Instructions

Mnemonic Function Operation

STOP Stop

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)

STOP CPU Clocks

WAI Wait for Interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)

SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)

Table 5-28 Background Mode and Null Operation Instructions

Mnemonic Function Operation

BGND Enter Background Debug Mode
If BDM enabled, enter BDM;

else, resume normal processing

BRN Branch Never Does not branch

LBRN Long Branch Never Does not branch

NOP Null operation —
 MOTOROLA INSTRUCTION SET OVERVIEW CPU12

5-22 REFERENCE MANUAL



SECTION 6
INSTRUCTION GLOSSARY

This section is a comprehensive reference to the CPU12 instruction set.

6.1 Glossary Information

The glossary contains an entry for each assembler mnemonic, in alphabetic order.
Figure 6-1  is a representation of a glossary page.

Figure 6-1 Example Glossary Page

Source Form Address Mode

S X H

— — ∆

N: Set if MSB of resu

Z: Set if result is $00

V: 0; Cleared.

Addressing Modes, Machine Code, an

Load Inde

Operation: (M : M + 1) ⇒

Description: Loads the most significa
memory at the addres

Condition Codes and Boolean Form

LDX

Obje

X

LDX
LDX
LDX
LDX
LDX
LDX
LDX
LDX

#opr16i
opr8a
opr16a
oprx0_xysp
oprx9,xysp
oprx16,xysp
[D,xysp]
[oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE jj
DE d
FE h
EE
E
E

EX GLO PG

DETAILED SYNTAX
AND

CYCLE-BY-CYCLE
OPERATION

EFFECT ON
CONDITION CODE REGISTER

STATUS BITS

DETAILED DESCRIPTION
OF OPERATION

SYMBOLIC DESCRIPTION
OF OPERATION

MNEMONIC
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-1



Each entry contains symbolic and textual descriptions of operation, information con-
cerning the effect of operation on status bits in the condition code register, and a table
that describes assembler syntax, cycle count, and cycle-by-cycle execution of the in-
struction.

6.2 Condition Code Changes

The following special characters are used to describe the effects of instruction execu-
tion on the status bits in the condition codes register.

6.3 Object Code Notation

The digits 0 to 9 and the upper case letters A to F are used to express hexadecimal
values. Pairs of lower case letters represent the 8-bit values as described below.

– — Status bit not affected by operation.

0 — Status bit cleared by operation.

1 — Status bit set by operation.

∆ — Status bit affected by operation.

⇓ — Status bit may be cleared or remain set, but is not set by operation.

⇑ — Status bit may be set or remain cleared, but is not cleared by operation.

? — Status bit may be changed by operation but the final state is not defined.

! — Status bit used for a special purpose.

dd — 8-bit direct address $0000 to $00FF. (High byte assumed to be $00).

ee — High-order byte of a 16-bit constant offset for indexed addressing.

eb — Exchange/Transfer post-byte.

ff — Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or
low-order byte of a 16-bit constant offset for indexed addressing.

hh — High-order byte of a 16-bit extended address.

ii — 8-bit immediate data value.

jj — High-order byte of a 16-bit immediate data value.

kk — Low-order byte of a 16-bit immediate data value.

lb — Loop primitive (DBNE) post-byte.

ll — Low-order byte of a 16-bit extended address.

mm — 8-bit immediate mask value for bit manipulation instructions.
Set bits indicate bits to be affected.

pg — Program overlay page (bank) number used in CALL instruction.

qq — High-order byte of a 16-bit relative offset for long branches.

tn — Trap number $30–$39 or $40–$FF.

rr — Signed relative offset $80 (–128) to $7F (+127).
Offset relative to the byte following the relative offset byte, or
low-order byte of a 16-bit relative offset for long branches.

xb — Indexed addressing post-byte.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-2 REFERENCE MANUAL



6.4 Source Forms

The glossary pages provide only essential information about assembler source forms.
Assemblers generally support a number of assembler directives, allow definition of
program labels, and have special conventions for comments. For complete informa-
tion about writing source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Assemblers are typically very flexible about the use of spaces and tabs. Often, any
number of spaces or tabs can be used where a single space is shown on the glossary
pages. Spaces and tabs are also normally allowed before and after commas. When
program labels are used, there must also be at least one tab or space before all in-
struction mnemonics. This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic characters, is lit-
eral information which must appear in the assembly source file exactly as shown. The
initial 3- to 5-letter mnemonic is always a literal expression. All commas, pound signs
(#), parentheses, square brackets ( [ or ] ), plus signs (+), minus signs (–), and the reg-
ister designation D (as in [D,... ), are literal characters.

Groups of italic characters in the columns represent variable information to be sup-
plied by the programmer. These groups can include any alphanumeric character or the
underscore character, but cannot include a space or comma. For example, the groups
xysp and oprx0_xysp are both valid, but the two groups oprx0 xysp are not valid be-
cause there is a space between them. Permitted syntax is described below.

The definition of a legal label or expression varies from assembler to assembler. As-
semblers also vary in the way CPU registers are specified. Refer to assembler docu-
mentation for detailed information. Recommended register designators are a, A, b, B,
ccr, CCR, d, D, x, X, y, Y, sp, SP, pc, and PC.

abc — Any one legal register designator for accumulators A or B or the CCR.

abcdxys — Any one legal register designator for accumulators A or B, the CCR, the double
accumulator D, index registers X or Y, or the SP. Some assemblers may accept
t2, T2, t3, or T3 codes in certain cases of transfer and exchange instructions, but
these forms are intended for Motorola use only.

abd — Any one legal register designator for accumulators A or B or the double accumu-
lator D.

abdxys — Any one legal register designator for accumulators A or B, the double accumulator
D, index register X or Y, or the SP.

dxys — Any one legal register designation for the double accumulator D, index registers X
or Y, or the SP.

msk8 — Any label or expression that evaluates to an 8-bit value. Some assemblers require
a # symbol before this value.

opr8i — Any label or expression that evaluates to an 8-bit immediate value.

opr16i — Any label or expression that evaluates to a 16-bit immediate value.

opr8a — Any label or expression that evaluates to an 8-bit value. The instruction treats this
8-bit value as the low order 8-bits of an address in the direct page of the 64-Kbyte
address space ($00xx).
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-3



opr16a — Any label or expression that evaluates to a 16-bit value. The instruction treats this
value as an address in the 64-Kbyte address space.

oprx0_xysp — This word breaks down into one of the following alternative forms that assemble
to an 8-bit indexed addressing postbyte code. These forms generate the same ob-
ject code except for the value of the postbyte code, which is designated as xb in
the object code columns of the glossary pages. As with the source forms, treat all
commas, plus signs, and minus signs as literal syntax elements. The italicized
words used in these forms are included in this key.
oprx5,xysp
oprx3,–xys
oprx3,+xys
oprx3,xys–
oprx3,xys+
abd,xysp

oprx3 — Any label or expression that evaluates to a value in the range +1 to +8.

oprx5 — Any label or expression that evaluates to a 5-bit value in the range –16 to +15.

oprx9 — Any label or expression that evaluates to a 9-bit value in the range –256 to +255.

oprx16 — Any label or expression that evaluates to a 16-bit value. Since the CPU12 has a
16-bit address bus, this can be either a signed or an unsigned value.

page — Any label or expression that evaluates to an 8-bit value. The CPU12 recognizes
up to an 8-bit page value for memory expansion but not all MCUs that include the
CPU12 implement all of these bits. It is the programmer’s responsibility to limit the
page value to legal values for the intended MCU system. Some assemblers re-
quire a # symbol before this value.

rel8 — Any label or expression that refers to an address that is within –256 to +255 loca-
tions from the next address after the last byte of object code for the current instruc-
tion. The assembler will calculate the 8-bit signed offset and include it in the object
code for this instruction.

rel9 — Any label or expression that refers to an address that is within –512 to +511 loca-
tions from the next address after the last byte of object code for the current instruc-
tion. The assembler will calculate the 9-bit signed offset and include it in the object
code for this instruction. The sign bit for this 9-bit value is encoded by the assem-
bler as a bit in the looping postbyte (lb) of one of the loop control instructions
DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE. The remaining eight bits of the offset
are included as an extra byte of object code.

rel16 — Any label or expression that refers to an address anywhere in the 64-Kbyte ad-
dress space. The assembler will calculate the 16-bit signed offset between this ad-
dress and the next address after the last byte of object code for this instruction,
and include it in the object code for this instruction.

trapnum — Any label or expression that evaluates to an 8-bit number in the range $30–$39 or
$40–$FF. Used for TRAP instruction.

xys — Any one legal register designation for index registers X or Y or the SP.

xysp — Any one legal register designation for index registers X or Y, the SP, or the PC.
The reference point for PC relative instructions is the next address after the last
byte of object code for the current instruction.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-4 REFERENCE MANUAL



6.5 Cycle-by-Cycle Execution

This information is found in the tables at the bottom of each instruction glossary page.
Entries show how many bytes of information are accessed from different areas of
memory during the course of instruction execution. With this information and knowl-
edge of the type and speed of memory in the system, a user can determine the exe-
cution time for any instruction in any system.

A single letter code in the column represents a single CPU cycle. Upper case letters
indicate 16-bit access cycles. There are cycle codes for each addressing mode varia-
tion of each instruction. Simply count code letters to determine the execution time of
an instruction in a best-case system. An example of a best-case system is a single-
chip 16-bit system with no 16-bit off-boundary data accesses to any locations other
than on-chip RAM.

Many conditions can cause one or more instruction cycles to be stretched, but the
CPU is not aware of the stretch delays because the clock to the CPU is temporarily
stopped during these delays.

The following paragraphs explain the cycle code letters used and note conditions that
can cause each type of cycle to be stretched.

f — Free cycle. This indicates a cycle where the CPU does not require use of the
system buses. An f cycle is always one cycle of the system bus clock. These
cycles can be used by a queue controller or the background debug system to
perform single cycle accesses without disturbing the CPU.

g — Read 8-bit PPAGE register. These cycles are only used with the CALL instruc-
tion to read the current value of the PPAGE register, and are not visible on the
external bus. Since the PPAGE register is an internal 8-bit register, these cycles
are never stretched.

I — Read indirect pointer. Indexed indirect instructions use this 16-bit pointer from
memory to address the operand for the instruction. These are always 16-bit
reads but they can be either aligned or misaligned. These cycles are extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit pro-
grammed for slow memory. These cycles are also stretched if they correspond
to misaligned access to a memory that is not designed for single-cycle mis-
aligned access.

i — Read indirect PPAGE value. These cycles are only used with indexed indirect
versions of the CALL instruction, where the 8-bit value for the memory expan-
sion page register of the CALL destination is fetched from an indirect memory
location. These cycles are stretched only when controlled by a chip-select circuit
that is programmed for slow memory.

n — Write 8-bit PPAGE register. These cycles are only used with the CALL and RTC
instructions to write the destination value of the PPAGE register and are not vis-
ible on the external bus. Since the PPAGE register is an internal 8-bit register,
these cycles are never stretched.
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-5



O — Optional cycle. Program information is always fetched as aligned 16-bit words.
When an instruction consists of an odd number of bytes, and the first byte is mis-
aligned, an O cycle is used to make an additional program word access (P) cycle
that maintains queue order. In all other cases, the O cycle appears as a free (f)
cycle. The $18 prebyte for page two opcodes is treated as a special one-byte
instruction. If the prebyte is misaligned, the O cycle is used as a program word
access for the prebyte; if the prebyte is aligned, the O cycle appears as a free
cycle. If the remainder of the instruction consists of an odd number of bytes, an-
other O cycle is required some time before the instruction is completed. If the O
cycle for the prebyte is treated as a P cycle, any subsequent O cycle in the same
instruction is treated as an f cycle; if the O cycle for the prebyte is treated as an
f cycle, any subsequent O cycle in the same instruction is treated as a P cycle.
Optional cycles used for program word accesses can be extended to two bus
cycles if the MCU is operating with an 8-bit external data bus and the program
is stored in external memory. There can be additional stretching when the ad-
dress space is assigned to a chip-select circuit programmed for slow memory.
Optional cycles used as free cycles are never stretched.

P — Program word access. Program information is fetched as aligned 16-bit words.
These cycles are extended to two bus cycles if the MCU is operating with an 8-
bit external data bus and the program is stored externally. There can be addi-
tional stretching when the address space is assigned to a chip-select circuit pro-
grammed for slow memory.

r — 8-bit data read. These cycles are stretched only when controlled by a chip-select
circuit programmed for slow memory.

R — 16-bit data read. These cycles are extended to two bus cycles if the MCU is op-
erating with an 8-bit external data bus and the corresponding data is stored in
external memory. There can be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow memory. These cycles
are also stretched if they correspond to misaligned accesses to memory that is
not designed for single-cycle misaligned access.

s — Stack 8-bit data. These cycles are stretched only when controlled by a chip-se-
lect circuit programmed for slow memory.

S — Stack 16-bit data. These cycles are extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the SP is pointing to external mem-
ory. There can be additional stretching if the address space is assigned to a
chip-select circuit programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses to a memory that is not de-
signed for single cycle misaligned access. The internal RAM is designed to al-
low single cycle misaligned word access.

w — 8-bit data write. These cycles are stretched only when controlled by a chip-se-
lect circuit programmed for slow memory.

W — 16-bit data write. These cycles are extended to two bus cycles if the MCU is op-
erating with an 8-bit external data bus and the corresponding data is stored in
external memory. There can be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow memory. These cycles
are also stretched if they correspond to misaligned access to a memory that is
not designed for single-cycle misaligned access.

u — Unstack 8-bit data. These cycles are stretched only when controlled by a chip-
select circuit programmed for slow memory.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-6 REFERENCE MANUAL



U — Unstack 16-bit data. These cycles are extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the SP is pointing to external mem-
ory. There can be additional stretching when the address space is assigned to
a chip-select circuit programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses to a memory that is not de-
signed for single-cycle misaligned access. The internal RAM is designed to al-
low single-cycle misaligned word access.

V — Vector fetch. Vectors are always aligned 16-bit words. These cycles are extend-
ed to two bus cycles if the MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for
slow memory.

t — 8-bit conditional read. These cycles are either data read cycles or free cycles,
depending upon the data and flow of the REVW instruction. These cycles are
only stretched when controlled by a chip-select circuit programmed for slow
memory.

T — 16-bit conditional read. These cycles are either data read cycles or free cycles,
depending upon the data and flow of the REV or REVW instruction. These cy-
cles are extended to two bus cycles if the MCU is operating with an 8-bit external
data bus and the corresponding data is stored in external memory. There can
be additional stretching when the address space is assigned to a chip-select cir-
cuit programmed for slow memory. These cycles are also stretched if they cor-
respond to misaligned accesses to a memory that is not designed for single-
cycle misaligned access.

x — 8-bit conditional write. These cycles are either data write cycles or free cycles,
depending upon the data and flow of the REV or REVW instruction. These cy-
cles are only stretched when controlled by a chip-select circuit programmed for
slow memory.

Special Notation for Branch Taken/Not Taken Cases

PPP/P — Short branches require three cycles if taken, one cycle if not taken. Since the
instruction consists of a single word containing both an opcode and an 8-bit off-
set, the not-taken case is simple — the queue advances, another program word
fetch is made, and execution continues with the next instruction. The taken case
requires that the queue be refilled so that execution can continue at a new ad-
dress. First, the effective address of the destination is determined, then the CPU
performs three program word fetches from that address.

OPPP/OPO — Long branches require four cycles if taken, three cycles if not taken. Optional cy-
cles are required because all long branches are page two opcodes, and thus
include the $18 prebyte. The CPU12 treats the prebyte as a special 1-byte in-
struction. If the prebyte is misaligned, the optional cycle is used to perform a pro-
gram word access; if the prebyte is aligned, the optional cycle is used to perform
a free cycle. As a result, both the taken and not-taken cases use one optional
cycle for the prebyte. In the not-taken case, the queue must advance so that ex-
ecution can continue with the next instruction, and another optional cycle is re-
quired to maintain the queue. The taken case requires that the queue be refilled
so that execution can continue at a new address. First, the effective address of
the destination is determined, then the CPU performs three program word fetch-
es from that address.
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-7



6.6 Glossary

Operation: (A) + (B) ⇒ A

Description: Adds the content of accumulator B to the content of accumulator A and
places the result in A. The content of B is not changed. This instruction
affects the H status bit so it is suitable for use in BCD arithmetic opera-
tions (see DAA instruction for additional information).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ABA Add Accumulator B To
Accumulator A ABA

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • B3 + B3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: A7 • B7 + B7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ABA INH 18 06 2 OO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-8 REFERENCE MANUAL



Operation: (B) + (X) ⇒ X

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register X considering the possible carry out of the low-order byte of X;
places the result in X. The content of B is not changed.

This mnemonic is implemented by the LEAX B,X instruction. The LEAX
instruction allows A, B, D, or a constant to be added to X. For compati-
bility with the M68HC11, the mnemonic ABX is translated into the LEAX
B,X instruction by the assembler.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

ABX Add Accumulator B to
Index Register X ABX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
ABX translates to...
LEAX B,X IDX 1A E5 2 PP1

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-9



Operation: (B) + (Y) ⇒ Y

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register Y considering the possible carry out of the low-order byte of Y;
places the result in Y. The content of B is not changed.

This mnemonic is implemented by the LEAY B,Y instruction. The LEAY
instruction allows A, B, D, or a constant to be added to Y. For compati-
bility with the M68HC11, the mnemonic ABY is translated into the LEAY
B,Y instruction by the assembler.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

ABY Add Accumulator B to
Index Register Y ABY

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
ABY translates to...
LEAY B,Y IDX 19 ED 2 PP1

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-10 REFERENCE MANUAL



Operation: (A) + (M) + C ⇒ A

Description: Adds the content of accumulator A to the content of memory location M,
then adds the value of the C bit and places the result in A. This instruc-
tion affects the H status bit, so it is suitable for use in BCD arithmetic op-
erations (see DAA instruction for additional information).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ADCA Add with Carry to A ADCA

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysp
ADCA oprx9,xysp
ADCA oprx16,xysp
ADCA [D,xysp]
ADCA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

89 ii

99 dd

B9 hh ll

A9 xb

A9 xb ff

A9 xb ee ff

A9 xb

A9 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-11



Operation: (B) + (M) + C ⇒ B

Description: Adds the content of accumulator B to the content of memory location M,
then adds the value of the C bit and places the result in B. This instruc-
tion affects the H status bit, so it is suitable for use in BCD arithmetic op-
erations (see DAA instruction for additional information).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ADCB Add with Carry to B ADCB

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysp
ADCB oprx9,xysp
ADCB oprx16,xysp
ADCB [D,xysp]
ADCB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii

D9 dd

F9 hh ll

E9 xb

E9 xb ff

E9 xb ee ff

E9 xb

E9 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-12 REFERENCE MANUAL



Operation: (A) + (M) ⇒ A

Description: Adds the content of memory location M to accumulator A and places the
result in A. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations (see DAA instruction for additional informa-
tion).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ADDA Add without Carry to A ADDA

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysp
ADDA oprx9,xysp
ADDA oprx16,xysp
ADDA [D,xysp]
ADDA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8B ii

9B dd

BB hh ll

AB xb

AB xb ff

AB xb ee ff

AB xb

AB xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-13



Operation: (B) + (M) ⇒ B

Description: Adds the content of memory location M to accumulator B and places the
result in B. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations (see DAA instruction for additional informa-
tion).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ADDB Add without Carry to B ADDB

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysp
ADDB oprx9,xysp
ADDB oprx16,xysp
ADDB [D,xysp]
ADDB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CB ii

DB dd

FB hh ll

EB xb

EB xb ff

EB xb ee ff

EB xb

EB xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-14 REFERENCE MANUAL



Operation: (A : B) + (M : M+1) ⇒ A : B

Description: Adds the content of memory location M concatenated with the content of
memory location M +1 to the content of double accumulator D and plac-
es the result in D. Accumulator A forms the high-order half of 16-bit dou-
ble accumulator D; accumulator B forms the low-order half.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ADDD Add Double Accumulator ADDD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: D15 • M15 + M15 • R15 + R15 • D15
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysp
ADDD oprx9,xysp
ADDD oprx16,xysp
ADDD [D,xysp]
ADDD [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk

D3 dd

F3 hh ll

E3 xb

E3 xb ff

E3 xb ee ff

E3 xb

E3 xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-15



Operation: (A) • (M) ⇒ A

Description: Performs logical AND between the content of memory location M and
the content of accumulator A. The result is placed in A. After the opera-
tion is performed, each bit of A is the logical AND of the corresponding
bits of M and of A before the operation began.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ANDA Logical AND A ANDA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysp
ANDA oprx9,xysp
ANDA oprx16,xysp
ANDA [D,xysp]
ANDA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

84 ii

94 dd

B4 hh ll

A4 xb

A4 xb ff

A4 xb ee ff

A4 xb

A4 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-16 REFERENCE MANUAL



Operation: (B) • (M) ⇒ B

Description: Performs logical AND between the content of memory location M and
the content of accumulator B. The result is placed in B. After the opera-
tion is performed, each bit of B is the logical AND of the corresponding
bits of M and of B before the operation began.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ANDB Logical AND B ANDB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysp
ANDB oprx9,xysp
ANDB oprx16,xysp
ANDB [D,xysp]
ANDB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii

D4 dd

F4 hh ll

E4 xb

E4 xb ff

E4 xb ee ff

E4 xb

E4 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-17



Operation: (CCR) • (Mask) ⇒ CCR

Description: Performs bitwise logical AND between the content of a mask operand
and the content of the CCR. The result is placed in the CCR. After the
operation is performed, each bit of the CCR is the result of a logical AND
with the corresponding bits of the mask. To clear CCR bits, clear the cor-
responding mask bits. CCR bits that correspond to ones in the mask are
not changed by the ANDCC operation.

If the I mask bit is cleared, there is a one cycle delay before the system
allows interrupt requests. This prevents interrupts from occurring be-
tween instructions in the sequences CLI, WAI and CLI, SEI (CLI is equiv-
alent to ANDCC #$EF).

Condition Codes and Boolean Formulas:

Condition code bits are cleared if the corresponding bit was zero before
the operation or if the corresponding bit in the mask is zero.

Addressing Modes, Machine Code, and Execution Times:

ANDCC Logical AND CCR with Mask ANDCC

S X H I N Z V C

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Source Form Address Mode Object Code Cycles Access Detail
ANDCC #opr8i IMM 10 ii 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-18 REFERENCE MANUAL



Operation:

Description: Shifts all bits of memory location M one bit position to the left. Bit 0 is
loaded with a zero. The C status bit is loaded from the most significant
bit of M.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASL Arithmetic Shift Left Memory
(same as LSL) ASL

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: M7
Set if the MSB of M was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASL opr16a
ASL oprx0_xysp
ASL oprx9,xysp
ASL oprx16,xysp
ASL [D,xysp]
ASL [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

78 hh ll

68 xb

68 xb ff

68 xb ee ff

68 xb

68 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

 b7 – – – – – – b0 C 0
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-19



Operation:

Description: Shifts all bits of accumulator A one bit position to the left. Bit 0 is loaded
with a zero. The C status bit is loaded from the most significant bit of A.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASLA Arithmetic Shift Left A
(same as LSLA) ASLA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: A7
Set if the MSB of A was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASLA INH 48 1 O

 b7 – – – – – – b0 C 0
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-20 REFERENCE MANUAL



Operation:

Description: Shifts all bits of accumulator B one bit position to the left. Bit 0 is loaded
with a zero. The C status bit is loaded from the most significant bit of B.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASLB Arithmetic Shift Left B
(same as LSLB) ASLB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared other-
wise (for values of N and C after the shift).

C: B7
Set if the MSB of B was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASLB INH 58 1 O

 b7 – – – – – – b0 C 0
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-21



Operation:

Description: Shifts all bits of double accumulator D one bit position to the left. Bit 0 is
loaded with a zero. The C status bit is loaded from the most significant
bit of D.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASLD Arithmetic Shift Left Double Accumulator
(same as LSLD) ASLD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: D15
Set if the MSB of D was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASLD INH 59 1 O

 b7 – – – – – – b0 C  b7 – – – – – – b0
A B

0

 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-22 REFERENCE MANUAL



Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASR Arithmetic Shift Right Memory ASR

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared other-
wise (for values of N and C after the shift).

C: M0
Set if the LSB of M was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASR opr16a
ASR oprx0_xysp
ASR oprx9,xysp
ASR oprx16,xysp
ASR [D,xysp]
ASR [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

77 hh ll

67 xb

67 xb ff

67 xb ee ff

67 xb

67 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

 b7 – – – – – – b0  C
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-23



Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is held con-
stant. Bit 0 is loaded into the C status bit. This operation effectively di-
vides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASRA Arithmetic Shift Right A ASRA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: A0
Set if the LSB of A was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASRA INH 47 1 O

 b7 – – – – – – b0  C
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-24 REFERENCE MANUAL



Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is held con-
stant. Bit 0 is loaded into the C status bit. This operation effectively di-
vides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ASRB Arithmetic Shift Right B ASRB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: B0
Set if the LSB of B was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ASRB INH 57 1 O

 b7 – – – – – – b0  C
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-25



Operation: If C = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BCC Branch if Carry Cleared
(Same as BHS) BCC

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BCC rel8 REL 24 rr 3 /1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-26 REFERENCE MANUAL



Operation: (M) • (Mask) ⇒ M

Description: Clears bits in location M. To clear a bit, set the corresponding bit in the
mask byte. Bits in M that correspond to zeros in the mask byte are not
changed. Mask bytes can be located at PC + 2, PC + 3, or PC + 4, de-
pending on addressing mode used.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

BCLR Clear Bits in Memory BCLR

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode 1

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

Object Code Cycles Access Detail
BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysp, msk8
BCLR oprx9,xysp, msk8
BCLR oprx16,xysp, msk8

DIR
EXT
IDX
IDX1
IDX2

4D dd mm

1D hh ll mm

0D xb mm

0D xb ff mm

0D xb ee ff mm

4
4
4
4
6

rPOw

rPPw

rPOw

rPwP

frPwOP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-27



Operation: If C = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BCS Branch if Carry Set
(Same as BLO) BCS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BCS rel8 REL 25 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-28 REFERENCE MANUAL



Operation: If Z = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BEQ Branch if Equal BEQ

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BEQ rel8 REL 27 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-29



Operation: If N ⊕ V = 0, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement values
if (Accumulator) ≥ (Memory), then branch

Description: If BGE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the signed two’s complement number in the accumulator is great-
er than or equal to the signed two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BGE Branch if Greater than or Equal to Zero BGE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BGE rel8 REL 2C rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-30 REFERENCE MANUAL



Description: BGND operates like a software interrupt, except that no registers are
stacked. First, the current PC value is stored in internal CPU register
TMP2. Next, the BDM ROM and background register block become ac-
tive. The BDM ROM contains a substitute vector, mapped to the address
of the software interrupt vector, which points to routines in the BDM
ROM that control background operation. The substitute vector is
fetched, and execution continues from the address that it points to. Fi-
nally, the CPU checks the location that TMP2 points to. If the value
stored in that location is $00 (the BGND opcode), TMP2 is incremented,
so that the instruction that follows the BGND instruction is the first in-
struction executed when normal program execution resumes.

For all other types of BDM entry, the CPU performs the same sequence
of operations as for a BGND instruction, but the value stored in TMP2
already points to the instruction that would have executed next had BDM
not become active. If active BDM is triggered just as a BGND instruction
is about to execute, the BDM firmware does increment TMP2, but the
change does not affect resumption of normal execution.

While BDM is active, the CPU executes debugging commands received
via a special single-wire serial interface. BDM is terminated by the exe-
cution of specific debugging commands. Upon exit from BDM, the back-
ground/boot ROM and registers are disabled, the instruction queue is
refilled starting with the return address pointed to by TMP2, and normal
processing resumes.

BDM is normally disabled to avoid accidental entry. While BDM is dis-
abled, BGND executes as described, but the firmware causes execution
to return to the user program. Refer to SECTION 8 DEVELOPMENT
AND DEBUG SUPPORT  for more information concerning BDM.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BGND Enter Background Debug Mode BGND

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BGND INH 00 5 VfPPP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-31



Operation: If Z + (N ⊕ V) = 0, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement values
if (Accumulator) > (Memory), then branch

Description: If BGT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the signed two’s complement number in the accumulator is great-
er than the signed two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BGT Branch if Greater than Zero BGT

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BGT rel8 REL 2E rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-32 REFERENCE MANUAL



Operation: If C + Z = 0, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) > (Memory), then branch

Description: If BHI is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
the unsigned binary number in memory. Generally not useful after INC/
DEC, LD/ST, TST/CLR/COM because these instructions do not affect
the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BHI Branch if Higher BHI

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BHI rel8 REL 22 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-33



Operation: If C = 0, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) ≥ (Memory), then branch

Description: If BHS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
the unsigned binary number in memory. Generally not useful after INC/
DEC, LD/ST, TST/CLR/COM because these instructions do not affect
the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BHS Branch if Higher or Same
(Same as BCC) BHS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BHS rel8 REL 24 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-34 REFERENCE MANUAL



Operation: (A) • (M)

Description: Performs bitwise logical AND on the content of accumulator A and the
content of memory location M, and modifies the condition codes accord-
ingly. Each bit of the result is the logical AND of the corresponding bits
of the accumulator and the memory location. Neither the content of the
accumulator nor the content of the memory location is affected.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

BITA Bit Test A BITA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysp
BITA oprx9,xysp
BITA oprx16,xysp
BITA [D,xysp]
BITA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

85 ii

95 dd

B5 hh ll

A5 xb

A5 xb ff

A5 xb ee ff

A5 xb

A5 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-35



Operation: (B) • (M)

Description: Performs bitwise logical AND on the content of accumulator B and the
content of memory location M, and modifies the condition codes accord-
ingly. Each bit of the result is the logical AND of the corresponding bits
of the accumulator and the memory location. Neither the content of the
accumulator nor the content of the memory location is affected.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

BITB Bit Test B BITB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysp
BITB oprx9,xysp
BITB oprx16,xysp
BITB [D,xysp]
BITB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii

D5 dd

F5 hh ll

E5 xb

E5 xb ff

E5 xb ee ff

E5 xb

E5 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-36 REFERENCE MANUAL



Operation: If Z + (N ⊕ V) = 1, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement numbers
if (Accumulator) ≤ (Memory), then branch

Description: If BLE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator was less than
or equal to the two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BLE Branch if Less Than or Equal to Zero BLE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BLE rel8 REL 2F rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-37



Operation: If C = 1, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) < (Memory), then branch

Description: If BLO is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator is less than the
unsigned binary number in memory. Generally not useful after INC/DEC,
LD/ST, TST/CLR/COM because these instructions do not affect the C
status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BLO Branch if Lower
(Same as BCS) BLO

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BLO rel8 REL 25 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-38 REFERENCE MANUAL



Operation: If C + Z = 1, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) ≤ (Memory), then branch

Description: If BLS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator is less than or
equal to the unsigned binary number in memory. Generally not useful
after INC/DEC, LD/ST, TST/CLR/COM because these instructions do
not affect the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BLS Branch if Lower or Same BLS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BLS rel8 REL 23 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-39



Operation: If N ⊕ V = 1, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Description: If BLT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator is less than the
two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BLT Branch if Less than Zero BLT

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BLT rel8 REL 2D rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-40 REFERENCE MANUAL



Operation: If N = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BMI Branch if Minus BMI

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BMI rel8 REL 2B rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-41



Operation: If Z = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 0.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BNE Branch if Not Equal to Zero BNE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BNE rel8 REL 26 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-42 REFERENCE MANUAL



Operation: If N = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 0.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BPL Branch if Plus BPL

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BPL rel8 REL 2A rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-43



Operation: (PC) + $0002 + Rel ⇒ PC

Description: Unconditional branch to an address calculated as shown in the expres-
sion. Rel is a relative offset stored as a two’s complement number in the
second byte of the branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must al-
ways be refilled.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BRA Branch Always BRA

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BRA rel8 REL 20 rr 3 PPP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-44 REFERENCE MANUAL



Operation: If (M) • (Mask) = 0, then branch

Description: Performs bitwise logical AND on memory location M and the mask sup-
plied with the instruction, then branches if and only if all bits with a value
of one in the mask byte correspond to bits with a value of zero in the test-
ed byte. Mask operands can be located at PC + 1, PC + 2, or PC + 4,
depending on addressing mode. The branch offset is referenced to the
next address after the relative offset (rr) which is the last byte of the in-
struction object code.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BRCLR Branch if Bits Cleared BRCLR

S X H I N Z V C

– – – – – – – –

Source Form Address Mode 1

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

Object Code Cycles
Access
Detail

BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysp, msk8, rel8
BRCLR oprx9,xysp, msk8, rel8
BRCLR oprx16,xysp, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr

1F hh ll mm rr

0F xb mm rr

0F xb ff mm rr

0F xb ee ff mm
rr

4
5
4
6
8

rPPP

rfPPP

rPPP

rffPPP

frPffPPP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-45



Operation: (PC) + $0002 ⇒ PC

Description: Never branches. BRN is effectively a 2-byte NOP that requires one cycle
to execute. BRN is included in the instruction set to provide a comple-
ment to the BRA instruction. The instruction is useful during program de-
bug, to negate the effect of another branch instruction without disturbing
the offset byte. A complement for BRA is also useful in compiler imple-
mentations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRN branch condition is never
satisfied, the branch is never taken, and only a single program fetch is
needed to update the instruction queue.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BRN Branch Never BRN

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BRN rel8 REL 21 rr 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-46 REFERENCE MANUAL



Operation: If (M) • (Mask) = 0, then branch

Description: Performs bitwise logical AND on the inverse of memory location M and
the mask supplied with the instruction, then branches if and only if all bits
with a value of one in the mask byte correspond to bits with a value of
one in the tested byte. Mask operands can be located at PC + 1, PC +
2, or PC + 4, depending on addressing mode. The branch offset is refer-
enced to the next address after the relative offset (rr) which is the last
byte of the instruction object code.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BRSET Branch if Bits Set BRSET

S X H I N Z V C

– – – – – – – –

Source Form Address Mode 1

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

Object Code Cycles
Access
Detail

BRSET opr8a, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysp, msk8, rel8
BRSET oprx9,xysp, msk8, rel8
BRSET oprx16,xysp, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr

1E hh ll mm rr

0E xb mm rr

0E xb ff mm rr

0E xb ee ff mm
rr

4
5
4
6
8

rPPP

rfPPP

rPPP

rffPPP

frPffPPP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-47



Operation: (M) + (Mask) ⇒ M

Description: Sets bits in memory location M. To set a bit, set the corresponding bit in
the mask byte. All other bits in M are unchanged. The mask byte can be
located at PC + 2, PC + 3, or PC + 4, depending upon addressing mode.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

BSET Set Bit(s) in Memory BSET

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode 1

Notes:
1. Indirect forms of indexed addressing cannot be used with this instruction.

Object Code Cycles Access Detail
BSET opr8a, msk8
BSET opr16a, msk8
BSET oprx0_xysp, msk8
BSET oprx9,xysp, msk8
BSET oprx16,xysp, msk8

DIR
EXT
IDX
IDX1
IDX2

4C dd mm

1C hh ll mm

0C xb mm

0C xb ff mm

0C xb ee ff mm

4
4
4
4
6

rPOw

rPPw

rPOw

rPwP

frPwOP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-48 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP + 1)
(PC) + Rel ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers con-
trol to a subroutine. Uses the address of the instruction after the BSR as
a return address.

Decrements the SP by two, to allow the two bytes of the return ad-
dress to be stacked.

Stacks the return address (the SP points to the high order byte of the
return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which re-
stores the return address from the stack.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BSR Branch to Subroutine BSR

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BSR rel8 REL 07 rr 4 PPPS
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-49



Operation: If V = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 0.

BVC causes a branch when a previous operation on two’s complement
binary values does not cause an overflow. That is, when BVC follows a
two’s complement operation, a branch occurs when the result of the op-
eration is valid.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BVC Branch if Overflow Cleared BVC

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BVC rel8 REL 28 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-50 REFERENCE MANUAL



Operation: If V = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

BVS causes a branch when a previous operation on two’s complement
binary values causes an overflow. That is, when BVS follows a two’s
complement operation, a branch occurs when the result of the operation
is invalid.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

BVS Branch if Overflow Set BVS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
BVS rel8 REL 29 rr 3/1 PPP/P1

Notes:
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one

program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-51



Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP + 1)
(SP) – $0001 ⇒ SP
(PPAGE) ⇒ M(SP)
page ⇒ PPAGE
Subroutine Address ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers con-
trol to a subroutine in expanded memory. Uses the address of the in-
struction following the CALL as a return address. For code compatibility,
CALL also executes correctly in devices that do not have expanded
memory capability.

Decrements the SP by two, to allow the two bytes of the return ad-
dress to be stacked.

Stacks the return address (the SP points to the high order byte of the
return address).

Decrements the SP by one, to allow the current memory page value
in the PPAGE register to be stacked.

Stacks the content of PPAGE.

Writes a new page value supplied by the instruction to PPAGE.

Transfers control to the subroutine.

In indexed-indirect modes, the subroutine address and the PPAGE
value are fetched from memory in the order M high byte, M low byte, and
new PPAGE value.

Expanded-memory subroutines must be terminated by an RTC instruc-
tion, which restores the return address and PPAGE value from the stack.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

CALL Call Subroutine in Expanded Memory CALL

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
CALL opr16a, page
CALL oprx0_xysp, page
CALL oprx9,xysp, page
CALL oprx16,xysp, page
CALL [D,xysp]
CALL [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

4A hh ll pg

4B xb pg

4B xb ff pg

4B xb ee ff pg

4B xb

4B xb ee ff

8
8
8
9

10
10

gnfSsPPP

gnfSsPPP

gnfSsPPP

fgnfSsPPP

fIignSsPPP

fIignSsPPP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-52 REFERENCE MANUAL



Operation: (A) – (B)

Description: Compares the content of accumulator A to the content of accumulator B
and sets the condition codes, which may then be used for arithmetic and
logical conditional branches. The contents of the accumulators are not
changed.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CBA Compare Accumulators CBA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation; cleared
otherwise.

C: A7 • B7 + B7 • R7 + R7 + A7
Set if there was a borrow from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CBA INH 18 17 2 OO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-53



Operation: 0 ⇒ C bit

Description: Clears the C status bit. This instruction is assembled as ANDCC #$FE.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

CLC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CLC Clear Carry CLC

S X H I N Z V C

– – – – – – – 0

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
CLC translates to...
ANDCC #$FE

IMM 10 FE 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-54 REFERENCE MANUAL



Operation: 0 ⇒ I bit

Description: Clears the I mask bit. This instruction is assembled as ANDCC #$EF.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

When the I bit is cleared, interrupts are enabled. There is a one cycle
(bus clock) delay in the clearing mechanism for the I bit so that, if inter-
rupts were previously disabled, the next instruction after a CLI will
always be executed, even if there was an interrupt pending prior to exe-
cution of the CLI instruction.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CLI Clear Interrupt Mask CLI

S X H I N Z V C

– – – 0 – – – –

I: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
CLI translates to...
ANDCC #$EF

IMM 10 EF 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-55



Operation: 0 ⇒ M

Description: All bits in memory location M are cleared to zero.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CLR Clear Memory CLR

S X H I N Z V C

– – – – 0 1 0 0

N: 0; Cleared.

Z: 1; Set.

V: 0; Cleared.

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
CLR opr16a
CLR oprx0_xysp
CLR oprx9,xysp
CLR oprx16,xysp
CLR [D,xysp]
CLR [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

79 hh ll

69 xb

69 xb ff

69 xb ee ff

69 xb

69 xb ee ff

3
2
3
3
5
5

wOP

Pw

PwO

PwP

PIfPw

PIPPw
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-56 REFERENCE MANUAL



Operation: 0 ⇒ A

Description: All bits in accumulator A are cleared to zero.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CLRA Clear A CLRA

S X H I N Z V C

– – – – 0 1 0 0

N: 0; Cleared.

Z: 1; Set.

V: 0; Cleared.

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
CLRA INH 87 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-57



Operation: 0 ⇒ B

Description: All bits in accumulator B are cleared to zero.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CLRB Clear B CLRB

S X H I N Z V C

– – – – 0 1 0 0

N: 0; Cleared.

Z: 1; Set.

V: 0; Cleared.

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
CLRB INH C7 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-58 REFERENCE MANUAL



Operation: 0 ⇒ V bit

Description: Clears the V status bit. This instruction is assembled as ANDCC #$FD.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CLV Clear Two’s Complement Overflow Bit CLV

S X H I N Z V C

– – – – – – 0 –

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
CLV translates to...
ANDCC #$FD IMM 10 FD 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-59



Operation: (A) – (M)

Description: Compares the content of accumulator A to the content of memory loca-
tion M and sets the condition codes, which may then be used for arith-
metic and logical conditional branching. The contents of A and location
M are not changed.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CMPA Compare A CMPA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 + X7
Set if there was a borrow from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysp
CMPA oprx9,xysp
CMPA oprx16,xysp
CMPA [D,xysp]
CMPA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

81 ii

91 dd

B1 hh ll

A1 xb

A1 xb ff

A1 xb ee ff

A1 xb

A1 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-60 REFERENCE MANUAL



Operation: (B) – (M)

Description: Compares the content of accumulator B to the content of memory loca-
tion M and sets the condition codes, which may then be used for arith-
metic and logical conditional branching. The contents of B and location
M are not changed.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CMPB Compare B CMPB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation; cleared
otherwise.

C: X7 • M7 + M7 • R7 + R7 + X7
Set if there was a borrow from the MSB of the result; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysp
CMPB oprx9,xysp
CMPB oprx16,xysp
CMPB [D,xysp]
CMPB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii

D1 dd

F1 hh ll

E1 xb

E1 xb ff

E1 xb ee ff

E1 xb

E1 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-61



Operation: (M) = $FF – (M) ⇒ M

Description: Replaces the content of memory location M with its one’s complement.
Each bit of M is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s comple-
ment values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

COM Complement Memory COM

S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 1; Set (for M6800 compatibility).

Source Form Address Mode Object Code Cycles Access Detail
COM opr16a
COM oprx0_xysp
COM oprx9,xysp
COM oprx16,xysp
COM [D,xysp]
COM [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

71 hh ll

61 xb

61 xb ff

61 xb ee ff

61 xb

61 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-62 REFERENCE MANUAL



Operation: (A) = $FF – (A) ⇒ A

Description: Replaces the content of accumulator A with its one’s complement. Each
bit of A is complemented. Immediately after a COM operation on un-
signed values, only the BEQ, BNE, LBEQ, and LBNE branches can be
expected to perform consistently. After operation on two’s complement
values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

COMA Complement A COMA

S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 1; Set (for M6800 compatibility).

Source Form Address Mode Object Code Cycles Access Detail
COMA INH 41 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-63



Operation: (B) = $FF – (B) ⇒ B

Description: Replaces the content of accumulator B with its one’s complement. Each
bit of B is complemented. Immediately after a COM operation on un-
signed values, only the BEQ, BNE, LBEQ, and LBNE branches can be
expected to perform consistently. After operation on two’s complement
values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

COMB Complement B COMB

S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 1; Set (for M6800 compatibility).

Source Form Address Mode Object Code Cycles Access Detail
COMB INH 51 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-64 REFERENCE MANUAL



Operation: (A : B) – (M : M + 1)

Description: Compares the content of double accumulator D with a 16-bit value at the
address specified, and sets the condition codes accordingly. The com-
pare is accomplished internally by a 16-bit subtract of (M : M + 1) from D
without modifying either D or (M : M + 1).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CPD Compare Double Accumulator CPD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: D15 • M15 + M15 • R15 + R15 + D15
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysp
CPD oprx9,xysp
CPD oprx16,xysp
CPD [D,xysp]
CPD [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk

9C dd

BC hh ll

AC xb

AC xb ff

AC xb ee ff

AC xb

AC xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-65



Operation: (SP) – (M : M + 1)

Description: Compares the content of the SP with a 16-bit value at the address spec-
ified, and sets the condition codes accordingly. The compare is accom-
plished internally by doing a 16-bit subtract of (M : M + 1) from the SP
without modifying either the SP or (M : M + 1).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CPS Compare Stack Pointer CPS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: S15 • M15 • R15 + S15 • M15 • R15
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: S15 • M15 + M15 • R15 + R15 + S15
Set if the absolute value of the content of memory is larger than the
absolute value of the SP; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysp
CPS oprx9,xysp
CPS oprx16,xysp
CPS [D,xysp]
CPS [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk

9F dd

BF hh ll

AF xb

AF xb ff

AF xb ee ff

AF xb

AF xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-66 REFERENCE MANUAL



Operation: (X) – (M : M + 1)

Description: Compares the content of index register X with a 16-bit value at the ad-
dress specified, and sets the condition codes accordingly. The compare
is accomplished internally by a 16-bit subtract of (M : M + 1) from index
register X without modifying either index register X or (M : M + 1).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CPX Compare Index Register X CPX

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: X15 • M15 • R15 + X15 • M15 • R15
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: X15 • M15 + M15 • R15 + R15 + X15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysp
CPX oprx9,xysp
CPX oprx16,xysp
CPX [D,xysp]
CPX [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk

9E dd

BE hh ll

AE xb

AE xb ff

AE xb ee ff

AE xb

AE xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-67



Operation: (Y) – (M : M + 1)

Description: Compares the content of index register Y to a 16-bit value at the address
specified, and sets the condition codes accordingly. The compare is ac-
complished internally by a 16-bit subtract of (M : M + 1) from Y without
modifying either Y or (M : M + 1).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

CPY Compare Index Register Y CPY

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: Y15 • M15 • R15 + Y15 • M15 • R15
Set if two’s complement overflow resulted from the operation; cleared
otherwise.

C: Y15 • M15 + M15 • R15 + R15 + Y15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysp
CPY oprx9,xysp
CPY oprx16,xysp
CPY [D,xysp]
CPY [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk

9D dd

BD hh ll

AD xb

AD xb ff

AD xb ee ff

AD xb

AD xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-68 REFERENCE MANUAL



Description: DAA adjusts the content of accumulator A and the state of the C status
bit to represent the correct binary-coded-decimal sum and the associat-
ed carry when a BCD calculation has been performed. In order to exe-
cute DAA, the content of accumulator A, the state of the C status bit, and
the state of the H status bit must all be the result of performing an ABA,
ADD or ADC on BCD operands, with or without an initial carry.

The table below shows DAA operation for all legal combinations of input
operands. Columns 1 through 4 represent the results of ABA, ADC, or
ADD operations on BCD operands. The correction factor in column 5 is
added to the accumulator to restore the result of an operation on two
BCD operands to a valid BCD value, and to set or clear the C bit. All val-
ues are in hexadecimal.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

DAA Decimal Adjust A DAA

1 2 3 4 5 6

Initial
C Bit Value

Value of
A[7:4]

Initial
H Bit Value

Value of
A[3:0]

Correction
Factor

Corrected
C Bit Value

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

0 A–F 0 0–9 60 1

0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1

S X H I N Z V C

– – – – ∆ ∆ ? ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Undefined.

C: Represents BCD carry. See table above.

Source Form Address Mode Object Code Cycles Access Detail
DAA INH 18 07 3 OfO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-69



Operation: (Counter) – 1 ⇒ Counter
If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC,

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has reached zero, execute a branch to the specified
relative destination. The DBEQ instruction is encoded into three bytes of
machine code including the 9-bit relative offset (–256 to +255 locations
from the start of the next instruction).

IBEQ and TBEQ instructions are similar to DBEQ except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

DBEQ Decrement and Branch if Equal to Zero DBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero

(DBEQ – 0) or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would
be 0:0 for DBEQ.

Cycles Access Detail
DBEQ abdxys, rel9 REL 04 lb rr 3/3 PPP

Count
Register

Bits 2:0 Source Form
Object Code

(if offset is positive)
Object Code

(if offset is negative)

A
B

000
001

DBEQ A, rel9
DBEQ B, rel9

04 00 rr

04 01 rr

04 10 rr

04 11 rr

D
X
Y

SP

100
101
110
111

DBEQ D, rel9
DBEQ X, rel9
DBEQ Y, rel9
DBEQ SP, rel9

04 04 rr

04 05 rr

04 06 rr

04 07 rr

04 14 rr

04 15 rr

04 16 rr

04 17 rr
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-70 REFERENCE MANUAL



Operation: (Counter) – 1 ⇒ Counter
If (Counter) not = 0, then (PC) + $0003 + Rel ⇒ PC,

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has not been decremented to zero, execute a
branch to the specified relative destination. The DBNE instruction is en-
coded into three bytes of machine code including a 9-bit relative offset
(–256 to +255 locations from the start of the next instruction).

IBNE and TBNE instructions are similar to DBNE except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

DBNE Decrement and Branch if Not Equal to Zero DBNE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero

(DBEQ – 0) or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would
be 0:0 for DBNE.

Cycles Access Detail
DBNE abdxys, rel9 REL 04 lb rr 3/3 PPP

Count
Register

Bits 2:0 Source Form
Object Code

(if offset is positive)
Object Code

(if offset is negative)

A
B

000
001

DBNE A, rel9
DBNE B, rel9

04 20 rr

04 21 rr

04 30 rr

04 31 rr

D
X
Y

SP

100
101
110
111

DBNE D, rel9
DBNE X, rel9
DBNE Y, rel9
DBNE SP, rel9

04 24 rr

04 25 rr

04 26 rr

04 27 rr

04 34 rr

04 35 rr

04 36 rr

04 37 rr
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-71



Operation: (M) – $01 ⇒ M

Description: Subtract one from the content of memory location M.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus al-
lowing the DEC instruction to be used as a loop counter in multiple-pre-
cision computations.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

DEC Decrement Memory DEC

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there was a two’s complement overflow as a result of the operation;
cleared otherwise. Two’s complement overflow occurs if and only if (M)
was $80 before the operation.

Source Form Address Mode Object Code Cycles Access Detail
DEC opr16a
DEC oprx0_xysp
DEC oprx9,xysp
DEC oprx16,xysp
DEC [D,xysp]
DEC [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

73 hh ll

63 xb

63 xb ff

63 xb ee ff

63 xb

63 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-72 REFERENCE MANUAL



Operation: (A) – $01 ⇒ A

Description: Subtract one from the content of accumulator A.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus al-
lowing the DEC instruction to be used as a loop counter in multiple-pre-
cision computations.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

DECA Decrement A DECA

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there was a two’s complement overflow as a result of the operation;
cleared otherwise. Two’s complement overflow occurs if and only if (A) was
$80 before the operation.

Source Form Address Mode Object Code Cycles Access Detail
DECA INH 43 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-73



Operation: (B) – $01 ⇒ B

Description: Subtract one from the content of accumulator B.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus al-
lowing the DEC instruction to be used as a loop counter in multiple-pre-
cision computations.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

DECB Decrement B DECB

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there was a two’s complement overflow as a result of the operation;
cleared otherwise. Two’s complement overflow occurs if and only if (B) was
$80 before the operation.

Source Form Address Mode Object Code Cycles Access Detail
DECB INH 53 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-74 REFERENCE MANUAL



Operation: (SP) – $0001 ⇒ SP

Description: Subtract one from the SP. This instruction assembles to LEAS –1,SP.
The LEAS instruction does not affect condition codes as DEX or DEY in-
structions do.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

DES Decrement Stack Pointer DES

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
DES translates to...
LEAS –1,SP

IDX 1B 9F 2 PP1

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-75



Operation: (X) – $0001 ⇒ X

Description: Subtract one from index register X. LEAX –1,X can produce the same
result, but LEAX does not affect the Z bit. Although the LEAX instruction
is more flexible, DEX requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

DEX Decrement Index Register X DEX

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
DEX INH 09 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-76 REFERENCE MANUAL



Operation: (Y) – $0001 ⇒ Y

Description: Subtract one from index register Y. LEAY –1,Y can produce the same
result, but LEAY does not affect the Z bit. Although the LEAY instruction
is more flexible, DEY requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

DEY Decrement Index Register Y DEY

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
DEY INH 03 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-77



Operation: (Y : D) ÷ (X) ⇒ Y; Remainder ⇒ D

Description: Divides a 32-bit unsigned dividend by a 16-bit divisor, producing a 16-bit
unsigned quotient and an unsigned 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, the contents of double accumulator D and index register Y do not
change, but the states of the N and Z bits in the CCR are undefined.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EDIV Extended Divide 32-Bit by 16-Bit
(Unsigned) EDIV

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise. Undefined after over-
flow or division by zero.

Z: Set if result is $0000; cleared otherwise. Undefined after overflow or
division by zero.

V: Set if the result was > $FFFF; cleared otherwise. Undefined after di-
vision by zero.

C: Set if divisor was $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
EDIV INH 11 11 ffffffffffO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-78 REFERENCE MANUAL



Operation: (Y : D) ÷ (X) ⇒ Y; Remainder ⇒ D

Description: Divides a signed 32-bit dividend by a 16-bit signed divisor, producing a
signed 16-bit quotient and a signed 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, the C status bit is set and the contents of double accumulator D
and index register Y do not change, but the states of the N and Z bits in
the CCR are undefined.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EDIVS Extended Divide 32-Bit by 16-Bit
(Signed) EDIVS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise. Undefined after overflow or
division by zero.

Z: Set if result is $0000; cleared otherwise. Undefined after overflow or division
by zero.

V: Set if the result was > $7FFF or < $8000; cleared otherwise. Undefined after
division by zero.

C: Set if divisor was $0000; cleared otherwise. (Indicates division by zero.)

Source Form Address Mode Object Code Cycles Access Detail
EDIVS INH 18 14 12 OffffffffffO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-79



E

Operation: (M(X) : M(X+1)) × (M(Y) : M(Y+1)) + (M ~ M+3) ⇒ M ~ M+3

Description: A 16-bit value is multiplied by a 16-bit value to produce a 32-bit interme-
diate result. This 32-bit intermediate result is then added to the content
of a 32-bit accumulator in memory. EMACS is a signed integer opera-
tion. All operands and results are located in memory. When the EMACS
instruction is executed, the first source operand is fetched from an ad-
dress pointed to by X, and the second source operand is fetched from
an address pointed to by index register Y. Before the instruction is exe-
cuted, the X and Y index registers must contain values that point to the
most significant bytes of the source operands. The most significant byte
of the 32-bit result is specified by an extended address supplied with the
instruction.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MACS Extended Multiply and Accumulate
(Signed)

16-Bit by 16-Bit to 32-Bit
EMACS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00000000; cleared otherwise.

V: M31 • I31 • R31 + M31 • I31 • R31
Set if result > $7FFFFFFF (+ overflow) or < $80000000 (– underflow).
Indicates two’s complement overflow.

C: M15 • I15 + I15 • R15 + R15 • M15
Set if there was a carry from bit 15 of the result; cleared otherwise.
Indicates a carry from low word to high word of the result occurred.

Source Form 1

Notes:
1. opr16a is an extended address specification. Both X and Y point to source operands.

Address Mode Object Code Cycles Access Detail
EMACS opr16a Special 18 12 hh ll 13 ORROfffRRfWWP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-80 REFERENCE MANUAL



Operation: MAX ((D), (M : M + 1)) ⇒ D

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the larger of the two values in D. The Z status bit is set when the result
of the subtraction is zero (the values are equal), and the C status bit is
set when the subtraction requires a borrow (the value in memory is larger
than the value in the accumulator). When C = 1, the value in D has been
replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EMAXD Place Larger of Two
Unsigned 16-Bit Values

in Accumulator D
EMAXD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = D – M : M + 1).

Source Form Address Mode Object Code Cycles Access Detail
EMAXD oprx0_xysp
EMAXD oprx9,xysp
EMAXD oprx16,xysp
EMAXD [D,xysp]
EMAXD [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb

18 1A xb ff

18 1A xb ee ff

18 1A xb

18 1A xb ee ff

4
4
5
7
7

ORfP

ORPO

OfRPP

OfIfRfP

OfIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-81



Operation: MAX ((D), (M : M + 1)) ⇒ M : M + 1

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the larger of the two values in the memory location. The Z status bit is
set when the result of the subtraction is zero (the values are equal), and
the C status bit is set when the subtraction requires a borrow (the value
in memory is larger than the value in the accumulator). When C = 0, the
value in D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EMAXM Place Larger of Two
Unsigned 16-Bit Values

in Memory
EMAXM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = D – M : M + 1).

Source Form Address Mode Object Code Cycles Access Detail
EMAXM oprx0_xysp
EMAXM oprx9,xysp
EMAXM oprx16,xysp
EMAXM [D,xysp]
EMAXM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb

18 1E xb ff

18 1E xb ee ff

18 1E xb

18 1E xb ee ff

4
5
6
7
7

ORPW

ORPWO

OfRPWP

OfIfRPW

OfIPRPW
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-82 REFERENCE MANUAL



Operation: MIN ((D), (M : M + 1)) ⇒ D

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the smaller of the two values in D. The Z status bit is set when the result
of the subtraction is zero (the values are equal), and the C status bit is
set when the subtraction requires a borrow (the value in memory is larger
than the value in the accumulator). When C = 0, the value in D has been
replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EMIND Place Smaller of Two
Unsigned 16-Bit Values

in Accumulator D
EMIND

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = D – M : M + 1).

Source Form Address Mode Object Code Cycles Access Detail
EMIND oprx0_xysp
EMIND oprx9,xysp
EMIND oprx16,xysp
EMIND [D,xysp]
EMIND [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb

18 1B xb ff

18 1B xb ee ff

18 1B xb

18 1B xb ee ff

4
4
5
7
7

ORfP

ORPO

OfRPP

OfIfRfP

OfIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-83



Operation: MIN ((D), (M : M + 1)) ⇒ M : M + 1

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the smaller of the two values in the memory location. The Z status bit is
set when the result of the subtraction is zero (the values are equal), and
the C status bit is set when the subtraction requires a borrow (the value
in memory is larger than the value in the accumulator). When C = 1, the
value in D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EMINM Place Smaller of Two
Unsigned 16-Bit Values

in Memory
EMINM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = D – M : M + 1).

Source Form Address Mode Object Code Cycles Access Detail
EMINM oprx0_xysp
EMINM oprx9,xysp
EMINM oprx16,xysp
EMINM [D,xysp]
EMINM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb

18 1F xb ff

18 1F xb ee ff

18 1F xb

18 1F xb ee ff

4
5
6
7
7

ORPW

ORPWO

OfRPWP

OfIfRPW

OfIPRPW
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-84 REFERENCE MANUAL



Operation: (D) × (Y) ⇒ Y : D

Description: An unsigned 16-bit value is multiplied by an unsigned 16-bit value to pro-
duce an unsigned 32-bit result. The first source operand must be loaded
into 16-bit double accumulator D and the second source operand must
be loaded into index register Y before executing the instruction. When
the instruction is executed, the value in D is multiplied by the value in Y.
The upper 16-bits of the 32-bit result are stored in Y and the low-order
16-bits of the result are stored in D.

The C status bit can be used to round the high-order 16 bits of the result.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EMUL Extended Multiply
16-Bit by 16-Bit (Unsigned) EMUL

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise.

Z: Set if result is $00000000; cleared otherwise.

C: Set if bit 15 of the result is set; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
EMUL INH 13 3 ffO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-85



E

Operation: (D) × (Y) ⇒ Y : D

Description: A signed 16-bit value is multiplied by a signed 16-bit value to produce a
signed 32-bit result. The first source operand must be loaded into 16-bit
double accumulator D and the second source operand must be loaded
into index register Y before executing the instruction. When the instruc-
tion is executed, D is multiplied by the value Y. The 16 high-order bits of
the 32-bit result are stored in Y and the 16 low-order bits of the result are
stored in D.

The C status bit can be used to round the high-order 16 bits of the result.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MULS Extended Multiply
16-Bit by 16-Bit (Signed) EMULS

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise.

Z: Set if result is $00000000; cleared otherwise.

C: Set if bit 15 of the result is set; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
EMULS INH 18 13 3 OfO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-86 REFERENCE MANUAL



Operation: (A) ⊕ (M) ⇒ A

Description: Performs the logical exclusive OR between the content of accumulator
A and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the correspond-
ing bits of M and A before the operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EORA Exclusive -OR A EORA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysp
EORA oprx9,xysp
EORA oprx16,xysp
EORA [D,xysp]
EORA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

88 ii

98 dd

B8 hh ll

A8 xb

A8 xb ff

A8 xb ee ff

A8 xb

A8 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-87



Operation: (B) ⊕ (M) ⇒ B

Description: Performs the logical exclusive OR between the content of accumulator
B and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the correspond-
ing bits of M and B before the operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

EORB Exclusive -OR B EORB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysp
EORB oprx9,xysp
EORB oprx16,xysp
EORB [D,xysp]
EORB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii

D8 dd

F8 hh ll

E8 xb

E8 xb ff

E8 xb ee ff

E8 xb

E8 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-88 REFERENCE MANUAL



Operation: (M : M + 1) + [(B) × ((M + 2 : M + 3) – (M : M + 1))] ⇒ D

Description: ETBL linearly interpolates one of 256 result values that fall between
each pair of data entries in a lookup table stored in memory. Data points
in the table represent the endpoints of equally-spaced line segments.
Table entries and the interpolated result are 16-bit values. The result is
stored in the D accumulator.

Before executing ETBL, set up an index register so that it points to the
starting point (X1) of a line segment when the instruction is executed. X1
is the table entry closest to, but less than or equal to, the desired lookup
value. The next table entry after X1 is X2. XL is the distance in X be-
tween X1 and X2. Load accumulator B with a binary fraction (radix point
to left of MSB) representing the ratio (XL–X1) ÷ (X2–X1).

The 16-bit unrounded result is calculated using the following expression:

D = Y1 + [(B) × (Y2 – Y1)]
Where

(B) = (XL – X1) ÷ (X2 – X1)
Y1 = 16-bit data entry pointed to by <effective address>
Y2 = 16-bit data entry pointed to by <effective address> + 2

The intermediate value [(B) × (Y2 – Y1)] produces a 24-bit result with the
radix point between bits 7 and 8. Any indexed addressing mode, except
indirect modes or 9-bit and 16-bit offset modes, can be used to identify
the first data point (X1,Y1). The second data point is the next table entry.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ETBL Extended Table Lookup and Interpolate ETBL

S X H I N Z V C

– – – – ∆ ∆ – ?

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

C: Undefined.

Source Form Address Mode Object Code Cycles Access Detail
ETBL oprx0_xysp IDX 18 3F xb 10 ORRffffffP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-89



0

1

2

3

4

5

6

7

Operation: See table

Description: Exchanges the contents of registers specified in the instruction as shown
below. Note that the order in which exchanges between 8-bit and 16-bit
registers are specified affects the high byte of the 16-bit registers differ-
ently. Exchanges of D with A or B are ambiguous. Cases involving TMP2
and TMP3 are reserved for Motorola use, so some assemblers may not
permit their use, but it is possible to generate these cases by using DC.B
or DC.W assembler directives.

Condition Codes and Boolean Formulas:

None affected, unless the CCR is the destination register. Condition codes
take on the value of the corresponding source bits, except that the X mask bit
cannot change from zero to one. Software can leave the X bit set, leave it
cleared, or change it from one to zero, but it can only be set by a reset or by
recognition of an XIRQ interrupt.

Addressing Modes, Machine Code, and Execution Times:

EXG Exchange Register Contents EXG

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows

represent the low-order destination digit (bit 3 is a don’t-care). Values are in hexadecimal.

Cycles Access Detail
EXG abcdxys,abcdxys INH B7 eb 1 P

8 9 A B C D E F

A ⇔ A B ⇔ A CCR ⇔ A
TMP3L ⇒ A

$00:A ⇒ TMP3
B ⇒ A
A ⇒ B

XL ⇒ A
$00:A ⇒ X

YL ⇒ A
$00:A ⇒ Y

SPL ⇒ A
$00:A ⇒ SP

A ⇔ B B ⇔ B CCR ⇔ B
TMP3L ⇒ B

$FF:B ⇒ TMP3
B ⇒ B

$FF ⇒ A
XL ⇒ B

$FF:B ⇒ X
YL ⇒ B

$FF:B ⇒ Y
SPL ⇒ B

$FF:B ⇒ SP

A ⇔ CCR B ⇔ CCR CCR ⇔ CCR
TMP3L ⇒ CCR

$FF:CCR ⇒ TMP3
B ⇒ CCR

$FF:CCR ⇒ D
XL ⇒ CCR

$FF:CCR ⇒ X
YL ⇒ CCR

$FF:CCR ⇒ Y
SPL ⇒ CCR

$FF:CCR ⇒ SP

$00:A ⇒ TMP2
TMP2L ⇒ A

$00:B ⇒ TMP2
TMP2L ⇒ B

$00:CCR ⇒ TMP2
TMP2L ⇒ CCR

TMP3 ⇔ TMP2 D ⇔ TMP2 X ⇔ TMP2 Y ⇔ TMP2 SP ⇔ TMP2

$00:A ⇒ D $00:B ⇒ D
$00:CCR ⇒ D

B ⇒ CCR
TMP3 ⇔ D D ⇔ D X ⇔ D Y ⇔ D SP ⇔ D

$00:A ⇒ X
XL ⇒ A

$00:B ⇒ X
XL ⇒ B

$00:CCR ⇒ X
XL ⇒ CCR

TMP3 ⇔ X D ⇔ X X ⇔ X Y ⇔ X SP ⇔ X

$00:A ⇒ Y
YL ⇒ A

$00:B ⇒ Y
YL ⇒ B

$00:CCR ⇒ Y
YL ⇒ CCR

TMP3 ⇔ Y D ⇔ Y X ⇔ Y Y ⇔ Y SP ⇔ Y

$00:A ⇒ SP
SPL ⇒ A

$00:B ⇒ SP
SPL ⇒ B

$00:CCR ⇒ SP
SPL ⇒ CCR

TMP3 ⇔ SP D ⇔ SP X ⇔ SP Y ⇔ SP SP ⇔ SP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-90 REFERENCE MANUAL



Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Divides an unsigned 16-bit numerator in double accumulator D by an un-
signed 16-bit denominator in index register X, producing an unsigned
16-bit quotient in X, and an unsigned 16-bit remainder in D. If both the
numerator and the denominator are assumed to have radix points in the
same positions, the radix point of the quotient is to the left of bit 15. The
numerator must be less than the denominator. In the case of overflow
(denominator is less than or equal to the numerator) or division by zero,
the quotient is set to $FFFF, and the remainder is indeterminate.

FDIV is equivalent to multiplying the numerator by 216 and then perform-
ing 32 x 16-bit integer division. The result is interpreted as a binary-
weighted fraction, which resulted from the division of a 16-bit integer by
a larger 16-bit integer. A result of $0001 corresponds to 0.000015, and
$FFFF corresponds to 0.9998. The remainder of an IDIV instruction can
be resolved into a binary-weighted fraction by an FDIV instruction. The
remainder of an FDIV instruction can be resolved into the next 16 bits of
binary-weighted fraction by another FDIV instruction.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

FDIV Fractional Divide FDIV

S X H I N Z V C

– – – – – ∆ ∆ ∆

Z: Set if quotient is $0000; cleared otherwise.

V: 1 if X ≤ D
Set if the denominator was less than or equal to the numerator;
cleared otherwise.

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
FDIV INH 18 11 12 OffffffffffO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-91



Operation: (Counter) + 1 ⇒ Counter
If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC,

Description: Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has reached zero, branch to the specified relative des-
tination. The IBEQ instruction is encoded into three bytes of machine
code including a 9-bit relative offset (–256 to +255 locations from the
start of the next instruction).

DBEQ and TBEQ instructions are similar to IBEQ except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

IBEQ Increment and Branch if Equal
to Zero IBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero

(IBEQ – 0) or not zero (IBNE – 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 1:0 for IBEQ.

Cycles Access Detail
IBEQ abdxys, rel9 REL 04 lb rr 3/3 PPP

Count
Register

Bits 2:0 Source Form
Object Code

(if offset is positive)
Object Code

(if offset is negative)

A
B

000
001

IBEQ A, rel9
IBEQ B, rel9

04 80 rr

04 81 rr

04 90 rr

04 91 rr

D
X
Y

SP

100
101
110
111

IBEQ D, rel9
IBEQ X, rel9
IBEQ Y, rel9
IBEQ SP, rel9

04 84 rr

04 85 rr

04 86 rr

04 87 rr

04 94 rr

04 95 rr

04 96 rr

04 97 rr
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-92 REFERENCE MANUAL



Operation: (Counter) + 1 ⇒ Counter
If (Counter) not = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has not been incremented to zero, branch to the speci-
fied relative destination. The IBNE instruction is encoded into three bytes
of machine code including a 9-bit relative offset (–256 to +255 locations
from the start of the next instruction).

DBNE and TBNE instructions are similar to IBNE except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

IBNE Increment and Branch if Not
Equal to Zero IBNE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero

(IBEQ – 0) or not zero (IBNE – 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 1:0 for IBNE.

Cycles Access Detail
IBNE abdxys, rel9 REL 04 lb rr 3/3 PPP

Count
Register

Bits 2:0 Source Form
Object Code

(if offset is positive)
Object Code

(if offset is negative)

A
B

000
001

IBNE A, rel9
IBNE B, rel9

04 A0 rr

04 A1 rr

04 B0 rr

04 B1 rr

D
X
Y

SP

100
101
110
111

IBNE D, rel9
IBNE X, rel9
IBNE Y, rel9
IBNE SP, rel9

04 A4 rr

04 A5 rr

04 A6 rr

04 A7 rr

04 B4 rr

04 B5 rr

04 B6 rr

04 B7 rr
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-93



Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Divides an unsigned 16-bit dividend in double accumulator D by an un-
signed 16-bit divisor in index register X, producing an unsigned 16-bit
quotient in X, and an unsigned 16-bit remainder in D. If both the divisor
and the dividend are assumed to have radix points in the same positions,
the radix point of the quotient is to the right of bit zero. In the case of di-
vision by zero, the quotient is set to $FFFF, and the remainder is indeter-
minate.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

IDIV Integer Divide IDIV

S X H I N Z V C

– – – – – ∆ 0 ∆

Z: Set if quotient is $0000; cleared otherwise.

V: 0; Cleared.

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
IDIV INH 18 10 12 OffffffffffO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-94 REFERENCE MANUAL



Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Performs signed integer division of a signed 16-bit numerator in double
accumulator D by a signed 16-bit denominator in index register X, pro-
ducing a signed 16-bit quotient in X, and a signed 16-bit remainder in D.
If division by zero is attempted, the values in D and X are not changed,
but the values of the N, Z, and V status bits are undefined.

Other than division by zero, which is not legal and causes the C status
bit to be set, the only overflow case is:

But the highest positive value that can be represented in a 16-bit two’s
complement number is 32,767 ($7FFFF).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

IDIVS Integer Divide (Signed) IDIVS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise. Undefined after over-
flow or division by zero.

Z: Set if quotient is $0000; cleared otherwise. Undefined after overflow
or division by zero.

V: Set if the result was > $7FFF or < $8000; cleared otherwise. Unde-
fined after division by zero.

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
IDIVS INH 18 15 12 OffffffffffO

$8000
$FFFF
------------------

–32,768
–1

−−−−−−−−−−−−− +32,768= =
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-95



Operation: (M) + $01 ⇒ M

Description: Add one to the content of memory location M.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus al-
lowing the INC instruction to be used as a loop counter in multiple-preci-
sion computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

INC Increment Memory INC

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there is a two’s complement overflow as a result of the opera-
tion; cleared otherwise. Two’s complement overflow occurs if and
only if (M) was $7F before the operation.

Source Form Address Mode Object Code Cycles Access Detail
INC opr16a
INC oprx0_xysp
INC oprx9,xysp
INC oprx16,xysp
INC [D,xysp]
INC [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

72 hh ll

62 xb

62 xb ff

62 xb ee ff

62 xb

62 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-96 REFERENCE MANUAL



Operation: (A) + $01 ⇒ A

Description: Add one to the content of accumulator A.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus al-
lowing the INC instruction to be used as a loop counter in multiple-preci-
sion computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

INCA Increment A INCA

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there is a two’s complement overflow as a result of the opera-
tion; cleared otherwise. Two’s complement overflow occurs if and
only if (A) was $7F before the operation.

Source Form Address Mode Object Code Cycles Access Detail
INCA INH 42 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-97



Operation: (B) + $01 ⇒ B

Description: Add one to the content of accumulator B.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus al-
lowing the INC instruction to be used as a loop counter in multiple-preci-
sion computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

INCB Increment B INCB

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: Set if there is a two’s complement overflow as a result of the opera-
tion; cleared otherwise. Two’s complement overflow occurs if and
only if (B) was $7F before the operation.

Source Form Address Mode Object Code Cycles Access Detail
INCB INH 52 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-98 REFERENCE MANUAL



Operation: (SP) + $0001 ⇒ SP

Description: Add one to the SP. This instruction is assembled to LEAS 1,SP. The
LEAS instruction does not affect condition codes as an INX or INY in-
struction would.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

INS Increment Stack Pointer INS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
INS translates to...
LEAS 1,SP

IDX 1B 81 2 PP1

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-99



Operation: (X) + $0001 ⇒ X

Description: Add one to index register X. LEAX 1,X can produce the same result but
LEAX does not affect the Z status bit. Although the LEAX instruction is
more flexible, INX requires only one byte of object code.

INX operation affects only the Z status bit.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

INX Increment Index Register X INX

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
INX INH 08 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-100 REFERENCE MANUAL



Operation: (Y) + $0001 ⇒ Y

Description: Add one to index register Y. LEAY 1,Y can produce the same result but
LEAY does not affect the Z status bit. Although the LEAY instruction is
more flexible, INY requires only one byte of object code.

INY operation affects only the Z status bit.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

INY Increment Index Register Y INY

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
INY INH 02 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-101



Operation: Effective Address ⇒ PC

Description: Jumps to the instruction stored at the effective address. The effective ad-
dress is obtained according to the rules for extended or indexed ad-
dressing.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

JMP Jump JMP

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
JMP opr16a
JMP oprx0_xysp
JMP oprx9,xysp
JMP oprx16,xysp
JMP [D,xysp]
JMP [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll

05 xb

05 xb ff

05 xb ee ff

05 xb

05 xb ee ff

3
3
3
4
6
6

PPP

PPP

PPP

fPPP

fIfPPP

fIfPPP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-102 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP + 1)
Subroutine Address ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers con-
trol to a subroutine. Uses the address of the instruction following the JSR
as a return address.

Decrements the SP by two, to allow the two bytes of the return ad-
dress to be stacked.

Stacks the return address (the SP points to the high order byte of the
return address).

Calculates an effective address according to the rules for extended,
direct or indexed addressing.

Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which re-
stores the return address from the stack.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

JSR Jump to Subroutine JSR

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
JSR opr8a
JSR opr16a
JSR oprx0_xysp
JSR oprx9,xysp
JSR oprx16,xysp
JSR [D,xysp]
JSR [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

17 dd

16 hh ll

15 xb

15 xb ff

15 xb ee ff

15 xb

15 xb ee ff

4
4
4
4
5
7
7

PPPS

PPPS

PPPS

PPPS

fPPPS

fIfPPPS

fIfPPPS
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-103



Operation: If C = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBCC Long Branch if Carry Cleared
(Same as LBHS) LBCC

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBCC rel16 REL 18 24 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-104 REFERENCE MANUAL



Operation: If C = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBCS Long Branch if Carry Set
(Same as LBLO) LBCS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBCS rel16 REL 18 25 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-105



Operation: If Z = 1, (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBEQ Long Branch if Equal LBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBEQ rel16 REL 18 27 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-106 REFERENCE MANUAL



Operation: If N ⊕ V = 0, (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers,
if (Accumulator) ≥ Memory), then branch

Description: If LBGE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator was greater
than or equal to the two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBGE Long Branch if Greater Than or Equal to
Zero LBGE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBGE rel16 REL 18 2C qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-107



Operation: If Z + (N ⊕ V) = 0, then (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers,
If (Accumulator) > (Memory), then branch

Description: If LBGT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator was greater
than the two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBGT Long Branch if Greater Than Zero LBGT

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBGT rel16 REL 18 2E qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-108 REFERENCE MANUAL



Operation: If C + Z = 0, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) > (Memory), then branch

Description: If LBHI is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
the unsigned binary number in memory. This instruction is generally not
useful after INC/DEC, LD/ST, TST/CLR/COM because these instruc-
tions do not affect the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBHI Long Branch if Higher LBHI

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBHI rel16 REL 18 22 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-109



Operation: If C = 0, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) ≥ (Memory), then branch

Description: If LBHS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
or equal to the unsigned binary number in memory. This instruction is
generally not useful after INC/DEC, LD/ST, TST/CLR/COM because
these instructions do not affect the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBHS Long Branch if Higher or Same
(Same as LBCC) LBHS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBHS rel16 REL 18 24 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-110 REFERENCE MANUAL



Operation: If Z + (N ⊕ V) = 1, then (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers,
if (Accumulator) ≤ (Memory), then branch

Description: If LBLE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator was less than
or equal to the two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBLE Long Branch if Less Than or
Equal to Zero LBLE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBLE rel16 REL 18 2F qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-111



Operation: If C = 1, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) < (Memory), then branch

Description: If LBLO is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was less than the
unsigned binary number in memory. This instruction is generally not use-
ful after INC/DEC, LD/ST, TST/CLR/COM because these instructions do
not affect the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBLO Long Branch if Lower
(Same as LBCS) LBLO

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBLO rel16 REL 18 25 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-112 REFERENCE MANUAL



Operation: If C + Z = 1, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) ≤ (Memory), then branch

Description: If LBLS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was less than or
equal to the unsigned binary number in memory. This instruction is gen-
erally not useful after INC/DEC, LD/ST, TST/CLR/COM because these
instructions do not affect the C status bit.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBLS Long Branch if Lower or Same LBLS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBLS rel16 REL 18 23 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-113



Operation: If N ⊕ V = 1, (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers,
if (Accumulator) < (Memory), then branch

Description: If LBLT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator was less than
the two’s complement number in memory.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBLT Long Branch if Less Than Zero LBLT

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBLT rel16 REL 18 2D qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-114 REFERENCE MANUAL



Operation: If N = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBMI Long Branch if Minus LBMI

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBMI rel16 REL 18 2B qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-115



Operation: If Z = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 0.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBNE Long Branch if Not Equal to Zero LBNE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBNE rel16 REL 18 26 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-116 REFERENCE MANUAL



Operation: If N = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 0.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBPL Long Branch if Plus LBPL

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBPL rel16 REL 18 2A qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-117



Operation: (PC) + $0004 + Rel ⇒ PC

Description: Unconditional branch to an address calculated as shown in the expres-
sion. Rel is a relative offset stored as a two’s complement number in the
second and third bytes of machine code corresponding to the long
branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must al-
ways be refilled, so execution time is always the larger value.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBRA Long Branch Always LBRA

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBRA rel16 REL 18 20 qq rr 4 OPPP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-118 REFERENCE MANUAL



Operation: (PC) + $0004 ⇒ PC

Description: Never branches. LBRN is effectively a 4-byte NOP that requires three
cycles to execute. LBRN is included in the instruction set to provide a
complement to the LBRA instruction. The instruction is useful during pro-
gram debug, to negate the effect of another branch instruction without
disturbing the offset byte. A complement for LBRA is also useful in com-
piler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRN branch condition is never
satisfied, the branch is never taken, and the queue does not need to be
refilled, so execution time is always the smaller value.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBRN Long Branch Never LBRN

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBRN rel16 REL 18 21 qq rr 3 OPO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-119



Operation: If V = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 0.

LBVC causes a branch when a previous operation on two’s complement
binary values does not cause an overflow. That is, when LBVC follows a
two’s complement operation, a branch occurs when the result of the op-
eration is valid.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBVC Long Branch if Overflow Cleared LBVC

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBVC rel16 REL 18 28 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-120 REFERENCE MANUAL



Operation: If V = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

LBVS causes a branch when a previous operation on two’s complement
binary values causes an overflow. That is, when LBVS follows a two’s
complement operation, a branch occurs when the result of the operation
is invalid.

See 3.7 Relative Addressing Mode  for details of branch execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LBVS Long Branch if Overflow Set LBVS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LBVS rel16 REL 18 29 qq rr 4/3 OPPP/OPO1

Notes:
1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and

three cycles if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-121



Operation: (M) ⇒ A

Description: Loads the content of memory location M into accumulator A. The condi-
tion codes are set according to the data.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LDAA Load Accumulator A LDAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysp
LDAA oprx9,xysp
LDAA oprx16,xysp
LDAA [D,xysp]
LDAA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

86 ii

96 dd

B6 hh ll

A6 xb

A6 xb ff

A6 xb ee ff

A6 xb

A6 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-122 REFERENCE MANUAL



Operation: (M) ⇒ B

Description: Loads the content of memory location M into accumulator B. The condi-
tion codes are set according to the data.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LDAB Load Accumulator B LDAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysp
LDAB oprx9,xysp
LDAB oprx16,xysp
LDAB [D,xysp]
LDAB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii

D6 dd

F6 hh ll

E6 xb

E6 xb ff

E6 xb ee ff

E6 xb

E6 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-123



Operation: (M : M + 1) ⇒ A : B

Description: Loads the contents of memory locations M and M+1 into double accu-
mulator D. The condition codes are set according to the data. The infor-
mation from M is loaded into accumulator A, and the information from
M+1 is loaded into accumulator B.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LDD Load Double Accumulator LDD

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysp
LDD oprx9,xysp
LDD oprx16,xysp
LDD [D,xysp]
LDD [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk

DC dd

FC hh ll

EC xb

EC xb ff

EC xb ee ff

EC xb

EC xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-124 REFERENCE MANUAL



Operation: (M : M+1) ⇒ SP

Description: Loads the most significant byte of the SP with the content of memory lo-
cation M, and loads the least significant byte of the SP with the content
of the next byte of memory at M + 1.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LDS Load Stack Pointer LDS

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysp
LDS oprx9,xysp
LDS oprx16,xysp
LDS [D,xysp]
LDS [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk

DF dd

FF hh ll

EF xb

EF xb ff

EF xb ee ff

EF xb

EF xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-125



Operation: (M : M + 1) ⇒ X

Description: Loads the most significant byte of index register X with the content of
memory location M, and loads the least significant byte of X with the con-
tent of the next byte of memory at M + 1.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LDX Load Index Register X LDX

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk

DE dd

FE hh ll

EE xb

EE xb ff

EE xb ee ff

EE xb

EE xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-126 REFERENCE MANUAL



Operation: (M : M + 1) ⇒ Y

Description: Loads the most significant byte of index register Y with the content of
memory location M, and loads the least significant byte of Y with the con-
tent of the next memory location at M + 1.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LDY Load Index Register Y LDY

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysp
LDY oprx9,xysp
LDY oprx16,xysp
LDY [D,xysp]
LDY [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk

DD dd

FD hh ll

ED xb

ED xb ff

ED xb ee ff

ED xb

ED xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-127



Operation: Effective Address ⇒ SP

Description: Loads the stack pointer with an effective address specified by the pro-
gram. The effective address can be any indexed addressing mode oper-
and address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.8 Indexed Addressing Modes  for more details.

LEAS does not alter condition code bits. This allows stack modification
without disturbing CCR bits changed by recent arithmetic operations.

Operation is a bit more complex when LEAS is used with auto-increment
or aut-odecrement operand specifications and the SP is the referenced
index register. The index register is loaded with what would have gone
out to the address bus in the case of a load index instruction. In the case
of a pre-increment or pre-decrement, the modification is made before the
index register is loaded. In the case of a post-increment or post-decre-
ment, modification would have taken effect after the address went out on
the address bus, so post-modification does not affect the content of the
index register.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LEAS Load Stack Pointer with
Effective Address LEAS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LEAS oprx0_xysp
LEAS oprx9,xysp
LEAS oprx16,xysp

IDX
IDX1
IDX2

1B xb

1B xb ff

1B xb ee ff

2
2
2

PP1

PO

PP

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-128 REFERENCE MANUAL



Operation: Effective Address ⇒ X

Description: Loads index register X with an effective address specified by the pro-
gram. The effective address can be any indexed addressing mode oper-
and address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.8 Indexed Addressing Modes  for more details.

Operation is a bit more complex when LEAX is used with auto-increment
or auto-decrement operand specifications and index register X is the ref-
erenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed instruc-
tion. In the case of a pre-increment or pre-decrement, the modification is
made before the index register is loaded. In the case of a post-increment
or post-decrement, modification would have taken effect after the ad-
dress went out on the address bus, so post-modification does not affect
the content of the index register.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LEAX Load X with Effective Address LEAX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LEAX oprx0_xysp
LEAX oprx9,xysp
LEAX oprx16,xysp

IDX
IDX1
IDX2

1A xb

1A xb ff

1A xb ee ff

2
2
2

PP1

PO

PP

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-129



Operation: Effective Address ⇒ Y

Description: Loads index register Y with an effective address specified by the pro-
gram. The effective address can be any indexed addressing mode oper-
and address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.8 Indexed Addressing Modes  for more details.

Operation is a bit more complex when LEAY is used with auto-increment
or auto-decrement operand specifications and index register Y is the ref-
erenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed instruc-
tion. In the case of a pre-increment or pre-decrement, the modification is
made before the index register is loaded. In the case of a post-increment
or post-decrement, modification would have taken effect after the ad-
dress went out on the address bus, so post-modification does not affect
the content of the index register.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

LEAY Load Y with Effective Address LEAY

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
LEAY oprx0_xysp
LEAY oprx9,xysp
LEAY oprx16,xysp

IDX
IDX1
IDX2

19 xb

19 xb ff

19 xb ee ff

2
2
2

PP1

PO

PP

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this

instruction.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-130 REFERENCE MANUAL



Operation:

Description: Shifts all bits of the memory location M one place to the left. Bit 0 is load-
ed with zero. The C status bit is loaded from the most significant bit of M.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSL Logical Shift Left Memory
(Same as ASL) LSL

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: M7
Set if the LSB of M was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSL opr16a
LSL oprx0_xysp
LSL oprx9,xysp
LSL oprx16,xysp
LSL [D,xysp]
LSL [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

78 hh ll

68 xb

68 xb ff

68 xb ee ff

68 xb

68 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

b7 – – – – – – b0C 0
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-131



Operation:

Description: Shifts all bits of accumulator A one place to the left. Bit 0 is loaded with
zero. The C status bit is loaded from the most significant bit of A.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSLA Logical Shift Left A
(Same as ASLA) LSLA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: A7
Set if the LSB of A was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSLA INH 48 1 O

b7 – – – – – – b0C 0
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-132 REFERENCE MANUAL



Operation:

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded with
zero. The C status bit is loaded from the most significant bit of B.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSLB Logical Shift Left B
(Same as ASLB) LSLB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: B7
Set if the LSB of B was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSLB INH 58 1 O

b7 – – – – – – b0C 0
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-133



Operation:

Description: Shifts all bits of double accumulator D one place to the left. Bit 0 is load-
ed with zero. The C status bit is loaded from the most significant bit of
accumulator A.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSLD Logical Shift Left Double
(Same as ASLD) LSLD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: D15
Set if the MSB of D was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSLD INH 59 1 O

 b7 – – – – – – b0 C 0 b7 – – – – – – b0

A B
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-134 REFERENCE MANUAL



Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is loaded
with zero. The C status bit is loaded from the least significant bit of M.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSR Logical Shift Right Memory LSR

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; Cleared.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: M0
Set if the LSB of M was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSR opr16a
LSR oprx0_xysp
LSR oprx9,xysp
LSR oprx16,xysp
LSR [D,xysp]
LSR [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

74 hh ll

64 xb

64 xb ff

64 xb ee ff

64 xb

64 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

 b7 – – – – – – b0  C0
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-135



Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is loaded with
zero. The C status bit is loaded from the least significant bit of A.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSRA Logical Shift Right A LSRA

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; Cleared.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: A0
Set if the LSB of A was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSRA INH 44 1 O

 b7 – – – – – – b0  C0
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-136 REFERENCE MANUAL



Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded with
zero. The C status bit is loaded from the least significant bit of B.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSRB Logical Shift Right B LSRB

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; Cleared.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: B0
Set if the LSB of B was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSRB INH 54 1 O

 b7 – – – – – – b0  C0
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-137



Operation:

Description: Shifts all bits of double accumulator D one place to the right. D15 (MSB
of A) is loaded with zero. The C status bit is loaded from D0 (LSB of B).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

LSRD Logical Shift Right Double LSRD

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; Cleared.

Z: Set if result is $0000; cleared otherwise.

V: D0
Set if, after the shift operation, C is set; cleared otherwise.

C: D0
Set if the LSB of D was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
LSRD INH 49 1 O

 b7 – – – – – – b0 0 C b7 – – – – – – b0

A B
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-138 REFERENCE MANUAL



Operation: MAX ((A), (M)) ⇒ A

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the larg-
er of the two values in A. The Z status bit is set when the result of the
subtraction is zero (the values are equal), and the C status bit is set when
the subtraction requires a borrow (the value in memory is larger than the
value in the accumulator). When C = 1, the value in A has been replaced
by the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MAXA Place Larger of Two
Unsigned 8-Bit Values

in Accumulator A
MAXA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A – M).

Source Form Address Mode Object Code Cycles Access Detail
MAXA oprx0_xysp
MAXA oprx9,xysp
MAXA oprx16,xysp
MAXA [D,xysp]
MAXA [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb

18 18 xb ff

18 18 xb ee ff

18 18 xb

18 18 xb ee ff

4
4
5
7
7

OrfP

OrPO

OfrPP

OfIfrfP

OfIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-139



Operation: MAX ((A), (M)) ⇒ M

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the larg-
er of the two values in the memory location. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C sta-
tus bit is set when the subtraction requires a borrow (the value in mem-
ory is larger than the value in the accumulator). When C = 0, the value
in accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MAXM Place Larger of Two
Unsigned 8-Bit Values

in Memory
MAXM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A – M).

Source Form Address Mode Object Code Cycles Access Detail
MAXM oprx0_xysp
MAXM oprx9,xysp
MAXM oprx16,xysp
MAXM [D,xysp]
MAXM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb

18 1C xb ff

18 1C xb ee ff

18 1C xb

18 1C xb ee ff

4
5
6
7
7

OrPw

OrPwO

OfrPwP

OfIfrPw

OfIPrPw
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-140 REFERENCE MANUAL



Operation: Grade of Membership ⇒ M(Y)
(Y) + $0001 ⇒ Y
(X) + $0004 ⇒ X

Description: Accumulator A and index registers X and Y must be set up as follows be-
fore executing MEM.

A must hold the current crisp value of a system input variable.

X must point to a 4-byte data structure that describes the trapezoidal
membership function for a label of the system input.

Y must point to the fuzzy input (RAM location) where the resulting
grade of membership is to be stored.

The 4-byte membership function data structure consists of Point_1,
Point_2, Slope_1, and Slope_2, in that order.

Point_1 is the X-axis starting point for the leading side of the trape-
zoid, and Slope_1 is the slope of the leading side of the trapezoid.

Point_2 is the X-axis position of the rightmost point of the trapezoid,
and Slope_2 is the slope of the trailing side of the trapezoid. The
trailing side slopes up and left from Point_2.

A Slope_1 or Slope_2 value of $00 indicates a special case where the
membership function either starts with a grade of $FF at input = Point_1,
or ends with a grade of $FF at input = Point_2 (infinite slope).

When MEM is executed, X points at Point_1 and Slope_2 is at X + 3.
After execution, the content of A is unchanged. X has been incremented
by four to point to the next set of membership function points and slopes.
The fuzzy input (RAM location) to which Y pointed contains the grade of
membership that was calculated by MEM, and Y has been incremented
by one so it points to the next fuzzy input.

Condition Codes and Boolean Formulas:

H, N, Z, V, and C may be altered by this instruction.

Addressing Modes, Machine Code, and Execution Times:

MEM Determine Grade of Membership
(Fuzzy Logic) MEM

S X H I N Z V C

– – ? – ? ? ? ?

Source Form Address Mode Object Code Cycles Access Detail
MEM Special 01 5 RRfOw
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-141



Operation: MIN ((A), (M)) ⇒ A

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
smaller of the two values in accumulator A. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C sta-
tus bit is set when the subtraction requires a borrow (the value in mem-
ory is larger than the value in the accumulator). When C = 0, the value
in accumulator A has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MINA Place Smaller of Two
Unsigned 8-Bit Values

in Accumulator A
MINA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A – M).

Source Form Address Mode Object Code Cycles Access Detail
MINA oprx0_xysp
MINA oprx9,xysp
MINA oprx16,xysp
MINA [D,xysp]
MINA [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb

18 19 xb ff

18 19 xb ee ff

18 19 xb

18 19 xb ee ff

4
4
5
7
7

OrfP

OrPO

OfrPP

OfIfrfP

OfIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-142 REFERENCE MANUAL



Operation: MIN ((A), (M)) ⇒ M

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
smaller of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 1, the
value in accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed ad-
dressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MINM Place Smaller of Two
Unsigned 8-Bit Values

in Memory
MINM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Condition codes reflect internal subtraction (R = A – M).

Source Form Address Mode Object Code Cycles Access Detail
MINM oprx0_xysp
MINM oprx9,xysp
MINM oprx16,xysp
MINM [D,xysp]
MINM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb

18 1D xb ff

18 1D xb ee ff

18 1D xb

18 1D xb ee ff

4
5
6
7
7

OrPw

OrPwO

OfrPwP

OfIfrPw

OfIPrPw
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-143



Operation: (M1) ⇒ M2

Description: Moves the content of one memory location to another memory location.
The content of the source memory location is not changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM–EXT, IMM–IDX, EXT–EXT, EXT–IDX, IDX–
EXT, and IDX–IDX. IDX operands allow indexed addressing mode spec-
ifications that fit in a single postbyte; including 5-bit constant, accumula-
tor offsets, and auto increment/decrement modes. Nine-bit and 16-bit
constant offsets would require additional extension bytes and are not al-
lowed. Indexed indirect modes (for example [D,r]) are also not allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.9 Instructions Using
Multiple Modes .

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

MOVB Move a Byte of Data
from One Memory Location to Another MOVB

S X H I N Z V C

– – – – – – – –

Source Form 1

Notes:
1. The first operand in the source code statement specifies the source for the move.

Address Mode Object Code Cycles Access Detail
MOVB #opr8, opr16a
MOVB #opr8i, oprx0_xysp
MOVB opr16a, opr16a
MOVB opr16a, oprx0_xysp
MOVB oprx0_xysp, opr16a
MOVB oprx0_xysp, oprx0_xysp

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 0B ii hh ll

18 08 xb ii

18 0C hh ll hh ll

18 09 xb hh ll

18 0D xb hh ll

18 0A xb xb

4
4
6
5
5
5

OPwP

OPwO

OrPwPO

OPrPw

OrPwP

OrPwO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-144 REFERENCE MANUAL



Operation: (M : M + 11) ⇒ M : M + 12

Description: Moves the content of one location in memory to another location in mem-
ory. The content of the source memory location is not changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM–EXT, IMM–IDX, EXT–EXT, EXT–IDX, IDX–
EXT, and IDX–IDX. IDX operands allow indexed addressing mode spec-
ifications that fit in a single postbyte; including 5-bit constant, accumula-
tor offsets, and auto increment/decrement modes. Nine-bit and 16-bit
constant offsets would require additional extension bytes and are not al-
lowed. Indexed indirect modes (for example [D,r]) are also not allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.9 Instructions Using
Multiple Modes .

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

MOVW Move a Word of Data
from One Memory Location to Another MOVW

S X H I N Z V C

– – – – – – – –

Source Form 1

Notes:
1. The first operand in the source code statement specifies the source for the move.

Address Mode Object Code Cycles Access Detail
MOVW #opr16i, opr16a
MOVW #opr16i, oprx0_xysp
MOVW opr16a, opr16a
MOVW opr16a, oprx0_xysp
MOVW oprx0_xysp, opr16a
MOVW oprx0_xysp, oprx0_xysp

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 03 jj kk hh ll

18 00 xb jj kk

18 04 hh ll hh ll

18 01 xb hh ll

18 05 xb hh ll

18 02 xb xb

5
4
6
5
5
5

OPWPO

OPPW

ORPWPO

OPRPW

ORPWP

ORPWO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-145



Operation: (A) × (B) ⇒ A : B

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit
unsigned binary value in accumulator B, and places the 16-bit unsigned
result in double accumulator D. The carry flag allows rounding the most
significant byte of the result through the sequence: MUL, ADCA #0.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

MUL Multiply
8-Bit by 8-Bit (Unsigned) MUL

S X H I N Z V C

– – – – – – – ∆

C: R7
Set if bit 7 of the result (B bit 7) is set; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
MUL INH 12 3 ffO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-146 REFERENCE MANUAL



Operation: 0 – (M) = (M) + 1 ⇒ M

Description: Replaces the content of memory location M with its two’s complement
(the value $80 is left unchanged).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

NEG Negate Memory NEG

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied subtraction
from zero; cleared otherwise. Two’s complement overflow occurs if and
only if (M) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared oth-
erwise. Set in all cases except when (M) = $00.

Source Form Address Mode Object Code Cycles Access Detail
NEG opr16a
NEG oprx0_xysp
NEG oprx9,xysp
NEG oprx16,xysp
NEG [D,xysp]
NEG [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

70 hh ll

60 xb

60 xb ff

60 xb ee ff

60 xb

60 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-147



Operation: 0 – (A) = (A) + 1 ⇒ A

Description: Replaces the content of accumulator A with its two’s complement (the
value $80 is left unchanged).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

NEGA Negate A NEGA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied subtraction
from zero; cleared otherwise. Two’s complement overflow occurs if
and only if (A) = $80.

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared oth-
erwise. Set in all cases except when (A) = $00.

Source Form Address Mode Object Code Cycles Access Detail
NEGA INH 40 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-148 REFERENCE MANUAL



Operation: 0 – (B) = (B) + 1 ⇒ B

Description: Replaces the content of accumulator B with its two’s complement (the
value $80 is left unchanged).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

NEGB Negate B NEGB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied subtraction
from zero; cleared otherwise. Two’s complement overflow occurs if and
only if (B) = $80.

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared oth-
erwise. Set in all cases except when (B) = $00.

Source Form Address Mode Object Code Cycles Access Detail
NEGB INH 50 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-149



Operation: No operation

Description: This single-byte instruction increments the PC and does nothing else.
No other CPU registers are affected. NOP is typically used to produce a
time delay, although some software disciplines discourage CPU fre-
quency-based time delays. During debug, NOP instructions are some-
times used to temporarily replace other machine code instructions, thus
disabling the replaced instruction(s).

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

NOP Null Operation NOP

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
NOP INH A7 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-150 REFERENCE MANUAL



Operation: (A) + (M) ⇒ A

Description: Performs bitwise logical inclusive OR between the content of accumula-
tor A and the content of memory location M and places the result in A.
Each bit of A after the operation is the logical inclusive OR of the corre-
sponding bits of M and of A before the operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ORAA Inclusive OR A ORAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysp
ORAA oprx9,xysp
ORAA oprx16,xysp
ORAA [D,xysp]
ORAA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8A ii

9A dd

BA hh ll

AA xb

AA xb ff

AA xb ee ff

AA xb

AA xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-151



Operation: (B) + (M) ⇒ B

Description: Performs bitwise logical inclusive OR between the content of accumula-
tor B and the content of memory location M. The result is placed in B.
Each bit of B after the operation is the logical inclusive OR of the corre-
sponding bits of M and of B before the operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ORAB Inclusive OR B ORAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysp
ORAB oprx9,xysp
ORAB oprx16,xysp
ORAB [D,xysp]
ORAB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CA ii

DA dd

FA hh ll

EA xb

EA xb ff

EA xb ee ff

EA xb

EA xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-152 REFERENCE MANUAL



Operation: (CCR) + (M) ⇒ CCR

Description: Performs bitwise logical inclusive OR between the content of memory
location M and the content of the CCR, and places the result in the CCR.
Each bit of the CCR after the operation is the logical OR of the corre-
sponding bits of M and of CCR before the operation. To set one or more
bits, set the corresponding bit of the mask equal to one. Bits correspond-
ing to zeros in the mask are not changed by the ORCC operation.

Condition Codes and Boolean Formulas:

Condition code bits are set if the corresponding bit was one before the
operation or if the corresponding bit in the instruction-provided mask
is one. The X interrupt mask cannot be set by any software instruction.

Addressing Modes, Machine Code, and Execution Times:

ORCC Logical OR CCR with Mask ORCC

S X H I N Z V C

⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

Source Form Address Mode Object Code Cycles Access Detail
ORCC #opr8i IMM 14 ii 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-153



Operation: (SP) – $0001 ⇒ SP
(A) ⇒ M(SP)

Description: Stacks the content of accumulator A. The stack pointer is decremented
by one. The content of A is then stacked at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull in-
structions can be used to restore the saved CPU registers just before re-
turning from the subroutine.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PSHA Push A onto Stack PSHA

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PSHA INH 36 2 Os
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-154 REFERENCE MANUAL



Operation: (SP) – $0001 ⇒ SP
(B) ⇒ M(SP)

Description: Stacks the content of accumulator B. The stack pointer is decremented
by one. The content of B is then stacked at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull in-
structions can be used to restore the saved CPU registers just before re-
turning from the subroutine.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PSHB Push B onto Stack PSHB

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PSHB INH 37 2 Os
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-155



Operation: (SP) – $0001 ⇒ SP
(CCR) ⇒ M(SP)

Description: Stacks the content of the condition codes register. The stack pointer is
decremented by one. The content of the CCR is then stacked at the ad-
dress to which the SP points.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull in-
structions can be used to restore the saved CPU registers just before re-
turning from the subroutine.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PSHC Push CCR onto Stack PSHC

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PSHC INH 39 2 Os
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-156 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP
(A : B) ⇒ M(SP) : M(SP + 1)

Description: Stacks the content of double accumulator D. The stack pointer is decre-
mented by two, then the contents of accumulators A and B are stacked
at the location to which the SP points.

After PSHD executes, the SP points to the stacked value of accumulator
A. This stacking order is the opposite of the order in which A and B are
stacked when an interrupt is recognized. The interrupt stacking order is
backward-compatible with the M6800, which had no 16-bit accumulator.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull in-
structions can be used to restore the saved CPU registers just before re-
turning from the subroutine.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PSHD Push Double Accumulator onto Stack PSHD

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PSHD INH 3B 2 OS
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-157



Operation: (SP) – $0002 ⇒ SP
(XH : XL) ⇒ M(SP) : M(SP + 1)

Description: Stacks the content of index register X. The stack pointer is decremented
by two. The content of X is then stacked at the address to which the SP
points. After PSHX executes, the SP points to the stacked value of the
high-order half of X.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull in-
structions can be used to restore the saved CPU registers just before re-
turning from the subroutine.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PSHX Push Index Register X onto Stack PSHX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PSHX INH 34 2 OS
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-158 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP
(YH : YL) ⇒ M(SP) : M(SP + 1)

Description: Stacks the content of index register Y. The stack pointer is decremented
by two. The content of Y is then stacked at the address to which the SP
points. After PSHY executes, the SP points to the stacked value of the
high-order half of Y.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull in-
structions can be used to restore the saved CPU registers just before re-
turning from the subroutine.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PSHY Push Index Register Y onto Stack PSHY

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PSHY INH 35 2 OS
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-159



Operation: (M(SP)) ⇒ A
(SP) + $0001 ⇒ SP

Description: Accumulator A is loaded from the address indicated by the stack pointer.
The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to re-
store the contents of CPU registers that were pushed onto the stack be-
fore subroutine execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PULA Pull A from Stack PULA

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PULA INH 32 3 ufO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-160 REFERENCE MANUAL



Operation: (M(SP)) ⇒ B
(SP) + $0001 ⇒ SP

Description: Accumulator B is loaded from the address indicated by the stack pointer.
The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to re-
store the contents of CPU registers that were pushed onto the stack be-
fore subroutine execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PULB Pull B from Stack PULB

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PULB INH 33 3 ufO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-161



Operation: (M(SP)) ⇒ CCR
(SP) + $0001 ⇒ SP

Description: The condition code register is loaded from the address indicated by the
stack pointer. The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to re-
store the contents of CPU registers that were pushed onto the stack be-
fore subroutine execution.

Condition Codes and Boolean Formulas:

Condition codes take on the value pulled from the stack, except that
the X mask bit cannot change from zero to one. Software can leave the
X bit set, leave it cleared, or change it from one to zero, but it can only
be set by a reset or by recognition of an XIRQ interrupt.

Addressing Modes, Machine Code, and Execution Times:

PULC Pull Condition Code Register
from Stack PULC

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form Address Mode Object Code Cycles Access Detail
PULC INH 38 3 ufO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-162 REFERENCE MANUAL



Operation: (M(SP) : M(SP + 1)) ⇒ A : B
(SP) + $0002 ⇒ SP

Description: Double accumulator D is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

The order in which A and B are pulled from the stack is the opposite of
the order in which A and B are pulled when an RTI instruction is execut-
ed. The interrupt stacking order for A and B is backward-compatible with
the M6800, which had no 16-bit accumulator.

Pull instructions are commonly used at the end of a subroutine, to re-
store the contents of CPU registers that were pushed onto the stack be-
fore subroutine execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PULD Pull Double Accumulator
from Stack PULD

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PULD INH 3A 3 UfO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-163



Operation: (M(SP) : M(SP + 1)) ⇒ XH : XL
(SP) + $0002 ⇒ SP

Description: Index register X is loaded from the address indicated by the stack point-
er. The SP is then incremented by two.

Pull instructions are commonly used at the end of a subroutine, to re-
store the contents of CPU registers that were pushed onto the stack be-
fore subroutine execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PULX Pull Index Register X from Stack PULX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PULX INH 30 3 UfO
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-164 REFERENCE MANUAL



Operation: (M(SP) : M(SP + 1)) ⇒ YH : YL
(SP) + $0002 ⇒ SP

Description: Index register Y is loaded from the address indicated by the stack point-
er. The SP is then incremented by two.

Pull instructions are commonly used at the end of a subroutine, to re-
store the contents of CPU registers that were pushed onto the stack be-
fore subroutine execution.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

PULY Pull Index Register Y from Stack PULY

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
PULY INH 31 3 UfO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-165



Operation: MIN – MAX Rule Evaluation

Description: Performs an unweighted evaluation of a list of rules, using fuzzy input
values to produce fuzzy outputs. REV can be interrupted, so it does not
adversely affect interrupt latency.

The REV instruction uses an 8-bit offset from a base address stored in
index register Y to determine the address of each fuzzy input and fuzzy
output. For REV to execute correctly, each rule in the knowledge base
must consist of a table of 8-bit antecedent offsets followed by a table of
8-bit consequent offsets. The value $FE marks boundaries between an-
tecedents and consequents, and between successive rules. The value
$FF marks the end of the rule list. REV can evaluate any number of rules
with any number of inputs and outputs.

Beginning with the address pointed to by the first rule antecedent, REV
evaluates each successive fuzzy input value until it encounters an $FE
separator. Operation is similar to that of a MINA instruction. The smallest
input value is the truth value of the rule. Then, beginning with the ad-
dress pointed to by the first rule consequent, the truth value is compared
to each successive fuzzy output value until another $FE separator is en-
countered; if the truth value is greater than the current output value, it is
written to the output. Operation is similar to that of a MAXM instruction.
Rules are processed until an $FF terminator is encountered.

Before executing REV, perform the following set up operations.

X must point to the first 8-bit element in the rule list.

Y must point to the base address for fuzzy inputs and fuzzy outputs.

A must contain the value $FF, and the CCR V bit must = 0
(LDAA #$FF places the correct value in A and clears V).

Clear fuzzy outputs to zeros.

Index register X points to the element in the rule list that is being evalu-
ated. X is automatically updated so that execution can resume correctly
if the instruction is interrupted. When execution is complete, X points to
the next address after the $FF separator at the end of the rule list.

Index register Y points to the base address for the fuzzy inputs and fuzzy
outputs. The value in Y does not change during execution.

REV Fuzzy Logic Rule Evaluation REV
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-166 REFERENCE MANUAL



Accumulator A holds intermediate results. During antecedent process-
ing, a MIN function compares each fuzzy input to the value stored in A,
and writes the smaller of the two to A. When all antecedents have been
evaluated, A contains the smallest input value. This is the truth value
used during consequent processing. Accumulator A must be initialized
to $FF for the MIN function to evaluate the inputs of the first rule correct-
ly. For subsequent rules, the value $FF is written to A when an $FE
marker is encountered. At the end of execution, accumulator A holds the
truth value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to zero in order for processing to
begin with the antecedents of the first rule. Once execution begins, the
value of V is automatically changed as $FE separators are encountered.
At the end of execution, V should equal one, because the last element
before the $FF end marker should be a rule consequent. If V is equal to
zero at the end of execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work cor-
rectly. Residual output values would cause incorrect comparison.

Refer to SECTION 9 FUZZY LOGIC SUPPORT for details.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

S X H I N Z V C

– – ? – ? ? ∆ ?

V: 1; Normally set, unless rule structure is erroneous.

H, N, Z and C may be altered by this instruction.

Source Form Address Mode Object Code Cycles Access Detail
REV
(add if interrupted)

Special 18 3A see note1

Notes:
1. The 3-cycle loop in parentheses is executed once for each element in the rule list. When an interrupt occurs,

there is a 2-cycle exit sequence, a 4-cycle re-entry sequence, then execution resumes with a prefetch of the last
antecedent or consequent being processed at the time of the interrupt.

Orf(ttx)O
ff + Orf
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-167



Operation: MIN – MAX Rule Evaluation with Optional Rule Weighting

Description: REVW performs either weighted or unweighted evaluation of a list of
rules, using fuzzy inputs to produce fuzzy outputs. REVW can be inter-
rupted, so it does not adversely affect interrupt latency.

For REVW to execute correctly, each rule in the knowledge base must
consist of a table of 16-bit antecedent pointers followed by a table of 16-
bit consequent pointers. The value $FFFE marks boundaries between
antecedents and consequents, and between successive rules. The
value $FFFF marks the end of the rule list. REVW can evaluate any
number of rules with any number of inputs and outputs.

Setting the C status bit enables weighted evaluation. To use weighted
evaluation, a table of 8-bit weighting factors, one per rule, must be stored
in memory. Index register Y points to the weighting factors.

Beginning with the address pointed to by the first rule antecedent,
REVW evaluates each successive fuzzy input value until it encounters
an $FFFE separator. Operation is similar to that of a MINA instruction.
The smallest input value is the truth value of the rule. Next, if weighted
evaluation is enabled, a computation is performed, and the truth value is
modified. Then, beginning with the address pointed to by the first rule
consequent, the truth value is compared to each successive fuzzy output
value until another $FFFE separator is encountered; if the truth value is
greater than the current output value, it is written to the output. Operation
is similar to that of a MAXM instruction. Rules are processed until an
$FFFF terminator is encountered.

Perform these set up operations before execution.

X must point to the first 16-bit element in the rule list.

A must contain the value $FF, and the CCR V bit must = 0
(LDAA #$FF places the correct value in A and clears V).

Clear fuzzy outputs to zeros.

Set or clear the CCR C bit. When weighted evaluation is enabled,
Y must point to the first item in a table of 8-bit weighting factors.

Index register X points to the element in the rule list that is being evalu-
ated. X is automatically updated so that execution can resume correctly
if the instruction is interrupted. When execution is complete, X points to
the address after the $FFFF separator at the end of the rule list.

Index register Y points to the weighting factor being used. Y is automat-
ically updated so that execution can resume correctly if the instruction is
interrupted. When execution is complete, Y points to the last weighting
factor used. When weighting is not used (C = 0), Y is not changed.

REVW Fuzzy Logic Rule Evaluation (Weighted) REVW
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-168 REFERENCE MANUAL



Accumulator A holds intermediate results. During antecedent process-
ing, a MIN function compares each fuzzy input to the value stored in A,
and writes the smaller of the two to A. When all antecedents have been
evaluated, A contains the smallest input value. For unweighted evalua-
tion, this is the truth value used during consequent processing. For
weighted evaluation, the value in A is multiplied by the quantity (Rule
Weight + 1) and the upper eight bits of the result replace the content of
A. Accumulator A must be initialized to $FF for the MIN function to eval-
uate the inputs of the first rule correctly. For subsequent rules, the value
$FF is written to A when an $FFFE marker is encountered. At the end of
execution, accumulator A holds the truth value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to zero in order for processing to
begin with the antecedents of the first rule. Once execution begins, the
value of V is automatically changed as $FFFE separators are encoun-
tered. At the end of execution, V should equal one, because the last el-
ement before the $FF end marker should be a rule consequent. If V is
equal to zero at the end of execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work cor-
rectly. Residual output values would cause incorrect comparison.

Refer to SECTION 9 FUZZY LOGIC SUPPORT for details.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

S X H I N Z V C

– – ? – ? ? ∆ !

V: 1; Normally set, unless rule structure is erroneous.

C: Selects weighted (1) or unweighted (0) rule evaluation.

H, N, Z and C may be altered by this instruction.

Source Form Address Mode Object Code Cycles Access Detail
REVW
(add 2 at end of ins if wts)
(add if interrupted)

Special 18 3B See note1

Notes:
1. The 3-cycle loop in parentheses expands to five cycles for separators when weighting is enabled. The loop is

executed once for each element in the rule list. When an interrupt occurs, there is a 2-cycle exit sequence, a 4-
cycle re-entry sequence, then execution resumes with a prefetch of the last antecedent or consequent being pro-
cessed at the time of the interrupt.

ORf(tTx)O
(rffRf)
fff + ORft
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-169



Operation:

Description: Shifts all bits of memory location M one place to the left. Bit 0 is loaded
from the C status bit. The C bit is loaded from the most significant bit of
M. Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, ROL HIGH could
be used where LOW, MID and HIGH refer to the low-order, middle and
high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ROL Rotate Left Memory ROL

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: M7
Set if the MSB of M was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ROL opr16a
ROL oprx0_xysp
ROL oprx9,xysp
ROL oprx16,xysp
ROL [D,xysp]
ROL [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

75 hh ll

65 xb

65 xb ff

65 xb ee ff

65 xb

65 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

 b7 – – – – – – b0 C
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-170 REFERENCE MANUAL



Operation:

Description: Shifts all bits of accumulator A one place to the left. Bit 0 is loaded from
the C status bit. The C bit is loaded from the most significant bit of A. Ro-
tate operations include the carry bit to allow extension of shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be used
where LOW, MID and HIGH refer to the low-order, middle and high-order
bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ROLA Rotate Left A ROLA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: A7
Set if the MSB of A was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ROLA INH 45 1 O

 b7 – – – – – – b0 C
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-171



Operation:

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded from
the C status bit. The C bit is loaded from the most significant bit of B. Ro-
tate operations include the carry bit to allow extension of shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be used
where LOW, MID and HIGH refer to the low-order, middle and high-order
bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ROLB Rotate Left B ROLB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: B7
Set if the MSB of B was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ROLB INH 55 1 O

 b7 – – – – – – b0 C
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-172 REFERENCE MANUAL



Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is loaded
from the C status bit. The C bit is loaded from the least significant bit of
M. Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, ROR LOW
could be used where LOW, MID and HIGH refer to the low-order, middle,
and high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

ROR Rotate Right Memory ROR

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: M0
Set if the LSB of M was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
ROR opr16a
ROR oprx0_xysp
ROR oprx9,xysp
ROR oprx16,xysp
ROR [D,xysp]
ROR [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

76 hh ll

66 xb

66 xb ff

66 xb ee ff

66 xb

66 xb ee ff

4
3
4
5
6
6

rOPw

rPw

rPOw

frPPw

fIfrPw

fIPrPw

 b7 – – – – – – b0 C
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-173



Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is loaded from
the C status bit. The C bit is loaded from the least significant bit of A. Ro-
tate operations include the carry bit to allow extension of shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be
used where LOW, MID and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

RORA Rotate Right A RORA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: A0
Set if the LSB of A was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
RORA INH 46 1 O

 b7 – – – – – – b0 C
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-174 REFERENCE MANUAL



Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded from
the C status bit. The C bit is loaded from the least significant bit of B. Ro-
tate operations include the carry bit to allow extension of shift and rotate
operations to multiple bytes. For example, to shift a 24-bit value one bit
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be
used where LOW, MID and HIGH refer to the low-order, middle and
high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

RORB Rotate Right B RORB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set); cleared oth-
erwise (for values of N and C after the shift).

C: B0
Set if the LSB of B was set before the shift; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
RORB INH 56 1 O

 b7 – – – – – – b0 C
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-175



Operation: (M(SP)) ⇒ PPAGE
(SP) + $0001 ⇒ SP
(M(SP) : M(SP + 1)) ⇒ PCH : PCL
(SP) + $0002 ⇒ SP

Description: Terminates subroutines in expanded memory invoked by the CALL
instruction. Returns execution flow from the subroutine to the calling pro-
gram. The program overlay page (PPAGE) register and the return ad-
dress are restored from the stack; program execution continues at the
restored address. For code compatibility purposes, CALL and RTC also
execute correctly in M68HC12 devices that do not have expanded mem-
ory capability.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

RTC Return from Call RTC

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
RTC INH 0A 6 uUnPPP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-176 REFERENCE MANUAL



Operation: (M(SP)) ⇒ CCR; (SP) + $0001 ⇒ SP
(M(SP) : M(SP + 1)) ⇒ B : A; (SP) + $0002 ⇒ SP
(M(SP) : M(SP + 1)) ⇒ XH : XL; (SP) + $0004 ⇒ SP
(M(SP) : M(SP + 1)) ⇒ PCH : PCL; (SP) – $0002 ⇒ SP
(M(SP) : M(SP + 1)) ⇒ YH : YL; (SP) + $0004 ⇒ SP

Description: Restores system context after interrupt service processing is completed.
The condition codes, accumulators B and A, index register X, the PC,
and index register Y are restored to a state pulled from the stack. The X
mask bit may be cleared as a result of an RTI instruction, but cannot be
set if it was cleared prior to execution of the RTI instruction.

If another interrupt is pending when RTI has finished restoring registers
from the stack, the SP is adjusted to preserve stack content, and the new
vector is fetched. This operation is functionally identical to the same op-
eration in the M68HC11, where registers actually are re-stacked, but is
faster.

Condition Codes and Boolean Formulas:

Condition codes take on the value pulled from the stack, except that the X mask bit can-
not change from zero to one. Software can leave the X bit set, leave it cleared, or
change it from one to zero, but it can only be set by a reset or by recognition of an XIRQ
interrupt.

Addressing Modes, Machine Code, and Execution Times:

RTI Return from Interrupt RTI

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form Address Mode Object Code Cycles Access Detail
RTI
(with interrupt pending)

INH 0B 8
10

uUUUUPPP

uUUUUVfPPP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-177



Operation: (M(SP) : M(SP + 1)) ⇒ PCH : PCL; (SP) + $0002 ⇒ SP

Description: Restores context at the end of a subroutine. Loads the program counter
with a 16-bit value pulled from the stack and increments the stack pointer
by two. Program execution continues at the address restored from the
stack.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

RTS Return from Subroutine RTS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
RTS INH 3D 5 UfPPP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-178 REFERENCE MANUAL



Operation: (A) – (B) ⇒ A

Description: Subtracts the content of accumulator B from the content of accumulator
A and places the result in A. The content of B is not affected. For sub-
traction instructions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SBA Subtract Accumulators SBA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: A7 • B7 + B7 • R7 + R7 • A7
Set if the absolute value of B is larger than the absolute value of A;
cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
SBA INH 18 16 2 OO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-179



Operation: (A) – (M) – C ⇒ A

Description: Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator A. The result is placed in A. For sub-
traction instructions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SBCA Subtract with Carry from A SBCA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Source Form Address Mode Object Code Cycles Access Detail
SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysp
SBCA oprx9,xysp
SBCA oprx16,xysp
SBCA [D,xysp]
SBCA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

82 ii

92 dd

B2 hh ll

A2 xb

A2 xb ff

A2 xb ee ff

A2 xb

A2 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-180 REFERENCE MANUAL



Operation: (B) – (M) – C ⇒ B

Description: Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator B. The result is placed in B. For sub-
traction instructions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SBCB Subtract with Carry from B SBCB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the content of memory plus previous carry
is larger than the absolute value of the accumulator; cleared other-
wise.

Source Form Address Mode Object Code Cycles Access Detail
SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysp
SBCB oprx9,xysp
SBCB oprx16,xysp
SBCB [D,xysp]
SBCB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii

D2 dd

F2 hh ll

E2 xb

E2 xb ff

E2 xb ee ff

E2 xb

E2 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-181



Operation: 1 ⇒ C bit

Description: Sets the C status bit. This instruction is assembled as ORCC #$01. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

SEC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SEC Set Carry SEC

S X H I N Z V C

– – – – – – – 1

C: 1; Set.

Source Form Address Mode Object Code Cycles Access Detail
SEC translates to...
ORCC #$01

IMM 14 01 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-182 REFERENCE MANUAL



Operation: 1 ⇒ I bit

Description: Sets the I mask bit. This instruction is assembled as ORCC #$10. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation. When the I bit is set, all maskable interrupts are inhib-
ited, and the CPU will recognize only non-maskable interrupt sources or
an SWI.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SEI Set Interrupt Mask SEI

S X H I N Z V C

– – – 1 – – – –

I: 1; Set.

Source Form Address Mode Object Code Cycles Access Detail
SEI translates to...
ORCC #$10

IMM 14 10 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-183



Operation: 1 ⇒ V bit

Description: Sets the V status bit. This instruction is assembled as ORCC #$02. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SEV Set Two’s Complement Overflow Bit SEV

S X H I N Z V C

– – – – – – 1 –

V: 1; Set.

Source Form Address Mode Object Code Cycles Access Detail
SEV translates to...
ORCC #$02

IMM 14 02 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-184 REFERENCE MANUAL



Operation: If r1 bit 7 = 0, then $00 : (r1) ⇒ r2
If r1 bit 7 = 1, then $FF : (r1) ⇒ r2

Description: This instruction is an alternate mnemonic for the TFR r1,r2 instruction,
where r1 is an 8-bit register and r2 is a 16-bit register. The result in r2 is
the 16-bit sign extended representation of the original two’s complement
number in r1. The content of r1 is unchanged in all cases except that of
SEX A,D (D is A : B).

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

SEX Sign Extend into 16-bit Register SEX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Legal coding for eb is summarized in the following table. Columns represent the high-order digit, and rows rep-

resent the low-order digit in hexadecimal (MSB is a don’t-care).

Cycles Access Detail
SEX abc,dxys INH B7 eb 1 P

0 1 2

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2

4
sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

5
sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

6
sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

7
sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-185



Operation: (A) ⇒ M

Description: Stores the content of accumulator A in memory location M. The content
of A is unchanged.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

STAA Store Accumulator A STAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
STAA opr8a
STAA opr16a
STAA oprx0_xysp
STAA oprx9,xysp
STAA oprx16,xysp
STAA [D,xysp]
STAA [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5A dd

7A hh ll

6A xb

6A xb ff

6A xb ee ff

6A xb

6A xb ee ff

2
3
2
3
3
5
5

Pw

wOP

Pw

PwO

PwP

PIfPw

PIPPw
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-186 REFERENCE MANUAL



Operation: (B) ⇒ M

Description: Stores the content of accumulator B in memory location M. The content
of B is unchanged.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

STAB Store Accumulator B STAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
STAB opr8a
STAB opr16a
STAB oprx0_xysp
STAB oprx9,xysp
STAB oprx16,xysp
STAB [D,xysp]
STAB [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5B dd

7B hh ll

6B xb

6B xb ff

6B xb ee ff

6B xb

6B xb ee ff

2
3
2
3
3
5
5

Pw

wOP

Pw

PwO

PwP

PIfPw

PIPPw
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-187



Operation: (A : B) ⇒ M : M + 1

Description: Stores the content of double accumulator D in memory location M : M +
1. The content of D is unchanged.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

STD Store Double Accumulator STD

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
STD opr8a
STD opr16a
STD oprx0_xysp
STD oprx9,xysp
STD oprx16,xysp
STD [D,xysp]
STD [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5C dd

7C hh ll

6C xb

6C xb ff

6C xb ee ff

6C xb

6C xb ee ff

2
3
2
3
3
5
5

PW

WOP

PW

PWO

PWP

PIfPW

PIPPW
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-188 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP + 1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
Stop All Clocks

Description: When the S control bit is set, STOP is disabled and operates like a two-
cycle NOP instruction. When the S bit is cleared, STOP stacks CPU con-
text, stops all system clocks, and puts the device in standby mode.

Standby operation minimizes system power consumption. The contents
of registers and the states of I/O pins remain unchanged.

Asserting the RESET, XIRQ, or IRQ signals ends standby mode. Stack-
ing on entry to STOP allows the CPU to recover quickly when an inter-
rupt is used, provided a stable clock is applied to the device. If the
system uses a clock reference crystal that also stops during low-power
mode, crystal start-up delay lengthens recovery time.

If XIRQ is asserted while the X mask bit = 0 (XIRQ interrupts enabled),
execution resumes with a vector fetch for the XIRQ interrupt. If the X
mask bit = 1(XIRQ interrupts disabled), a two-cycle recovery sequence
including an O cycle is used to adjust the instruction queue, and execu-
tion continues with the next instruction after STOP.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

STOP Stop Processing STOP

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
STOP (entering STOP) INH 18 3E 9 OOSSSfSsf

(exiting STOP) 5 VfPPP

(continue) 2 fO

(if STOP disabled) 2 OO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-189



Operation: (SPH : SPL) ⇒ M : M + 1

Description: Stores the content of the stack pointer in memory. The most significant
byte of the SP is stored at the specified address, and the least significant
byte of the SP is stored at the next higher byte address (the specified ad-
dress plus one).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

STS Store Stack Pointer STS

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
STS opr8a
STS opr16a
STS oprx0_xysp
STS oprx9,xysp
STS oprx16,xysp
STS [D,xysp]
STS [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5F dd

7F hh ll

6F xb

6F xb ff

6F xb ee ff

6F xb

6F xb ee ff

2
3
2
3
3
5
5

PW

WOP

PW

PWO

PWP

PIfPW

PIPPW
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-190 REFERENCE MANUAL



Operation: (XH : XL) ⇒ M : M + 1

Description: Stores the content of index register X in memory. The most significant
byte of X is stored at the specified address, and the least significant byte
of X is stored at the next higher byte address (the specified address plus
one).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

STX Store Index Register X STX

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
STX opr8a
STX opr16a
STX oprx0_xysp
STX oprx9,xysp
STX oprx16,xysp
STX [D,xysp]
STX [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5E dd

7E hh ll

6E xb

6E xb ff

6E xb ee ff

6E xb

6E xb ee ff

2
3
2
3
3
5
5

PW

WOP

PW

PWO

PWP

PIfPW

PIPPW
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-191



Operation: (YH : YL) ⇒ M : M + 1

Description: Stores the content of index register Y in memory. The most significant
byte of Y is stored at the specified address, and the least significant byte
of Y is stored at the next higher byte address (the specified address plus
one).

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

STY Store Index Register Y STY

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
STY opr8a
STY opr16a
STY oprx0_xysp
STY oprx9,xysp
STY oprx16,xysp
STY [D,xysp]
STY [oprx16,xysp]

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5D dd

7D hh ll

6D xb

6D xb ff

6D xb ee ff

6D xb

6D xb ee ff

2
3
2
3
3
5
5

PW

WOP

PW

PWO

PWP

PIfPW

PIPPW
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-192 REFERENCE MANUAL



Operation: (A) – (M) ⇒ A

Description: Subtracts the content of memory location M from the content of accumu-
lator A, and places the result in A. For subtraction instructions, the C sta-
tus bit represents a borrow.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SUBA Subtract A SUBA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysp
SUBA oprx9,xysp
SUBA oprx16,xysp
SUBA [D,xysp]
SUBA [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

80 ii

90 dd

B0 hh ll

A0 xb

A0 xb ff

A0 xb ee ff

A0 xb

A0 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-193



Operation: (B) – (M) ⇒ B

Description: Subtracts the content of memory location M from the content of accumu-
lator B and places the result in B. For subtraction instructions, the C sta-
tus bit represents a borrow.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SUBB Subtract B SUBB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: X7 • M7 • R7 + X7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: X7 • M7 + M7 • R7 + R7 • X7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysp
SUBB oprx9,xysp
SUBB oprx16,xysp
SUBB [D,xysp]
SUBB [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii

D0 dd

F0 hh ll

E0 xb

E0 xb ff

E0 xb ee ff

E0 xb

E0 xb ee ff

1
3
3
3
3
4
6
6

P

rfP

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-194 REFERENCE MANUAL



Operation: (A : B) – (M : M + 1) ⇒ A : B

Description: Subtracts the content of memory location M : M + 1 from the content of
double accumulator D and places the result in D. For subtraction instruc-
tions, the C status bit represents a borrow.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SUBD Subtract Double Accumulator SUBD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $0000; cleared otherwise.

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise.

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise.

Source Form Address Mode Object Code Cycles Access Detail
SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysp
SUBD oprx9,xyssp
SUBD oprx16,xysp
SUBD [D,xysp]
SUBD [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk

93 dd

B3 hh ll

A3 xb

A3 xb ff

A3 xb ee ff

A3 xb

A3 xb ee ff

2
3
3
3
3
4
6
6

OP

RfP

ROP

RfP

RPO

fRPP

fIfRfP

fIPRfP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-195



Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP + 1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
1 ⇒ I
(SWI Vector) ⇒ PC

Description: Causes an interrupt without an external interrupt service request. Uses
the address of the next instruction after SWI as a return address. Stacks
the return address, index registers Y and X, accumulators B and A, and
the CCR, decrementing the SP before each item is stacked. The I mask
bit is then set, the PC is loaded with the SWI vector, and instruction ex-
ecution resumes at that location. SWI is not affected by the I mask bit.
Refer to SECTION 7 EXCEPTION PROCESSING for more information.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

SWI Software Interrupt SWI

S X H I N Z V C

– – – 1 – – – –

I: 1; Set.

Source Form Address Mode Object Code Cycles Access Detail
SWI INH 3F 9 VSPSSPSsP1

Notes:
1. The CPU also uses the SWI processing sequence for hardware interrupts and unimplemented opcode traps. A

variation of the sequence (VfPPP) is used for resets.
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-196 REFERENCE MANUAL



Operation: (A) ⇒ B

Description: Moves the content of accumulator A to accumulator B. The former con-
tent of B is lost; the content of A is not affected. Unlike the general trans-
fer instruction TFR A,B which does not affect condition codes, the TAB
instruction affects the N, Z, and V status bits for compatibility with
M68HC11.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TAB Transfer from Accumulator A
to Accumulator B TAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
TAB INH 18 0E 2 OO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-197



Operation: (A) ⇒ CCR

Description: Transfers the logic states of bits [7:0] of accumulator A to the corre-
sponding bit positions of the CCR. The content of A remains unchanged.
The X mask bit can be cleared as a result of a TAP, but cannot be set if
it was cleared prior to execution of the TAP. If the I bit is cleared, there
is a one cycle delay before the system allows interrupt requests. This
prevents interrupts from occurring between instructions in the sequenc-
es CLI, WAI and CLI, SEI.

This instruction is accomplished with the TFR A,CCR instruction. For
compatibility with the M68HC11, the mnemonic TAP is translated by the
assembler.

Condition Codes and Boolean Formulas:

Condition codes take on the value of the corresponding bit of accumu-
lator A, except that the X mask bit cannot change from zero to one.
Software can leave the X bit set, leave it cleared, or change it from one
to zero, but it can only be set by a reset or by recognition of an XIRQ
interrupt.

Addressing Modes, Machine Code, and Execution Times:

TAP Transfer from Accumulator A
to Condition Code Register TAP

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form Address Mode Object Code Cycles Access Detail
TAP translates to...
TFR A,CCR

INH B7 02 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-198 REFERENCE MANUAL



Operation: (B) ⇒ A

Description: Moves the content of accumulator B to accumulator A. The former con-
tent of A is lost; the content of B is not affected. Unlike the general trans-
fer instruction TFR B,A, which does not affect condition codes, the TBA
instruction affects N, Z, and V for compatibility with M68HC11.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TBA Transfer from Accumulator B
to Accumulator A TBA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
TBA INH 18 0F 2 OO
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-199



Operation: If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Tests the specified counter register A, B, D, X, Y, or SP. If the counter
register is zero, branches to the specified relative destination. TBEQ is
encoded into three bytes of machine code including a 9-bit relative offset
(–256 to +255 locations from the start of the next instruction).

DBEQ and IBEQ instructions are similar to TBEQ, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which op-
eration is to be performed.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TBEQ Test and Branch if Equal to Zero TBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero

(TBEQ – 0) or not zero (TBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 0:1 for TBEQ.

Cycles Access Detail
TBEQ abdxys,rel9 REL 04 lb rr 3/3 PPP

Count
Register

Bits 2:0 Source Form
Object Code

(if offset is positive)
Object Code

(if offset is negative)

A
B

000
001

TBEQ A, rel9
TBEQ B, rel9

04 40 rr

04 41 rr

04 50 rr

04 51 rr

D
X
Y

SP

100
101
110
111

TBEQ D, rel9
TBEQ X, rel9
TBEQ Y, rel9
TBEQ SP, rel9

04 44 rr

04 45 rr

04 46 rr

04 47 rr

04 54 rr

04 55 rr

04 56 rr

04 57 rr
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-200 REFERENCE MANUAL



Operation: (M) + [(B) × ((M+1) – (M))] ⇒ A

Description: Linearly interpolates one of 256 result values that fall between each pair
of data entries in a lookup table stored in memory. Data points in the
table represent the endpoints of equally spaced line segments. Table
entries and the interpolated result are 8-bit values. The result is stored
in accumulator A.

Before executing TBL, set up an index register so that it will point to the
starting point (X1) of a line segment when the instruction is executed. X1
is the table entry closest to, but less than or equal to, the desired lookup
value. The next table entry after X1 is X2. XL is the X position of the de-
sired lookup point. Load accumulator B with a binary fraction (radix point
to left of MSB), representing the ratio (XL–X1) ÷ (X2–X1).

The 8-bit unrounded result is calculated using the following expression:

A = Y1 + [(B) × (Y2 – Y1)]

Where

(B) = (XL – X1) ÷ (X2 – X1)
Y1 = 8-bit data entry pointed to by <effective address>
Y2 = 8-bit data entry pointed to by <effective address> + 1

The intermediate value [(B) × (Y2 – Y1)] produces a 16-bit result with the
radix point between bits 7 and 8. The result in A is the upper 8-bits (inte-
ger part) of this intermediate 16-bit value, plus the 8-bit value Y1.

Any indexed addressing mode referenced to X, Y, SP, or PC, except in-
direct modes or 9-bit and 16-bit offset modes, can be used to identify the
first data point (X1,Y1). The second data point is the next table entry.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TBL Table Lookup and Interpolate TBL

S X H I N Z V C

– – – – ∆ ∆ – ?

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

C: Undefined.

Source Form Address Mode Object Code Cycles Access Detail
TBL oprx0_xysp IDX 18 3D xb 8 OrrffffP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-201



Operation: If (Counter) ≠ 0, then (PC) + $0003 + Rel ⇒ PC,

Description: Tests the specified counter register A, B, D, X, Y, or SP. If the counter
register is not zero, branches to the specified relative destination. TBNE
is encoded into three bytes of machine code including a 9-bit relative off-
set (–256 to +255 locations from the start of the next instruction).

DBNE and IBNE instructions are similar to TBNE, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which op-
eration is to be performed.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TBNE Test and Branch if Not Equal to Zero TBNE

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code 1

Notes:
1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero

(TBEQ – 0) or not zero (TBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should
be 0:1 for TBNE.

Cycles Access Detail
TBNE abdxys,rel9 REL 04 lb rr 3/3 PPP

Count
Register

Bits 2:0 Source Form
Object Code

(if offset is positive)
Object Code

(if offset is negative)

A
B

000
001

TBNE A, rel9
TBNE B, rel9

04 60 rr

04 61 rr

04 70 rr

04 71 rr

D
X
Y

SP

100
101
110
111

TBNE D, rel9
TBNE X, rel9
TBNE Y, rel9
TBNE SP, rel9

04 64 rr

04 65 rr

04 66 rr

04 67 rr

04 74 rr

04 75 rr

04 76 rr

04 77 rr
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-202 REFERENCE MANUAL



Operation: See table.

Description: Transfers the content of a source register to a destination register spec-
ified in the instruction. The order in which transfers between 8-bit and 16-
bit registers are specified affects the high byte of the 16-bit registers dif-
ferently. Cases involving TMP2 and TMP3 are reserved for Motorola
use, so some assemblers may not permit their use. It is possible to gen-
erate these cases by using DC.B or DC.W assembler directives.

Condition Codes and Boolean Formulas:

None affected, unless the CCR is the destination register. Condition
codes take on the value of the corresponding source bits, except that
the X mask bit cannot change from zero to one. Software can leave
the X bit set, leave it cleared, or change it from one to zero, but it can
only be set by a reset or by recognition of an XIRQ interrupt.

Addressing Modes, Machine Code, and Execution Times:

TFR Transfer Register Content
to Another Register TFR

S X H I N Z V C

– – – – – – – –

or

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form Address Mode Object Code 1

Notes:
1. Legal coding for eb is summarized in the following table. Columns represent the high-order digit, and rows rep-

resent the low-order digit in hexadecimal (MSB is a don’t-care).

Cycles Access Detail
TFR abcdxys,abcdxys INH B7 eb 1 P

0 1 2 3 4 5 6 7

0 A ⇒ A B ⇒ A CCR ⇒ A TMP3L ⇒ A B ⇒ A XL ⇒ A YL ⇒ A SPL ⇒ A

1 A ⇒ B B ⇒ B CCR ⇒ B TMP3L ⇒ B B ⇒ B XL ⇒ B YL ⇒ B SPL ⇒ B

2 A ⇒ CCR B ⇒ CCR CCR ⇒ CCR TMP3L ⇒ CCR B ⇒ CCR XL ⇒ CCR YL ⇒ CCR SPL ⇒ CCR

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2 TMP3 ⇒ TMP2 D ⇒ TMP2 X ⇒ TMP2 Y ⇒ TMP2 SP ⇒ TMP2

4
sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

TMP3 ⇒ D D ⇒ D X ⇒ D Y ⇒ D SP ⇒ D

5
sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

TMP3 ⇒ X D ⇒ X X ⇒ X Y ⇒ X SP ⇒ X

6
sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

TMP3 ⇒ Y D ⇒ Y X ⇒ Y Y ⇒ Y SP ⇒ Y

7
sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP

TMP3 ⇒ SP D ⇒ SP X ⇒ SP Y ⇒ SP SP ⇒ SP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-203



Operation: (CCR) ⇒ A

Description: Transfers the content of the condition code register to corresponding bit
positions of accumulator A. The CCR remains unchanged.

This mnemonic is implemented by the TFR CCR,A instruction. For com-
patibility with the M68HC11, the mnemonic TPA is translated into the
TFR CCR,A instruction by the assembler.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TPA Transfer from Condition Code
Register to Accumulator A TPA

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
TPA translates to...
TFR CCR,A

INH B7 20 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-204 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP + 1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
1 ⇒ I
(Trap Vector) ⇒ PC

Description: Traps unimplemented opcodes. There are opcodes in all 256 positions
in the page 1 opcode map, but only 54 of the 256 positions on page 2 of
the opcode map are used. If the CPU attempts to execute one of the un-
implemented opcodes on page 2, an opcode trap interrupt occurs. Un-
implemented opcode traps are essentially interrupts that share the
$FFF8:$FFF9 interrupt vector.

TRAP uses the next address after the unimplemented opcode as a re-
turn address. It stacks the return address, index registers Y and X, ac-
cumulators B and A, and the CCR, automatically decrementing the SP
before each item is stacked. The I mask bit is then set, the PC is loaded
with the trap vector, and instruction execution resumes at that location.
This instruction is not maskable by the I bit. Refer to SECTION 7 EX-
CEPTION PROCESSING for more information.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TRAP Unimplemented Opcode Trap TRAP

S X H I N Z V C

– – – 1 – – – –

I: 1; Set.

Source Form Address Mode Object Code Cycles Access Detail
TRAP trapnum INH $18 tn 1

Notes:
1. The value tn represents an unimplemented page 2 opcode in either of the two ranges $30 to $39 or $40 to $FF.

11 OfVSPSSPSsP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-205



Operation: (M) – $00

Description: Subtracts $00 from the content of memory location M and sets the con-
dition codes accordingly.

The subtraction is accomplished internally without modifying M.

The TST instruction provides limited information when testing unsigned
values. Since no unsigned value is less than zero, BLO and BLS have
no utility following TST. While BHI can be used after TST, it performs the
same function as BNE, which is preferred. After testing signed values,
all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TST Test Memory TST

S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
TST opr16a
TST oprx0_xysp
TST oprx9,xysp
TST oprx16,xysp
TST [D,xysp]
TST [oprx16,xysp]

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

F7 hh ll

E7 xb

E7 xb ff

E7 xb ee ff

E7 xb

E7 xb ee ff

3
3
3
4
6
6

rOP

rfP

rPO

frPP

fIfrfP

fIPrfP
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-206 REFERENCE MANUAL



Operation: (A) – $00

Description: Subtracts $00 from the content of accumulator A and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying A.

The TSTA instruction provides limited information when testing un-
signed values. Since no unsigned value is less than zero, BLO and BLS
have no utility following TSTA. While BHI can be used after TST, it per-
forms the same function as BNE, which is preferred. After testing signed
values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TSTA Test A TSTA

S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
TSTA INH 97 1 O
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-207



Operation: (B) – $00

Description: Subtracts $00 from the content of accumulator B and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying B.

The TSTB instruction provides limited information when testing un-
signed values. Since no unsigned value is less than zero, BLO and BLS
have no utility following TSTB. While BHI can be used after TST, it per-
forms the same function as BNE, which is preferred. After testing signed
values, all signed branches are available.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

TSTB Test B TSTB

S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: 0; Cleared.

C: 0; Cleared.

Source Form Address Mode Object Code Cycles Access Detail
TSTB INH D7 1 O
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-208 REFERENCE MANUAL



Operation: (SP) ⇒ X

Description: This is an alternate mnemonic to transfer the stack pointer value to index
register X. The content of the SP remains unchanged. After a TSX in-
struction, X points at the last value that was stored on the stack.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TSX Transfer from Stack Pointer
to Index Register X TSX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
TSX translates to...
TFR SP,X

INH B7 75 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-209



Operation: (SP) ⇒ Y

Description: This is an alternate mnemonic to transfer the stack pointer value to index
register Y. The content of the SP remains unchanged. After a TSY in-
struction, Y points at the last value that was stored on the stack.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TSY Transfer from Stack Pointer
to Index Register Y TSY

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
TSY translates to...
TFR SP,Y

INH B7 76 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-210 REFERENCE MANUAL



Operation: (X) ⇒ SP

Description: This is an alternate mnemonic to transfer index register X value to the
stack pointer. The content of X is unchanged.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TXS Transfer from Index Register X
to Stack Pointer TXS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
TXS translates to...
TFR X,SP

INH B7 57 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-211



Operation: (Y) ⇒ SP

Description: This is an alternate mnemonic to transfer index register Y value to the
stack pointer. The content of Y is unchanged.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

TYS Transfer from Index Register Y
to Stack Pointer TYS

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
TYS translates to...
TFR Y,SP

INH B7 67 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-212 REFERENCE MANUAL



Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP + 1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP + 1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
Stop CPU Clocks

Description: Puts the CPU into a wait state. Uses the address of the instruction fol-
lowing WAI as a return address. Stacks the return address, index regis-
ters Y and X, accumulators B and A, and the CCR, decrementing the SP
before each item is stacked.

The CPU then enters a wait state for an integer number of bus clock cy-
cles. During the wait state, CPU clocks are stopped, but other MCU
clocks can continue to run. The CPU leaves the wait state when it sens-
es an interrupt that has not been masked.

Upon leaving the wait state, the CPU sets the appropriate interrupt mask
bit(s), fetches the vector corresponding to the interrupt sensed, and in-
struction execution continues at the location the vector points to.

Condition Codes and Boolean Formulas:

Although the WAI instruction itself does not alter the condition codes,
the interrupt that causes the CPU to resume processing also causes
the I mask bit (and the X mask bit, if the interrupt was XIRQ) to be set
as the interrupt vector is fetched.

Addressing Modes, Machine Code, and Execution Times:

WAI Wait for Interrupt WAI

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
WAI (before interrupt) INH 3E 8 OSSSfSsf

(when interrupt comes) 5 VfPPP
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-213



Operation: Do until B = 0, leave SOP in Y : D, SOW in X

Partial Product = (M pointed to by X) × (M pointed to by Y)
Sum-of-Products (24-bit SOP) = Previous SOP + Partial Product
Sum-of-Weights (16-bit SOW) = Previous SOW + (M pointed to by Y)
(X) + $0001 ⇒ X; (Y) + $0001 ⇒ Y
(B) – $01 ⇒ B

Description: Performs weighted average calculations on values stored in memory.
Uses indexed (X) addressing mode to reference one source operand list,
and indexed (Y) addressing mode to reference a second source operand
list. Accumulator B is used as a counter to control the number of ele-
ments to be included in the weighted average.

For each pair of data points, a 24-bit sum of products (SOP) and a 16-
bit sum of weights (SOW) is accumulated in temporary registers. When
B reaches zero (no more data pairs), the SOP is placed in Y : D. The
SOW is placed in X. To arrive at the final weighted average, divide the
content of Y : D by X by executing an EDIV after the WAV.

This instruction can be interrupted. If an interrupt occurs during WAV ex-
ecution, the intermediate results (six bytes) are stacked in the order
SOW[15:0], SOP[15:0], $00:SOP[23:16] before the interrupt is processed.
The wavr pseudo-instruction is used to resume execution after an inter-
rupt. The mechanism is re-entrant. New WAV instructions can be started
and interrupted while a previous WAV instruction is interrupted.

This instruction is often used in fuzzy logic rule evaluation. Refer to SEC-
TION 9 FUZZY LOGIC SUPPORT for more information.

Condition Codes and Boolean Formulas:

Addressing Modes, Machine Code, and Execution Times:

WAV Weighted Average WAV

S X H I N Z V C

– – ? – ? 1 ? ?

Z: 1; Set.

H, N, V and C may be altered by this instruction.

Source Form Address Mode Object Code Cycles Access Detail
WAV
(add if interrupted)

Special 18 3C See note1

Notes:
1. The 8-cycle sequence in parentheses represents the loop for one iteration of SOP and SOW accumulation.

Off(frrfffff)O

SSSUUUrr
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-214 REFERENCE MANUAL



Operation: (D) ⇔ (X)

Description: Exchanges the content of double accumulator D and the content of index
register X. For compatibility with the M68HC11, the XGDX instruction is
translated into an EXG D,X instruction by the assembler.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

XGDX Exchange Double Accumulator
and Index Register X XGDX

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
XGDX translates to...
EXG D,X

INH B7 C5 1 P
CPU12 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-215



Operation: (D) ⇔ (Y)

Description: Exchanges the content of double accumulator D and the content of index
register Y. For compatibility with the M68HC11, the XGDY instruction is
translated into an EXG D,Y instruction by the assembler.

Condition Codes and Boolean Formulas:

None affected.

Addressing Modes, Machine Code, and Execution Times:

XGDY Exchange Double Accumulator
and Index Register Y XGDY

S X H I N Z V C

– – – – – – – –

Source Form Address Mode Object Code Cycles Access Detail
XGDY translates to...
EXG D,Y

INH B7 C6 1 P
 MOTOROLA INSTRUCTION GLOSSARY CPU12

6-216 REFERENCE MANUAL



SECTION 7
EXCEPTION PROCESSING

Exceptions are events that require processing outside the normal flow of instruction
execution. This section describes exceptions and the way each is handled.

7.1 Types of Exceptions

CPU12 exceptions include resets, an unimplemented opcode trap, a software interrupt
instruction, X-bit interrupts, and I-bit interrupts. Each exception has an associated 16-
bit vector, which points to the memory location where the routine that handles the ex-
ception is located. As shown in Table 7-1 , vectors are stored in the upper 128 bytes
of the standard 64-Kbyte address map.

The six highest vector addresses are used for resets and unmaskable interrupt sourc-
es. The remaining vectors are used for maskable interrupts. All vectors must be pro-
grammed to point to the address of the appropriate service routine.

The CPU12 can handle up to 64 exception vectors, but the number actually used var-
ies from device to device, and some vectors are reserved for Motorola use. Refer to
device documentation for more information.

Exceptions can be classified by the effect of the X and I interrupt mask bits on recog-
nition of a pending request.

Resets, the unimplemented opcode trap, and the SWI instruction are not affected
by the X and I mask bits.

Interrupt service requests from the XIRQ pin are inhibited when X = 1, but are not
affected by the I bit.

All other interrupts are inhibited when I = 1.

Table 7-1 CPU12 Exception Vector Map

Vector Address  Source

$FFFE–$FFFF System Reset

$FFFC–$FFFD Clock Monitor Reset

$FFFA–$FFFB COP Reset

$FFF8–$FFF9 Unimplemented Opcode Trap

$FFF6–$FFF7 Software Interrupt Instruction (SWI)

$FFF4–$FFF5 XIRQ Signal

$FFF2–$FFF3 IRQ Signal

$FFC0–$FFF1 Device-Specific Interrupt Sources
CPU12 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 7-1



7.2 Exception Priority

A hardware priority hierarchy determines which reset or interrupt is serviced first when
simultaneous requests are made. Six sources are not maskable. The remaining sourc-
es are maskable, and the device integration module typically can change the relative
priorities of maskable interrupts. Refer to 7.4 Interrupts for more detail concerning in-
terrupt priority and servicing.

The priorities of the unmaskable sources are:

1. RESET pin
2. Clock monitor reset
3. COP watchdog reset
4. XIRQ signal
5. Unimplemented opcode trap
6. Software interrupt instruction (SWI)

An external reset has the highest exception-processing priority, followed by clock
monitor reset, and then the on-chip watchdog reset.

The XIRQ interrupt is pseudo-non-maskable. After reset, the X bit in the CCR is set,
which inhibits all interrupt service requests from the XIRQ pin until the X bit is cleared.
The X bit can be cleared by a program instruction, but program instructions cannot re-
set X from zero to one. Once the X bit is cleared, interrupt service requests made via
the XIRQ pin become non-maskable.

The unimplemented page 2 opcode trap (TRAP) and the software interrupt instruction
(SWI) are special cases. In one sense, these two exceptions have very low priority,
because any enabled interrupt source that is pending prior to the time exception pro-
cessing begins will take precedence. However, once the CPU begins processing a
TRAP or SWI, neither can be interrupted. Also, since these are mutually exclusive in-
structions, they have no relative priority.

All remaining interrupts are subject to masking via the I bit in the CCR. Most M68HC12
MCUs have an external IRQ pin, which is assigned the highest I-bit interrupt priority,
and an internal periodic real-time interrupt generator, which has the next highest pri-
ority. The other maskable sources have default priorities that follow the address order
of the interrupt vectors — the higher the address, the higher the priority of the interrupt.
Other maskable interrupts are associated with on-chip peripherals such as timers or
serial ports. Typically, logic in the device integration module can give one I-masked
source priority over other I-masked sources. Refer to the documentation for the spe-
cific M68HC12 derivative for more information.

7.3 Resets

M68HC12 devices perform resets with a combination of hardware and software. Inte-
gration module circuitry determines the type of reset that has occurred, performs basic
system configuration, then passes control to the CPU12. The CPU fetches a vector
determined by the type of reset that has occurred, jumps to the address pointed to by
the vector, and begins to execute code at that address.
 MOTOROLA EXCEPTION PROCESSING CPU12

7-2 REFERENCE MANUAL



There are four possible sources of reset. Power-on reset (POR) and external reset
share the same reset vector. The computer operating properly (COP) reset and the
clock monitor reset each have a vector.

7.3.1 Power-On Reset

The M68HC12 device integration module incorporates circuitry to detect a positive
transition in the VDD supply and initialize the device during cold starts, generally by
asserting the reset signal internally. The signal is typically released after a delay that
allows the device clock generator to stabilize.

7.3.2 External Reset

The MCU distinguishes between internal and external resets by sensing how quickly
the signal on the RESET pin rises to logic level one after it has been asserted. When
the MCU senses any of the four reset conditions, internal circuitry drives the RESET
signal low for 16 clock cycles, then releases. Eight clock cycles later, the MCU sam-
ples the state of the signal applied to the RESET pin. If the signal is still low, an exter-
nal reset has occurred. If the signal is high, reset has been initiated internally by either
the COP system or the clock monitor.

7.3.3 COP Reset

The MCU includes a computer operating properly (COP) system to help protect
against software failures. When the COP is enabled, software must write a particular
code sequence to a specific address in order to keep a watchdog timer from timing out.
If software fails to execute the sequence properly, a reset occurs.

7.3.4 Clock Monitor Reset

The clock monitor circuit uses an internal RC circuit to determine whether clock fre-
quency is above a predetermined limit. If clock frequency falls below the limit when the
clock monitor is enabled, a reset occurs.

7.4 Interrupts

Each M68HC12 device can recognize a number of interrupt sources. Each source has
a vector in the vector table. The XIRQ signal, the unimplemented opcode trap, and the
SWI instruction are non-maskable, and have a fixed priority. The remaining interrupt
sources can be masked by the I bit. In most M68HC12 devices, the external interrupt
request pin is assigned the highest maskable interrupt priority, and the internal period-
ic real-time interrupt generator has the next highest priority. Other maskable interrupts
are associated with on-chip peripherals such as timers or serial ports. These maskable
sources have default priorities that follow the address order of the interrupt vectors.
The higher the vector address, the higher the priority of the interrupt. Typically, a de-
vice integration module incorporates logic that can give one maskable source priority
over other maskable sources.
CPU12 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 7-3



7.4.1 Non-Maskable Interrupt Request ( XIRQ)

The XIRQ input is an updated version of the NMI input of earlier MCUs. The XIRQ
function is disabled during system reset and upon entering the interrupt service routine
for an XIRQ interrupt.

During reset, both the I bit and the X bit in the CCR are set. This disables maskable
interrupts and interrupt service requests made by asserting the XIRQ signal. After min-
imum system initialization, software can clear the X bit using an instruction such as
ANDCC #$BF. Software cannot reset the X bit from zero to one once it has been
cleared, and interrupt requests made via the XIRQ pin become non-maskable. When
a non-maskable interrupt is recognized, both the X and I bits are set after context is
saved. The X bit is not affected by maskable interrupts. Execution of an RTI at the end
of the interrupt service routine normally restores the X and I bits to the pre-interrupt
request state.

7.4.2 Maskable Interrupts

Maskable interrupt sources include on-chip peripheral systems and external interrupt
service requests. Interrupts from these sources are recognized when the global inter-
rupt mask bit (I) in the CCR is cleared. The default state of the I bit out of reset is one,
but it can be written at any time.

The integration module manages maskable interrupt priorities. Typically, an on-chip
interrupt source is subject to masking by associated bits in control registers in addition
to global masking by the I bit in the CCR. Sources generally must be enabled by writing
one or more bits in associated control registers. There may be other interrupt-related
control bits and flags, and there may be specific register read-write sequences asso-
ciated with interrupt service. Refer to individual on-chip peripheral descriptions for de-
tails.

7.4.3 Interrupt Recognition

Once enabled, an interrupt request can be recognized at any time after the I mask bit
is cleared. When an interrupt service request is recognized, the CPU responds at the
completion of the instruction being executed. Interrupt latency varies according to the
number of cycles required to complete the current instruction. Because the REV,
REVW and WAV instructions can take many cycles to complete, they are designed so
that they can be interrupted. Instruction execution resumes when interrupt execution
is complete. When the CPU begins to service an interrupt, the instruction queue is re-
filled, a return address is calculated, and then the return address and the contents of
the CPU registers are stacked as shown in Table 7-2 .

After the CCR is stacked, the I bit (and the X bit, if an XIRQ interrupt service request
caused the interrupt) is set to prevent other interrupts from disrupting the interrupt ser-
vice routine. Execution continues at the address pointed to by the vector for the high-
est-priority interrupt that was pending at the beginning of the interrupt sequence. At
the end of the interrupt service routine, an RTI instruction restores context from the
stacked registers, and normal program execution resumes.
 MOTOROLA EXCEPTION PROCESSING CPU12

7-4 REFERENCE MANUAL



7.4.4 External Interrupts

External interrupt service requests are made by asserting an active-low signal con-
nected to the IRQ pin. Typically, control bits in the device integration module affect
how the signal is detected and recognized.

The I bit serves as the IRQ interrupt enable flag. When an IRQ interrupt is recognized,
the I bit is set to inhibit interrupts during the interrupt service routine. Before other
maskable interrupt requests can be recognized, the I bit must be cleared. This is gen-
erally done by an RTI instruction at the end of the service routine.

7.4.5 Return from Interrupt Instruction (RTI)

RTI is used to terminate interrupt service routines. RTI is an 8-cycle instruction when
no other interrupt is pending, and a 10-cycle instruction when another interrupt is
pending. In either case, the first five cycles are used to restore (pull) the CCR, B:A, X,
Y, and the return address from the stack. If no other interrupt is pending at this point,
three program words are fetched to refill the instruction queue from the area of the re-
turn address and processing proceeds from there.

If another interrupt is pending after registers are restored, a new vector is fetched, and
the stack pointer is adjusted to point at the CCR value that was just recovered (SP =
SP – 9). This makes it appear that the registers have been stacked again. After the SP
is adjusted, three program words are fetched to refill the instruction queue, starting at
the address the vector points to. Processing then continues with execution of the in-
struction that is now at the head of the queue.

7.5 Unimplemented Opcode Trap

The CPU12 has opcodes in all 256 positions in the page 1 opcode map, but only 54
of the 256 positions on page 2 of the opcode map are used. If the CPU attempts to
execute one of the 202 unused opcodes on page 2, an unimplemented opcode trap
occurs. The 202 unimplemented opcodes are essentially interrupts that share a com-
mon interrupt vector, $FFF8:$FFF9.

The CPU12 uses the next address after an unimplemented page 2 opcode as a return
address. This differs from the M68HC11 illegal opcode interrupt, which uses the ad-
dress of an illegal opcode as the return address. In the CPU12, the stacked return ad-
dress can be used to calculate the address of the unimplemented opcode for software-
controlled traps.

Table 7-2 Stacking Order on Entry to Interrupts

Memory Location CPU Registers

SP RTNH : RTNL

SP +2 YH : YL

SP +4 XH : XL

SP +6 B : A

SP +8 CCR
CPU12 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 7-5



7.6 Software Interrupt Instruction

Execution of the SWI instruction causes an interrupt without an interrupt service re-
quest. SWI is not inhibited by the global mask bits in the CCR, and execution of SWI
sets the I mask bit. Once an SWI interrupt begins, maskable interrupts are inhibited
until the I bit in the CCR is cleared. This typically occurs when an RTI instruction at the
end of the SWI service routine restores context.

7.7 Exception Processing Flow

The first cycle in the exception processing flow for all CPU12 exceptions is the same,
regardless of the source of the exception. Between the first and second cycles of ex-
ecution, the CPU chooses one of three alternative paths. The first path is for resets,
the second path is for pending X or I interrupts, and the third path is used for software
interrupts (SWI) and trapping unimplemented opcodes. The last two paths are virtually
identical, differing only in the details of calculating the return address. Refer to Figure
7-2 for the following discussion.

7.7.1 Vector Fetch

The first cycle of all exception processing, regardless of the cause, is a vector fetch.
The vector points to the address where exception processing will continue. Exception
vectors are stored in a table located at the top of the memory map ($FFC0–$FFFF).
The CPU cannot use the fetched vector until the third cycle of the exception process-
ing sequence.

During the vector fetch cycle, the CPU issues a signal that tells the integration module
to drive the vector address of the highest priority, pending exception onto the system
address bus (the CPU does not provide this address).

After the vector fetch, the CPU selects one of the three alternate execution paths, de-
pending upon the cause of the exception.

7.7.2 Reset Exception Processing

If reset caused the exception, processing continues to cycle 2.0. This cycle sets the X
and I bits in the CCR. The stack pointer is also decremented by two, but this is an ar-
tifact of shared code used for interrupt processing; the SP is not intended to have any
specific value after a reset. Cycles 3.0 through 5.0 are program word fetches that refill
the instruction queue. Fetches start at the address pointed to by the reset vector.
When the fetches are completed, exception processing ends, and the CPU starts ex-
ecuting the instruction at the head of the instruction queue.
 MOTOROLA EXCEPTION PROCESSING CPU12

7-6 REFERENCE MANUAL



Figure 7-2 Exception Processing Flow Diagram

1.0 - V Fetch vector

2.0 - f No bus access

Set X and I;  SP–2 ⇒SP

START

END

No

Yes
Reset?

Interrupt?

2.1 - S Push return address

Address of inst that would have

2.2 - S Push return address

Address of inst after SWI or
executed if no interrupt unimplemented opcode

3.0 - P Fetch program word

Start to fill instruction queue

4.0 - P Fetch program word

Continue to fill instruction queue

5.0 - P Fetch program word

Finish filling instruction queue

3.2 - P Fetch program word

Start to fill instruction queue

4.2 - S Push Y

6.2 - P Fetch program word

Continue to fill instruction queue

9.2  - P Fetch program word

Finish filling instruction queue

5.2 - S Push X

Transfer B:A to 16-bit temp reg

7.2 - S Push B:A

8.2 - s Push CCR (byte)
Set I bit

END

3.1 - P Fetch program word

Start to fill instruction queue

4.1 - S Push Y

6.1 - P Fetch program word

Continue to fill instruction queue

9.1 - P Fetch program word

Finish filling instruction queue

5.1 - S Push X

Transfer B:A to 16-bit temp reg

7.1 - S Push B:A

8.1 - s Push CCR (byte)

Set I bit
If XIRQ, set X bit

END

No

Yes

CPU12EXPFLOW

Opcode trap?
Yes

T.1 - f Internal calculations

No
CPU12 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 7-7



7.7.3 Interrupt and Unimplemented Opcode Trap Exception Processing

If an exception was not caused by a reset, a return address is calculated.

Cycles 2.1and 2.2 are both S cycles (a 16-bit word), but the cycles are not identical
because the CPU12 performs different return address calculations for each type of ex-
ception.

When an X- or I-related interrupt causes the exception, the return address points
to the next instruction that would have been executed had processing not been in-
terrupted.

When an exception is caused by an SWI opcode or by an unimplemented opcode
(see 7.5 Unimplemented Opcode Trap ), the return address points to the next ad-
dress after the opcode.

Once calculated, the return address is pushed onto the stack.

Cycles 3.1 through 9.1 are identical to cycles 3.2 through 9.2 for the rest of the se-
quence, except for X mask bit manipulation performed in cycle 8.1.

Cycle 3.1/3.2 is the first of three program word fetches that refill the instruction queue.

Cycle 4.1/4.2 pushes Y onto the stack.

Cycle 5.1/5.2 pushes X onto the stack.

Cycle 6.1/6.2 is the second of three program word fetches that refill the instruction
queue. During this cycle, the contents of the A and B accumulators are concatenated
into a 16-bit word in the order B:A. This makes register order in the stack frame the
same as that of the M68HC11, M6801, and the M6800.

Cycle 7.1/7.2 pushes the 16-bit word containing B:A onto the stack.

Cycle 8.1/8.2 pushes the 8-bit CCR onto the stack, then updates the mask bits.

When an XIRQ interrupt causes an exception, both X and I are set, which inhibits
further interrupts during exception processing.

When any other interrupt causes an exception, the I bit is set, but the X bit is not
changed.

Cycle 9.1/9.2 is the third of three program word fetches that refill the instruction queue.
It is the last cycle of exception processing. After this cycle the CPU starts executing
the first cycle of the instruction at the head of the instruction queue.
 MOTOROLA EXCEPTION PROCESSING CPU12

7-8 REFERENCE MANUAL



SECTION 8
DEVELOPMENT AND DEBUG SUPPORT

This section is an explanation of CPU-related aspects of the background debugging
system. Topics include the instruction queue status signals, instruction tagging, and
the single-wire background debug interface.

8.1 External Reconstruction of the Queue

The CPU12 uses an instruction queue to buffer program information and increase in-
struction throughput. The queue consists of two 16-bit stages, plus a 16-bit holding
latch. Program information is always fetched in aligned 16-bit words. At least three
bytes of program information are available to the CPU when instruction execution be-
gins. The holding latch is used when a word of program information arrives before the
queue can advance.

Because of the queue, program information is fetched a few cycles before it is used
by the CPU. Internally, the MCU only needs to buffer the fetched data. But, in order to
monitor cycle-by-cycle CPU activity, it is necessary to externally reconstruct what is
happening in the instruction queue.

Two external pins, IPIPE[1:0], provide time-multiplexed information about data move-
ment in the queue and instruction execution. To complete the picture for system de-
bugging, it is also necessary to include program information and associated addresses
in the reconstructed queue.

The instruction queue and cycle-by-cycle activity can be reconstructed in real time or
from trace history captured by a logic analyzer. However, neither scheme can be used
to stop the CPU12 at a specific instruction. By the time an operation is visible outside
the MCU, the instruction has already begun execution. A separate instruction tagging
mechanism is provided for this purpose. A tag follows the information in the queue as
the queue is advanced. During debugging, the CPU enters active background debug
mode when a tagged instruction reaches the head of the queue, rather than executing
the tagged instruction. For more information about tagging, refer to 8.5 Instruction
Tagging .

8.2 Instruction Queue Status Signals

The IPIPE[1:0] signals carry time-multiplexed information about data movement and
instruction execution during normal CPU operation. The signals are available on two
multifunctional device pins. During reset, the pins are used as mode-select input sig-
nals MODA and MODB. After reset, information on the pins does not become valid un-
til an instruction reaches queue stage 2.
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-1



To reconstruct the queue, the information carried by the status signals must be cap-
tured externally. In general, data movement and execution start information are con-
sidered to be distinct 2-bit values, with the low-order bit on IPIPE0 and the high-order
bit on IPIPE1. Data movement information is available on rising edges of the E clock;
execution start information is available on falling edges of the E clock, as shown in Fig-
ure 8-1 . Data movement information refers to data on the bus at the previous falling
edge of E. Execution information refers to the bus cycle from the current falling edge
to the next falling edge of E. Table 8-1 summarizes the information encoded on the
IPIPE[1:0] pins.

Figure 8-1 Queue Status Signal Timing

Table 8-1 IPIPE[1:0] Decoding

Data Movement
(capture at E rise)

Mnemonic Meaning

0:0 — No movement

0:1 LAT Latch data from bus

1:0 ALD Advance queue and load from bus

1:1 ALL Advance queue and load from latch

Execution Start
(capture at E fall)

Mnemonic Meaning

0:0 — No start

0:1 INT Start interrupt sequence

1:0 SEV Start even instruction

1:1 SOD Start odd instruction

QUE STATUS TIM

ECLK

ADDR

DATA

IPIPE[1:0] EX1 DM0 EX2 DM1 EX3

EX1 REFERS TO THIS CYCLE

DM0 REFERS TO DATA CAPTURED
ON THIS ECLK TRANSITION
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-2 REFERENCE MANUAL



8.2.1 Zero Encoding (0:0)

The 0:0 state at the rising edge of E indicates that there was no data movement in the
instruction queue during the previous cycle; the 0:0 state at the falling edge of E indi-
cates continuation of an instruction or interrupt sequence.

8.2.2 LAT — Latch Data from Bus Encoding (0:1)

Fetched program information has arrived, but the queue is not ready to advance. The
information is latched into the buffer. Later, when the queue does advance, stage 1 is
refilled from the buffer, or from the data bus if the buffer is empty. In some instruction
sequences, there can be several latch cycles before the queue advances. In these
cases, the buffer is filled on the first latch event and additional latch requests are ig-
nored.

8.2.3 ALD — Advance and Load from Data Bus Encoding (1:0)

The two-stage instruction queue is advanced by one word and stage 1 is refilled with
a word of program information from the data bus. The CPU requested the information
two bus cycles earlier but, due to access delays, the information was not available until
the E cycle immediately prior to the ALD.

8.2.4 ALL — Advance and Load from Latch Encoding (1:1)

The two-stage instruction queue is advanced by one word and stage 1 is refilled with
a word of program information from the buffer. The information was latched from the
data bus at the falling edge of a previous E cycle because the instruction queue was
not ready to advance when it arrived.

8.2.5 INT — Interrupt Sequence Encoding (0:1)

The E cycle starting at this E fall is the first cycle of an interrupt sequence. Normally
this cycle is a read of the interrupt vector. However, in systems that have interrupt vec-
tors in external memory and an 8-bit data bus, this cycle reads only the upper byte of
the 16-bit interrupt vector.

8.2.6 SEV — Start Instruction on Even Address Encoding (1:0)

The E cycle starting at this E fall is the first cycle of the instruction in the even (high
order) half of the word at the head of the instruction queue. The queue treats the $18
prebyte for instructions on page 2 of the opcode map as a special 1-byte, 1-cycle in-
struction, except that interrupts are not recognized at the boundary between the pre-
byte and the rest of the instruction.

8.2.7 SOD — Start Instruction on Odd Address Encoding (1:1)

The E cycle starting at this E fall is the first cycle of the instruction in the odd (low order)
half of the word at the head of the instruction queue. The queue treats the $18 prebyte
for instructions on page 2 of the opcode map as a special 1-byte, 1-cycle instruction,
except that interrupts are not recognized at the boundary between the prebyte and the
rest of the instruction.
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-3



8.3 Implementing Queue Reconstruction

The raw signals required for queue reconstruction are the address bus (ADDR), the
data bus (DATA), the read/write strobe (R/W), the system clock (E), and the queue sta-
tus signals (IPIPE[1:0]). An E clock cycle begins after an E fall. Addresses, R/W state,
and data movement status must be captured at the E rise in the middle of the cycle.
Data and execution start status must be captured at the E fall at the end of the cycle.
These captures can then be organized into records with one record per E clock cycle.

Implementation details depend upon the type of device and the mode of operation. For
instance, the data bus can be eight bits or 16 bits wide, and non-multiplexed or multi-
plexed. In all cases, the externally reconstructed queue must use 16-bit words. Demul-
tiplexing and assembly of 8-bit data into 16-bit words is done before program
information enters the real queue, so it must also be done for the external reconstruc-
tion. An example:

Systems with an 8-bit data bus and a program stored in external memory require
two cycles for each program word fetch. MCU bus control logic freezes the CPU
clocks long enough to do two 8-bit accesses rather than a single 16-bit access, so
the CPU sees only 16-bit words of program information. To recover the 16-bit pro-
gram words externally, latch the data bus state at the falling edge of E when
ADDR0 = 0, and gate the outputs of the latch onto DATA[15:8] when a LAT or ALD
cycle occurs. Since the 8-bit data bus is connected to DATA[7:0], the 16-bit word
on the data lines corresponds to the ALD or LAT status indication at the E rise after
the second 8-bit fetch, which is always to an odd address. IPIPE[1:0] status signals
indicate 0:0 at the beginning (E fall) and middle (E rise) of the first 8-bit fetch.

Some M68HC12 devices have address lines to support memory expansion beyond
the standard 64-Kbyte address space. When memory expansion is used, expanded
addresses must also be captured and maintained.

8.3.1 Queue Status Registers

Queue reconstruction requires the following registers, which can be implemented as
software variables when previously captured trace data is used, or as hardware latch-
es in real time.

8.3.1.1 in_add, in_dat Registers

These registers contain the address and data from the previous external bus cycle.
Depending upon how records are read and processed from the raw capture informa-
tion, it may be possible to simply read this information from the raw capture data file
when needed.

8.3.1.2 fetch_add, fetch_dat Registers

These registers buffer address and data for information that was fetched before the
queue was ready to advance.
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-4 REFERENCE MANUAL



8.3.1.3 st1_add, st1_dat Registers

These registers contain address and data for the first stage of the reconstructed in-
struction queue.

8.3.1.4 st2_add, st2_dat Registers

These registers contain address and data for the final stage of the reconstructed in-
struction queue. When the IPIPE[1:0] signals indicate that an instruction is starting to
execute, the address and opcode can be found in these registers.

8.3.2 Reconstruction Algorithm

This section describes in detail how to use IPIPE[1:0] signals and status storage reg-
isters to perform queue reconstruction. An “is_full” flag is used to indicate when the
fetch_add and fetch_dat buffer registers contain information. The use of the flag is ex-
plained more fully in subsequent paragraphs.

Typically, the first few cycles of raw capture data are not useful because it takes sev-
eral cycles before an instruction propagates to the head of the queue. During these
first raw cycles, the only meaningful information available are data movement signals.
Information on the external address and data buses during this setup time reflects the
actions of instructions that were fetched before data collection started.

In the special case of a reset, there is a five cycle sequence (VfPPP) during which the
reset vector is fetched and the instruction queue is filled, before execution of the first
instruction begins. Due to the timing of the switchover of the IPIPE[1:0] pins from their
alternate function as mode select inputs, the status information on these two pins may
be erroneous during the first cycle or two after the release of reset. This is not a prob-
lem because the status is correct in time for queue reconstruction logic to correctly rep-
licate the queue.

Before starting to reconstruct the queue, clear the is_full flag to indicate that there is
no meaningful information in the fetch_add and fetch_dat buffers. Further movement
of information in the instruction queue is based on the decoded status on the
IPIPE[1:0] signals at the rising edges of E.

8.3.2.1 LAT Decoding

On a latch cycle, check the is_full flag. If and only if is_full = 0, transfer the address
and data from the previous bus cycle (in_add and in_dat) into the fetch_add and
fetch_dat registers respectively. Then, set the is_full flag. The usual reason for a latch
request instead of an advance request is that the previous instruction ended with a sin-
gle aligned byte of program information in the last stage of the instruction queue. Since
the odd half of this word still holds the opcode for the next instruction, the queue can-
not advance on this cycle. However, the cycle to fetch the next word of program infor-
mation has already started and the data is on its way.
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-5



8.3.2.2 ALD Decoding

On an advance-and-load-from-data-bus cycle, the information in the instruction queue
must advance by one stage. Whatever was in stage 2 of the queue is simply thrown
away. The previous contents of stage 1 are moved to stage 2, and the address and
data from the previous cycle (in_add and in_dat) are transferred into stage 1 of the in-
struction queue. Finally, clear the is_full flag to indicate the buffer latch is ready for new
data. Usually, there would be no useful information in the fetch buffer when an ALD
cycle was encountered, but in the case of a change-of-flow, any data that was there
needs to be flushed out (by clearing the is_full flag).

8.3.2.3 ALL Decoding

On an advance-and-load-from-latch cycle, the information in the instruction queue
must advance by one stage. Whatever was in stage 2 of the queue is simply thrown
away. The previous contents of stage 1 are moved to stage 2, and the contents of the
fetch buffer latch are transferred into stage 1 of the instruction queue. One or more cy-
cles preceding the ALL cycle will have been a LAT cycle. After updating the instruction
queue, clear the is_full flag to indicate the fetch buffer is ready for new information.

8.4 Background Debug Mode

M68HC12 MCUs include a resident debugging system. This system is implemented
with on-chip hardware rather than external software, and provides a full set of debug-
ging options. The debugging system is less intrusive than systems used on other mi-
crocontrollers, because the control logic resides in the on-chip integration module,
rather than in the CPU. Some activities, such as reading and writing memory locations,
can be performed while the CPU is executing normal code with no effect on real-time
system activity.

The integration module generally uses CPU dead cycles to execute debugging com-
mands while the CPU is operating normally, but can steal cycles from the CPU when
necessary. Other commands are firmware based, and require that the CPU be in ac-
tive background debug mode (BDM) for execution. While BDM is active, the CPU ex-
ecutes a monitor program located in a small on-chip ROM.

Debugging control logic communicates with external devices serially, via the BKGD
pin. This single-wire approach helps to minimize the number of pins needed for devel-
opment support.

Background debug does not operate in STOP mode.

8.4.1 Enabling BDM

The debugger must be enabled before it can be activated. Enabling has two phases.
First, the BDM ROM must be enabled by writing the ENBDM bit in the BDM status reg-
ister, using a debugging command sent via the single wire interface. Once the ROM
is enabled, it remains available until the next system reset, or until ENBDM is cleared
by another debugging command. Second, BDM must be activated to map the ROM
and BDM control registers to addresses $FF00 to $FFFF and put the MCU in back-
ground mode.
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-6 REFERENCE MANUAL



After the firmware is enabled, BDM can be activated by the hardware BACKGROUND
command, by breakpoints tagged via the LIM breakpoint logic or the BDM tagging
mechanism, and by the BGND instruction. An attempt to activate BDM before firmware
has been enabled causes the MCU to resume normal instruction execution after a
brief delay.

BDM becomes active at the next instruction boundary following execution of the BDM
BACKGROUND command. Breakpoints can be configured to activate BDM before a
tagged instruction is executed.

While BDM is active, BDM control registers are mapped to addresses $FF00 to $FF06.
These registers are only accessible through BDM firmware or BDM hardware com-
mands. 8.4.4 BDM Registers  describes the registers.

Some M68HC12 on-chip peripherals have a BDM control bit, which determines wheth-
er the peripheral function is available during BDM. If no bit is shown, the peripheral is
active in BDM.

8.4.2 BDM Serial Interface

The BDM serial interface uses a clocking scheme in which the external host generates
a falling edge on the BKGD pin to indicate the start of each bit time. This falling edge
must be sent for every bit, whether data is transmitted or received.

BKGD is an open drain pin that can be driven either by the MCU or by an external host.
Data is transferred MSB first, at 16 E-clock cycles per bit. The interface times out if 512
E-clock cycles occur between falling edges from the host. The hardware clears the
command register when a time-out occurs.

The BKGD pin is used to send and receive data. The following diagrams show timing
for each of these cases. Interface timing is synchronous to MCU clocks, but the exter-
nal host is asynchronous to the target MCU. The internal clock signal is shown for ref-
erence in counting cycles.

Figure 8-2 shows an external host transmitting a data bit to the BKGD pin of a target
M68HC12 MCU. The host is asynchronous to the target, so there is a 0- to 1-cycle de-
lay from the host-generated falling edge to the time when the target perceives the bit.
Ten target E-cycles later, the target senses the bit level on the BKGD pin. The host
can drive high during host-to-target transmission to speed up rising edges, because
the target does not drive the pin during this time.
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-7



Figure 8-2 BDM Host to Target Serial Bit Timing

Figure 8-3 shows an external host receiving a logic one from the target MCU. Since
the host is asynchronous to the target, there is a 0- or 1-cycle delay from the host-gen-
erated falling edge on BKGD until the target perceives the bit. The host holds the sig-
nal low long enough for the target to recognize it (a minimum of two target E-clock
cycles), but must release the low drive before the target begins to drive the active-high
speed-up pulse seven cycles after the start of the bit time. The host should sample the
bit level about ten cycles after the start of bit time.

Figure 8-3 BDM Target to Host Serial Bit Timing (Logic 1)

10 CYCLES

ECLOCK
(TARGET

MCU)

HOST
TRANSMIT 1

TARGET SENSES BIT

EARLIEST
START OF
NEXT BIT

SYNCHRONIZATION
UNCERTAINTY

PERCEIVED START
OF BIT TIME

HOST
TRANSMIT 0

CPU12 BDM HT TIM

10 CYCLES

ECLOCK
(TARGET

MCU)

EARLIEST
START OF
NEXT BIT

BKGD PIN

PERCEIVED
START OF BIT TIME

10 CYCLES

HOST SAMPLES
BKGD PIN

HOST
DRIVE TO
BKGD PIN

TARGET MCU
SPEEDUP

PULSE

R-C RISE

HIGH-IMPEDANCE

HIGH-IMPEDANCE

HIGH-IMPEDANCE

CPU12 BDM TH TIM 1
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-8 REFERENCE MANUAL



Figure 8-4 shows the host receiving a logic zero from the target. Since the host is
asynchronous to the target, there is a 0- or 1-cycle delay from the host-generated fall-
ing edge on BKGD until the target perceives the bit. The host initiates the bit time, but
the target finishes it. To make certain the host receives a logic zero, the target drives
the BKGD pin low for 13 E-clock cycles, then briefly drives the signal high to speed up
the rising edge. The host samples the bit level about ten cycles after starting the bit
time.

Figure 8-4 BDM Target to Host Serial Bit Timing (Logic 0)

8.4.3 BDM Commands

All BDM opcodes are eight bits long, and can be followed by an address or data, as
indicated by the instruction.

Commands implemented in BDM control hardware are listed in Table 8-2 . These com-
mands, except for BACKGROUND, do not require the CPU to be in BDM mode for ex-
ecution. The control logic uses CPU dead cycles to execute these instructions. If a
dead cycle cannot be found within 128 cycles, the control logic steals cycles from the
CPU.

10 CYCLES

ECLOCK
(TARGET

MCU)

EARLIEST
START OF
NEXT BIT

BKGD PIN

PERCEIVED
START OF BIT TIME

10 CYCLES

HOST SAMPLES
BKGD PIN

HOST
DRIVE TO
BKGD PIN

TARGET MCU
DRIVE AND

SPEEDUP PULSE

HIGH-IMPEDANCE

SPEEDUP PULSE

CPU12 BDM TH0TIM
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-9



The CPU must be in background mode to execute commands that are implemented
in the BDM ROM. The CPU executes code from the ROM to perform the requested
operation. These commands are shown in Table 8-3 .

The host controller must wait 150 cycles for a non-intrusive BDM command to execute
before another command can be sent. This delay includes 128 cycles for the maxi-
mum delay for a dead cycle.

BDM logic retains control of the internal buses until a read or write is completed. If an
operation can be completed in a single cycle, it does not intrude on normal CPU oper-
ation. However, if an operation requires multiple cycles, CPU clocks are frozen until
the operation is complete.

Table 8-2 BDM Commands Implemented in Hardware

Command Opcode (Hex) Data Description

BACKGROUND 90 None Enter background mode (if firmware enabled).

READ_BD_BYTE E4 16-bit address
16-bit data out

Read from memory with BDM in map (may steal cycles
if external access) data for odd address on low byte,
data for even address on high byte.

STATUS1

NOTES:
1. STATUS command is a specific case of the READ_BD_BYTE command.

E4 FF01,
 0000 0000 (out)

READ_BD_BYTE $FF01. Running user code (BGND
instruction is not allowed).

FF01,
1000 0000 (out)

READ_BD_BYTE $FF01. BGND instruction is allowed.

FF01,
 1100 0000 (out)

READ_BD_BYTE $FF01. Background mode active
(waiting for single wire serial command).

READ_BD_WORD EC 16-bit address
 16-bit data out

Read from memory with BDM in map (may steal cycles
if external access) must be aligned access.

READ_BYTE E0 16-bit address
16-bit data out

Read from memory with BDM out of map (may steal cy-
cles if external access) data for odd address on low
byte, data for even address on high byte.

READ_WORD E8 16-bit address
16-bit data out

Read from memory with BDM out of map (may steal cy-
cles if external access) must be aligned access.

WRITE_BD_BYTE C4 16-bit address
 16-bit data in

Write to memory with BDM in map (may steal cycles if
external access) data for odd address on low byte, data
for even address on high byte.

ENABLE_FIRMWARE2

2. ENABLE_FIRMWARE is a specific case of the WRITE_BD_BYTE command.

C4 FF01,
1xxx xxxx(in)

Write byte $FF01, set the ENBDM bit. This allows exe-
cution of commands which are implemented in firm-
ware. Typically, read STATUS, OR in the MSB, write
the result back to STATUS.

WRITE_BD_WORD CC 16-bit address
 16-bit data in

Write to memory with BDM in map (may steal cycles if
external access) must be aligned access.

WRITE_BYTE C0 16-bit address
 16-bit data in

Write to memory with BDM out of map (may steal cycles
if external access) data for odd address on low byte,
data for even address on high byte.

WRITE_WORD C8 16-bit address
 16-bit data in

Write to memory with BDM out of map (may steal cycles
if external access) must be aligned access.
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-10 REFERENCE MANUAL



8.4.4 BDM Registers

Seven BDM registers are mapped into the standard 64-Kbyte address space when
BDM is active. Mapping is shown in Table 8-4 .

The content of the instruction register is determined by the type of background instruc-
tion being executed. The status register indicates BDM operating conditions. The shift
register contains data being received or transmitted via the serial interface. The ad-
dress register is temporary storage for BDM commands. The CCR register preserves
the content of the CPU12 CCR while BDM is active.

The only register of interest to users is the status register. The other BDM registers are
used only by the BDM firmware to execute commands. The registers can be accessed
by means of the hardware READ_BD and WRITE_BD commands, but must not be
written during BDM operation.

Table 8-3 BDM Firmware Commands

Command Opcode (Hex) Data Description

GO 08 none Resume normal processing

TRACE1 10 none Execute one user instruction then return to BDM

TAGGO 18 none Enable tagging then resume normal processing

WRITE_NEXT 42 16-bit data in X = X + 2; Write next word @ 0,X

WRITE_PC 43 16-bit data in Write program counter

WRITE_D 44 16-bit data in Write D accumulator

WRITE_X 45 16-bit data in Write X index register

WRITE_Y 46 16-bit data in Write Y index register

WRITE_SP 47 16-bit data in Write stack pointer

READ_NEXT 62 16-bit data out X = X + 2; Read next word @ 0,X

READ_PC 63 16-bit data out Read program counter

READ_D 64 16-bit data out Read D accumulator

READ_X 65 16-bit data out Read X index register

READ_Y 66 16-bit data out Read Y index register

READ_SP 67 16-bit data out Read stack pointer

Table 8-4 BDM Register Mapping

Address Register

$FF00 BDM instruction register

$FF01 BDM status register

$FF02–$FF03 BDM shift register

$FF04–$FF05 BDM address register

$FF06 BDM CCR register
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-11



8.4.4.1 BDM Status Register

ENBDM — Enable BDM ROM
Shows whether the BDM ROM is enabled. Cleared by reset.

0 = BDM ROM not enabled
1 = BDM ROM enabled, but not in memory map unless BDM is active

BDMACT — BDM Active Flag
Shows whether the BDM ROM is in the memory map. Cleared by reset.

0 = ROM not in map
1 = ROM in map (MCU is in active BDM)

ENTAG — Instruction Tagging Enable
Shows whether instruction tagging is enabled. Set by the TAGGO instruction and
cleared when BDM is entered. Cleared by reset.

NOTE

Execute a TAGGO command to enable instruction tagging. Do not
write ENTAG directly.

0 = Tagging not enabled, or BDM active
1 = Tagging active

SDV — Shifter Data Valid
Shows that valid data is in the serial interface shift register.

NOTE

SDV is used by firmware-based instructions. Do not attempt to write
SDV directly.

0 = No valid data
1 = Valid Data

TRACE — Trace Flag
Shows when tracing is enabled.

NOTE

Execute a TRACE1 command to enable instruction tagging. Do not
attempt to write TRACE directly.

0 = Tracing not enabled
1 = Tracing active

STATUS — BDM Status Register $FF01

BIT 7 6 5 4 3 2 1 BIT 0

ENBDM BDMACT ENTAG SDV TRACE 0 0 0

RESET: 0 0 0 0 0 0 0 0

SP.
S. CHIP &
PERIPH.:

1 0 0 0 0 0 0 0
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-12 REFERENCE MANUAL



8.5 Instruction Tagging

The instruction queue and cycle-by-cycle CPU activity can be reconstructed in real
time, or from trace history that was captured by a logic analyzer. However, the recon-
structed queue cannot be used to stop the CPU at a specific instruction, because ex-
ecution has already begun by the time an operation is visible outside the MCU. A
separate instruction tagging mechanism is provided for this purpose.

Executing the BDM TAGGO command configures two MCU pins for tagging. The
TAGLO signal shares a pin with the LSTRB signal, and the TAGHI signal shares a pin
with the BKGD pin. Tagging information is latched on the falling edge of ECLK, as
shown in Figure 8-5 .

Figure 8-5 Tag Input Timing

Table 8-5 shows the functions of the two tagging pins. The pins operate independent-
ly; the state of one pin does not affect the function of the other. The presence of logic
level zero on either pin at the fall of ECLK performs the indicated function. Tagging is
allowed in all modes. Tagging is disabled when BDM becomes active.

Table 8-5 Tag Pin Function

TAGHI TAGLO Tag

1 1 No Tag

1 0 Low Byte

0 1 High Byte

0 0 Both Bytes

CPU12 TAG TIM

ECLK

LSTRB/TAGLO

BKGD/TAGHI

TAGS ARE APPLIED TO PROGRAM INFORMATION
CAPTURED ON THIS ECLK TRANSITION

LSTRB
VALID

TAGLO
VALID

TAGHI
VALID
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-13



In M68HC12 derivatives that have hardware breakpoint capability, the breakpoint con-
trol logic and BDM control logic use the same internal signals for instruction tagging.
The CPU12 does not differentiate between the two kinds of tags.

The tag follows program information as it advances through the queue. When a tagged
instruction reaches the head of the queue, the CPU enters active background debug
mode rather than executing the instruction.

8.6 Breakpoints

Breakpoints halt instruction execution at particular places in a program. To assure
transparent operation, breakpoint control logic is implemented outside the CPU, and
particular models of MCU can have different breakpoint capabilities. Refer to the ap-
propriate device manual for detailed information. Generally, breakpoint logic can be
configured to halt execution before an instruction executes, or to halt execution on the
next instruction boundary following the breakpoint.

8.6.1 Breakpoint Type

There are three basic types of breakpoints:

1. Address-only breakpoints that cause the CPU to execute an SWI. These break-
points can be set only on addresses. When the breakpoint logic encounters the
breakpoint tag, the CPU12 executes an SWI instruction.

2. Address-only breakpoints that cause the MCU to enter BDM. These break-
points can be set only on addresses. When the breakpoint logic encounters the
breakpoint tag, BDM is activated.

3. Address/data breakpoints that cause the MCU to enter BDM. These break-
points can be set on an address, or on an address and data. When the break-
point logic encounters the breakpoint tag, BDM is activated.

8.6.2 Breakpoint Operation

Breakpoints use two mechanisms to halt execution:

1. The tag mechanism marks a particular program fetch with a high (even) or low
(odd) byte indicator. The tagged byte moves through the instruction queue until
a start cycle occurs, then the breakpoint is taken. Breakpoint logic can be con-
figured to force BDM, or to initiate an SWI when the tag is encountered.

2. The force BDM mechanism causes the MCU to enter active BDM at the next
instruction start cycle.

CPU12 instructions are used to implement both breakpoint mechanisms. When an
SWI tag is encountered, the CPU performs the same sequence of operations as for an
SWI. When BDM is forced, the CPU executes a BGND instruction. However, because
these operations are not part of the normal flow of instruction execution, the control
program must keep track of the actual breakpoint address.
 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-14 REFERENCE MANUAL



Both SWI and BGND store a return PC value (SWI on the stack and BGND in the
CPU12 TMP2 register), but this value is automatically incremented to point to the next
instruction after SWI or BGND. In order to resume execution where a breakpoint oc-
curred, the control program must preserve the breakpoint address rather than use the
incremented PC value.

The breakpoint logic generally uses match registers to determine when a break is tak-
en. Registers can be used to match the high and low bytes of addresses for single and
dual breakpoints, to match data for single breakpoints, or to do both functions. Use of
the registers is generally determined by control bit settings.
CPU12 DEVELOPMENT AND DEBUG SUPPORT MOTOROLA

REFERENCE MANUAL 8-15



 MOTOROLA DEVELOPMENT AND DEBUG SUPPORT CPU12

8-16 REFERENCE MANUAL



SECTION 9
FUZZY LOGIC SUPPORT

The CPU12 has the first microcontroller instruction set to specifically address the
needs of fuzzy logic. This section describes the use of fuzzy logic in control systems,
discusses the CPU12 fuzzy logic instructions, and provides examples of fuzzy logic
programs.

9.1 Introduction

The CPU12 includes four instructions that perform specific fuzzy logic tasks. In addi-
tion, several other instructions are especially useful in fuzzy logic programs. The over-
all C-friendliness of the instruction set also aids development of efficient fuzzy logic
programs.

This section explains the basic fuzzy logic algorithm for which the four fuzzy logic in-
structions are intended. Each of the fuzzy logic instructions are then explained in de-
tail. Finally, other custom fuzzy logic algorithms are discussed, with emphasis on use
of other CPU12 instructions.

The four fuzzy logic instructions are MEM, which evaluates trapezoidal membership
functions; REV and REVW, which perform unweighted or weighted MIN-MAX rule
evaluation; and WAV, which performs weighted average defuzzification on singleton
output membership functions.

Other instructions that are useful for custom fuzzy logic programs include MINA,
EMIND, MAXM, EMAXM, TBL, ETBL, and EMACS. For higher resolution fuzzy pro-
grams, the fast extended precision math instructions in the CPU12 are also beneficial.
Flexible indexed addressing modes help simplify access to fuzzy logic data structures
stored as lists or tabular data structures in memory.

The actual logic additions required to implement fuzzy logic support in the CPU12 are
quite small, so there is no appreciable increase in cost for the typical user. A fuzzy in-
ference kernel for the CPU12 requires one-fifth as much code space, and executes
fifteen times faster than a comparable kernel implemented on a typical midrange mi-
crocontroller. By incorporating fuzzy logic support into a high-volume, general-pur-
pose microcontroller product family, Motorola has made fuzzy logic available for a
huge base of applications.

9.2 Fuzzy Logic Basics

This is an overview of basic fuzzy logic concepts. It can serve as a general introduction
to the subject, but that is not the main purpose. There are a number of fuzzy logic pro-
gramming strategies. This discussion concentrates on the methods implemented in
the CPU12 fuzzy logic instructions. The primary goal is to provide a background for a
detailed explanation of the CPU12 fuzzy logic instructions.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-1



In general, fuzzy logic provides for set definitions that have fuzzy boundaries rather
than the crisp boundaries of Aristotelian logic. These sets can overlap so that, for a
specific input value, one or more sets associated with linguistic labels may be true to
a degree at the same time. As the input varies from the range of one set into the range
of an adjacent set, the first set becomes progressively less true while the second set
becomes progressively more true.

Fuzzy logic has membership functions which emulate human concepts like “tempera-
ture is warm”; that is, conditions are perceived to have gradual boundaries. This con-
cept seems to be a key element of the human ability to solve certain types of complex
problems that have eluded traditional control methods.

Fuzzy sets provide a means of using linguistic expressions like “temperature is warm”
in rules which can then be evaluated with a high degree of numerical precision and
repeatability. This directly contradicts the common misperception that fuzzy logic pro-
duces approximate results — a specific set of input conditions always produces the
same result, just as a conventional control system does.

A microcontroller-based fuzzy logic control system has two parts. The first part is a
fuzzy inference kernel which is executed periodically to determine system outputs
based on current system inputs. The second part of the system is a knowledge base
which contains membership functions and rules. Figure 9-1 is a block diagram of this
kind of fuzzy logic system.

The knowledge base can be developed by an application expert without any microcon-
troller programming experience. Membership functions are simply expressions of the
expert’s understanding of the linguistic terms that describe the system to be controlled.
Rules are ordinary language statements that describe the actions a human expert
would take to solve the application problem.

Rules and membership functions can be reduced to relatively simple data structures
(the knowledge base) stored in nonvolatile memory. A fuzzy inference kernel can be
written by a programmer who does not know how the application system works. The
only thing the programmer needs to do with knowledge base information is store it in
the memory locations used by the kernel.

One execution pass through the fuzzy inference kernel generates system output sig-
nals in response to current input conditions. The kernel is executed as often as needed
to maintain control. If the kernel is executed more often than needed, processor band-
width and power are wasted; delaying too long between passes can cause the system
to get too far out of control. Choosing a periodic rate for a fuzzy control system is the
same as it would be for a conventional control system.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-2 REFERENCE MANUAL



Figure 9-1 Block Diagram of a Fuzzy Logic System

9.2.1 Fuzzification (MEM)

During the fuzzification step, the current system input values are compared against
stored input membership functions to determine the degree to which each label of
each system input is true. This is accomplished by finding the y-value for the current
input value on a trapezoidal membership function for each label of each system input.
The MEM instruction in the CPU12 performs this calculation for one label of one sys-
tem input. To perform the complete fuzzification task for a system, several MEM in-
structions must be executed, usually in a program loop structure.

Figure 9-2 shows a system of three input membership functions, one for each label of
the system input. The x-axis of all three membership functions represents the range
of possible values of the system input. The vertical line through all three membership
functions represents a specific system input value. The y-axis represents degree of
truth and varies from completely false ($00 or 0%) to completely true ($FF or 100%).
The y-value where the vertical line intersects each of the membership functions, is the
degree to which the current input value matches the associated label for this system
input. For example, the expression “temperature is warm” is 25% true ($40). The value
$40 is stored to a RAM location, and is called a fuzzy input (in this case, the fuzzy input
for “temperature is warm”). There is a RAM location for each fuzzy input (for each label
of each system input).

INPUT
MEMBERSHIP
FUNCTIONS

RULE LIST

OUTPUT
MEMBERSHIP
FUNCTIONS

FUZZIFICATION

RULE EVALUATION

DEFUZZIFICATION

FUZZY
INFERENCE

KERNEL

KNOWLEDGE
BASE

SYSTEM
INPUTS

SYSTEM
OUTPUTS

FUZZY INPUTS
(IN RAM)

FUZZY OUTPUTS
(IN RAM)

…

…

FUZ LOG BD
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-3



Figure 9-2 Fuzzification Using Membership Functions

When the fuzzification step begins, the current value of the system input is in an accu-
mulator of the CPU12, one index register points to the first membership function defi-
nition in the knowledge base, and a second index register points to the first fuzzy input
in RAM. As each fuzzy input is calculated by executing a MEM instruction, the result
is stored to the fuzzy input and both pointers are updated automatically to point to the
locations associated with the next fuzzy input. The MEM instruction takes care of ev-
erything except counting the number of labels per system input and loading the current
value of any subsequent system inputs.

The end result of the fuzzification step is a table of fuzzy inputs representing current
system conditions.

$00

$80

$FF

0˚F 32˚F 64˚F 96˚F 128˚F

$40

$C0
HOT

$00

$80

$FF

0˚F 32˚F 64˚F 96˚F 128˚F

$40

$C0
WARM

$00

$80

$FF

0˚F 32˚F 64˚F 96˚F 128˚F

$40

$C0
COLD

CURRENT

IS 64˚F
TEMPERATURE

MEMBERSHIP FUNCTIONS
FOR TEMPERATURE FUZZY INPUTS

TEMPERATURE IS HOT

TEMPERATURE IS WARM

TEMPERATURE IS COLD

$00

$40

$C0

FUZ MEM FNCT
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-4 REFERENCE MANUAL



9.2.2 Rule Evaluation (REV and REVW)

Rule evaluation is the central element of a fuzzy logic inference program. This step
processes a list of rules from the knowledge base using current fuzzy input values from
RAM to produce a list of fuzzy outputs in RAM. These fuzzy outputs can be thought of
as raw suggestions for what the system output should be in response to the current
input conditions. Before the results can be applied, the fuzzy outputs must be further
processed, or defuzzified, to produce a single output value that represents the com-
bined effect of all of the fuzzy outputs.

The CPU12 offers two variations of rule evaluation instructions. The REV instruction
provides for unweighted rules (all rules are considered to be equally important). The
REVW instruction is similar but allows each rule to have a separate weighting factor
which is stored in a separate parallel data structure in the knowledge base. In addition
to the weights, the two rule evaluation instructions also differ in the way rules are en-
coded into the knowledge base.

An understanding of the structure and syntax of rules is needed to understand how a
microcontroller performs the rule evaluation task. The following is an example of a typ-
ical rule.

If temperature is warm and pressure is high then heat is (should be) off.

At first glance, it seems that encoding this rule in a compact form understandable to
the microcontroller would be difficult, but it is actually simple to reduce the rule to a
small list of memory pointers. The left portion of the rule is a statement of input condi-
tions and the right portion of the rule is a statement of output actions.

The left portion of a rule is made up of one or more (in this case two) antecedents con-
nected by a fuzzy and operator. Each antecedent expression consists of the name of
a system input, followed by is, followed by a label name. The label must be defined by
a membership function in the knowledge base. Each antecedent expression corre-
sponds to one of the fuzzy inputs in RAM. Since and is the only operator allowed to
connect antecedent expressions, there is no need to include these in the encoded
rule. The antecedents can be encoded as a simple list of pointers to (or addresses of)
the fuzzy inputs to which they refer.

The right portion of a rule is made up of one or more (in this case one) consequents.
Each consequent expression consists of the name of a system output, followed by is,
followed by a label name. Each consequent expression corresponds to a specific
fuzzy output in RAM. Consequents for a rule can be encoded as a simple list of point-
ers to (or addresses of) the fuzzy outputs to which they refer.

The complete rules are stored in the knowledge base as a list of pointers or addresses
of fuzzy inputs and fuzzy outputs. In order for the rule evaluation logic to work, there
must be some means of knowing which pointers refer to fuzzy inputs, and which refer
to fuzzy outputs. There also must be a way to know when the last rule in the system
has been reached.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-5



One method of organization is to have a fixed number of rules with a specific number
of antecedents and consequents. A second method, employed in Motorola Freeware
M68HC11 kernels, is to mark the end of the rule list with a reserved value, and use a
bit in the pointers to distinguish antecedents from consequents. A third method of or-
ganization, used in the CPU12, is to mark the end of the rule list with a reserved value,
and separate antecedents and consequents with another reserved value. This permits
any number of rules, and allows each rule to have any number of antecedents and
consequents, subject to the limits imposed by availability of system memory.

Each rule is evaluated sequentially, but the rules as a group are treated as if they were
all evaluated simultaneously. Two mathematical operations take place during rule
evaluation. The fuzzy and operator corresponds to the mathematical minimum opera-
tion and the fuzzy or operation corresponds to the mathematical maximum operation.
The fuzzy and is used to connect antecedents within a rule. The fuzzy or is implied
between successive rules. Before evaluating any rules, all fuzzy outputs are set to
zero (meaning not true at all). As each rule is evaluated, the smallest (minimum) an-
tecedent is taken to be the overall truth of the rule. This rule truth value is applied to
each consequent of the rule (by storing this value to the corresponding fuzzy output)
unless the fuzzy output is already larger (maximum). If two rules affect the same fuzzy
output, the rule that is most true governs the value in the fuzzy output because the
rules are connected by an implied fuzzy or.

In the case of rule weighting, the truth value for a rule is determined as usual by finding
the smallest rule antecedent. Before applying this truth value to the consequents for
the rule, the value is multiplied by a fraction from zero (rule disabled) to one (rule fully
enabled). The resulting modified truth value is then applied to the fuzzy outputs.

The end result of the rule evaluation step is a table of suggested or “raw” fuzzy outputs
in RAM. These values were obtained by plugging current conditions (fuzzy input val-
ues) into the system rules in the knowledge base. The raw results cannot be supplied
directly to the system outputs because they may be ambiguous. For instance, one raw
output can indicate that the system output should be medium with a degree of truth of
50% while, at the same time, another indicates that the system output should be low
with a degree of truth of 25%. The defuzzification step resolves these ambiguities.

9.2.3 Defuzzification (WAV)

The final step in the fuzzy logic program combines the raw fuzzy outputs into a com-
posite system output. Unlike the trapezoidal shapes used for inputs, the CPU12 typi-
cally uses singletons for output membership functions. As with the inputs, the x-axis
represents the range of possible values for a system output. Singleton membership
functions consist of the x-axis position for a label of the system output. Fuzzy outputs
correspond to the y-axis height of the corresponding output membership function.

The WAV instruction calculates the numerator and denominator sums for weighted av-
erage of the fuzzy outputs according to the formula:
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-6 REFERENCE MANUAL



Where n is the number of labels of a system output, Si are the singleton positions from
the knowledge base, and Fi are fuzzy outputs from RAM. For a common fuzzy logic
program on the CPU12, n is eight or less (though this instruction can handle any value
to 255) and Si and Fi are 8-bit values. The final divide is performed with a separate
EDIV instruction placed immediately after the WAV instruction.

Before executing WAV, an accumulator must be loaded with the number of iterations
(n), one index register must be pointed at the list of singleton positions in the knowl-
edge base, and a second index register must be pointed at the list of fuzzy outputs in
RAM. If the system has more than one system output, the WAV instruction is executed
once for each system output.

9.3 Example Inference Kernel

Figure 9-3 is a complete fuzzy inference kernel written in CPU12 assembly language.
Numbers in square brackets are cycle counts. The kernel uses two system inputs with
seven labels each and one system output with seven labels. The program assembles
to 57 bytes. It executes in about 54 µs at an 8 MHz bus rate. The basic structure can
easily be extended to a general-purpose system with a larger number of inputs and
outputs.

Lines 1 to 3 set up pointers and load the system input value into the A accumulator.

Line 4 sets the loop count for the loop in lines 5 and 6.

Lines 5 and 6 make up the fuzzification loop for seven labels of one system input. The
MEM instruction finds the y-value on a trapezoidal membership function for the current
input value, for one label of the current input, and then stores the result to the corre-
sponding fuzzy input. Pointers in X and Y are automatically updated by four and one
so they point at the next membership function and fuzzy input respectively.

Line 7 loads the current value of the next system input. Pointers in X and Y already
point to the right places as a result of the automatic update function of the MEM in-
struction in line 5.

Line 8 reloads a loop count.

Lines 9 and 10 form a loop to fuzzify the seven labels of the second system input.
When the program drops to line 11, the Y index register is pointing at the next location
after the last fuzzy input, which is the first fuzzy output in this system.

System Output

Si F i
i 1=

n

∑

F i
i 1=

n

∑
----------------------=
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-7



Figure 9-3 Fuzzy Inference Engine

Line 11 sets the loop count to clear seven fuzzy outputs.

Lines 12 and 13 form a loop to clear all fuzzy outputs before rule evaluation starts.

Line 14 initializes the X index register to point at the first element in the rule list for the
REV instruction.

Line 15 initializes the Y index register to point at the fuzzy inputs and outputs in the
system. The rule list (for REV) consists of 8-bit offsets from this base address to par-
ticular fuzzy inputs or fuzzy outputs. The special value $FE is interpreted by REV as a
marker between rule antecedents and consequents.

Line 16 initializes the A accumulator to the highest 8-bit value in preparation for finding
the smallest fuzzy input referenced by a rule antecedent. The LDAA #$FF instruction
also clears the V-bit in the CPU12’s condition code register so the REV instruction
knows it is processing antecedents. During rule list processing, the V bit is toggled
each time an $FE is detected in the list. The V bit indicates whether REV is processing
antecedents or consequents.

Line 17 is the REV instruction, a self-contained loop to process successive elements
in the rule list until an $FF character is found. For a system of 17 rules with two ante-
cedents and one consequent each, the REV instruction takes 259 cycles, but it is in-
terruptible so it does not cause a long interrupt latency.

*
01 [2] FUZZIFY LDX #INPUT_MFS ;Point at MF definitions
02 [2] LDY #FUZ_INS ;Point at fuzzy input table
03 [3] LDAA CURRENT_INS ;Get first input value
04 [1] LDAB #7 ;7 labels per input
05 [5] GRAD_LOOP MEM ;Evaluate one MF
06 [3] DBNE B,GRAD_LOOP ;For 7 labels of 1 input
07 [3] LDAA CURRENT_INS+1 ;Get second input value
08 [1] LDAB #7 ;7 labels per input
09 [5] GRAD_LOOP1 MEM ;Evaluate one MF
10 [3] DBNE B,GRAD_LOOP1 ;For 7 labels of 1 input

11 [1] LDAB #7 ;Loop count
12 [2] RULE_EVAL CLR 1,Y+ ;Clr a fuzzy out & inc ptr
13 [3] DBNE b,RULE_EVAL ;Loop to clr all fuzzy outs
14 [2] LDX #RULE_START ;Point at first rule element
15 [2] LDY #FUZ_INS ;Point at fuzzy ins and outs
16 [1] LDAA #$FF ;Init A (and clears V-bit)
17 [3n+4] REV ;Process rule list

18 [2] DEFUZ LDY #FUZ_OUT ;Point at fuzzy outputs
19 [1] LDX #SGLTN_POS ;Point at singleton positions
20 [1] LDAB #7 ;7 fuzzy outs per COG output
21 [8b+9] WAV ;Calculate sums for wtd av
22 [11] EDIV ;Final divide for wtd av
23 [1] TFR Y D ;Move result to A:B
24 [3] STAB COG_OUT ;Store system output

*
***** End
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-8 REFERENCE MANUAL



Lines 18 through 20 set up pointers and an iteration count for the WAV instruction.

Line 21 is the beginning of defuzzification. The WAV instruction calculates a sum-of-
products and a sum-of-weights.

Line 22 completes defuzzification. The EDIV instruction performs a 32-bit by 16-bit di-
vide on the intermediate results from WAV to get the weighted average.

Line 23 moves the EDIV result into the double accumulator.

Line 24 stores the low 8-bits of the defuzzification result.

This example inference program shows how easy it is to incorporate fuzzy logic into
general applications using the CPU12. Code space and execution time are no longer
serious factors in the decision to use fuzzy logic. The next section begins a much more
detailed look at the fuzzy logic instructions of the CPU12.

9.4 MEM Instruction Details

This section provides a more detailed explanation of the membership function evalu-
ation instruction (MEM), including details about abnormal special cases for improperly
defined membership functions.

9.4.1 Membership Function Definitions

Figure 9-4 shows how a normal membership function is specified in the CPU12. Typ-
ically a software tool is used to input membership functions graphically, and the tool
generates data structures for the target processor and software kernel. Alternatively,
points and slopes for the membership functions can be determined and stored in
memory with define-constant assembler directives.

An internal CPU algorithm calculates the y-value where the current input intersects a
membership function. This algorithm assumes the membership function obeys some
common-sense rules. If the membership function definition is improper, the results
may be unusual. 9.4.2 Abnormal Membership Function Definitions discusses
these cases. The following rules apply to normal membership functions.

• $00 ≤ point1 < $FF
• $00 < point2 ≤ $FF
• point1 < point2
• The sloping sides of the trapezoid meet at or above $FF

Each system input such as temperature has several labels such as cold, cool, normal,
warm, and hot. Each label of each system input must have a membership function to
describe its meaning in an unambiguous numerical way. Typically, there are three to
seven labels per system input, but there is no practical restriction on this number as
far as the fuzzification step is concerned.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-9



Figure 9-4 Defining a Normal Membership Function

9.4.2 Abnormal Membership Function Definitions

In the CPU12, it is possible (and proper) to define “crisp” membership functions. A
crisp membership function has one or both sides vertical (infinite slope). Since the
slope value $00 is not used otherwise, it is assigned to mean infinite slope to the MEM
instruction in the CPU12.

Although a good fuzzy development tool will not allow the user to specify an improper
membership function, it is possible to have program errors or memory errors which re-
sult in erroneous abnormal membership functions. Although these abnormal shapes
do not correspond to any working systems, understanding how the CPU12 treats
these cases can be helpful for debugging.

A close examination of the MEM instruction algorithm will show how such membership
functions are evaluated. Figure 9-5 is a complete flow diagram for the execution of a
MEM instruction. Each rectangular box represents one CPU bus cycle. The number in
the upper left corner corresponds to the cycle number and the letter corresponds to
the cycle type (refer to SECTION 6 INSTRUCTION GLOSSARY for details). The up-
per portion of the box includes information about bus activity during this cycle (if any).
The lower portion of the box, which is separated by a dashed line, includes information
about internal CPU processes. It is common for several internal functions to take place
during a single CPU cycle (for example, in cycle 2, two 8-bit subtractions take place
and a flag is set based on the results).

GRAPHICAL REPRESENTATION

$00 $10 $20 $30 $40 $50 $60 $70 $80 $90 $A0 $B0 $C0 $D0 $E0 $F0 $FF

$00

$20

$40

$60

$80

$A0

$FF

$E0

$C0

MEMORY REPRESENTATION

ADDR

ADDR+1

ADDR+2

ADDR+3

$40

$D0

$08

$04

X-POSITION OF POINT_1

X-POSITION OF POINT_2

SLOPE_1 ($FF/(X-POS OF SATURATION – POINT_1))

SLOPE_2 ($FF/(POINT_2 – X-POS OF SATURATION))

POINT_1
POINT_2

SLOPE_1

SLOPE_2

DEGREE
OF

TRUTH

INPUT RANGE

NORM MEM FNCTN
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-10 REFERENCE MANUAL



Figure 9-5 MEM Instruction Flow Diagram

Consider 4a: If (((Slope_2 = 0) or (Grade_2 > $FF)) and (flag_d12n = 0)).

The flag_d12n is zero as long as the input value (in accumulator A) is within the trap-
ezoid. Everywhere outside the trapezoid, one or the other delta term will be negative,
and the flag will equal one. Slope_2 equals zero indicates the right side of the trape-
zoid has infinite slope, so the resulting grade should be $FF everywhere in the trape-
zoid, including at point_2, as far as this side is concerned. The term grade_2 greater
than $FF means the value is far enough into the trapezoid that the right sloping side
of the trapezoid has crossed above the $FF cutoff level and the resulting grade should
be $FF as far as the right sloping side is concerned. 4a decides if the value is left of
the right sloping side (Grade = $FF), or on the sloping portion of the right side of the
trapezoid (Grade = Grade_2). 4b could still override this tentative value in grade.

1 - R Read word @ 0,X — Point_1 and Point_2

2 - R Read word @ –2,X — Slope_1 and Slope_2

2a — Delta_1 = ACCA – Point_1
2b — Delta_2 = Point_2 – ACCA
2c — If (Delta_1 or Delta_2) < 0 then flag_d12n = 1 else flag_d12n = 0

3 - f No bus access

3a — If flag_d12n = 1 then Grade_1 = 0 else Grade_1 = Slope_1 * Delta_1
3b — If flag_d12n = 1 then Grade_2 = 0 else Grade_2 = Slope_2 * Delta_2

4 - O If misaligned then read program word to fill instruction queue else no bus access

4a — If (((Slope_2 = 0) or (Grade_2 > $FF)) and (flag_d12n = 0)) then Grade = $FF

else Grade = Grade_2

4b — If (((Slope_1 = 0) or (Grade_1 > $FF)) and (flag_d12n = 0)) then Grade = Grade

else Grade = Grade_1

5 - w Write byte @ –1,Y — Fuzzy input result (Grade)

START

END

X = X + 4

Y = Y + 1

MEM FLOW
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-11



In 4b, slope_1 is zero if the left side of the trapezoid has infinite slope (vertical). If so,
the result (grade) should be $FF at and to the right of point_1 everywhere within the
trapezoid as far as the left side is concerned. The grade_1 greater than $FF term cor-
responds to the input being to the right of where the left sloping side passes the $FF
cutoff level. If either of these conditions is true, the result (grade) is left at the value it
got from 4a. The “else” condition in 4b corresponds to the input falling on the sloping
portion of the left side of the trapezoid (or possibly outside the trapezoid), so the result
is grade equal grade_1. If the input was outside the trapezoid, flag_d12n would be one
and grade_1 and grade_2 would have been forced to $00 in cycle 3. The else condi-
tion of 4b would set the result to $00.

The following special cases represent abnormal membership function definitions. The
explanations describe how the specific algorithm in the CPU12 resolves these unusual
cases. The results are not all intuitively obvious, but rather fall out from the specific al-
gorithm. Remember, these cases should not occur in a normal system.

9.4.2.1 Abnormal Membership Function Case 1

This membership function is abnormal because the sloping sides cross below the $FF
cutoff level. The flag_d12n signal forces the membership function to evaluate to $00
everywhere except from point_1 to point_2. Within this interval, the tentative values for
grade_1 and grade_2 calculated in cycle 3 fall on the crossed sloping sides. In step
4a, grade gets set to the grade_2 value, but in 4b this is overridden by the grade_1
value, which ends up as the result of the MEM instruction. One way to say this is that
the result follows the left sloping side until the input passes point_2, where the result
goes to $00.

Figure 9-6 Abnormal Membership Function Case 1

If point_1 was to the right of point_2, flag_d12n would force the result to be $00 for all
input values. In fact, flag_d12n always limits the region of interest to the space greater
than or equal to point_1 and less than or equal to point_2.

Memory Definition: $60, $80, $04, $04; Point_1, Point_2, Slope_1, Slope_2

Graphical Representation: How Interpreted:

P1 P2 P1 P2
ABN MEM 1
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-12 REFERENCE MANUAL



9.4.2.2 Abnormal Membership Function Case 2

Like the previous example, the membership function in case 2 is abnormal because
the sloping sides cross below the $FF cutoff level, but the left sloping side reaches the
$FF cutoff level before the input gets to point_2. In this case, the result follows the left
sloping side until it reaches the $FF cutoff level. At this point, the (grade_1 > $FF) term
of 4b kicks in, making the expression true so grade equals grade (no overwrite). The
result from here to point_2 becomes controlled by the “else” part of 4a (grade =
grade_2), and the result follows the right sloping side.

Figure 9-7 Abnormal Membership Function Case 2

9.4.2.3 Abnormal Membership Function Case 3

The membership function in case 3 is abnormal because the sloping sides cross below
the $FF cutoff level, and the left sloping side has infinite slope. In this case, 4a is not
true, so grade equals grade_2. 4b is true because slope_1 is zero, so 4b does not
overwrite grade.

Figure 9-8 Abnormal Membership Function Case 3

9.5 REV, REVW Instruction Details

This section provides a more detailed explanation of the rule evaluation instructions
(REV and REVW). The data structures used to specify rules are somewhat different
for the weighted versus unweighted versions of the instruction. One uses 8-bit offsets
in the encoded rules, while the other uses full 16-bit addresses. This affects the size
of the rule data structure and execution time.

Memory Definition: $60, $C0, $04, $04; Point_1, Point_2, Slope_1, Slope_2

Graphical Representation How Interpreted

P1 P2 P1 P2Left Side
Crosses $FF

ABN MEM 2

Memory Definition: $60, $80, $00, $04; Point_1, Point_2, Slope_1, Slope_2

Graphical Representation How Interpreted

P1 P2 P1 P2
ABN MEM 3
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-13



9.5.1 Unweighted Rule Evaluation (REV)

This instruction implements basic min-max rule evaluation. CPU registers are used for
pointers and intermediate calculation results.

Since the REV instruction is essentially a list-processing instruction, execution time is
dependent on the number of elements in the rule list. The REV instruction is interrupt-
ible (typically within three bus cycles), so it does not adversely affect worst case inter-
rupt latency. Since all intermediate results and instruction status are held in stacked
CPU registers, the interrupt service code can even include independent REV and
REVW instructions.

9.5.1.1 Set Up Prior to Executing REV

Some CPU registers and memory locations need to be set up prior to executing the
REV instruction. X and Y index registers are used as index pointers to the rule list and
the fuzzy inputs and outputs. The A accumulator is used for intermediate calculation
results and needs to be set to $FF initially. The V condition code bit is used as an in-
struction status indicator to show whether antecedents or consequents are being pro-
cessed. Initially, the V bit is cleared to zero to indicate antecedents are being
processed. The fuzzy outputs (working RAM locations) need to be cleared to $00. If
these values are not initialized before executing the REV instruction, results will be er-
roneous.

The X index register is set to the address of the first element in the rule list (in the
knowledge base). The REV instruction automatically updates this pointer so that the
instruction can resume correctly if it is interrupted. After the REV instruction finishes,
X will point at the next address past the $FF separator character that marks the end
of the rule list.

The Y index register is set to the base address for the fuzzy inputs and outputs (in
working RAM). Each rule antecedent is an unsigned 8-bit offset from this base address
to the referenced fuzzy input. Each rule consequent is an unsigned 8-bit offset from
this base address to the referenced fuzzy output. The Y index register remains con-
stant throughout execution of the REV instruction.

The 8-bit A accumulator is used to hold intermediate calculation results during execu-
tion of the REV instruction. During antecedent processing, A starts out at $FF and is
replaced by any smaller fuzzy input that is referenced by a rule antecedent (MIN). Dur-
ing consequent processing, A holds the truth value for the rule. This truth value is
stored to any fuzzy output that is referenced by a rule consequent, unless that fuzzy
output is already larger (MAX).

Before starting to execute REV, A must be set to $FF (the largest 8-bit value) because
rule evaluation always starts with processing of the antecedents of the first rule. For
subsequent rules in the list, A is automatically set to $FF when the instruction detects
the $FE marker character between the last consequent of the previous rule, and the
first antecedent of a new rule.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-14 REFERENCE MANUAL



The instruction LDAA #$FF clears the V bit at the same time it initializes A to $FF. This
satisfies the REV setup requirement to clear the V bit as well as the requirement to
initialize A to $FF. Once the REV instruction starts, the value in the V bit is automati-
cally maintained as $FE separator characters are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm.
Each time a rule consequent references a fuzzy output, that fuzzy output is compared
to the truth value for the current rule. If the current truth value is larger, it is written over
the previous value in the fuzzy output. After all rules have been evaluated, the fuzzy
output contains the truth value for the most-true rule that referenced that fuzzy output.

After REV finishes, A will hold the truth value for the last rule in the rule list. The V con-
dition code bit should be one because the last element before the $FF end marker
should have been a rule consequent. If V is zero after executing REV, it indicates the
rule list was structured incorrectly.

9.5.1.2 Interrupt Details

The REV instruction includes a three-cycle processing loop for each byte in the rule
list (including antecedents, consequents, and special separator characters). Within
this loop, a check is performed to see if any qualified interrupt request is pending. If an
interrupt is detected, the current CPU registers are stacked and the interrupt is hon-
ored. When the interrupt service routine finishes, an RTI instruction causes the CPU
to recover its previous context from the stack, and the REV instruction is resumed as
if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted REV instruc-
tion, points to the REV instruction rather than the instruction that follows. This causes
the CPU to try to execute a new REV instruction upon return from the interrupt. Since
the CPU registers (including the V bit in the condition codes register) indicate the cur-
rent status of the interrupted REV instruction, this effectively causes the rule evalua-
tion operation to resume from where it left off.

9.5.1.3 Cycle-by-Cycle Details for REV

The central element of the REV instruction is a three-cycle loop that is executed once
for each byte in the rule list. There is a small amount of housekeeping activity to get
this loop started as REV begins, and a small sequence to end the instruction. If an in-
terrupt comes, there is a special small sequence to save CPU status on the stack be-
fore honoring the requested interrupt.

Figure 9-9 is a REV instruction flow diagram. Each rectangular box represents one
CPU clock cycle. Decision blocks and connecting arrows are considered to take no
time at all. The letters in the small rectangles in the upper left corner of each bold box
correspond to execution cycle codes (refer to SECTION 6 INSTRUCTION GLOSSA-
RY for details). Lower case letters indicate a cycle where 8-bit or no data is transferred.
Upper case letters indicate cycles where 16-bit or no data is transferred.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-15



Figure 9-9 REV Instruction Flow Diagram

1.0 - O Read program word if $18 misaligned

2.0 - r Read byte @ 0,X (rule element Rx)

X = X + 1 point at next rule element

START

END

4.0 - t

then Read byte @ Rx,Y (fuzzy in or out Fy)

5.2 - f No bus access

Adjust PC to point at current REV instruction

If Rx ≠ $FE or $FF

No

Yes

5.0 - t

Read byte @ 0,X (rule element Rx)

Rx = $FF, other?
$FF

Other

X = X + 1 point at next rule element

6.2 - f No bus access

Adjust X = X – 1

Continue to interrupt stacking

V-bit =?
0 (min)

1 (max)

6.0 - x No bus access

If Rx ≠ $FE then A = min(A, Fy)

6.1 - x
If Rx ≠ $FE or $FF, and ACCA > Fy
then Write byte @ Rx,Y
else no bus access

Rx = $FF (end of rules)?

Yes

No

7.0 - O Read program word if $3A misaligned

3.0 - f No bus access

If Rx = $FE & V was 1, Reset ACCA to $FF
If Rx = $FE Toggle V-bit

else no bus access

else A = A (no change to A)

Update Rx with value read in cyc 2 or 5

Interrupt pending?

Update Fy with value read in cyc 4.0
Update Fy with value read in cyc 4.0

REV INST FLOW
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-16 REFERENCE MANUAL



When a value is read from memory, it cannot be used by the CPU until the second
cycle after the read takes place. This is due to access and propagation delays.

Since there is more than one flow path through the REV instruction, cycle numbers
have a decimal place. This decimal place indicates which of several possible paths is
being used. The CPU normally moves forward by one digit at a time within the same
flow (flow number is indicated after the decimal point in the cycle number). There are
two exceptions possible to this orderly sequence through an instruction. The first is a
branch back to an earlier cycle number to form a loop as in 6.0 to 4.0. The second type
of sequence change is from one flow to a parallel flow within the same instruction such
as 4.0 to 5.2, which occurs if the REV instruction senses an interrupt. In this second
type of sequence branch, the whole number advances by one and the flow number
changes to a new value (the digit after the decimal point).

In cycle 1.0, the CPU12 does an optional program word access to replace the $18 pre-
byte of the REV instruction. Notice that cycle 7.0 is also an O type cycle. One or the
other of these will be a program word fetch, while the other will be a free cycle where
the CPU does not access the bus. Although the $18 page prebyte is a required part of
the REV instruction, it is treated by the CPU12 as a somewhat separate single cycle
instruction.

Rule evaluation begins at cycle 2.0 with a byte read of the first element in the rule list.
Usually this would be the first antecedent of the first rule, but the REV instruction can
be interrupted, so this could be a read of any byte in the rule list. The X index register
is incremented so it points to the next element in the rule list. Cycle 3.0 is needed to
satisfy the required delay between a read and when data is valid to the CPU. Some
internal CPU housekeeping activity takes place during this cycle, but there is no bus
activity. By cycle 4.0, the rule element that was read in cycle 2.0 is available to the
CPU.

Cycle 4.0 is the first cycle of the main three cycle rule evaluation loop. Depending upon
whether rule antecedents or consequents are being processed, the loop will consist of
cycles 4.0, 5.0, 6.0, or the sequence 4.0, 5.0, 6.1. This loop is executed once for every
byte in the rule list, including the $FE separators and the $FF end-of-rules marker.

At each cycle 4.0, a fuzzy input or fuzzy output is read, except during the loop passes
associated with the $FE and $FF marker bytes, where no bus access takes place dur-
ing cycle 4.0. The read access uses the Y index register as the base address and the
previously read rule byte (Rx) as an unsigned offset from Y. The fuzzy input or output
value read here will be used during the next cycle 6.0 or 6.1. Besides being used as
the offset from Y for this read, the previously read Rx is checked to see if it is a sepa-
rator character ($FE). If Rx was $FE and the V-bit was one, this indicates a switch from
processing consequents of one rule to starting to process antecedents of the next rule.
At this transition, the A accumulator is initialized to $FF to prepare for the min opera-
tion to find the smallest fuzzy input. Also, if Rx is $FE, the V-bit is toggled to indicate
the change from antecedents to consequents, or consequents to antecedents.

During cycle 5.0, a new rule byte is read unless this is the last loop pass, and Rx is
$FF (marking the end of the rule list). This new rule byte will not be used until cycle 4.0
of the next pass through the loop.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-17



Between cycle 5.0 and 6.x, the V-bit is used to decide which of two paths to take. If V
is zero, antecedents are being processed and the CPU progresses to cycle 6.0. If V is
one, consequents are being processed and the CPU goes to cycle 6.1.

During cycle 6.0, the current value in the A accumulator is compared to the fuzzy input
that was read in the previous cycle 4.0, and the lower value is placed in the A accu-
mulator (min operation). If Rx is $FE, this is the transition between rule antecedents
and rule consequents, and this min operation is skipped (although the cycle is still
used). No bus access takes place during cycle 6.0 but cycle 6.x is considered an x type
cycle because it could be a byte write (cycle 6.1), or a free cycle (cycle 6.0 or 6.1 with
Rx = $FE or $FF).

If an interrupt arrives while the REV instruction is executing, REV can break between
cycles 4.0 and 5.0 in an orderly fashion so that the rule evaluation operation can re-
sume after the interrupt has been serviced. Cycles 5.2 and 6.2 are needed to adjust
the PC and X index register so the REV operation can recover after the interrupt. PC
is adjusted backward in cycle 5.2 so it points to the currently running REV instruction.
After the interrupt, rule evaluation will resume, but the values that were stored on the
stack for index registers, accumulator A, and CCR will cause the operation to pick up
where it left off. In cycle 6.2, the X index register is adjusted backward by one because
the last rule byte needs to be re-fetched when the REV instruction resumes.

After cycle 6.2, the REV instruction is finished, and execution would continue to the
normal interrupt processing flow.

9.5.2 Weighted Rule Evaluation (REVW)

This instruction implements a weighted variation of min-max rule evaluation. The
weighting factors are stored in a table with one 8-bit entry per rule. The weight is used
to multiply the truth value of the rule (minimum of all antecedents) by a value from zero
to one to get the weighted result. This weighted result is then applied to the conse-
quents, just as it would be for unweighted rule evaluation.

Since the REVW instruction is essentially a list-processing instruction, execution time
is dependent on the number of rules and the number of elements in the rule list. The
REVW instruction is interruptible (typically within three to five bus cycles), so it does
not adversely affect worst case interrupt latency. Since all intermediate results and in-
struction status are held in stacked CPU registers, the interrupt service code can even
include independent REV and REVW instructions.

The rule structure is different for REVW than for REV. For REVW, the rule list is made
up of 16-bit elements rather than 8-bit elements. Each antecedent is represented by
the full 16-bit address of the corresponding fuzzy input. Each rule consequent is rep-
resented by the full address of the corresponding fuzzy output.

The markers separating antecedents from consequents are the reserved 16-bit value
$FFFE, and the end of the last rule is marked by the reserved 16-bit value $FFFF.
Since $FFFE and $FFFF correspond to the addresses of the reset vector, there would
never be a fuzzy input or output at either of these locations.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-18 REFERENCE MANUAL



9.5.2.1 Set Up Prior to Executing REVW

Some CPU registers and memory locations need to be set up prior to executing the
REVW instruction. X and Y index registers are used as index pointers to the rule list
and the list of rule weights. The A accumulator is used for intermediate calculation re-
sults and needs to be set to $FF initially. The V condition code bit is used as an instruc-
tion status indicator that shows whether antecedents or consequents are being
processed. Initially the V bit is cleared to zero to indicate antecedents are being pro-
cessed. The C condition code bit is used to indicate whether rule weights are to be
used (1) or not (0). The fuzzy outputs (working RAM locations) need to be cleared to
$00. If these values are not initialized before executing the REVW instruction, results
will be erroneous.

The X index register is set to the address of the first element in the rule list (in the
knowledge base). The REVW instruction automatically updates this pointer so that the
instruction can resume correctly if it is interrupted. After the REVW instruction finishes,
X will point at the next address past the $FFFF separator word that marks the end of
the rule list.

The Y index register is set to the starting address of the list of rule weights. Each rule
weight is an 8-bit value. The weighted result is the truncated upper eight bits of the 16-
bit result, which is derived by multiplying the minimum rule antecedent value ($00–
$FF) by the weight plus one ($001–$100). This method of weighting rules allows an 8-
bit weighting factor to represent a value between zero and one inclusive.

The 8-bit A accumulator is used to hold intermediate calculation results during execu-
tion of the REVW instruction. During antecedent processing, A starts out at $FF and
is replaced by any smaller fuzzy input that is referenced by a rule antecedent. If rule
weights are enabled by the C condition code bit equal one, the rule truth value is mul-
tiplied by the rule weight just before consequent processing starts. During consequent
processing, A holds the truth value (possibly weighted) for the rule. This truth value is
stored to any fuzzy output that is referenced by a rule consequent, unless that fuzzy
output is already larger (MAX).

Before starting to execute REVW, A must be set to $FF (the largest 8-bit value) be-
cause rule evaluation always starts with processing of the antecedents of the first rule.
For subsequent rules in the list, A is automatically set to $FF when the instruction de-
tects the $FFFE marker word between the last consequent of the previous rule, and
the first antecedent of a new rule.

Both the C and V condition code bits must be set up prior to starting a REVW instruc-
tion. Once the REVW instruction starts, the C bit remains constant and the value in the
V bit is automatically maintained as $FFFE separator words are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm.
Each time a rule consequent references a fuzzy output, that fuzzy output is compared
to the truth value (weighted) for the current rule. If the current truth value is larger, it is
written over the previous value in the fuzzy output. After all rules have been evaluated,
the fuzzy output contains the truth value for the most-true rule that referenced that
fuzzy output.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-19



After REVW finishes, A will hold the truth value (weighted) for the last rule in the rule
list. The V condition code bit should be one because the last element before the $FFFF
end marker should have been a rule consequent. If V is zero after executing REVW,
it indicates the rule list was structured incorrectly.

9.5.2.2 Interrupt Details

The REVW instruction includes a three-cycle processing loop for each word in the rule
list (this loop expands to five cycles between antecedents and consequents to allow
time for the multiplication with the rule weight). Within this loop, a check is performed
to see if any qualified interrupt request is pending. If an interrupt is detected, the cur-
rent CPU registers are stacked and the interrupt is honored. When the interrupt ser-
vice routine finishes, an RTI instruction causes the CPU to recover its previous context
from the stack, and the REVW instruction is resumed as if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted REVW in-
struction, points to the REVW instruction rather than the instruction that follows. This
causes the CPU to try to execute a new REVW instruction upon return from the inter-
rupt. Since the CPU registers (including the C bit and V bit in the condition codes reg-
ister) indicate the current status of the interrupted REVW instruction, this effectively
causes the rule evaluation operation to resume from where it left off.

9.5.2.3 Cycle-by-Cycle Details for REVW

The central element of the REVW instruction is a three-cycle loop that is executed
once for each word in the rule list. For the special case pass (where the $FFFE sepa-
rator word is read between the rule antecedents and the rule consequents, and
weights enabled by the C bit equal one), this loop takes five cycles. There is a small
amount of housekeeping activity to get this loop started as REVW begins and a small
sequence to end the instruction. If an interrupt comes, there is a special small se-
quence to save CPU status on the stack before the interrupt is serviced.

Figure 9-10 is a detailed flow diagram for the REVW instruction. Each rectangular box
represents one CPU clock cycle. Decision blocks and connecting arrows are consid-
ered to take no time at all. The letters in the small rectangles in the upper left corner
of each bold box correspond to the execution cycle codes (refer to SECTION 6 IN-
STRUCTION GLOSSARY for details). Lower case letters indicate a cycle where 8-bit
or no data is transferred. Upper case letters indicate cycles where 16-bit data could be
transferred.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-20 REFERENCE MANUAL



Figure 9-10 REVW Instruction Flow Diagram

1.0 - O Read program word if $18 misaligned

2.0 - r Read word @ 0,X (rule element Rx)

X = X + 2 point at next rule element

START

END

6.3 - f No bus access

Adjust X = X – 2 pointer to rule list

Interrupt pending?
No Yes

5.0 - T

7.3 - f No bus access

If (Rx = $FFFE or $FFFE) and V = 0

Continue to interrupt stacking
6.0 - x No bus access

A = min(A, FRx)

Rx = $FFFF (end of rules)?
Yes

No

7.0 - O Read program word if $3B misaligned

3.0 - f No bus access

TMP2 = Y – 1 (weight pointer kept in TMP2)

5.3 - f

Adjust PC to point at current REVW instruction

If Rx ≠ $FFFF

X0 = X, X = X0 + 2

Min/max/mul?
max

mulmin

V = 1 &

V=C=1 & Rx=$FFFEor default

7.2 - R Read rule word @,X0

Continue multiply

8.2 - f No bus access

Finish multiply

6.2 - f No bus access

Begin multiply of (wt + 1) * A ⇒ A : B

Rx ≠ $FFFE or $FFFF

6.1 - x If A > FRx write A to Rx
else no bus access

Adjust PC to point at next instruction
If C = 1 (weights enabled), Y = TMP2 + 1

then read rule word @,X0

8.3 - f No bus access

Y = TMP2 + 1

No bus access

4.0 - t
If Rx = $FFFE

else no bus access

If Rx = $FFFF If Rx = other
then read byte @,Rx fuzzy in/out FRxthen no bus accessIf V = 0, then TMP2 = TMP2 + 1

then read rule weight @,TMP2

Toggle V bit; If V now 0, A = $FF

If V = 0 and C = 1,

Update Rx with value read in cyc 2 or 5

then TMP2 = TMP2 – 1

REVW INST FLW
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-21



In cycle 2.0, the first element of the rule list (a 16-bit address) is read from memory.
Due to propagation delays, this value cannot be used for calculations until two cycles
later (cycle 4.0). The X index register, which is used to access information from the
rule list, is incremented by two to point at the next element of the rule list.

The operations performed in cycle 4.0 depend on the value of the word read from the
rule list. $FFFE is a special token that indicates a transition from antecedents to con-
sequents, or from consequents to antecedents of a new rule. The V bit can be used to
decide which transition is taking place, and V is toggled each time the $FFFE token is
detected. If V was zero, a change from antecedents to consequents is taking place,
and it is time to apply weighting (provided it is enabled by the C bit equal one). The
address in TMP2 (derived from Y) is used to read the weight byte from memory. In this
case, there is no bus access in cycle 5.0, but the index into the rule list is updated to
point to the next rule element.

The old value of X (X0) is temporarily held on internal nodes, so it can be used to ac-
cess a rule word in cycle 7.2. The read of the rule word is timed to start two cycles be-
fore it will be used in cycle 4.0 of the next loop pass. The actual multiply takes place
in cycles 6.2 through 8.2. The 8-bit weight from memory is incremented (possibly over-
flowing to $100) before the multiply, and the upper eight bits of the 16-bit internal result
is used as the weighted result. By using weight+1, the result can range from 0.0 times
A to 1.0 times A. After 8.2, flow continues to the next loop pass at cycle 4.0.

At cycle 4.0, if Rx is $FFFE and V was one, a change from consequents to anteced-
ents of a new rule is taking place, so accumulator A must be reinitialized to $FF. During
processing of rule antecedents, A is updated with the smaller of A, or the current fuzzy
input (cycle 6.0). Cycle 5.0 is usually used to read the next rule word and update the
pointer in X. This read is skipped if the current Rx is $FFFF (end of rules mark). If this
is a weight multiply pass, the read is delayed until cycle 7.2. During processing of con-
sequents, cycle 6.1 is used to optionally update a fuzzy output if the value in accumu-
lator A is larger.

After all rules have been processed, cycle 7.0 is used to update the PC to point at the
next instruction. If weights were enabled, Y is updated to point at the location that im-
mediately follows the last rule weight.

9.6 WAV Instruction Details

The WAV instruction performs weighted average calculations used in defuzzification.
The pseudo-instruction wavr is used to resume an interrupted weighted average op-
eration. WAV calculates the numerator and denominator sums using:

System Output

Si F i
i 1=

n

∑

F i
i 1=

n

∑
----------------------=
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-22 REFERENCE MANUAL



Where n is the number of labels of a system output, Si are the singleton positions from
the knowledge base, and Fi are fuzzy outputs from RAM. Si and Fi are 8-bit values.
The 8-bit B accumulator holds the iteration count n. Internal temporary registers hold
intermediate sums, 24 bits for the numerator and 16 bits for the denominator. This
makes this instruction suitable for n values up to 255 although eight is a more typical
value. The final long division is performed with a separate EDIV instruction immediate-
ly after the WAV instruction. The WAV instruction returns the numerator and denomi-
nator sums in the correct registers for the EDIV. (EDIV performs the unsigned division
Y = Y : D / X; remainder in D).

Execution time for this instruction depends on the number of iterations (labels for the
system output). WAV is interruptible so that worst case interrupt latency is not affected
by the execution time for the complete weighted average operation. WAV includes ini-
tialization for the 24-bit and 16-bit partial sums so the first entry into WAV looks differ-
ent than a resume from interrupt operation. The CPU12 handles this difficulty with a
pseudo-instruction (wavr), which is specifically intended to resume an interrupted
weighted average calculation. Refer to 9.6.3 Cycle-by-Cycle Details for WAV and
wavr  for more detail.

9.6.1 Setup Prior to Executing WAV

Before executing the WAV instruction, index registers X and Y and accumulator B
must be set up. Index register X is a pointer to the Si singleton list. X must have the
address of the first singleton value in the knowledge base. Index register Y is a pointer
to the fuzzy outputs Fi. Y must have the address of the first fuzzy output for this system
output. B is the iteration count n. The B accumulator must be set to the number of la-
bels for this system output.

9.6.2 WAV Interrupt Details

The WAV instruction includes an 8-cycle processing loop for each label of the system
output. Within this loop, the CPU checks whether a qualified interrupt request is pend-
ing. If an interrupt is detected, the current values of the internal temporary registers for
the 24-bit and 16-bit sums are stacked, the CPU registers are stacked, and the inter-
rupt is serviced.

A special processing sequence is executed when an interrupt is detected during a
weighted average calculation. This exit sequence adjusts the PC so that it points to
the second byte of the WAV object code ($3C), before the PC is stacked. Upon return
from the interrupt, the $3C value is interpreted as a wavr pseudo-instruction. The wavr
pseudo-instruction causes the CPU to execute a special WAV resumption sequence.
The wavr recovery sequence adjusts the PC so that it looks like it did during execution
of the original WAV instruction, then jumps back into the WAV processing loop. If an-
other interrupt occurs before the weighted average calculation finishes, the PC is ad-
justed again as it was for the first interrupt. WAV can be interrupted any number of
times, and additional WAV instructions can be executed while a WAV instruction is in-
terrupted.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-23



9.6.3 Cycle-by-Cycle Details for WAV and wavr

The WAV instruction is unusual in that the logic flow has two separate entry points.
The first entry point is the normal start of a WAV instruction. The second entry point is
used to resume the weighted average operation after a WAV instruction has been in-
terrupted. This recovery operation is called the wavr pseudo-instruction.

Figure 9-11 is a flow diagram of the WAV instruction including the wavr pseudo-in-
struction. Each rectangular box in this figure represents one CPU clock cycle. Decision
blocks and connecting arrows are considered to take no time at all. The letters in the
small rectangles in the upper left corner of the boxes correspond to execution cycle
codes (refer to SECTION 6 INSTRUCTION GLOSSARY for details). Lower case let-
ters indicate a cycle where 8-bit or no data is transferred. Upper case letters indicate
cycles where 16-bit data could be transferred.

In terms of cycle-by-cycle bus activity, the $18 page select prebyte is treated as a spe-
cial 1-byte instruction. In cycle 1.0 of the WAV instruction, one word of program infor-
mation will be fetched into the instruction queue if the $18 is located at an odd address.
If the $18 is at an even address, the instruction queue cannot advance so there is no
bus access in this cycle.

There is no bus access in cycles 2.0 or 3.0. In cycle 3.0, three internal 16-bit temporary
registers are cleared in preparation for summation operations. The WAV instruction
maintains a 32-bit sum-of-products in TMP3 : TMP2 and a 16-bit sum-of-weights in
TMP1. By keeping these sums inside the CPU, bus accesses are reduced and the
WAV operation is optimized for high speed.

Cycles 4.0 through 11.0 form the eight cycle main loop for WAV. The value in the 8-bit
B accumulator is used to count the number of loop iterations. B is decremented at the
top of the loop in cycle 4.0, and the test for zero is located at the bottom of the loop
after cycle 11.0. Cycle 5.0 and 6.0 are used to fetch the 8-bit operands for one iteration
of the loop. X and Y index registers are used to access these operands. The index reg-
isters are incremented as the operands are fetched. Cycle 7.0 is used to accumulate
the current fuzzy output into TMP1. Cycles 8.0 through 10.0 are used to perform the
eight by eight multiply of Fi times Si. The multiply result is accumulated into TMP3 :
TMP2 during cycles 10.0 and 11.0. Even though the sum-of-products will not exceed
24 bits, the sum is maintained in the 32-bit combined TMP3 : TMP2 register because
it is easier to use existing 16-bit operations than it would be to create a new smaller
operation to handle the high order bits of this sum.

Since the weighted average operation could be quite long, it is made to be interrupt-
ible. The usual longest latency path is from very early in cycle 7.0, through cycle 11.0,
to the top of the loop to cycle 4.0, through cycle 6.0 to the interrupt check. There is also
a three cycle (7.1 through 9.1) exit sequence making this latency path a total of 12 cy-
cles. There is an even longer path, but it is much less likely to occur. If an interrupt
comes near the beginning of cycle 2.1, when a weighted average operation is being
resumed after a previous interrupt, the latency path is 2.1 through 6.1 plus 7.0 through
11.0 plus 4.0 through 6.0 plus the exit 7.1 through 9.1. This is a worst-case total of 17
cycles.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-24 REFERENCE MANUAL



Figure 9-11 WAV and wavr Instruction Flow Diagram

1.0 - O Read program word if $18 misaligned

2.1 - U Read word @ 0,SP (unstack TMP3)

SP = SP + 2

WAV

END

12.0 - O Read program word if $3C misaligned

Adjust PC to point at next instruction
Y : D = TMP3 : TMP2; X = TMP1

3.1 - U Read word @ 0,SP (unstack TMP2)

SP = SP + 2

4.1 - U Read word @ 0,SP (unstack TMP1)

SP = SP + 2

5.1 - r Read byte @ –1,Y (fuzzy output Fi)

6.1 - r Read byte @ –1,X (singleton Si)

7.1 - S Write word @ –2,SP (stack TMP1)

SP = SP – 2

8.1 - S Write word @ –2,SP (stack TMP2)

SP = SP – 2

9.1 - S Write word @ –2,SP (stack TMP3)

SP = SP – 2

wavr

2.0 - f No bus access

3.0 - f No bus access

TMP1 = TMP2 = TMP3 = $0000

4.0 - f No bus access

B = B – 1 decrement iteration counter

Continue to interrupt stacking

B = 0?
No

Yes

5.0 - r Read byte @ 0,Y (fuzzy output Fi)

Y = Y + 1 point at next fuzzy output

6.0 - r Read byte @ 0,X (singleton Si)

X = X + 1 point at next singleton

7.0 - f No bus access

TMP1 = TMP1 + Fi

8.0 - f No bus access

Start multiply PPROD = Si*Fi

9.0 - f No bus access

Continue multiply

10.0 - f No bus access

Finish multiply, TMP2 = TMP2 + PPROD

11.0 - f No bus access

TMP3 = TMP3 + (carry from PPROD add)

Interrupt pending?
No

Yes

WAV INST FLOW

Adjust PC to point at $3C wavr pseudo-opcode
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-25



If the WAV instruction is interrupted, the internal temporary registers TMP3, TMP2,
and TMP1 need to be stored on the stack so the operation can be resumed. Since the
WAV instruction included initialization in cycle 2.0, the recovery path after an interrupt
needs to be different. The wavr pseudo-instruction has the same opcode as WAV, but
it is on the first page of the opcode map so there is no page prebyte ($18) like there is
for WAV. When WAV is interrupted, the PC is adjusted to point at the second byte of
the WAV object code, so that it will be interpreted as the wavr pseudo-instruction on
return from the interrupt, rather than the WAV instruction. During the recovery se-
quence, the PC is readjusted in case another interrupt comes before the weighted av-
erage operation finishes.

The resume sequence includes recovery of the temporary registers from the stack (2.1
through 4.1), and reads to get the operands for the current iteration. The normal WAV
flow is then rejoined at cycle 7.0.

Upon normal completion of the instruction (cycle 12.0), the PC is adjusted so it points
to the next instruction. The results are transferred from the TMP registers into CPU
registers in such a way that the EDIV instruction can be used to divide the sum-of-
products by the sum-of-weights. TMP3 : TMP2 is transferred into Y : D and TMP1 is
transferred into X.

9.7 Custom Fuzzy Logic Programming

The basic fuzzy logic inference techniques described above are suitable for a broad
range of applications, but some systems may require customization. The built-in fuzzy
instructions use 8-bit resolution and some systems may require finer resolution. The
rule evaluation instructions only support variations of MIN-MAX rule evaluation and
other methods have been discussed in fuzzy logic literature. The weighted average of
singletons is not the only defuzzification technique. The CPU12 has several instruc-
tions and addressing modes that can be helpful when in developing custom fuzzy logic
systems.

9.7.1 Fuzzification Variations

The MEM instruction supports trapezoidal membership functions and several other va-
rieties, including membership functions with vertical sides (infinite slope sides). Trian-
gular membership functions are a subset of trapezoidal functions. Some practitioners
refer to s-, z-, and π-shaped membership functions. These refer to a trapezoid butted
against the right end of the x-axis, a trapezoid butted against the left end of the x-axis,
and a trapezoidal membership function that isn’t butted against either end of the x-
axis, respectively. Many other membership function shapes are possible, if memory
space and processing bandwidth are sufficient.

Tabular membership functions offer complete flexibility in shape and very fast evalua-
tion time. However, tables take a very large amount of memory space (as many as 256
bytes per label of one system input). The excessive size to specify tabular member-
ship functions makes them impractical for most microcontroller-based fuzzy systems.
The CPU12 instruction set includes two instructions (TBL and ETBL) for lookup and
interpolation of compressed tables.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-26 REFERENCE MANUAL



The TBL instruction uses 8-bit table entries (y-values) and returns an 8-bit result. The
ETBL instruction uses 16-bit table entries (y-values) and returns a 16-bit result. A flex-
ible indexed addressing mode is used to identify the effective address of the data point
at the beginning of the line segment, and the data value for the end point of the line
segment is the next consecutive memory location (byte for TBL and word for ETBL).
In both cases, the B accumulator represents the ratio of (the x-distance from the be-
ginning of the line segment to the lookup point) to (the x-distance from the beginning
of the line segment to the end of the line segment). B is treated as an 8-bit binary frac-
tion with radix point left of the MSB, so each line segment can effectively be divided
into 256 pieces. During execution of the TBL or ETBL instruction, the difference be-
tween the end point y-value and the beginning point y-value (a signed byte-TBL or
word-ETBL) is multiplied by the B accumulator to get an intermediate delta-y term. The
result is the y-value of the beginning point, plus this signed intermediate delta-y value.

Because indexed addressing mode is used to identify the starting point of the line seg-
ment of interest, there is a great deal of flexibility in constructing tables. A common
method is to break the x-axis range into 256 equal width segments and store the y val-
ue for each of the resulting 257 endpoints. The 16-bit D accumulator is then used as
the x input to the table. The upper eight bits (A) is used as a coarse lookup to find the
line segment of interest, and the lower eight bits (B) is used to interpolate within this
line segment.

In the program sequence…

LDX #TBL_START
LDD DATA_IN
TBL A,X

The notation A,X causes the TBL instruction to use the Ath line segment in the table.
The low-order half of D (B) is used by TBL to calculate the exact data value from this
line segment. This type of table uses only 257 entries to approximate a table with 16
bits of resolution. This type of table has the disadvantage of equal width line segments,
which means just as many points are needed to describe a flat portion of the desired
function as are needed for the most active portions.

Another type of table stores x:y coordinate pairs for the endpoints of each linear seg-
ment. This type of table may reduce the table storage space compared to the previous
fixed-width segments because flat areas of the functions can be specified with a single
pair of endpoints. This type of table is a little harder to use with the CPU12 TBL and
ETBL instructions because the table instructions expect y-values for segment end-
points to be in consecutive memory locations.

Consider a table made up of an arbitrary number of x:y coordinate pairs, where all val-
ues are eight bits. The table is entered with the x-coordinate of the desired point to
lookup in the A accumulator. When the table is exited, the corresponding y-value is in
the A accumulator. Figure 9-12  shows one way to work with this type of table.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-27



Figure 9-12 Endpoint Table Handling

The basic idea is to find the segment of interest, temporarily build a one-segment table
of the correct format on the stack, then use TBL with stack relative indexed addressing
to interpolate. The most difficult part of the routine is calculating the proportional dis-
tance from the beginning of the segment to the lookup point versus the width of the
segment ((XL–XB)/(XE–XB)). With this type of table, this calculation must be done at
run time. In the previous type of table, this proportional term is an inherent part (the
lowest order bits) of the data input to the table.

Some fuzzy theorists have suggested membership functions should be shaped like
normal distribution curves or other mathematical functions. This may be correct, but
the processing requirements to solve for an intercept on such a function would be un-
acceptable for most microcontroller-based fuzzy systems. Such a function could be
encoded into a table of one of the previously described types.

For many common systems, the thing that is most important about membership func-
tion shape is that there is a gradual transition from non-membership to membership
as the system input value approaches the central range of the membership function.
Let us examine the human problem of stopping a car at an intersection. We might use
rules like “If intersection is close and speed is fast, apply brakes.” The meaning (re-
flected in membership function shape and position) of the labels “close” and “fast” will
be different for a teenager than they are for a grandmother, but both can accomplish
the goal of stopping. It makes intuitive sense that the exact shape of a membership
function is much less important than the fact that it has gradual boundaries.

BEGIN LDY #TABLE_START-2 ;setup initial table pointer
FIND_LOOP CMPA 2,+Y ;find first Xn > XL

;(auto pre-inc Y by 2)
BLS FIND_LOOP ;loop if XL .le. Xn

* on fall thru, XB@-2,Y YB@-1,Y XE@0,Y and YE@1,Y
TFR D,X ;save XL in high half of X
CLRA ;zero upper half of D
LDAB 0,Y ;D = 0:XE
SUBB -2,Y ;D = 0:(XE-XB)
EXG D,X ;X = (XE-XB).. D = XL:junk
SUBA -2,Y ;A = (XL-XB)
EXG A,D ;D = 0:(XL-XB), uses trick of EXG
FDIV ;X reg = (XL-XB)/(XE-XB)
EXG D,X ;move fractional result to A:B
EXG A,B ;byte swap - need result in B
TSTA ;check for rounding
BPL NO_ROUND
INCB ;round B up by 1

NO_ROUND LDAA 1,Y ;YE
PSHA ;put on stack for TBL later
LDAA -1,Y ;YB
PSHA ;now YB@0,SP and YE@1,SP
TBL 2,SP+ ;interpolate and deallocate

;stack temps
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-28 REFERENCE MANUAL



9.7.2 Rule Evaluation Variations

The REV and REVW instructions expect fuzzy input and fuzzy output values to be 8-
bit values. In a custom fuzzy inference program, higher resolution may be desirable
(although this is not a common requirement). The CPU12 includes variations of mini-
mum and maximum operations that work with the fuzzy MIN-MAX inference algorithm.
The problem with the fuzzy inference algorithm is that the min and max operations
need to store their results differently, so the min and max instructions must work dif-
ferently or more than one variation of these instructions is needed.

The CPU12 has min and max instructions for 8- or 16-bit operands, where one oper-
and is in an accumulator and the other is a referenced memory location. There are
separate variations that replace the accumulator or the memory location with the re-
sult. While processing rule antecedents in a fuzzy inference program, a reference val-
ue must be compared to each of the referenced fuzzy inputs, and the smallest input
must end up in an accumulator. The instruction…

EMIND 2,X+ ;process one rule antecedent

automates the central operations needed to process rule antecedents. The E stands
for extended, so this instruction compares 16-bit operands. The D at the end of the
mnemonic stands for the D accumulator, which is both the first operand for the com-
parison and the destination of the result. The 2,X+ is an indexed addressing specifica-
tion that says X points to the second operand for the comparison.

When processing rule consequents, the operand in the accumulator must remain con-
stant (in case there is more than one consequent in the rule), and the result of the com-
parison must replace the referenced fuzzy output in RAM. To do this, use the
instruction…

EMAXM 2,X+ ;process one rule consequent

The M at the end of the mnemonic indicates that the result will replace the referenced
memory operand. Again, indexed addressing is used. These two instructions would
form the working part of a 16-bit resolution fuzzy inference routine.

There are many other methods of performing inference, but none of these are as wide-
ly used as the min-max method. Since the CPU12 is a general-purpose microcontrol-
ler, the programmer has complete freedom to program any algorithm desired. A
custom programmed algorithm would typically take more code space and execution
time than a routine that used the built-in REV or REVW instructions.

9.7.3 Defuzzification Variations

There are two main areas where other CPU12 instructions can help with custom de-
fuzzification routines. The first case is working with operands that are more than eight
bits. The second case involves using an entirely different approach than weighted av-
erage of singletons.
CPU12 FUZZY LOGIC SUPPORT MOTOROLA

REFERENCE MANUAL 9-29



The primary part of the WAV instruction is a multiply and accumulate operation to get
the numerator for the weighted average calculation. When working with operands as
large as 16 bits, the EMACS instruction could at least be used to automate the multiply
and accumulate function. The CPU12 has extended math capabilities, including the
EMACS instruction which uses 16-bit input operands and accumulates the sum to a
32-bit memory location and 32-bit by 16-bit divide instructions.

One benefit of the WAV instruction is that both a sum of products and a sum of weights
are maintained, while the fuzzy output operand is only accessed from memory once.
Since memory access time is such a significant part of execution time, this provides a
speed advantage compared to conventional instructions.

The weighted average of singletons is the most commonly used technique in micro-
controllers because it is computationally less difficult than most other methods. The
simplest method is called max defuzzification, which simply uses the largest fuzzy out-
put as the system result. However, this approach does not take into account any other
fuzzy outputs, even when they are almost as true as the chosen max output. Max de-
fuzzification is not a good general choice because it only works for a subset of fuzzy
logic applications.

The CPU12 is well suited for more computationally challenging algorithms than
weighted average. A 32-bit by 16-bit divide instruction takes eleven or twelve 8-MHz
cycles for unsigned or signed variations. A 16-bit by 16-bit multiply with a 32-bit result
takes only three 8-MHz cycles. The EMACS instruction uses 16-bit operands and
accumulates the result in a 32-bit memory location, taking only twelve 8-MHz cycles
per iteration, including accessing all operands from memory and storing the result to
memory.
 MOTOROLA FUZZY LOGIC SUPPORT CPU12

9-30 REFERENCE MANUAL



SECTION 10
MEMORY EXPANSION

This section discusses expansion memory principles that apply to the entire M68HC12
family. Some family devices do not have memory expansion capabilities, and the size
of the expanded memory can also vary. Please refer to the documentation for a deriv-
ative to determine details of implementation.

10.1 Expansion System Description

Certain members of the M68HC12 family incorporate hardware that supports address-
ing a larger memory space than the standard 64 Kbytes. The expanded memory sys-
tem uses fast on-chip logic to implement a transparent paged memory or bank-
switching scheme.

Increased code efficiency is the greatest advantage of using bank switching instead of
implementing a large linear address space. In systems with large linear address spac-
es, instructions require more bits of information to address a memory location, and
CPU overhead is greater. Other advantages of bank switching include the ability to
change the size of system memory, and the ability to use various types of external
memory.

However, the add-on bank switching schemes used in other microcontrollers have
known weaknesses. These include the cost of external glue logic, increased program-
ming overhead to change banks, and the need to disable interrupts while banks are
switched.

The M68HC12 system requires no external glue logic. Bank switching overhead is re-
duced by implementing control logic in the MCU. Interrupts do not need to be disabled
during switching because switching tasks are incorporated in special instructions that
greatly simplify program access to extended memory. Operation of the bank-switching
logic is transparent to the CPU.

The CPU12 has a linear 64-Kbyte address space. All MCU system resources, includ-
ing control registers for on-chip peripherals and on-chip memory arrays, are mapped
into this space. In a typical M68HC12 derivative, the resources have default addresses
out of reset, but can be re-mapped to other addresses by means of control registers
in the on-chip integration module.

Memory expansion control logic is outside the CPU. A block of circuitry in the MCU
integration module manages overlays that occupy pre-defined locations in the 64-
Kbyte space addressed by the CPU. These overlays can be thought of as windows
through which the CPU accesses information in the expanded memory space.

There are three overlay windows. The program window expands program memory,
the data window is used for independent data expansion, and the extra window ex-
pands access to special types of memory such as EEPROM. The program window al-
ways occupies the 16-Kbyte space from $8000 to $BFFF. Data and extra windows can
vary in size and location.
CPU12 MEMORY EXPANSION MOTOROLA

REFERENCE MANUAL 10-1



Each window has an associated page select register that selects external memory
pages to be accessed via the window. Only one page at a time can occupy a window;
the value in the register must be changed to access a different page of memory. With
8-bit registers, there can be up to 256 expansion pages per window, each page the
same size as the window.

For data and extra windows, page switching is accomplished by means of normal read
and write instructions. This is the traditional method of managing a bank-switching
system. The CPU12 CALL and RTC instructions automatically manipulate the pro-
gram page select (PPAGE) register for the program window.

In M68HC12 expanded memory systems, control registers, vector spaces, and a por-
tion of on-chip memory are located in unpaged portions of the 64-Kbyte address
space. The stack and I/O addresses should also be placed in unpaged memory to
make them accessible from any overlay page.

The initial portions of exception handlers must be located in unpaged memory be-
cause the 16-bit exception vectors cannot point to addresses in paged memory. How-
ever, service routines can call other routines in paged memory. The upper 16-Kbyte
block of memory space ($C000–$FFFF) is unpaged. It is recommended that all reset
and interrupt vectors point to locations in this area.

Although internal MCU resources, such as control registers and on-chip memory, have
default addresses out of reset, each can typically be relocated by changing the default
values in control registers. Normally, I/O addresses, control registers, vector spaces,
overlay windows, and on-chip memory are not mapped so that their respective ad-
dress ranges overlap. However, there is an access priority order that prevents access
conflicts should such overlaps occur. Table 10-1 shows the mapping precedence. Re-
sources with higher precedence block access to those with a lower precedence. The
windows have lowest priority — registers, exception vectors, and on-chip memory are
always visible to a program regardless of the values in the page select registers.

When background debugging is enabled and active, the CPU executes code located
in a small on-chip ROM mapped to addresses $FF20 to $FFFF, and BDM control reg-
isters are accessible at addresses $FF00 to $FF06. The BDM ROM replaces the reg-
ular system vectors while BDM is active, but BDM resources are not in the memory
map during normal execution of application programs.

Table 10-1 Mapping Precedence

Precedence Resource

1 Registers

2 Exception Vectors/BDM ROM

3 RAM

4 EEPROM

5 Flash

6 Expansion Windows
 MOTOROLA MEMORY EXPANSION CPU12

10-2 REFERENCE MANUAL



10.2 CALL and Return from Call Instructions

The CALL is similar to a JSR instruction, but the subroutine that is called can be locat-
ed anywhere in the normal 64-Kbyte address space, or on any page of program ex-
pansion memory. When CALL is executed, a return address is calculated, then it and
the current program page register value are stacked, and a new instruction-supplied
value is written to PPAGE. The PPAGE value controls which of the 256 possible pages
is visible through the 16-Kbyte window in the 64-Kbyte memory map. Execution con-
tinues at the address of the called subroutine.

The actual sequence of operations that occur during execution of CALL is:

• The CPU reads the old PPAGE value into an internal temporary register, and
writes the new instruction-supplied PPAGE value to PPAGE. This switches the
destination page into the program overlay window.

• The CPU calculates the address of the next instruction after the CALL instruc-
tion (the return address), and pushes this 16-bit value onto the stack.

• The old 8-bit PPAGE value is pushed onto the stack.
• The effective address of the subroutine is calculated, the queue is refilled, and

execution begins at the new address.

This sequence of operations is an uninterruptable CPU instruction. There is no need
to inhibit interrupts during CALL execution. In addition, a CALL can be performed from
any address in memory to any other address. This is a big improvement over other
bank-switching schemes, where the page switch operation can only be performed by
a program outside the overlay window.

For all practical purposes, the PPAGE value supplied by the instruction can be consid-
ered to be part of the effective address. For all addressing mode variations except in-
dexed indirect modes, the new page value is provided by an immediate operand in the
instruction. For indexed indirect variations of CALL, a pointer specifies memory loca-
tions where the new page value and the address of the called subroutine are stored.
Use of indirect addressing for both the new page value and the address within the
page allows use run-time calculated values rather than immediate values that must be
known at the time of assembly.

The RTC instruction is used to terminate subroutines invoked by a CALL instruction.
RTC unstacks the PPAGE value and the return address, the queue is refilled, and ex-
ecution resumes with the next instruction after the corresponding CALL.

The actual sequence of operations that occur during execution of RTC is:

• The return value of the 8-bit PPAGE register is pulled from the stack.
• The 16-bit return address is pulled from the stack and loaded into the PC.
• The return PPAGE value is written to the PPAGE register.
• The queue is refilled, and execution begins at the new address.

Since the return operation is implemented as a single uninterruptable CPU instruction,
the RTC can be executed from anywhere in memory, including from a different page
of extended memory in the overlay window.
CPU12 MEMORY EXPANSION MOTOROLA

REFERENCE MANUAL 10-3



In an MCU where there is no memory expansion, the CALL and RTC instructions still
perform the same sequence of operations, but there is no PPAGE register or address
translation logic. The value the CPU reads when the PPAGE register is accessed is
indeterminate but doesn’t matter, because the value is not involved in addressing
memory in the unpaged 64-Kbyte memory map. When the CPU writes to the non-ex-
istent PPAGE register, nothing happens.

The CALL and RTC instructions behave like JSR and RTS, except they have slightly
longer execution times. Since extra execution cycles are required, routinely substitut-
ing CALL/RTC for JSR/RTS is not recommended. JSR and RTS can be used to ac-
cess subroutines that are located on the same memory page. However, if a subroutine
can be called from other pages, it must be terminated with an RTC. In this case, since
RTC unstacks the PPAGE value as well as the return address, all accesses to the sub-
routine, even those made from the same page, must use CALL instructions.

10.3 Address Lines for Expansion Memory

All M68HC12 family members have at least 16 address lines, ADDR[15:0]. Devices
with memory expansion capability can have as many as six additional high-order ex-
ternal address lines, ADDR[21:16]. Each of these additional address lines is typically
associated with a control bit that allows address expansion to be selectively enabled.
When expansion is enabled, internal address translation circuitry multiplexes data
from the page select registers onto the high order address lines when there is an ac-
cess to an address in a corresponding expansion window.

Assume that a device has six expansion address lines and an 8-bit PPAGE register.
The lines and the program expansion window have been enabled. The address $9000
is within the 16-Kbyte program overlay window. When there is an access to this ad-
dress, the value in the PPAGE register is multiplexed onto external address lines AD-
DR[21:14]. The 14 low-order address lines select a location within the program overlay
page. Up to 256 16-Kbyte pages (4 Mbytes) of memory can be accessed through the
window. When there is an access to a location that is not within any enabled overlay
window, ADDR[21:16] are driven to logic level one.

The address translation logic can produce the same address on the external address
lines for two different internal addresses. For example, the 22-bit address $3FFFFF
could result from an internal access to $FFFF in the 64-Kbyte memory map, or to the
last location ($BFFF) within page 255 (PPAGE = $FF) of the program overlay window.
Considering only the 22 external address lines, the last physical page of the program
overlay appears to occupy the same address space as the unpaged 16-Kbyte block
from $C000 to $FFFF of the 64-Kbyte memory map. Using MCU chip-select circuits to
enable external memory can resolve these ambiguities.

10.4 Overlay Window Controls

There is a page select register associated with each overlay window. PPAGE holds
the page select for the program overlay, DPAGE holds the page select for the data
overlay, and EPAGE holds the page select for the extra page. The CPU12 manipu-
lates the PPAGE register directly, so it will always be eight bits or less in devices that
 MOTOROLA MEMORY EXPANSION CPU12

10-4 REFERENCE MANUAL



support program memory expansion. The DPAGE and EPAGE registers are not con-
trolled by dedicated CPU12 instructions. These registers can be larger or smaller than
eight bits in various M68HC12 derivatives.

Typically, each of the overlay windows also has an associated control bit to enable
memory expansion through the appropriate window. Memory expansion is generally
disabled out of reset, so control bits must be written to enable the address translation
logic.

10.5 Using Chip-Select Circuits

M68HC12 chip-select circuits can be used to preclude ambiguities in memory-map-
ping due to the operation of internal address translation logic. If built-in chip selects are
not used, take care to use only overlay pages which produce unique addresses on the
external address lines.

M68HC12 derivatives typically have two or more chip-select circuits. Chip-select func-
tion is conceptually simple. Whenever an access to a pre-defined range of addresses
is made, internal MCU circuitry detects an address match and asserts a control signal
that can be used to enable external devices. Chip-select circuits typically incorporate
a number of options that make it possible to use more than one range of addresses
for matches as well as to enable various types and configurations of external devices.

Chip-select circuits used in conjunction with the memory-expansion scheme must be
able to match all accesses made to addresses within the appropriate program overlay
window. In the case of the program expansion window, the range of addresses occu-
pies the 16-Kbyte space from $8000 to $BFFF. For data and extra expansion win-
dows, the range of addresses varies from device to device. The following paragraphs
discuss a typical implementation of memory expansion chip-select functions in the
system integration module. Implementation will vary from device to device within the
M68HC12 family. Please refer to the appropriate device manual for details.

10.5.1 Program Memory Expansion Chip-Select Controls

There are two program memory expansion chip-select circuits, CSP0 and CSP1. The
associated control register contains eight control bits that provide for a number of sys-
tem configurations.

10.5.1.1 CSP1E Control Bit

Enables (1) or disables (0) the CSP1 chip select. The default is disabled.

10.5.1.2 CSP0E Control Bit

Enables (1) or disables (0) the CSP0 chip select. The default is enabled. This allows
CSP0 to be used to select an external memory that includes the reset vector and start-
up initialization programs.
CPU12 MEMORY EXPANSION MOTOROLA

REFERENCE MANUAL 10-5



10.5.1.3 CSP1FL Control Bit

Configures CSP1 to occupy all of the 64-Kbyte memory map that is not used by a high-
er-priority resource. If CSP1FL = 0, CSP1 is mapped to the area from $8000 to $FFFF.
CSP1 has the lowest access priority except for external memory space that is not as-
sociated with any chip select.

10.5.1.4 CSPA21 Control Bit

Logic one causes CSP0 and CSP1 to be controlled by the ADDR21 signal. CSP1 is
active when ADDR21 = 0, and CSP0 is active when ADDR21 = 1. When CSPA21 is
one, the CSP1FL bit is ignored and both CSP0 and CSP1 are active in the region
$8000–$FFFF. When CSPA21 is zero, CSP0 and CSP1 operate independently from
the value of the ADDR21 signal.

10.5.1.5 STRP0A:STRP0B Control Field

These two bits program an extra delay into accesses to the CSP0 area of memory.
The choices are 0, 1, 2, or 3 E-cycles in addition to the normal one cycle for un-
stretched accesses. This allows use of slow external memory without slowing down
the entire system.

10.5.1.6 STRP1A:STRP1B Control Field

These two bits program an extra delay into accesses to the CSP1 area of memory.
The choices are 0, 1, 2, or 3 E-cycles in addition to the normal one cycle for un-
stretched accesses. This allows use of slow external memory without slowing down
the entire system.

When enabled, CSP0 is active for the memory space from $8000 through $FFFF. This
includes the program overlay space ($8000–$BFFF) and the unpaged 16-Kbyte block
from $C000 through $FFFF. This configuration can be used if there is a single program
memory device (up to four Mbytes) in the system.

If CSP1 is also enabled and the CSPA21 bit is set, CSP1 can be used to select the
first 128 16-Kbyte pages (two Mbytes) in the program overlay expansion memory
space while CSP0 selects the higher numbered program expansion pages and the
unpaged block from $C000 through $FFFF. Recall that the external memory device
cannot distinguish between an access to the $C000 to $FFFF space and an access to
$8000–$BFFF in the 255th page (PPAGE = $FF) of the program overlay window.

10.5.2 Data Expansion Chip Select Controls

The data chip select (CSD) has four associated control bits.

10.5.2.1 CSDE Control Bit

Enables (1) or disables (0) the CSD chip select. The default is disabled.
 MOTOROLA MEMORY EXPANSION CPU12

10-6 REFERENCE MANUAL



10.5.2.2 CSDHF Control Bit

Configures CSD to occupy the lower half of the 64-Kbyte memory map (for areas that
are not used by a higher priority resource). If CSDHF is zero, CSD occupies the range
of addresses used by the data expansion window.

10.5.2.3 STRDA:STRDB Control Field

These two bits program an extra delay into accesses to the CSD area of memory. The
choices are 0, 1, 2, or 3 additional E-cycles in addition to the normal one cycle for un-
stretched accesses. This allows use of slow external memory without slowing down
the entire system.

10.5.3 Extra Expansion Chip Select Controls

The extra chip select (CSE) has four associated control bits.

10.5.3.1 CSEE Control Bit

Enables (1) or disables (0) the CSE chip select. The default is disabled.

10.5.3.2 CSEEP Control Bit

Logic one configures CSE to be active for the EPAGE area. A logic zero causes CSE
to be active for the CS3 area of the internal register space, which can typically be
remapped to any 2-Kbyte boundary.

10.5.3.3 STREA:STREB Control Field

These two bits program an extra delay into accesses to the CSE area of memory. The
choices are 0, 1, 2, or 3 E-cycles in addition to the normal one cycle for unstretched
accesses. This allows use of slow external memory without slowing down the entire
system.

To use CSE with the extra overlay window, it must be enabled (CSEE = 1) and con-
figured to follow the extra page (CSEEP = 1).

10.6 System Notes

The expansion overlay windows are specialized for specific application uses, but there
are no restrictions on the use of these memory spaces. Motorola MCUs have a mem-
ory-mapped architecture in which all memory resources are treated equally. Although
it is possible to execute programs in paged external memory in the data and extra
overlay areas, it is less convenient than using the program overlay area.

The CALL and RTC instructions automate the program page switching functions in an
uninterruptable instruction. For the data and extra overlay windows, the user must take
care not to let interrupts corrupt the page switching sequence or change the active
page while executing out of another page in the same overlay area.

Internal MCU chip-select circuits have access to all 16 internal CPU address lines and
the overlay window select lines. This allows all 256 expansion pages in an overlay win-
dow to be distinguished from unpaged memory locations with 22-bit addresses that
are the same as addresses in overlay pages.
CPU12 MEMORY EXPANSION MOTOROLA

REFERENCE MANUAL 10-7



 MOTOROLA MEMORY EXPANSION CPU12

10-8 REFERENCE MANUAL



APPENDIX A
INSTRUCTION REFERENCE

A.1 Instruction Set Summary

Table A-1 is a quick reference to the CPU12 instruction set. The table shows source
form, describes the operation performed, lists the addressing modes used, gives ma-
chine encoding in hexadecimal form, and describes the effect of execution on the con-
dition code bits.

A.2 Opcode Map

Table A-2 displays the mnemonic, opcode, addressing mode, and cycle count for
each instruction. The first table represents those opcodes with no prebyte. The second
page of the table represents those opcodes with a prebyte value of $18. Notice the first
hexadecimal digit of the opcode (shown in the upper left corner of each cell) corre-
sponds to column location, while the second hexadecimal digit of the opcode corre-
sponds to row location.

A.3 Indexed Addressing Postbyte Encoding

Table A-5 shows postbyte encoding for indexed addressing modes. The mnemonic
for the indexed addressing mode postbyte is xb. This is also the notation used in in-
struction glossary entries. Table A-3 presents the same information in two-digit hexa-
decimal format. The first digit of the postbyte is represented by the value of the
columns in the table. The second digit of the postbyte is represented by the value of
the row.

A.4 Transfer and Exchange Postbyte Encoding

Table A-4 shows postbyte encoding for transfer and exchange instructions. The mne-
monic for the transfer and exchange postbyte is eb. This is also the notation used in
instruction glossary entries. The first digit of the instruction postbyte is related to the
columns of the table. The second digit of the postbyte is related to the rows. The body
of the table shows actions caused by the postbyte.

A.5 Loop Primitive Postbyte Encoding

Table A-6 shows postbyte encoding for loop primitive instructions. The mnemonic for
the loop primitive postbyte is lb. This is also the notation used in instruction glossary
entries. The loop primitive instructions are DBEQ, DBNE, IBEQ, IBNE, TBEQ, and
TBNE. The first digit of the instruction postbyte corresponds to the columns of the ta-
ble. The second digit of the postbyte corresponds to the rows. The body of the table
shows actions caused by the postbyte.
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-1



Table A-1 Instruction Set Summary

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C

ABA (A) + (B) ⇒ A
Add Accumulators A and B

INH 18 06 2 – – ∆ – ∆ ∆ ∆ ∆

ABX (B) + (X) ⇒ X
Translates to LEAX B,X

IDX 1A E5 2 – – – – – – – –

ABY (B) + (Y) ⇒ Y
Translates to LEAY B,Y

IDX 19 ED 2 – – – – – – – –

ADCA opr (A) + (M) + C ⇒ A
Add with Carry to A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

1
3
3
3
3
4
6
6

– – ∆ – ∆ ∆ ∆ ∆

ADCB opr (B) + (M) + C ⇒ B
Add with Carry to B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

1
3
3
3
3
4
6
6

– – ∆ – ∆ ∆ ∆ ∆

ADDA opr (A) + (M) ⇒ A
Add without Carry to A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

1
3
3
3
3
4
6
6

– – ∆ – ∆ ∆ ∆ ∆

ADDB opr (B) + (M) ⇒ B
Add without Carry to B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

1
3
3
3
3
4
6
6

– – ∆ – ∆ ∆ ∆ ∆

ADDD opr (A:B) + (M:M+1) ⇒ A:B
Add 16-Bit to D (A:B)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-2 REFERENCE MANUAL



ANDA opr (A) • (M) ⇒ A
Logical And A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ANDB opr (B) • (M) ⇒ B
Logical And B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ANDCC opr (CCR) • (M) ⇒ CCR
Logical And CCR with Memory

IMM 10 ii 1 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

ASL opr

ASLA
ASLB

Arithmetic Shift Left

Arithmetic Shift Left Accumulator A
Arithmetic Shift Left Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

ASLD

Arithmetic Shift Left Double

INH 59 1 – – – – ∆ ∆ ∆ ∆

ASR opr

ASRA
ASRB

Arithmetic Shift Right

Arithmetic Shift Right Accumulator A
Arithmetic Shift Right Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff
47
57

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

BCC rel Branch if Carry Clear (if C = 0) REL 24 rr 3/1 – – – – – – – –

BCLR opr, msk (M) • (mm) ⇒ M
Clear Bit(s) in Memory

DIR
EXT
IDX
IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

4
4
4
4
6

– – – – ∆ ∆ 0 –

BCS rel Branch if Carry Set (if C = 1) REL 25 rr 3/1 – – – – – – – –

BEQ rel Branch if Equal (if Z = 1) REL 27 rr 3/1 – – – – – – – –

BGE rel Branch if Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 2C rr 3/1 – – – – – – – –

BGND Place CPU in Background Mode
see Background Mode section.

INH 00 5 – – – – – – – –

BGT rel Branch if Greater Than
(if Z ✛ (N ⊕ V) = 0) (signed)

REL 2E rr 3/1 – – – – – – – –

BHI rel Branch if Higher
(if C ✛ Z = 0) (unsigned)

REL 22 rr 3/1 – – – – – – – –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-3



BHS rel Branch if Higher or Same
(if C = 0) (unsigned)
same function as BCC

REL 24 rr 3/1 – – – – – – – –

BITA opr (A) • (M)
Logical And A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

BITB opr (B) • (M)
Logical And B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

BLE rel Branch if Less Than or Equal
(if Z ✛ (N ⊕ V) = 1) (signed)

REL 2F rr 3/1 – – – – – – – –

BLO rel Branch if Lower
(if C = 1) (unsigned)
same function as BCS

REL 25 rr 3/1 – – – – – – – –

BLS rel Branch if Lower or Same
(if C ✛ Z = 1) (unsigned)

REL 23 rr 3/1 – – – – – – – –

BLT rel Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 2D rr 3/1 – – – – – – – –

BMI rel Branch if Minus (if N = 1) REL 2B rr 3/1 – – – – – – – –

BNE rel Branch if Not Equal (if Z = 0) REL 26 rr 3/1 – – – – – – – –

BPL rel Branch if Plus (if N = 0) REL 2A rr 3/1 – – – – – – – –

BRA rel Branch Always (if 1 = 1) REL 20 rr 3 – – – – – – – –

BRCLR
opr, msk, rel

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Clear)

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

4
5
4
6
8

– – – – – – – –

BRN rel Branch Never (if 1 = 0) REL 21 rr 1 – – – – – – – –

BRSET
opr, msk, rel

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Set)

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

4
5
4
6
8

– – – – – – – –

BSET opr, msk (M) ✛ (mm) ⇒ M
Set Bit(s) in Memory

DIR
EXT
IDX
IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

4
4
4
4
6

– – – – ∆ ∆ 0 –

BSR rel (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1)
Subroutine address ⇒ PC

Branch to Subroutine

REL 07 rr 4 – – – – – – – –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-4 REFERENCE MANUAL



BVC rel Branch if Overflow Bit Clear (if V = 0) REL 28 rr 3/1 – – – – – – – –

BVS rel Branch if Overflow Bit Set (if V = 1) REL 29 rr 3/1 – – – – – – – –

CALL opr, page (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1)
(SP) – 1 ⇒ SP;
(PPG) ⇒ M(SP);
pg ⇒ PPAGE register;
Program address ⇒ PC

Call subroutine in extended memory
(Program may be located on another
expansion memory page.)

EXT
IDX
IDX1
IDX2

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg

8
8
8
9

– – – – – – – –

CALL [D,r]
CALL [opr,r]

Indirect modes get program address
and new pg value based on pointer.

r = X, Y, SP, or PC

[D,IDX]
[IDX2]

4B xb
4B xb ee ff

10
10

– – – – – – – –

CBA (A) – (B)
Compare 8-Bit Accumulators

INH 18 17 2 – – – – ∆ ∆ ∆ ∆

CLC 0 ⇒ C
Translates to ANDCC #$FE

IMM 10 FE 1 – – – – – – – 0

CLI 0 ⇒ I
Translates to ANDCC #$EF
(enables I-bit interrupts)

IMM 10 EF 1 – – – 0 – – – –

CLR opr

CLRA
CLRB

0 ⇒ M Clear Memory Location

0 ⇒ A Clear Accumulator A
0 ⇒ B Clear Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff
87
C7

3
2
3
3
5
5
1
1

– – – – 0 1 0 0

CLV 0 ⇒ V
Translates to ANDCC #$FD

IMM 10 FD 1 – – – – – – 0 –

CMPA opr (A) – (M)
Compare Accumulator A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CMPB opr (B) – (M)
Compare Accumulator B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-5



COM opr

COMA
COMB

(M) ⇒ M equivalent to $FF – (M) ⇒ M
1’s Complement Memory Location

(A) ⇒ A Complement Accumulator A
(B) ⇒ B Complement Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff
41
51

4
3
4
5
6
6
1
1

– – – – ∆ ∆ 0 1

CPD opr (A:B) – (M:M+1)
Compare D to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CPS opr (SP) – (M:M+1)
Compare SP to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CPX opr (X) – (M:M+1)
Compare X to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CPY opr (Y) – (M:M+1)
Compare Y to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

DAA Adjust Sum to BCD
Decimal Adjust Accumulator A

INH 18 07 3 – – – – ∆ ∆ ? ∆

DBEQ cntr, rel (cntr) – 1⇒ cntr
if (cntr) = 0, then Branch
else Continue to next instruction

Decrement Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

DBNE cntr, rel (cntr) – 1 ⇒ cntr
If (cntr) not = 0, then Branch;
else Continue to next instruction

Decrement Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-6 REFERENCE MANUAL



DEC opr

DECA
DECB

(M) – $01 ⇒ M
Decrement Memory Location

(A) – $01 ⇒ A Decrement A
(B) – $01 ⇒ B Decrement B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff
43
53

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ –

DES (SP) – $0001 ⇒ SP
Translates to LEAS –1,SP

IDX 1B 9F 2 – – – – – – – –

DEX (X) – $0001 ⇒ X
Decrement Index Register X

INH 09 1 – – – – – ∆ – –

DEY (Y) – $0001 ⇒ Y
Decrement Index Register Y

INH 03 1 – – – – – ∆ – –

EDIV (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 × 16 Bit ⇒ 16 Bit Divide (unsigned)

INH 11 11 – – – – ∆ ∆ ∆ ∆

EDIVS (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 × 16 Bit ⇒ 16 Bit Divide (signed)

INH 18 14 12 – – – – ∆ ∆ ∆ ∆

EMACS sum (M(X):M(X+1)) × (M(Y):M(Y+1)) + (M~M+3) ⇒
M~M+3

16 × 16 Bit ⇒ 32 Bit
Multiply and Accumulate (signed)

Special 18 12 hh ll 13 – – – – ∆ ∆ ∆ ∆

EMAXD opr MAX((D), (M:M+1)) ⇒ D
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

EMAXM opr MAX((D), (M:M+1)) ⇒ M:M+1
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

EMIND opr MIN((D), (M:M+1)) ⇒ D
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

EMINM opr MIN((D), (M:M+1)) ⇒ M:M+1
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

EMUL (D) × (Y) ⇒ Y:D
16 × 16 Bit Multiply (unsigned)

INH 13 3 – – – – ∆ ∆ – ∆

EMULS (D) × (Y) ⇒ Y:D
16 × 16 Bit Multiply (signed)

INH 18 13 3 – – – – ∆ ∆ – ∆

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-7



EORA opr (A) ⊕ (M) ⇒ A
Exclusive-OR A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

EORB opr (B) ⊕ (M) ⇒ B
Exclusive-OR B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ETBL opr (M:M+1)+ [(B)×((M+2:M+3) – (M:M+1))] ⇒ D
16-Bit Table Lookup and Interpolate

Initialize B, and index before ETBL.
<ea> points at first table entry (M:M+1)
and B is fractional part of lookup value

(no indirect addr. modes allowed)

IDX 18 3F xb 10 – – – – ∆ ∆ – ?

EXG r1, r2 (r1) ⇔ (r2) (if r1 and r2 same size) or
$00:(r1) ⇒ r2 (if r1=8-bit; r2=16-bit) or
(r1low) ⇔ (r2) (if r1=16-bit; r2=8-bit)

r1 and r2 may be
A, B, CCR, D, X, Y, or SP

INH B7 eb 1 – – – – – – – –

FDIV (D) ÷ (X) ⇒ X; r ⇒ D
16 × 16 Bit Fractional Divide

INH 18 11 12 – – – – – ∆ ∆ ∆

IBEQ cntr, rel (cntr) + 1⇒ cntr
If (cntr) = 0, then Branch
else Continue to next instruction

Increment Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

IBNE cntr, rel (cntr) + 1⇒ cntr
if (cntr) not = 0, then Branch;
else Continue to next instruction

Increment Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

IDIV (D) ÷ (X) ⇒ X; r ⇒ D
16 × 16 Bit Integer Divide (unsigned)

INH 18 10 12 – – – – – ∆ 0 ∆

IDIVS (D) ÷ (X) ⇒ X; r ⇒ D
16 × 16 Bit Integer Divide (signed)

INH 18 15 12 – – – – ∆ ∆ ∆ ∆

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-8 REFERENCE MANUAL



INC opr

INCA
INCB

(M) + $01 ⇒ M
Increment Memory Byte

(A) + $01 ⇒ A Increment Acc. A
(B) + $01 ⇒ B Increment Acc. B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff
42
52

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ –

INS (SP) + $0001 ⇒ SP
Translates to LEAS 1,SP

IDX 1B 81 2 – – – – – – – –

INX (X) + $0001 ⇒ X
Increment Index Register X

INH 08 1 – – – – – ∆ – –

INY (Y) + $0001 ⇒ Y
Increment Index Register Y

INH 02 1 – – – – – ∆ – –

JMP opr Subroutine address ⇒ PC

Jump

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

3
3
3
4
6
6

– – – – – – – –

JSR opr (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
Subroutine address ⇒ PC

Jump to Subroutine

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

4
4
4
4
5
7
7

– – – – – – – –

LBCC rel Long Branch if Carry Clear (if C = 0) REL 18 24 qq rr 4/3 – – – – – – – –

LBCS rel Long Branch if Carry Set (if C = 1) REL 18 25 qq rr 4/3 – – – – – – – –

LBEQ rel Long Branch if Equal (if Z = 1) REL 18 27 qq rr 4/3 – – – – – – – –

LBGE rel Long Branch Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 18 2C qq rr 4/3 – – – – – – – –

LBGT rel Long Branch if Greater Than
(if Z ✛ (N ⊕ V) = 0) (signed)

REL 18 2E qq rr 4/3 – – – – – – – –

LBHI rel Long Branch if Higher
(if C ✛ Z = 0) (unsigned)

REL 18 22 qq rr 4/3 – – – – – – – –

LBHS rel Long Branch if Higher or Same
(if C = 0) (unsigned)
same function as LBCC

REL 18 24 qq rr 4/3 – – – – – – – –

LBLE rel Long Branch if Less Than or Equal
(if Z ✛ (N ⊕ V) = 1) (signed)

REL 18 2F qq rr 4/3 – – – – – – – –

LBLO rel Long Branch if Lower
(if C = 1) (unsigned)
same function as LBCS

REL 18 25 qq rr 4/3 – – – – – – – –

LBLS rel Long Branch if Lower or Same
(if C ✛ Z = 1) (unsigned)

REL 18 23 qq rr 4/3 – – – – – – – –

LBLT rel Long Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 18 2D qq rr 4/3 – – – – – – – –

LBMI rel Long Branch if Minus (if N = 1) REL 18 2B qq rr 4/3 – – – – – – – –

LBNE rel Long Branch if Not Equal (if Z = 0) REL 18 26 qq rr 4/3 – – – – – – – –

LBPL rel Long Branch if Plus (if N = 0) REL 18 2A qq rr 4/3 – – – – – – – –

LBRA rel Long Branch Always (if 1=1) REL 18 20 qq rr 4 – – – – – – – –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-9



LBRN rel Long Branch Never (if 1 = 0) REL 18 21 qq rr 3 – – – – – – – –

LBVC rel Long Branch if Overflow Bit Clear (if V=0) REL 18 28 qq rr 4/3 – – – – – – – –

LBVS rel Long Branch if Overflow Bit Set (if V = 1) REL 18 29 qq rr 4/3 – – – – – – – –

LDAA opr (M) ⇒ A
Load Accumulator A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDAB opr (M) ⇒ B
Load Accumulator B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDD opr (M:M+1) ⇒ A:B
Load Double Accumulator D (A:B)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDS opr (M:M+1) ⇒ SP
Load Stack Pointer

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDX opr (M:M+1) ⇒ X
Load Index Register X

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDY opr (M:M+1) ⇒ Y
Load Index Register Y

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LEAS opr Effective Address ⇒ SP
Load Effective Address into SP

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

2
2
2

– – – – – – – –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-10 REFERENCE MANUAL



LEAX opr Effective Address ⇒ X
Load Effective Address into X

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

2
2
2

– – – – – – – –

LEAY opr Effective Address ⇒ Y
Load Effective Address into Y

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

2
2
2

– – – – – – – –

LSL opr

LSLA
LSLB

Logical Shift Left
same function as ASL

Logical Shift Accumulator A to Left
Logical Shift Accumulator B to Left

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

LSLD

Logical Shift Left D Accumulator
same function as ASLD

INH 59 1 – – – – ∆ ∆ ∆ ∆

LSR opr

LSRA
LSRB

Logical Shift Right

Logical Shift Accumulator A to Right
Logical Shift Accumulator B to Right

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff
44
54

4
3
4
5
6
6
1
1

– – – – 0 ∆ ∆ ∆

LSRD

Logical Shift Right D Accumulator

INH 49 1 – – – – 0 ∆ ∆ ∆

MAXA MAX((A), (M)) ⇒ A
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

MAXM MAX((A), (M)) ⇒ M
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

MEM µ (grade) ⇒ M(Y);
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2 then µ = 0, else
µ = MIN[((A) – P1)×S1, (P2 – (A))×S2, $FF]
where:
A = current crisp input value;
X points at 4-byte data structure that de-
scribes a trapezoidal membership function
(P1, P2, S1, S2);
Y points at fuzzy input (RAM location).
See instruction details for special cases.

Special 01 5 – – ? – ? ? ? ?

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-11



MINA MIN((A), (M)) ⇒ A
MIN of Two Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

MINM MIN((A), (M)) ⇒ M
MIN of Two Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

MOVB opr1, opr2 (M1) ⇒ M2
Memory to Memory Byte-Move (8-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

4
4
6
5
5
5

– – – – – – – –

MOVW opr1, opr2 (M:M+11) ⇒ M:M+12
Memory to Memory Word-Move (16-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

5
4
6
5
5
5

– – – – – – – –

MUL (A) × (B) ⇒ A:B

8 × 8 Unsigned Multiply

INH 12 3 – – – – – – – ∆

NEG opr

NEGA

NEGB

0 – (M) ⇒ M or (M) + 1 ⇒ M
Two’s Complement Negate

0 – (A) ⇒ A equivalent to (A) + 1 ⇒ B
Negate Accumulator A
0 – (B) ⇒ B equivalent to (B) + 1 ⇒ B
Negate Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH

INH

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff
40

50

4
3
4
5
6
6
1

1

– – – – ∆ ∆ ∆ ∆

NOP No Operation INH A7 1 – – – – – – – –

ORAA opr (A) ✛ (M) ⇒ A
Logical OR A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ORAB opr (B) ✛ (M) ⇒ B
Logical OR B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ORCC opr (CCR) ✛ M ⇒ CCR
Logical OR CCR with Memory

IMM 14 ii 1 ⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-12 REFERENCE MANUAL



PSHA (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

Push Accumulator A onto Stack

INH 36 2 – – – – – – – –

PSHB (SP) – 1 ⇒ SP; (B) ⇒ M(SP)

Push Accumulator B onto Stack

INH 37 2 – – – – – – – –

PSHC (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)

Push CCR onto Stack

INH 39 2 – – – – – – – –

PSHD (SP) – 2 ⇒ SP; (A:B) ⇒ M(SP):M(SP+1)

Push D Accumulator onto Stack

INH 3B 2 – – – – – – – –

PSHX (SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1)

Push Index Register X onto Stack

INH 34 2 – – – – – – – –

PSHY (SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1)

Push Index Register Y onto Stack

INH 35 2 – – – – – – – –

PULA (M(SP)) ⇒ A; (SP) + 1 ⇒ SP

Pull Accumulator A from Stack

INH 32 3 – – – – – – – –

PULB (M(SP)) ⇒ B; (SP) + 1 ⇒ SP

Pull Accumulator B from Stack

INH 33 3 – – – – – – – –

PULC (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

Pull CCR from Stack

INH 38 3 ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

PULD (M(SP):M(SP+1)) ⇒ A:B; (SP) + 2 ⇒ SP

Pull D from Stack

INH 3A 3 – – – – – – – –

PULX (M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 2 ⇒ SP

Pull Index Register X from Stack

INH 30 3 – – – – – – – –

PULY (M(SP):M(SP+1)) ⇒ YH:YL; (SP) + 2 ⇒ SP

Pull Index Register Y from Stack

INH 31 3 – – – – – – – –

REV MIN-MAX rule evaluation
Find smallest rule input (MIN).
Store to rule outputs unless fuzzy output is
already larger (MAX).

For rule weights see REVW.

Each rule input is an 8-bit offset from the
base address in Y. Each rule output is an 8-
bit offset from the base address in Y. $FE
separates rule inputs from rule outputs. $FF
terminates the rule list.

REV may be interrupted.

Special 18 3A 3**

per
rule
byte

– – – – – – ∆ –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-13



REVW MIN-MAX rule evaluation
Find smallest rule input (MIN),
Store to rule outputs unless fuzzy output is
already larger (MAX).

Rule weights supported, optional.

Each rule input is the 16-bit address of a
fuzzy input. Each rule output is the 16-bit ad-
dress of a fuzzy output. The value $FFFE
separates rule inputs from rule outputs.
$FFFF terminates the rule list.

REVW may be interrupted.

Special 18 3B 3**

per
rule
byte;

5
per
wt.

– – ? – ? ? ∆ !

ROL opr

ROLA
ROLB

Rotate Memory Left through Carry

Rotate A Left through Carry
Rotate B Left through Carry

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff
45
55

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

ROR opr

RORA
RORB

Rotate Memory Right through Carry

Rotate A Right through Carry
Rotate B Right through Carry

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff
46
56

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

RTC (M(SP)) ⇒ PPAGE; (SP) + 1 ⇒ SP;
(M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP

Return from Call

INH 0A 6 – – – – – – – –

RTI (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP
(M(SP):M(SP+1)) ⇒ B:A; (SP) + 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 4 ⇒ SP
(M(SP):M(SP+1)) ⇒ PCH:PCL; (SP) – 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ YH:YL;
(SP) + 4 ⇒ SP

Return from Interrupt

INH 0B 8 ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

RTS (M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP

Return from Subroutine

INH 3D 5 – – – – – – – –

SBA  (A) – (B) ⇒ A
Subtract B from A

INH 18 16 2 – – – – ∆ ∆ ∆ ∆

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C

C b7 b0

Cb7 b0
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-14 REFERENCE MANUAL



SBCA opr (A) – (M) – C ⇒ A
Subtract with Borrow from A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SBCB opr (B) – (M) – C ⇒ B
Subtract with Borrow from B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SEC 1 ⇒ C
Translates to ORCC #$01

IMM 14 01 1 – – – – – – – 1

SEI 1 ⇒ I; (inhibit I interrupts)
Translates to ORCC #$10

IMM 14 10 1 – – – 1 – – – –

SEV 1 ⇒ V
Translates to ORCC #$02

IMM 14 02 1 – – – – – – 1 –

SEX r1, r2 $00:(r1) ⇒ r2 if r1, bit 7 is 0 or
$FF:(r1) ⇒ r2 if r1, bit 7 is 1

Sign Extend 8-bit r1 to 16-bit r2
r1 may be A, B, or CCR
r2 may be D, X, Y, or SP

Alternate mnemonic for TFR r1, r2

INH B7 eb 1 – – – – – – – –

STAA opr (A) ⇒ M
Store Accumulator A to Memory

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STAB opr (B) ⇒ M
Store Accumulator B to Memory

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STD opr (A) ⇒ M, (B) ⇒ M+1
Store Double Accumulator

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-15



STOP (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);
STOP All Clocks

If S control bit = 1, the STOP instruction is
disabled and acts like a two-cycle NOP.

Registers stacked to allow quicker recovery
by interrupt.

INH 18 3E 9**

+5
or

+2**

– – – – – – – –

STS opr (SPH:SPL) ⇒ M:M+1
Store Stack Pointer

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STX opr (XH:XL) ⇒ M:M+1
Store Index Register X

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STY opr (YH:YL) ⇒ M:M+1
Store Index Register Y

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

SUBA opr (A) – (M) ⇒ A
Subtract Memory from Accumulator A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SUBB opr (B) – (M) ⇒ B
Subtract Memory from Accumulator B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-16 REFERENCE MANUAL



SUBD opr (D) – (M:M+1) ⇒ D
Subtract Memory from D (A:B)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SWI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (SWI Vector) ⇒ PC

Software Interrupt

INH 3F 9 – – – 1 – – – –

TAB (A) ⇒ B
Transfer A to B

INH 18 0E 2 – – – – ∆ ∆ 0 –

TAP (A) ⇒ CCR
Translates to TFR A , CCR

INH B7 02 1 ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

TBA (B) ⇒ A
Transfer B to A

INH 18 0F 2 – – – – ∆ ∆ 0 –

TBEQ cntr, rel If (cntr) = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

TBL opr (M) + [(B) × ((M+1) – (M))] ⇒ A
8-Bit Table Lookup and Interpolate

Initialize B, and index before TBL.
<ea> points at first 8-bit table entry (M) and
B is fractional part of lookup value.

(no indirect addressing modes allowed.)

IDX 18 3D xb 8 – – – – ∆ ∆ – ?

TBNE cntr, rel If (cntr) not = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Not Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

TFR r1, r2 (r1) ⇒ r2 or
$00:(r1) ⇒ r2 or
(r1[7:0]) ⇒ r2

Transfer Register to Register
r1 and r2 may be A, B, CCR, D, X, Y, or SP

INH B7 eb 1 –
or
∆

–

⇓

–

∆

–

∆

–

∆

–

∆

–

∆

–

∆

TPA (CCR) ⇒ A
Translates to TFR CCR , A

INH B7 20 1 – – – – – – – –

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-17



TRAP (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (TRAP Vector) ⇒ PC

Unimplemented opcode trap

INH 18 tn
tn = $30–$39

or
$40–$FF

10 – – – 1 – – – –

TST opr

TSTA
TSTB

(M) – 0
Test Memory for Zero or Minus

(A) – 0 Test A for Zero or Minus
(B) – 0 Test B for Zero or Minus

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff
97
D7

3
3
3
4
6
6
1
1

– – – – ∆ ∆ 0 0

TSX (SP) ⇒ X
Translates to TFR SP,X

INH B7 75 1 – – – – – – – –

TSY (SP) ⇒ Y
Translates to TFR SP,Y

INH B7 76 1 – – – – – – – –

TXS (X) ⇒ SP
Translates to TFR X,SP

INH B7 57 1 – – – – – – – –

TYS (Y) ⇒ SP
Translates to TFR Y,SP

INH B7 67 1 – – – – – – – –

WAI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);

WAIT for interrupt

INH 3E 8**

(in)
+
5

(int)

–
or
–
or
–

–

–

1

–

–

–

–

1

1

–

–

–

–

–

–

–

–

–

–

–

–

WAV

Calculate Sum of Products and Sum of
Weights for Weighted Average Calculation

Initialize B, X, and Y before WAV. B specifies
number of elements. X points at first element
in Si list. Y points at first element in Fi list.

All Si and Fi elements are 8-bits.

If interrupted, six extra bytes of stack used
for intermediate values

Special 18 3C 8**

per
lable

– – ? – ? ∆ ? ?

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C

F i
i 1=

B

∑ X⇒

Si F i
i 1=

B

∑ Y:D⇒
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-18 REFERENCE MANUAL



Key to Table A-2

Addressing mode abbreviations:

DI — Direct
EX — Extended
ID — Indexed
IH — Inherent
IM — Immediate
RL — Relative
SP — Special

Cycle counts are for single-chip mode with 16-bit internal buses. Stack location (internal or external),
external bus width, and operand alignment can affect actual execution time.

wavr

pseudo-
instruction

see WAV

Resume executing an interrupted WAV in-
struction (recover intermediate results from
stack rather than initializing them to zero)

Special 3C ** – – ? – ? ∆ ? ?

XGDX (D) ⇔ (X)
Translates to EXG D, X

INH B7 C5 1 – – – – – – – –

XGDY (D) ⇔ (Y)
Translates to EXG D, Y

INH B7 C6 1 – – – – – – – –

NOTES:
*Each cycle (~) is typically 125 ns for an 8-MHz bus (16-MHz oscillator).
**Refer to detailed instruction descriptions for additional information.

Table A-1 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~* S X H I N Z V C

opcode (hex)

addressing mode

mnemonic

cycle count

00 0

0AA

MNE

byte count
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-19



 M
O

T
O

R
O

LA
IN

S
T

R
U

C
T

IO
N

 R
E

F
E

R
E

N
C

E
C

P
U

12

A
-20

R
E

F
E

R
E

N
C

E
 M

A
N

U
A

L

0 1
SUBB
M 2

D0 3
SUBB

DI 2

E0 3-6
SUBB

ID 2-4

F0 3
SUBB

EX 3
1 1
CMPB
M 2

D1 3
CMPB

DI 2

E1 3-6
CMPB

ID 2-4

F1 3
CMPB

EX 3
2 1
SBCB
M 2

D2 3
SBCB

DI 2

E2 3-6
SBCB

ID 2-4

F2 3
SBCB

EX 3
3 2
ADDD
M 3

D3 3
ADDD

DI 2

E3 3-6
ADDD

ID 2-4

F3 3
ADDD

EX 3
4 1
ANDB
M 2

D4 3
ANDB

DI 2

E4 3-6
ANDB

ID 2-4

F4 3
ANDB

EX 3
5 1
BITB

M 2

D5 3
BITB

DI 2

E5 3-6
BITB

ID 2-4

F5 3
BITB

EX 3
6 1
LDAB

M 2

D6 3
LDAB

DI 2

E6 3-6
LDAB

ID 2-4

F6 3
LDAB

EX 3
7 1
CLRB
H 1

D7 1
TSTB

IH 1

E7 3-6
TST

ID 2-4

F7 3
TST

EX 3
8 1
EORB
M 2

D8 3
EORB

DI 2

E8 3-6
EORB

ID 2-4

F8 3
EORB

EX 3
9 1
ADCB
M 2

D9 3
ADCB

DI 2

E9 3-6
ADCB

ID 2-4

F9 3
ADCB

EX 3
A 1
ORAB
M 2

DA 3
ORAB

DI 2

EA 3-6
ORAB

ID 2-4

FA 3
ORAB

EX 3
B 1
ADDB
M 2

DB 3
ADDB

DI 2

EB 3-6
ADDB

ID 2-4

FB 3
ADDB

EX 3
C 2
LDD

M 3

DC 3
LDD

DI 2

EC 3-6
LDD

ID 2-4

FC 3
LDD

EX 3
CD 2

LDY
IM 3

DD 3
LDY

DI 2

ED 3-6
LDY

ID 2-4

FD 3
LDY

EX 3
CE 2

LDX
IM 3

DE 3
LDX

DI 2

EE 3-6
LDX

ID 2-4

FE 3
LDX

EX 3
CF 2

LDS
IM 3

DF 3
LDS

DI 2

EF 3-6
LDS

ID 2-4

FF 3
LDS

EX 3
Table A-2 CPU12 Opcode Map (Sheet 1 of 2)
00 *5
BGND

IH 1

10 1
ANDCC
IM 2

20 3
BRA

RL 2

30 3
PULX

IH 1

40 1
NEGA

IH 1

50 1
NEGB

IH 1

60 3-6
NEG

ID 2-4

70 4
NEG

EX 3

80 1
SUBA

IM 2

90 3
SUBA

DI 2

A0 3-6
SUBA

ID 2-4

B0 3
SUBA

EX 3

C

I
01 5

MEM
IH 1

11 11
EDIV

IH 1

21 1
BRN

RL 2

31 3
PULY

IH 1

41 1
COMA

IH 1

51 1
COMB

IH 1

61 3-6
COM

ID 2-4

71 4
COM

EX 3

81 1
CMPA

IM 2

91 3
CMPA

DI 2

A1 3-6
CMPA

ID 2-4

B1 3
CMPA

EX 3

C

I
02 1

INY
IH 1

12 3
MUL

IH 1

22 3/1
BHI

RL 2

32 3
PULA

IH 1

42 1
INCA

IH 1

52 1
INCB

IH 1

62 3-6
INC

ID 2-4

72 4
INC

EX 3

82 1
SBCA

IM 2

92 3
SBCA

DI 2

A2 3-6
SBCA

ID 2-4

B2 3
SBCA

EX 3

C

I
03 1

DEY
IH 1

13 3
EMUL

IH 1

23 3/1
BLS

RL 2

33 3
PULB

IH 1

43 1
DECA

IH 1

53 1
DECB

IH 1

63 3-6
DEC

ID 2-4

73 4
DEC

EX 3

83 2
SUBD

IM 3

93 3
SUBD

DI 2

A3 3-6
SUBD

ID 2-4

B3 3
SUBD

EX 3

C

I
04 3

loop‡

RL 3

14 1
ORCC

IM 2

24 3/1
BCC

RL 2

34 2
PSHX

IH 1

44 1
LSRA

IH 1

54 1
LSRB

IH 1

64 3-6
LSR

ID 2-4

74 4
LSR

EX 3

84 1
ANDA

IM 2

94 3
ANDA

DI 2

A4 3-6
ANDA

ID 2-4

B4 3
ANDA

EX 3

C

I
05 3-6

JMP
ID 2-4

15 4-7
JSR

ID 2-4

25 3/1
BCS

RL 2

35 2
PSHY

IH 1

45 1
ROLA

IH 1

55 1
ROLB

IH 1

65 3-6
ROL

ID 2-4

75 4
ROL

EX 3

85 1
BITA

IM 2

95 3
BITA

DI 2

A5 3-6
BITA

ID 2-4

B5 3
BITA

EX 3

C

I
06 3

JMP
EX 3

16 4
JSR

EX 3

26 3/1
BNE

RL 2

36 2
PSHA

IH 1

46 1
RORA

IH 1

56 1
RORB

IH 1

66 3-6
ROR

ID 2-4

76 4
ROR

EX 3

86 1
LDAA

IM 2

96 3
LDAA

DI 2

A6 3-6
LDAA

ID 2-4

B6 3
LDAA

EX 3

C

I
07 4

BSR
RL 2

17 4
JSR

DI 2

27 3/1
BEQ

RL 2

37 2
PSHB

IH 1

47 1
ASRA

IH 1

57 1
ASRB

IH 1

67 3-6
ASR

ID 2-4

77 4
ASR

EX 3

87 1
CLRA

IH 1

97 1
TSTA

IH 1

A7 1
NOP

IH 1

B7 1
TFR/EXG
IH 2

C

I
08 1

INX
IH 1

18 -
page 2

- -

28 3/1
BVC

RL 2

38 3
PULC

IH 1

48 1
ASLA

IH 1

58 1
ASLB

IH 1

68 3-6
ASL

ID 2-4

78 4
ASL

EX 3

88 1
EORA

IM 2

98 3
EORA

DI 2

A8 3-6
EORA

ID 2-4

B8 3
EORA

EX 3

C

I
09 1

DEX
IH 1

19 2
LEAY

ID 2-4

29 3/1
BVS

RL 2

39 2
PSHC

IH 1

49 1
LSRD

IH 1

59 1
ASLD

IH 1

69 2-5
CLR

ID 2-4

79 3
CLR

EX 3

89 1
ADCA

IM 2

99 3
ADCA

DI 2

A9 3-6
ADCA

ID 2-4

B9 3
ADCA

EX 3

C

I
0A 6

RTC
IH 1

1A 2
LEAX

ID 2-4

2A 3/1
BPL

RL 2

3A 3
PULD

IH 1

4A 8
CALL

EX 4

5A 2
STAA

DI 2

6A 2-5
STAA

ID 2-4

7A 3
STAA

EX 3

8A 1
ORAA

IM 2

9A 3
ORAA

DI 2

AA 3-6
ORAA

ID 2-4

BA 3
ORAA

EX 3

C

I
0B 8

RTI
IH 1

1B 2
LEAS

ID 2-4

2B 3/1
BMI

RL 2

3B 2
PSHD

IH 1

4B 8-10
CALL

ID 2-5

5B 2
STAB

DI 2

6B 2-5
STAB

ID 2-4

7B 3
STAB

EX 3

8B 1
ADDA

IM 2

9B 3
ADDA

DI 2

AB 3-6
ADDA

ID 2-4

BB 3
ADDA

EX 3

C

I
0C 4-6
BSET

ID 3-5

1C 4
BSET

EX 4

2C 3/1
BGE

RL 2

3C *+9
wavr

SP 1

4C 4
BSET

DI 3

5C 2
STD

DI 2

6C 2-5
STD

ID 2-4

7C 3
STD

EX 3

8C 2
CPD

IM 3

9C 3
CPD

DI 2

AC 3-6
CPD

ID 2-4

BC 3
CPD

EX 3

C

I
0D 4-6
BCLR

ID 3-5

1D 4
BCLR

EX 4

2D 3/1
BLT

RL 2

3D 5
RTS

IH 1

4D 4
BCLR

DI 3

5D 2
STY

DI 2

6D 2-5
STY

ID 2-4

7D 3
STY

EX 3

8D 2
CPY

IM 3

9D 3
CPY

DI 2

AD 3-6
CPY

ID 2-4

BD 3
CPY

EX 3
0E 4-8
BRSET
ID 4-6

1E 5
BRSET
EX 5

2E 3/1
BGT

RL 2

3E *8
WAI

IH 1

4E 4
BRSET
DI 4

5E 2
STX

DI 2

6E 2-5
STX

ID 2-4

7E 3
STX

EX 3

8E 2
CPX

IM 3

9E 3
CPX

DI 2

AE 3-6
CPX

ID 2-4

BE 3
CPX

EX 3
0F 4-8
BRCLR
ID 4-6

1F 5
BRCLR
EX 5

2F 3/1
BLE

RL 2

3F 9
SWI

IH 1

4F 4
BRCLR
DI 4

5F 2
STS

DI 2

6F 2-5
STS

ID 2-4

7F 3
STS

EX 3

8F 2
CPS

IM 3

9F 3
CPS

DI 2

AF 3-6
CPS

ID 2-4

BF 3
CPS

EX 3



C
P

U
12

IN
S

T
R

U
C

T
IO

N
 R

E
F

E
R

E
N

C
E

M
O

T
O

R
O

LA

R
E

F
E

R
E

N
C

E
 M

A
N

U
A

L
A

-21 NE.

10
AP

2

D0 10
TRAP

IH 2

E0 10
TRAP

IH 2

F0 10
TRAP

IH 2
10

AP
2

D1 10
TRAP

IH 2

E1 10
TRAP

IH 2

F1 10
TRAP

IH 2
10

AP
2

D2 10
TRAP

IH 2

E2 10
TRAP

IH 2

F2 10
TRAP

IH 2
10

AP
2

D3 10
TRAP

IH 2

E3 10
TRAP

IH 2

F3 10
TRAP

IH 2
10

AP
2

D4 10
TRAP

IH 2

E4 10
TRAP

IH 2

F4 10
TRAP

IH 2
10

AP
2

D5 10
TRAP

IH 2

E5 10
TRAP

IH 2

F5 10
TRAP

IH 2
10

AP
2

D6 10
TRAP

IH 2

E6 10
TRAP

IH 2

F6 10
TRAP

IH 2
10

AP
2

D7 10
TRAP

IH 2

E7 10
TRAP

IH 2

F7 10
TRAP

IH 2
10

AP
2

D8 10
TRAP

IH 2

E8 10
TRAP

IH 2

F8 10
TRAP

IH 2
10

AP
2

D9 10
TRAP

IH 2

E9 10
TRAP

IH 2

F9 10
TRAP

IH 2
10

AP
2

DA 10
TRAP

IH 2

EA 10
TRAP

IH 2

FA 10
TRAP

IH 2
10

AP
2

DB 10
TRAP

IH 2

EB 10
TRAP

IH 2

FB 10
TRAP

IH 2
10

AP
2

DC 10
TRAP

IH 2

EC 10
TRAP

IH 2

FC 10
TRAP

IH 2
10

AP
2

DD 10
TRAP

IH 2

ED 10
TRAP

IH 2

FD 10
TRAP

IH 2
10

AP
2

DE 10
TRAP

IH 2

EE 10
TRAP

IH 2

FE 10
TRAP

IH 2
10

AP
2

DF 10
TRAP

IH 2

EF 10
TRAP

IH 2

FF 10
TRAP

IH 2
* Refer to instruction glossary for more information.
‡ The opcode $04 corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TB

00 4
MOVW
IM-ID 5

10 12
IDIV

IH 2

20 4
LBRA

RL 4

30 10
TRAP

IH 2

40 10
TRAP

IH 2

50 10
TRAP

IH 2

60 10
TRAP

IH 2

70 10
TRAP

IH 2

80 10
TRAP

IH 2

90 10
TRAP

IH 2

A0 10
TRAP

IH 2

B0 10
TRAP

IH 2

C0
TR

IH
01 5
MOVW
EX-ID 5

11 12
FDIV

IH 2

21 3
LBRN

RL 4

31 10
TRAP

IH 2

41 10
TRAP

IH 2

51 10
TRAP

IH 2

61 10
TRAP

IH 2

71 10
TRAP

IH 2

81 10
TRAP

IH 2

91 10
TRAP

IH 2

A1 10
TRAP

IH 2

B1 10
TRAP

IH 2

C1
TR

IH
02 5
MOVW
ID-ID 4

12 13
EMACS
SP 4

22 4/3
LBHI

RL 4

32 10
TRAP

IH 2

42 10
TRAP

IH 2

52 10
TRAP

IH 2

62 10
TRAP

IH 2

72 10
TRAP

IH 2

82 10
TRAP

IH 2

92 10
TRAP

IH 2

A2 10
TRAP

IH 2

B2 10
TRAP

IH 2

C2
TR

IH
03 5
MOVW
IM-EX 6

13 3
EMULS
IH 2

23 4/3
LBLS

RL 4

33 10
TRAP

IH 2

43 10
TRAP

IH 2

53 10
TRAP

IH 2

63 10
TRAP

IH 2

73 10
TRAP

IH 2

83 10
TRAP

IH 2

93 10
TRAP

IH 2

A3 10
TRAP

IH 2

B3 10
TRAP

IH 2

C3
TR

IH
04 6
MOVW
EX-EX 6

14 12
EDIVS

IH 2

24 4/3
LBCC

RL 4

34 10
TRAP

IH 2

44 10
TRAP

IH 2

54 10
TRAP

IH 2

64 10
TRAP

IH 2

74 10
TRAP

IH 2

84 10
TRAP

IH 2

94 10
TRAP

IH 2

A4 10
TRAP

IH 2

B4 10
TRAP

IH 2

C4
TR

IH
05 5
MOVW
ID-EX 5

15 12
IDIVS

IH 2

25 4/3
LBCS

RL 4

35 10
TRAP

IH 2

45 10
TRAP

IH 2

55 10
TRAP

IH 2

65 10
TRAP

IH 2

75 10
TRAP

IH 2

85 10
TRAP

IH 2

95 10
TRAP

IH 2

A5 10
TRAP

IH 2

B5 10
TRAP

IH 2

C5
TR

IH
06 2

ABA
IH 2

16 2
SBA

IH 2

26 4/3
LBNE

RL 4

36 10
TRAP

IH 2

46 10
TRAP

IH 2

56 10
TRAP

IH 2

66 10
TRAP

IH 2

76 10
TRAP

IH 2

86 10
TRAP

IH 2

96 10
TRAP

IH 2

A6 10
TRAP

IH 2

B6 10
TRAP

IH 2

C6
TR

IH
07 3

DAA
IH 2

17 2
CBA

IH 2

27 4/3
LBEQ

RL 4

37 10
TRAP

IH 2

47 10
TRAP

IH 2

57 10
TRAP

IH 2

67 10
TRAP

IH 2

77 10
TRAP

IH 2

87 10
TRAP

IH 2

97 10
TRAP

IH 2

A7 10
TRAP

IH 2

B7 10
TRAP

IH 2

C7
TR

IH
08 4
MOVB

IM-ID 4

18 4-7
MAXA

ID 3-5

28 4/3
LBVC

RL 4

38 10
TRAP

IH 2

48 10
TRAP

IH 2

58 10
TRAP

IH 2

68 10
TRAP

IH 2

78 10
TRAP

IH 2

88 10
TRAP

IH 2

98 10
TRAP

IH 2

A8 10
TRAP

IH 2

B8 10
TRAP

IH 2

C8
TR

IH
09 5
MOVB

EX-ID 5

19 4-7
MINA

ID 3-5

29 4/3
LBVS

RL 4

39 10
TRAP

IH 2

49 10
TRAP

IH 2

59 10
TRAP

IH 2

69 10
TRAP

IH 2

79 10
TRAP

IH 2

89 10
TRAP

IH 2

99 10
TRAP

IH 2

A9 10
TRAP

IH 2

B9 10
TRAP

IH 2

C9
TR

IH
0A 5
MOVB

ID-ID 4

1A 4-7
EMAXD
ID 3-5

2A 4/3
LBPL

RL 4

3A *3n
REV

SP 2

4A 10
TRAP

IH 2

5A 10
TRAP

IH 2

6A 10
TRAP

IH 2

7A 10
TRAP

IH 2

8A 10
TRAP

IH 2

9A 10
TRAP

IH 2

AA 10
TRAP

IH 2

BA 10
TRAP

IH 2

CA
TR

IH
0B 4
MOVB

IM-EX 5

1B 4-7
EMIND
ID 3-5

2B 4/3
LBMI

RL 4

3B *3n
REVW

SP 2

4B 10
TRAP

IH 2

5B 10
TRAP

IH 2

6B 10
TRAP

IH 2

7B 10
TRAP

IH 2

8B 10
TRAP

IH 2

9B 10
TRAP

IH 2

AB 10
TRAP

IH 2

BB 10
TRAP

IH 2

CB
TR

IH
0C 6
MOVB

EX-EX 6

1C 4-7
MAXM

ID 3-5

2C 4/3
LBGE

RL 4

3C *8B
WAV

SP 2

4C 10
TRAP

IH 2

5C 10
TRAP

IH 2

6C 10
TRAP

IH 2

7C 10
TRAP

IH 2

8C 10
TRAP

IH 2

9C 10
TRAP

IH 2

AC 10
TRAP

IH 2

BC 10
TRAP

IH 2

CC
TR

IH
0D 5
MOVB

ID-EX 5

1D 4-7
MINM

ID 3-5

2D 4/3
LBLT

RL 4

3D 8
TBL

ID 3

4D 10
TRAP

IH 2

5D 10
TRAP

IH 2

6D 10
TRAP

IH 2

7D 10
TRAP

IH 2

8D 10
TRAP

IH 2

9D 10
TRAP

IH 2

AD 10
TRAP

IH 2

BD 10
TRAP

IH 2

CD
TR

IH
0E 2

TAB
IH 2

1E 4-7
EMAXM
ID 3-5

2E 4/3
LBGT

RL 4

3E *9+5
STOP

IH 2

4E 10
TRAP

IH 2

5E 10
TRAP

IH 2

6E 10
TRAP

IH 2

7E 10
TRAP

IH 2

8E 10
TRAP

IH 2

9E 10
TRAP

IH 2

AE 10
TRAP

IH 2

BE 10
TRAP

IH 2

CE
TR

IH
0F 2

TBA
IH 2

1F 4-7
EMINM
ID 3-5

2F 4/3
LBLE

RL 4

3F 10
ETBL

ID 3

4F 10
TRAP

IH 2

5F 10
TRAP

IH 2

6F 10
TRAP

IH 2

7F 10
TRAP

IH 2

8F 10
TRAP

IH 2

9F 10
TRAP

IH 2

AF 10
TRAP

IH 2

BF 10
TRAP

IH 2

CF
TR

IH

Table A-2 CPU12 Opcode Map (Sheet 2 of 2)



 M
O

T
O

R
O

LA
IN

S
T

R
U

C
T

IO
N

 R
E

F
E

R
E

N
C

E
C

P
U

12

A
-22

R
E

F
E

R
E

N
C

E
 M

A
N

U
A

L

C0
0,PC

5b const

D0
–16,PC

5b const

E0
n,X

9b const

F0
n,SP

9b const

C1
1,PC

5b const

D1
–15,PC

5b const

E1
–n,X

9b const

F1
–n,SP

9b const

C2
2,PC

5b const

D2
–14,PC

5b const

E2
n,X

16b const

F2
n,SP

16b const

C3
3,PC

5b const

D3
–13,PC

5b const

E3
[n,X]

16b indr

F3
[n,SP]

16b indr

C4
4,PC

5b const

D4
–12,PC

5b const

E4
A,X

A offset

F4
A,SP

A offset

C5
5,PC

5b const

D5
–11,PC

5b const

E5
B,X

B offset

F5
B,SP

B offset

C6
6,PC

5b const

D6
–10,PC

5b const

E6
D,X

D offset

F6
D,SP

D offset

C7
7,PC

5b const

D7
–9,PC

5b const

E7
[D,X]

D indirect

F7
[D,SP]

D indirect

C8
8,PC

5b const

D8
–8,PC

5b const

E8
n,Y

9b const

F8
n,PC

9b const

C9
9,PC

5b const

D9
–7,PC

5b const

E9
–n,Y

9b const

F9
–n,PC

9b const

CA
10,PC

5b const

DA
–6,PC

5b const

EA
n,Y

16b const

FA
n,PC

16b const

c

CB
11,PC

5b const

DB
–5,PC

5b const

EB
[n,Y]

16b indr

FB
[n,PC]

16b indr

CC
12,PC

5b const

DC
–4,PC

5b const

EC
A,Y

A offset

FC
A,PC

A offset

CD
13,PC

5b const

DD
–3,PC

5b const

ED
B,Y

B offset

FD
B,PC

B offset

CE
14,PC

5b const

DE
–2,PC

5b const

EE
D,Y

D offset

FE
D,PC

D offset

CF
15,PC

5b const

DF
–1,PC

5b const

EF
[D,Y]

D indirect

FF
[D,PC]

D indirect
Table A-3 Indexed Addressing Mode Postbyte Encoding (xb)

00
0,X

5b const

10
–16,X

5b const

20
1,+X

pre-inc

30
1,X+

post-inc

40
0,Y

5b const

50
–16,Y

5b const

60
1,+Y

pre-inc

70
1,Y+

post-inc

80
0,SP

5b const

90
–16,SP

5b const

A0
1,+SP

pre-inc

B0
1,SP+

post-inc

01
1,X

5b const

11
–15,X

5b const

21
2,+X

pre-inc

31
2,X+

post-inc

41
1,Y

5b const

51
–15,Y

5b const

61
2,+Y

pre-inc

71
2,Y+

post-inc

81
1,SP

5b const

91
–15,SP

5b const

A1
2,+SP

pre-inc

B1
2,SP+

post-inc

02
2,X

5b const

12
–14,X

5b const

22
3,+X

pre-inc

32
3,X+

post-inc

42
2,Y

5b const

52
–14,Y

5b const

62
3,+Y

pre-inc

72
3,Y+

post-inc

82
2,SP

5b const

92
–14,SP

5b const

A2
3,+SP

pre-inc

B2
3,SP+

post-inc

03
3,X

5b const

13
–13,X

5b const

23
4,+X

pre-inc

33
4,X+

post-inc

43
3,Y

5b const

53
–13,Y

5b const

63
4,+Y

pre-inc

73
4,Y+

post-inc

83
3,SP

5b const

93
–13,SP

5b const

A3
4,+SP

pre-inc

B3
4,SP+

post-inc

04
4,X

5b const

14
–12,X

5b const

24
5,+X

pre-inc

34
5,X+

post-inc

44
4,Y

5b const

54
–12,Y

5b const

64
5,+Y

pre-inc

74
5,Y+

post-inc

84
4,SP

5b const

94
–12,SP

5b const

A4
5,+SP

pre-inc

B4
5,SP+

post-inc

05
5,X

5b const

15
–11,X

5b const

25
6,+X

pre-inc

35
6,X+

post-inc

45
5,Y

5b const

55
–11,Y

5b const

65
6,+Y

pre-inc

75
6,Y+

post-inc

85
5,SP

5b const

95
–11,SP

5b const

A5
6,+SP

pre-inc

B5
6,SP+

post-inc

06
6,X

5b const

16
–10,X

5b const

26
7,+X

pre-inc

36
7,X+

post-inc

46
6,Y

5b const

56
–10,Y

5b const

66
7,+Y

pre-inc

76
7,Y+

post-inc

86
6,SP

5b const

96
–10,SP

5b const

A6
7,+SP

pre-inc

B6
7,SP+

post-inc

07
7,X

5b const

17
–9,X

5b const

27
8,+X

pre-inc

37
8,X+

post-inc

47
7,Y

5b const

57
–9,Y

5b const

67
8,+Y

pre-inc

77
8,Y+

post-inc

87
7,SP

5b const

97
–9,SP

5b const

A7
8,+SP

pre-inc

B7
8,SP+

post-inc

08
8,X

5b const

18
–8,X

5b const

28
8,–X

pre-dec

38
8,X–

post-dec

48
8,Y

5b const

58
–8,Y

5b const

68
8,–Y

pre-dec

78
8,Y–

post-dec

88
8,SP

5b const

98
–8,SP

5b const

A8
8,–SP

pre-dec

B8
8,SP–

post-dec

09
9,X

5b const

19
–7,X

5b const

29
7,–X

pre-dec

39
7,X–

post-dec

49
9,Y

5b const

59
–7,Y

5b const

69
7,–Y

pre-dec

79
7,Y–

post-dec

89
9,SP

5b const

99
–7,SP

5b const

A9
7,–SP

pre-dec

B9
7,SP–

post-dec

0A
10,X

5b const

1A
–6,X

5b const

2A
6,–X

pre-dec

3A
6,X–

post-dec

4A
10,Y

5b const

5A
–6,Y

5b const

6A
6,–Y

pre-dec

7A
6,Y–

post-dec

8A
10,SP

5b const

9A
–6,SP

5b const

AA
6,–SP

pre-dec

BA
6,SP–

post-dec

0B
11,X

5b const

1B
–5,X

5b const

2B
5,–X

pre-dec

3B
5,X–

post-dec

4B
11,Y

5b const

5B
–5,Y

5b const

6B
5,–Y

pre-dec

7B
5,Y–

post-dec

8B
11,SP

5b const

9B
–5,SP

5b const

AB
5,–SP

pre-dec

BB
5,SP–

post-de

0C
12,X

5b const

1C
–4,X

5b const

2C
4,–X

pre-dec

3C
4,X–

post-dec

4C
12,Y

5b const

5C
–4,Y

5b const

6C
4,–Y

pre-dec

7C
4,Y–

post-dec

8C
12,SP

5b const

9C
–4,SP

5b const

AC
4,–SP

pre-dec

BC
4,SP–

post-dec

0D
13,X

5b const

1D
–3,X

5b const

2D
3,–X

pre-dec

3D
3,X–

post-dec

4D
13,Y

5b const

5D
–3,Y

5b const

6D
3,–Y

pre-dec

7D
3,Y–

post-dec

8D
13,SP

5b const

9D
–3,SP

5b const

AD
3,–SP

pre-dec

BD
3,SP–

post-dec

0E
14,X

5b const

1E
–2,X

5b const

2E
2,–X

pre-dec

3E
2,X–

post-dec

4E
14,Y

5b const

5E
–2,Y

5b const

6E
2,–Y

pre-dec

7E
2,Y–

post-dec

8E
14,SP

5b const

9E
–2,SP

5b const

AE
2,–SP

pre-dec

BE
2,SP–

post-dec

0F
15,X

5b const

1F
–1,X

5b const

2F
1,–X

pre-dec

3F
1,X–

post-dec

4F
15,Y

5b const

5F
–1,Y

5b const

6F
1,–Y

pre-dec

7F
1,Y–

post-dec

8F
15,SP

5b const

9F
–1,SP

5b const

AF
1,–SP

pre-dec

BF
1,SP–

post-dec



C
P

U
12

IN
S

T
R

U
C

T
IO

N
 R

E
F

E
R

E
N

C
E

M
O

T
O

R
O

LA

R
E

F
E

R
E

N
C

E
 M

A
N

U
A

L
A

-23

6 7

YL ⇒ A SPL ⇒ A

YL ⇒ B SPL ⇒ B

YL ⇒ CCR SPL ⇒ CCR

Y ⇒ TMP2 SP ⇒ TMP2

Y ⇒ D SP ⇒ D

Y ⇒ X SP ⇒ X

Y ⇒ Y SP ⇒ Y

Y ⇒ SP SP ⇒ SP

E F

YL ⇒ A
$00:A ⇒ Y

SPL ⇒ A
$00:A ⇒ SP

YL ⇒ B
$FF:B ⇒ Y

SPL ⇒ B
$FF:B ⇒ SP

X
YL ⇒ CCR

$FF:CCR ⇒ Y
SPL ⇒ CCR

$FF:CCR ⇒ SP

Y ⇔ TMP2 SP ⇔ TMP2

Y ⇔ D SP ⇔ D

Y ⇔ X SP ⇔ X

Y ⇔ Y SP ⇔ Y

Y ⇔ SP SP ⇔ SP
Table A-4 Transfer and Exchange Postbyte Encoding

TRANSFERS

⇓ LS MS⇒ 0 1 2 3 4 5

0 A ⇒ A B ⇒ A CCR ⇒ A TMP3L ⇒ A B ⇒ A XL ⇒ A

1 A ⇒ B B ⇒ B CCR ⇒ B TMP3L ⇒ B B ⇒ B XL ⇒ B

2 A ⇒ CCR B ⇒ CCR CCR ⇒ CCR TMP3L ⇒ CCR B ⇒ CCR XL ⇒ CCR

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2 TMP3 ⇒ TMP2 D ⇒ TMP2 X ⇒ TMP2

4
sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

TMP3 ⇒ D D ⇒ D X ⇒ D

5
sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

TMP3 ⇒ X D ⇒ X X ⇒ X

6
sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

TMP3 ⇒ Y D ⇒ Y X ⇒ Y

7
sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP

TMP3 ⇒ SP D ⇒ SP X ⇒ SP

EXCHANGES

⇓ LS MS⇒ 8 9 A B C D

0 A ⇔ A B ⇔ A CCR ⇔ A
TMP3L ⇒ A

$00:A ⇒ TMP3
B ⇒ A
A ⇒ B

XL ⇒ A
$00:A ⇒ X

1 A ⇔ B B ⇔ B CCR ⇔ B
TMP3L ⇒ B

$FF:B ⇒ TMP3
B ⇒ B

$FF ⇒ A
XL ⇒ B

$FF:B ⇒ X

2 A ⇔ CCR B ⇔ CCR CCR ⇔ CCR
TMP3L ⇒ CCR

$FF:CCR ⇒ TMP3
B ⇒ CCR

$FF:CCR ⇒ D
XL ⇒ CCR

$FF:CCR ⇒ 

3
$00:A ⇒ TMP2

TMP2L ⇒ A
$00:B ⇒ TMP2

TMP2L ⇒ B
$00:CCR ⇒ TMP2

TMP2L ⇒ CCR
TMP3 ⇔ TMP2 D ⇔ TMP2 X ⇔ TMP2

4 $00:A ⇒ D $00:B ⇒ D
$00:CCR ⇒ D

B ⇒ CCR
TMP3 ⇔ D D ⇔ D X ⇔ D

5
$00:A ⇒ X

XL ⇒ A
$00:B ⇒ X

XL ⇒ B
$00:CCR ⇒ X

XL ⇒ CCR
TMP3 ⇔ X D ⇔ X X ⇔ X

6
$00:A ⇒ Y

YL ⇒ A
$00:B ⇒ Y

YL ⇒ B
$00:CCR ⇒ Y

YL ⇒ CCR
TMP3 ⇔ Y D ⇔ Y X ⇔ Y

7
$00:A ⇒ SP

SPL ⇒ A
$00:B ⇒ SP

SPL ⇒ B
$00:CCR ⇒ SP

SPL ⇒ CCR
TMP3 ⇔ SP D ⇔ SP X ⇔ SP



Key to Table A-3

Table A-5 Indexed Addressing Mode Summary

Postbyte
Code (xb)

Operand
Syntax Comments

rr0nnnnn ,r
n,r
–n,r

5-bit constant offset
n = –16 to +15
rr can specify X, Y, SP, or PC

111rr0zs n,r
–n,r

Constant offset  (9- or 16-bit signed)
z- 0 = 9-bit with sign in LSB of postbyte (s)

1 = 16-bit
if z = s = 1, 16-bit offset indexed-indirect (see below)
rr can specify X, Y, SP, or PC

111rr011 [n,r] 16-bit offset indexed-indirect
rr can specify X, Y, SP, or PC

rr1pnnnn n,–r
n,+r
n,r–
n,r+

Auto pre-decrement /increment or Auto post-decrement/increment ;
p = pre-(0) or post-(1), n = –8 to –1, +1 to +8
rr can specify X, Y, or SP (PC not a valid choice)

111rr1aa A,r
B,r
D,r

Accumulator offset  (unsigned 8-bit or 16-bit)
aa - 00 = A

01 = B
10 = D (16-bit)
11 = see accumulator D offset indexed-indirect

rr can specify X, Y, SP, or PC

111rr111 [D,r] Accumulator D offset indexed-indirect
rr can specify X, Y, SP, or PC

postbyte (hex)
B0
#,REG

type

type offset used

source code syntax
 MOTOROLA INSTRUCTION REFERENCE CPU12

A-24 REFERENCE MANUAL



Table A-6 Loop Primitive Postbyte Encoding (lb)
00 A
DBEQ

(+)

10 A
DBEQ

(–)

20 A
DBNE

(+)

30 A
DBNE

(–)

40 A
TBEQ

(+)

50 A
TBEQ

(–)

60 A
TBNE

(+)

70 A
TBNE

(–)

80 A
IBEQ

(+)

90 A
IBEQ

(–)

A0 A
IBNE

(+)

B0 A
IBNE

(–)
01 B
DBEQ

(+)

11 B
DBEQ

(–)

21 B
DBNE

(+)

31 B
DBNE

(–)

41 B
TBEQ

(+)

51 B
TBEQ

(–)

61 B
TBNE

(+)

71 B
TBNE

(–)

81 B
IBEQ

(+)

91 B
IBEQ

(–)

A1 B
IBNE

(+)

B1 B
IBNE

(–)
02

—
12

—
22

—
32

—
42

—
52

—
62

—
72

—
82

—
92

—
A2

—
B2

—

03
—

13
—

23
—

33
—

43
—

53
—

63
—

73
—

83
—

93
—

A3
—

B3
—

04 D
DBEQ

(+)

14 D
DBEQ

(–)

24 D
DBNE

(+)

34 D
DBNE

(–)

44 D
TBEQ

(+)

54 D
TBEQ

(–)

64 D
TBNE

(+)

74 D
TBNE

(–)

84 D
IBEQ

(+)

94 D
IBEQ

(–)

A4 D
IBNE

(+)

B4 D
IBNE

(–)
05 X
DBEQ

(+)

15 X
DBEQ

(–)

25 X
DBNE

(+)

35 X
DBNE

(–)

45 X
TBEQ

(+)

55 X
TBEQ

(–)

65 X
TBNE

(+)

75 X
TBNE

(–)

85 X
IBEQ

(+)

95 X
IBEQ

(–)

A5 X
IBNE

(+)

B5 X
IBNE

(–)
06 Y
DBEQ

(+)

16 Y
DBEQ

(–)

26 Y
DBNE

(+)

36 Y
DBNE

(–)

46 Y
TBEQ

(+)

56 Y
TBEQ

(–)

66 Y
TBNE

(+)

76 Y
TBNE

(–)

86 Y
IBEQ

(+)

96 Y
IBEQ

(–)

A6 Y
IBNE

(+)

B6 Y
IBNE

(–)
07 SP
DBEQ

(+)

17 SP
DBEQ

(–)

27 SP
DBNE

(+)

37 SP
DBNE

(–)

47 SP
TBEQ

(+)

57 SP
TBEQ

(–)

67 SP
TBNE

(+)

77 SP
TBNE

(–)

87 SP
IBEQ

(+)

97 SP
IBEQ

(–)

A7 SP
IBNE

(+)

B7 SP
IBNE

(–)

postbyte (hex)
B0 A
_BEQ

(–)

counter used

sign of 9-bit relative branch offset
(lower eight bits are an extension byte
following postbyte)

branch condition
CPU12 INSTRUCTION REFERENCE MOTOROLA

REFERENCE MANUAL A-25



 MOTOROLA INSTRUCTION REFERENCE CPU12

A-26 REFERENCE MANUAL



APPENDIX B
M68HC11 TO M68HC12 UPGRADE PATH

This appendix discusses similarities and differences between the CPU12 and the
M68HC11 CPU. In general, the CPU12 is a proper superset of the M68HC11. Signifi-
cant changes have been made to improve the efficiency and capabilities of the CPU
without giving up compatibility and familiarity for the large community of M68HC11
programmers.

B.1 CPU12 Design Goals

The primary goals of the CPU12 design were:

• ABSOLUTE source code compatibility with the M68HC11
• Same programming model
• Same stacking operations
• Upgrade to 16-bit architecture
• Eliminate extra byte/extra cycle penalty for using index register Y
• Improve performance
• Improve compatibility with high level languages

B.2 Source Code Compatibility

Every M68HC11 instruction mnemonic and source code statement can be as-
sembled directly with a CPU12 assembler with no modifications.

The CPU12 supports all M68HC11 addressing modes and includes several new vari-
ations of indexed addressing mode. CPU12 instructions affect condition code bits in
the same way as M68HC11 instructions.

CPU12 object code is similar to but not identical to M68HC11 object code. Some pri-
mary objectives, such as the elimination of the penalty for using Y, could not be
achieved without object code differences. While the object code has been changed,
the majority of the opcodes are identical to those of the M6800, which was developed
more than 20 years earlier.

The CPU12 assembler automatically translates a few M68HC11 instruction mnemon-
ics into functionally equivalent CPU12 instructions. For example, the CPU12 does not
have an increment stack pointer (INS) instruction, so the INS mnemonic is translated
to LEAS 1,S. The CPU12 does provide single-byte DEX, DEY, INX, and INY instruc-
tions because the LEAX and LEAY instructions do not affect the condition codes,
while the M68HC11 instructions update the Z bit according to the result of the decre-
ment or increment.

Table B-1 shows M68HC11 instruction mnemonics that are automatically translated
into equivalent CPU12 instructions. This translation is performed by the assembler so
there is no need to modify an old M68HC11 program in order to assemble it for the
CPU12. In fact, the M68HC11 mnemonics can be used in new CPU12 programs.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-1



All of the translations produce the same amount of or slightly more object code than
the original M68HC11 instructions. However, there are offsetting savings in other in-
structions. Y-indexed instructions in particular assemble into one byte less object
code than the same M68HC11 instruction.

The CPU12 has a two-page opcode map, rather than the four-page M68HC11 map.
This is largely due to redesign of the indexed addressing modes. Most of pages 2, 3,
and 4 of the M68HC11 opcode map are required because Y-indexed instructions use
different opcodes than X-indexed instructions. Approximately two-thirds of the
M68HC11 page 1 opcodes are unchanged in CPU12, and some M68HC11 opcodes
have been moved to page 1 of the CPU12 opcode map. Object code for each of the
moved instructions is one byte smaller than object code for the equivalent M68HC11
instruction. Table B-2 shows instructions that assemble to one byte less object code
on the CPU12.

Instruction set changes offset each other to a certain extent. Programming style also
affects the rate at which instructions appear. As a test, the BUFFALO monitor, an 8-
Kbyte M68HC11 assembly code program, was reassembled for the CPU12. The re-
sulting object code is six bytes smaller than the M68HC11 code. It is fair to conclude
that M68HC11 code can be reassembled with very little change in size.

Table B-1 Translated M68HC11 Mnemonics

M68HC11
Mnemonic

Equivalent
CPU12 Instruction

Comments

ABX
ABY

LEAX B,X
LEAY B,Y

Since CPU12 has accumulator offset indexing, ABX and ABY are
rarely used in new CPU12 programs. ABX was one byte on M68HC11
but ABY was two bytes. The LEA substitutes are two bytes.

CLC
CLI
CLV
SEC
SEI
SEV

ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
ORCC #$01
ORCC #$10
ORCC #$02

ANDCC and ORCC now allow more control over the CCR, including
the ability to set or clear multiple bits in a single instruction. These
instructions took one byte each on M68HC11 while the ANDCC and
ORCC equivalents take two bytes each.

DES
INS

LEAS –1,S
LEAS 1,S

Unlike DEX and INX, DES and INS did not affect CCR bits in the
M68HC11, so the LEAS equivalents in CPU12 duplicate the function of
DES and INS. These instructions were one byte on M68HC11 and two
bytes on CPU12.

TAP
TPA
TSX
TSY
TXS
TYS

XGDX
XGDY

TFR A,CCR
TFR CCR,A

TFR S,X
TFR S,Y
TFR X,S
TFR Y,S
EXG D,X
EXG D,Y

The M68HC11 had a small collection of specific transfer and exchange
instructions. CPU12 expanded this to allow transfer or exchange
between any two CPU registers. For all but TSY and TYS (which take
two bytes on either CPU), the CPU12 transfer/exchange costs one
extra byte compared to the M68HC11. The substitute instructions exe-
cute in one cycle rather than two.
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-2 REFERENCE MANUAL



The relative size of code for M68HC11 vs. code for CPU12 has also been tested by
rewriting several smaller programs from scratch. In these cases, the CPU12 code is
typically about 30% smaller. These savings are mostly due to improved indexed ad-
dressing.

It seems useful to mention the results of size comparisons done on C programs. A C
program compiled for the CPU12 is about 30% smaller than the same program com-
piled for the M68HC11. The savings are largely due to better indexing.

B.3 Programmer’s Model and Stacking

The CPU12 programming model and stacking order are identical to those of the
M68HC11.

B.4 True 16-Bit Architecture

The M68HC11 is a direct descendant of the M6800, one of the first microprocessors,
which was introduced in 1974. The M6800 was strictly an 8-bit machine, with 8-bit
data buses and 8-bit instructions. As Motorola devices evolved from the M6800 to the
M68HC11, a number of 16-bit instructions were added, but the data buses remained
eight bits wide, so these instructions were performed as sequences of 8-bit opera-
tions. The CPU12 is a true 16-bit implementation, but it retains the ability to work with
the mostly 8-bit M68HC11 instruction set. The larger ALU of the CPU12 (it can per-
form some 20-bit operations) is used to calculate 16-bit pointers and to speed up
math operations.

Table B-2 Instructions with Smaller Object Code

Instruction Comments

DEY
INY

Page 2 opcodes in M68HC11 but page 1 in CPU12.

INST n,Y

For values of n less than 16 (the majority of cases). Were on page 2, now are on page 1.
Applies to BSET, BCLR, BRSET, BRCLR, NEG, COM, LSR, ROR, ASR, ASL, ROL,
DEC, INC, TST, JMP, CLR, SUB, CMP, SBC, SUBD, ADDD, AND, BIT, LDA, STA, EOR,
ADC, ORA, ADD, JSR, LDS, and STS. If X is the index reference and the offset is greater
than 15 (much less frequent than offsets of 0, 1, and 2), the CPU12 instruction assembles
to one byte more of object code than the equivalent M68HC11 instruction.

PSHY
PULY

 Were on page 2, now are on page 1.

LDY
STY
CPY

 Were on page 2, now are on page 1.

CPY n,Y
LDY n,Y
STY n,Y

For values of n less than 16 (the majority of cases). Were on page 3, now are on page 1.

CPD
Was on page 2, 3, or 4, now on page 1. In the case of indexed with offset greater than 15,
CPU12 and M68HC11 object code are the same size.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-3



B.4.1 Bus Structures

The CPU12 is a 16-bit processor with 16-bit data paths. Typical M68HC12 devices
have internal and external 16-bit data paths, but some derivatives incorporate operat-
ing modes that allow for an 8-bit data bus, so that a system can be built with low-cost
8-bit program memory. M68HC12 MCUs include an on-chip integration module that
manages the external bus interface. When the CPU makes a 16-bit access to a re-
source that is served by an 8-bit bus, the integration module performs two 8-bit ac-
cesses, freezes the CPU clocks for part of the sequence, and assembles the data into
a 16-bit word. As far as the CPU is concerned, there is no difference between this ac-
cess and a 16-bit access to an internal resource via the 16-bit data bus. This is simi-
lar to the way an M68HC11 can stretch clock cycles to accommodate slow
peripherals.

B.4.2 Instruction Queue

The CPU12 has a two-word instruction queue and a 16-bit holding buffer, which
sometimes acts as a third word for queueing program information. All program infor-
mation is fetched from memory as aligned 16-bit words, even though there is no re-
quirement for instructions to begin or end on even word boundaries. There is no
penalty for misaligned instructions. If a program begins on an odd boundary (if the re-
set vector is an odd address), program information is fetched to fill the instruction
queue, beginning with the aligned word at the next address below the misaligned re-
set vector. The instruction queue logic starts execution with the opcode in the low or-
der half of this word.

The instruction queue causes three bytes of program information (starting with the in-
struction opcode) to be directly available to the CPU at the beginning of every instruc-
tion. As it executes, each instruction performs enough additional program fetches to
refill the space it took up in the queue. Alignment information is maintained by the log-
ic in the instruction queue. The CPU provides signals that tell the queue logic when to
advance a word of program information, and when to toggle the alignment status.

The CPU is not aware of instruction alignment. The queue logic includes a multiplexer
that sorts out the information in the queue to present the opcode and the next two
bytes of information as CPU inputs. The multiplexer determines whether the opcode
is in the even or odd half of the word at the head of the queue. Alignment status is
also available to the ALU for address calculations. The execution sequence for all in-
structions is independent of the alignment of the instruction.

The only situation where alignment can affect the number of cycles an instruction
takes occurs in devices that have a narrow (8-bit) external data bus, and is related to
optional program fetch cycles (O type cycles). O cycles are always performed, but
serve different purposes determined by instruction size and alignment.

Each instruction includes one program fetch cycle for every two bytes of object code.
Instructions with an odd number of bytes can use an O cycle to fetch an extra word of
object code. If the queue is aligned at the start of an instruction with an odd byte
count, the last byte of object code shares a queue word with the opcode of the next
instruction. Since this word holds part of the next instruction, the queue cannot ad-
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-4 REFERENCE MANUAL



vance after the odd byte executes, or the first byte of the next instruction would be
lost. In this case, the O cycle appears as a free cycle since the queue is not ready to
accept the next word of program information. If this same instruction had been mis-
aligned, the queue would be ready to advance and the O cycle would be used to per-
form a program word fetch.

In a single-chip system or in a system with the program in 16-bit memory, both the
free cycle and the program fetch cycle take one bus cycle. In a system with the pro-
gram in an external 8-bit memory, the O cycle takes one bus cycle when it appears as
a free cycle, but it takes two bus cycles when used to perform a program fetch. In this
case, the on-chip integration module freezes the CPU clocks long enough to perform
the cycle as two smaller accesses. The CPU handles only 16-bit data, and is not
aware that the 16-bit program access is split into two 8-bit accesses.

In order to allow development systems to track events in the CPU12 instruction
queue, two status signals (IPIPE[1:0]) provide information about data movement in
the queue and about the start of instruction execution. A development system can
use this information along with address and data information to externally reconstruct
the queue. This representation of the queue can also track both the data and address
buses.

B.4.3 Stack Function

Both the M68HC11 and the CPU12 stack nine bytes for interrupts. Since this is an
odd number of bytes, there is no practical way to assure that the stack will stay
aligned. To assure that instructions take a fixed number of cycles regardless of stack
alignment, the internal RAM in M68HC12 MCUs is designed to allow single cycle 16-
bit accesses to misaligned addresses. As long as the stack is located in this special
RAM, stacking and unstacking operations take the same amount of execution time,
regardless of stack alignment. If the stack is located in an external 16-bit RAM, a
PSHX instruction can take two or three cycles depending upon the alignment of the
stack. This extra access time is transparent to the CPU because the integration mod-
ule freezes the CPU clocks while it performs the extra 8-bit bus cycle required for a
misaligned stack operation.

The CPU12 has a “last-used” stack rather than a “next-available” stack like the
M68HC11 CPU. That is, the stack pointer points to the last 16-bit stack address used,
rather than to the address of the next available stack location. This generally has very
little effect, because it is very unusual to access stacked information using absolute
addressing. The change allows a 16-bit word of data to be removed from the stack
without changing the value of the SP twice.

To illustrate, consider the operation of a PULX instruction. With the next-available
M68HC11 stack, if the SP = $01F0 when execution begins, the sequence of opera-
tions is: SP = SP + 1; load X from $01F1:01F2; SP = SP + 1; and the SP ends up at
$01F2. With the last-used CPU12 stack, if the SP = $01F0 when execution begins,
the sequence is: load X from $01F0:01F1; SP = SP + 2; and the SP again ends up at
$01F2. The second sequence requires one less stack pointer adjustment.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-5



The stack pointer change also affects operation of the TSX and TXS instructions. In
the M68HC11, TSX increments the SP by one during the transfer. This adjustment
causes the X index to point to the last stack location used. The TXS instruction oper-
ates similarly, except that it decrements the SP by one during the transfer. CPU12
TSX and TXS instructions are ordinary transfers — the CPU12 stack requires no ad-
justment.

For ordinary use of the stack, such as pushes, pulls, and even manipulations involv-
ing TSX and TXS, there are no differences in the way the M68HC11 and the CPU12
stacks look to a programmer. However, the stack change can affect a program algo-
rithm in two subtle ways.

The LDS #$xxxx instruction is normally used to initialize the stack pointer at the start
of a program. In the M68HC11, the address specified in the LDS instruction is the first
stack location used. In the CPU12, however, the first stack location used is one ad-
dress lower than the address specified in the LDS instruction. Since the stack builds
downward, M68HC11 programs reassembled for the CPU12 operate normally, but
the program stack is one physical address lower in memory.

In very uncommon situations, such as test programs used to verify CPU operation, a
program could initialize the SP, stack data, and then read the stack via an extended
mode read (it is normally improper to read stack data from an absolute extended ad-
dress). To make an M68HC11 source program that contains such a sequence work
on the CPU12, change either the initial LDS #$xxxx, or the absolute extended ad-
dress used to read the stack.

B.5 Improved Indexing

The CPU12 has significantly improved indexed addressing capability, yet retains
compatibility with the M68HC11. The one cycle and one byte cost of doing Y-related
indexing in the M68HC11 has been eliminated. In addition, high level language re-
quirements, including stack relative indexing and the ability to perform pointer arith-
metic directly in the index registers, have been accommodated.

The M68HC11 has one variation of indexed addressing that works from X or Y as the
reference pointer. For X indexed addressing, an 8-bit unsigned offset in the instruc-
tion is added to the index pointer to arrive at the address of the operand for the in-
struction. A load accumulator instruction assembles into two bytes of object code, the
opcode and a 1-byte offset. Using Y as the reference, the same instruction assem-
bles into three bytes (a page prebyte, the opcode, and a one-byte offset.) Analysis of
M68HC11 source code indicates that the offset is most frequently zero and very sel-
dom greater than four.

The CPU12 indexed addressing scheme uses a postbyte plus 0, 1, or 2 extension
bytes after the instruction opcode. These bytes specify which index register is used,
determine whether an accumulator is used as the offset, implement automatic pre/
post increment/decrement of indices, and allow a choice of 5-, 9-, or 16-bit signed off-
sets. This approach eliminates the differences between X and Y register use and dra-
matically enhances indexed addressing capabilities.
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-6 REFERENCE MANUAL



Major improvements that result from this new approach are:

• Stack pointer can be used as an index register in all indexed operations
• Program counter can be used as index register in all but auto inc/dec modes
• Accumulator offsets allowed using A, B, or D accumulators
• Automatic pre- or post-, increment or decrement (by –8 to +8)
• 5-bit, 9-bit, or 16-bit signed constant offsets
• 16-bit offset indexed-indirect and accumulator D offset indexed-indirect

The change completely eliminates pages three and four of the M68HC11 opcode
map and eliminates almost all instructions from page two of the opcode map. For off-
sets of +0 to +15 from the X index register, the object code is the same size as it was
for the M68HC11. For offsets of +0 to +15 from the Y index register, the object code is
one byte smaller than it was for the M68HC11.

Table A-5 summarizes M68HC12 indexed addressing mode capabilities. Table A-3
shows how the postbyte is encoded.

B.5.1 Constant Offset Indexing

The CPU12 offers three variations of constant offset indexing in order to optimize the
efficiency of object code generation.

The most common constant offset is zero. Offsets of 1, 2,…4 are used fairly often, but
with less frequency than zero.

The 5-bit constant offset variation covers the most frequent indexing requirements by
including the offset in the postbyte. This reduces a load accumulator indexed instruc-
tion to two bytes of object code, and matches the object code size of the smallest
M68HC11 indexed instructions, which can only use X as the index register. The
CPU12 can use X, Y, SP, or PC as the index reference with no additional object code
size cost.

The signed 9-bit constant offset indexing mode covers the same positive range as the
M68HC11 8-bit unsigned offset. The size was increased to nine bits with the sign bit
(ninth bit) included in the postbyte, and the remaining 8-bits of the offset in a single
extension byte.

The 16-bit constant offset indexing mode allows indexed access to the entire normal
64-Kbyte address space. Since the address consists of 16 bits, the 16-bit offset can
be regarded as a signed (–32,768 to +32767) or unsigned (0 to 65,535) value. In 16-
bit constant offset mode, the offset is supplied in two extension bytes after the opcode
and postbyte.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-7



B.5.2 Auto-Increment Indexing

The CPU12 provides greatly enhanced auto increment and decrement modes of in-
dexed addressing. In the CPU12, the index modification may be specified for before
the index is used (pre-), or after the index is used (post-), and the index can be incre-
mented or decremented by any amount from one to eight, independent of the size of
the operand that was accessed. X, Y, and SP can be used as the index reference, but
this mode does not allow PC to be the index reference (this would interfere with prop-
er program execution).

This addressing mode can be used to implement a software stack structure, or to ma-
nipulate data structures in lists or tables, rather than manipulating bytes or words of
data. Anywhere an M68HC11 program has an increment or decrement index register
operation near an indexed mode instruction, the increment or decrement operation
can be combined with the indexed instruction with no cost in object code size, as
shown in the following code comparison.

The M68HC11 object code requires seven bytes, while the CPU12 requires only two
bytes to accomplish the same functions. Three bytes of M68HC11 code were due to
the page prebyte for each Y-related instruction ($18). CPU12 post-increment indexing
capability allowed the two INY instructions to be absorbed into the LDAA indexed
instruction. The replacement code is not identical to the original three instruction se-
quence because the Z condition code bit is affected by the M68HC11 INY instruc-
tions, while the Z bit in the CPU12 would be determined by the value loaded into A.

B.5.3 Accumulator Offset Indexing

This indexed addressing variation allows the programmer to use either an 8-bit accu-
mulator (A or B), or the 16-bit D accumulator as the offset for indexed addressing.
This allows for a program-generated offset, which is more difficult to achieve in the
M68HC11. The following code compares the M68HC11 and CPU12 operations.

The CPU12 object code is only one byte smaller, but the LDX # instruction is outside
the loop. It is not necessary to reload the base address in the index register on each
pass through the loop because the LDAA B,X instruction does not alter the index
register. This reduces the loop execution time from 15 cycles to six cycles. This re-
duction, combined with the 8-MHz bus speed of the M68HC12 family, can have signif-
icant effects.

18 A6 00
18 08
18 08

LDAA 0,Y
INY
INY

A6 71 LDAA 2,Y+

C6 05
CE 10 00
3A
A6 00

5A
26 F7

LDAB #$5 [2]
LOOP LDX #$1000 [3]

ABX [3]
LDAA 0,X [4]
|
DECB [2]
BNE LOOP [3]

C6 05
CE 10 00
A6 E5

04 31 FB

LDAB #$5 [1]
LDX #$1000 [2]

LOOP LDAA B,X [3]
|
DBNE B,LOOP [3]
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-8 REFERENCE MANUAL



B.5.4 Indirect Indexing

The CPU12 allows some forms of indexed indirect addressing where the instruction
points to a location in memory where the address of the operand is stored. This is an
extra level of indirection compared to ordinary indexed addressing. The two forms of
indexed indirect addressing are 16-bit constant offset indexed indirect and D accumu-
lator indexed indirect. The reference index register can be X, Y, SP, or PC as in other
CPU12 indexed addressing modes. PC-relative indirect addressing is one of the more
common uses of indexed indirect addressing. The indirect variations of indexed ad-
dressing help in the implementation of pointers. D accumulator indexed indirect ad-
dressing can be used to implement a runtime computed GOTO function. Indirect
addressing is also useful in high level language compilers. For instance, PC-relative
indirect indexing can be used to efficiently implement some C case statements.

B.6 Improved Performance

The CPU12 improves on M68HC11 performance in several ways. M68HC12 devices
are designed using sub-micron design rules, and fabricated using advanced semi-
conductor processing, the same methods used to manufacture the M68HC16 and
M68300 families of modular microcontrollers. M68HC12 devices have a base bus
speed of eight MHz, and are designed to operate over a wide range of supply voltag-
es. The 16-bit wide architecture also increases performance. Beyond these obvious
improvements, the CPU12 uses a reduced number of cycles for many of its instruc-
tions, and a 20-bit ALU makes certain CPU12 math operations much faster.

B.6.1 Reduced Cycle Counts

No M68HC11 instruction takes less than two cycles, but the CPU12 has more than 50
opcodes that take only one cycle. Some of the reduction comes from the instruction
queue, which assures that several program bytes are available at the start of each in-
struction. Other cycle reductions occur because the CPU12 can fetch 16 bits of infor-
mation at a time, rather than eight bits at a time.

B.6.2 Fast Math

The CPU12 has some of the fastest math ever designed into a Motorola general-pur-
pose MCU. Much of the speed is due to a 20-bit ALU that can perform two smaller op-
erations simultaneously. The ALU can also perform two operations in a single bus
cycle in certain cases. Table B-3 compares the speed of CPU12 and M68HC11 math
instructions. The CPU12 requires fewer cycles to perform an operation, and the cycle
time is half that of the M68HC11.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-9



The IDIVS instruction is included specifically for C compilers, where word-sized oper-
ands are divided to produce a word-sized result (unlike the 32 ÷ 16 = 16 EDIV). The
EMUL and EMULS instructions place the result in registers so a C compiler can
choose to use only 16 bits of the 32-bit result.

B.6.3 Code Size Reduction

CPU12 assembly language programs written from scratch tend to be 30% smaller
than equivalent programs written for the M68HC11. This figure has been indepen-
dently qualified by Motorola programmers and an independent C compiler vendor.
The major contributors to the reduction appear to be improved indexed addressing
and the universal transfer/exchange instruction.

In some specialized areas, the reduction is much greater. A fuzzy logic inference ker-
nel requires about 250 bytes in the M68HC11, and the same program for the CPU12
requires about 50 bytes. The CPU12 fuzzy logic instructions replace whole subrou-
tines in the M68HC11 version. Table lookup instructions also greatly reduce code
space.

Other CPU12 code space reductions are more subtle. Memory to memory moves are
one example. The CPU12 move instruction requires almost as many bytes as an
equivalent sequence of M68HC11 instructions, but the move operations themselves
do not require the use of an accumulator. This means that the accumulator often
need not be saved and restored, which saves instructions.

Table B-3 Comparison of Math Instruction Speeds

Instruction
Mnemonic

Math
Operation

M68HC11
1 Cycle = 250

ns

M68HC11
w/Coprocessor
1 Cycle = 250 ns

CPU12
1 Cycle = 125 ns

MUL
8 × 8 = 16
(signed)

10 cycles — 3 cycles

EMUL
16 × 16 = 32
(unsigned)

— 20 cycles 3 cycles

EMULS
16 × 16 = 32

(signed)
— 20 cycles 3 cycles

IDIV
16 ÷ 16 = 16
(unsigned)

41 cycles — 12 cycles

FDIV
16 ÷ 16 = 16
(fractional)

41 cycles — 12 cycles

EDIV
32 ÷ 16 = 16
(unsigned)

— 33 cycles 11 cycles

EDIVS
32 ÷ 16 = 16

(signed)
— 37 cycles 12 cycles

IDIVS
16 ÷ 16 = 16

(signed)
— — 12 cycles

EMACS
32 × (16 × 16) ⇒ 32

(signed MAC)
— 20 cycles 12 cycles
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-10 REFERENCE MANUAL



Arithmetic on index pointers is another example. The M68HC11 usually requires that
the content of the index register be moved into accumulator D, where calculations are
performed, then back to the index register before indexing can take place. In the
CPU12, the LEAS, LEAX, and LEAY instructions perform arithmetic operations direct-
ly on the index pointers. The pre-/post-increment/decrement variations of indexed ad-
dressing also allow index modification to be incorporated into an existing indexed
instruction rather than performing the index modification as a separate operation.

Transfer and exchange operations often allow register contents to be temporarily
saved in another register rather than having to save the contents in memory. Some
CPU12 instructions such as MIN and MAX combine the actions of several M68HC11
instructions into a single operation.

B.7 Additional Functions

The CPU12 incorporates a number of new instructions that provide added functional-
ity and code efficiency. Among other capabilities, these new instructions allow effi-
cient processing for fuzzy logic applications and support subroutine processing in
extended memory beyond the standard 64-Kbyte address map for M68HC12 devices
incorporating this feature. Table B-4 is a summary of these new instructions. Subse-
quent paragraphs discuss significant enhancements.

Table B-4 New M68HC12 Instructions

Mnemonic Addressing Modes Brief Functional Description
ANDCC Immediate AND CCR with Mask (replaces CLC, CLI, and CLV)
BCLR Extended Bit(s) Clear (added extended mode)
BGND Inherent Enter Background Debug Mode, if enabled
BRCLR Extended Branch if Bit(s) Clear (added extended mode)
BRSET Extended Branch if Bit(s) Set (added extended mode)
BSET Extended Bit(s) Set (added extended mode)

CALL Extended, Indexed
Similar to JSR Except also Stacks PPAGE Value
With RTC instruction, allows easy access to >64-Kbyte space

CPS Immediate, Direct,
Extended, and Indexed Compare Stack Pointer

DBNE Relative Decrement and Branch if Equal to Zero (Looping Primitive)
DBEQ Relative Decrement and Branch if Not Equal to Zero (Looping Primitive)
EDIV Inherent Extended Divide Y:D/X = Y(Q) and D(R) (Unsigned)

EDIVS Inherent Extended Divide Y:D/X = Y(Q) and D(R) (Signed)
EMACS Special Multiply and Accumulate 16 × 16 ⇒ 32 (Signed)
EMAXD Indexed Maximum of Two Unsigned 16-Bit Values
EMAXM Indexed Maximum of Two Unsigned 16-Bit Values
EMIND Indexed Minimum of Two Unsigned 16-Bit Values
EMINM Indexed Minimum of Two Unsigned 16-Bit Values
EMUL Special Extended Multiply 16 × 16 ⇒ 32; M(idx) ∗ D ⇒ Y:D

EMULS Special Extended Multiply 16 × 16 ⇒ 32 (signed); M(idx) ∗ D ⇒ Y:D
ETBL Special Table Lookup and Interpolate (16-bit entries)
EXG Inherent Exchange Register Contents
IBEQ Relative Increment and Branch if Equal to Zero (Looping Primitive)
IBNE Relative Increment and Branch if Not Equal to Zero (Looping Primitive)
IDIVS Inherent Signed Integer Divide D/X ⇒ X(Q) and D(R) (Signed)
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-11



LBCC Relative Long Branch if Carry Clear (Same as LBHS)
LBCS Relative Long Branch if Carry Set (Same as LBLO)
LBEQ Relative Long Branch if Equal (Z=1)
LBGE Relative Long Branch if Greater than or Equal to Zero
LBGT Relative Long Branch if Greater than Zero
LBHI Relative Long Branch if Higher
LBHS Relative Long Branch if Higher or Same (Same as LBCC)
LBLE Relative Long Branch if Less than or Equal to Zero
LBLO Relative Long Branch if Lower (Same as LBCS)
LBLS Relative Long Branch if Lower or Same
LBLT Relative Long Branch if Less than Zero
LBMI Relative Long Branch if Minus
LBNE Relative Long Branch if Not Equal to Zero
LBPL Relative Long Branch if Plus
LBRA Relative Long Branch Always
LBRN Relative Long Branch Never
LBVC Relative Long Branch if Overflow Clear
LBVS Relative Long Branch if Overflow Set
LEAS Indexed Load Stack Pointer with Effective Address
LEAX Indexed Load X Index Register with Effective Address
LEAY Indexed Load Y Index Register with Effective Address
MAXA Indexed Maximum of Two Unsigned 8-Bit Values
MAXM Indexed Maximum of Two Unsigned 8-Bit Values
MEM Special Determine Grade of Fuzzy Membership
MINA Indexed Minimum of Two Unsigned 8-Bit Values
MINM Indexed Minimum of Two Unsigned 8-Bit Values

MOVB(W)
Combinations of

Immediate, Extended,
and Indexed

Move Data from One Memory Location to Another

ORCC Immediate OR CCR with Mask (replaces SEC, SEI, and SEV)
PSHC Inherent Push CCR onto Stack
PSHD Inherent Push Double Accumulator onto Stack
PULC Inherent Pull CCR Contents from Stack
PULD Inherent Pull Double Accumulator from Stack
REV Special Fuzzy Logic Rule Evaluation

REVW Special Fuzzy Logic Rule Evaluation with Weights

RTC Inherent
Restore Program Page and Return Address from Stack
Used with CALL Instruction, Allows Easy Access to >64-Kbyte Space

SEX Inherent Sign Extend 8-bit Register into 16-bit Register
TBEQ Relative Test and Branch if Equal to Zero (Looping Primitive)
TBL Inherent Table Lookup and Interpolate (8-bit Entries)

TBNE Relative Test Register and Branch if Not Equal to Zero (Looping Primitive)
TFR Inherent Transfer Register Contents to Another Register
WAV Special Weighted Average (Fuzzy Logic Support)

Table B-4 New M68HC12 Instructions (Continued)

Mnemonic Addressing Modes Brief Functional Description
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-12 REFERENCE MANUAL



B.7.1 Memory-to-Memory Moves

The CPU12 has both 8- and 16-bit variations of memory-to-memory move instruc-
tions. The source address can be specified with immediate, extended, or indexed ad-
dressing modes. The destination address can be specified by extended or indexed
addressing mode. The indexed addressing mode for move instructions is limited to
modes that require no extension bytes (9- and 16-bit constant offsets are not al-
lowed), and indirect indexing is not allowed for moves. This leaves a 5-bit signed con-
stant offset, accumulator offsets, and the automatic increment/decrement modes.
The following simple loop is a block move routine capable of moving up to 256 words
of information from one memory area to another.

LOOP MOVW 2,X+ , 2,Y+ ;move a word and update pointers
DBNE B,LOOP ;repeat B times

The move immediate to extended is a convenient way to initialize a register without
using an accumulator or affecting condition codes.

B.7.2 Universal Transfer and Exchange

The M68HC11 has only eight transfer instructions and two exchange instructions.
The CPU12 has a universal transfer/exchange instruction that can be used to transfer
or exchange data between any two CPU registers. The operation is obvious when the
two registers are the same size, but some of the other combinations provide very
useful results. For example when an 8-bit register is transferred to a 16-bit register, a
sign-extend operation is performed. Other combinations can be used to perform a
zero-extend operation.

These instructions are used often in CPU12 assembly language programs. Transfers
can be used to make extra copies of data in another register, and exchanges can be
used to temporarily save data during a call to a routine that expects data in a specific
register. This is sometimes faster and produces more compact object code than sav-
ing data to memory with pushes or stores.

B.7.3 Loop Construct

The CPU12 instruction set includes a new family of six loop primitive instructions.
These instructions decrement, increment, or test a loop count in a CPU register and
then branch based on a zero or non-zero test result. The CPU registers that can be
used for the loop count are A, B, D, X, Y, or SP. The branch range is a 9-bit signed val-
ue (–512 to +511) which gives these instructions twice the range of a short branch in-
struction.

B.7.4 Long Branches

All of the branch instructions from the M68HC11 are also available with 16-bit offsets
which allows them to reach any location in the 64-Kbyte address space.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-13



B.7.5 Minimum and Maximum Instructions

Control programs often need to restrict data values within upper and lower limits. The
CPU12 facilitates this function with 8- and 16-bit versions of MIN and MAX instruc-
tions. Each of these instructions has a version that stores the result in either the accu-
mulator or in memory.

For example, in a fuzzy logic inference program, rule evaluation consists of a series of
MIN and MAX operations. The min operation is used to determine the smallest rule
input (the running result is held in an accumulator), and the max operation is used to
store the largest rule truth value (in an accumulator) or the previous fuzzy output val-
ue (in a RAM location), to the fuzzy output in RAM. The following code demonstrates
how MIN and MAX instructions can be used to evaluate a rule with four inputs and
two outputs.

LDY #OUT1 ;Point at first output
LDX #IN1 ;Point at first input value
LDAA #$FF ;start with largest 8-bit number in A
MINA 1,X+ ;A=MIN(A,IN1)
MINA 1,X+ ;A=MIN(A,IN2)
MINA 1,X+ ;A=MIN(A,IN3)
MINA 1,X+ ;A=MIN(A,IN4) so A holds smallest input
MAXM 1,Y+ ;OUT1=MAX(A,OUT1) and A is unchanged
MAXM 1,Y+ ;OUT1=MAX(A,OUT2) A still has min input

Before this sequence is executed, the fuzzy outputs must be cleared to zeros (not
shown). M68HC11 MIN or MAX operations are performed by executing a compare
followed by a conditional branch around a load or store operation.

These instructions can also be used to limit a data value prior to using it as an input to
a table lookup or other routine. Suppose a table is valid for input values between $20
and $7F. An arbitrary input value can be tested against these limits and be replaced
by the largest legal value if it is too big, or the smallest legal value if too small using
the following two CPU12 instructions.

HILIMIT FCB $7F ;comparison value needs to be in mem
LOWLIMIT FCB $20 ;so it can be referenced via indexed

MINA HILIMIT,PCR ;A=MIN(A,$7F)
MAXA LOWLIMIT,PCR;A=MAX(A,$20)

;A now within the legal range $20 to $7F

The “,PCR” notation is also new for the CPU12. This notation indicates the program-
mer wants an appropriate offset from the PC reference to the memory location
(HILIMIT or LOWLIMIT in this example), and then to assemble this instruction into a
PC-relative indexed MIN or MAX instruction.

B.7.6 Fuzzy Logic Support

The CPU12 includes four instructions (MEM, REV, REVW, and WAV) specifically de-
signed to support fuzzy logic programs. These instructions have a very small impact
on the size of the CPU, and even less impact on the cost of a complete MCU. At the
same time these instructions dramatically reduce the object code size and execution
time for a fuzzy logic inference program. A kernel written for the M68HC11 required
about 250 bytes and executed in about 750 milliseconds. The CPU12 kernel uses
about 50 bytes and executes in about 50 microseconds.
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-14 REFERENCE MANUAL



B.7.7 Table Lookup and Interpolation

The CPU12 instruction set includes two instructions (TBL and ETBL) for lookup and
interpolation of compressed tables. Consecutive table values are assumed to be the x
coordinates of the endpoints of a line segment. The TBL instruction uses 8-bit table
entries (y-values) and returns an 8-bit result. The ETBL instruction uses 16-bit table
entries (y-values) and returns a 16-bit result.

An indexed addressing mode is used to identify the effective address of the data point
at the beginning of the line segment, and the data value for the end point of the line
segment is the next consecutive memory location (byte for TBL and word for ETBL).
In both cases, the B accumulator represents the ratio of (the x-distance from the be-
ginning of the line segment to the lookup point) to (the x-distance from the beginning
of the line segment to the end of the line segment). B is treated as an 8-bit binary
fraction with radix point left of the MSB, so each line segment is effectively divided
into 256 pieces. During execution of the TBL or ETBL instruction, the difference be-
tween the end point y-value and the beginning point y-value (a signed byte for TBL or
a signed word for ETBL) is multiplied by the B accumulator to get an intermediate
delta-y term. The result is the y-value of the beginning point, plus this signed interme-
diate delta-y value.

B.7.8 Extended Bit Manipulation

The M68HC11 CPU only allows direct or indexed addressing. This typically causes
the programmer to dedicate an index register to point at some memory area such as
the on-chip registers. The CPU12 allows all bit manipulation instructions to work with
direct, extended or indexed addressing modes.

B.7.9 Push and Pull D and CCR

The CPU12 includes instructions to push and pull the D accumulator and the CCR. It
is interesting to note that the order in which 8-bit accumulators A and B are stacked
for interrupts is the opposite of what would be expected for the upper and lower bytes
of the 16-bit D accumulator. The order used originated in the M6800, an 8-bit micro-
processor developed long before anyone thought 16-bit single-chip devices would be
made. The interrupt stacking order for accumulators A and B is retained for code
compatibility.

B.7.10 Compare SP

This instruction was added to the CPU12 instruction set to improve orthogonality and
high-level language support. One of the most important requirements for C high-level
language support is the ability to do arithmetic on the stack pointer for such things as
allocating local variable space on the stack. The LEAS –5,SP instruction is an exam-
ple of how the compiler could easily allocate five bytes on the stack for local variables.
LDX 5,SP+ loads X with the value on the bottom of the stack and deallocates five
bytes from the stack in a single operation that takes only two bytes of object code.
CPU12 M68HC11 TO M68HC12 UPGRADE PATH MOTOROLA

REFERENCE MANUAL B-15



B.7.11 Support for Memory Expansion

Bank switching is a common method of expanding memory beyond the 64-Kbyte limit
of a CPU with a 64-Kbyte address space, but there are some known difficulties asso-
ciated with bank switching. One problem is that interrupts cannot take place during
the bank switching operation. This increases worst case interrupt latency and re-
quires extra programming space and execution time.

Some M68HC12 variants include a built-in bank switching scheme that eliminates
many of the problems associated with external switching logic. The CPU12 includes
CALL and return from call (RTC) instructions that manage the interface to the bank-
switching system. These instructions are analogous to the JSR and RTS instructions,
except that the bank page number is saved and restored automatically during execu-
tion. Since the page change operation is part of an uninterruptable instruction, many
of the difficulties associated with bank switching are eliminated. On M68HC12 deriva-
tives with expanded memory capability, bank numbers are specified by on-chip con-
trol registers. Since the addresses of these control registers may not be the same in
all M68HC12 derivatives, the CPU12 has a dedicated control line to the on-chip inte-
gration module that indicates when a memory-expansion register is being read or
written. This allows the CPU to access the PPAGE register without knowing the regis-
ter address.

The indexed indirect versions of the CALL instruction access the address of the
called routine and the destination page value indirectly. For other addressing mode
variations of the CALL instruction, the destination page value is provided as immedi-
ate data in the instruction object code. CALL and RTC execute correctly in the normal
64-Kbyte address space, thus providing for portable code.
 MOTOROLA M68HC11 TO M68HC12 UPGRADE PATH CPU12

B-16 REFERENCE MANUAL



APPENDIX C
HIGH-LEVEL LANGUAGE SUPPORT

Many programmers are turning to high-level languages such as C as an alternative to
coding in native assembly languages. High-level language (HLL) programming can
improve productivity and produce code that is more easily maintained than assembly
language programs. The most serious drawback to the use of HLL in MCUs has been
the relatively large size of programs written in HLL. Larger program ROM size require-
ments translate into increased system costs.

Motorola solicited the cooperation of third-party software developers to assure that the
CPU12 instruction set would meet the needs of a more efficient generation of compil-
ers. Several features of the CPU12 were specifically designed to improve the efficien-
cy of compiled HLL, and thus minimize cost.

This appendix identifies CPU12 instructions and addressing modes that provide im-
proved support for high-level language. C language examples are provided to demon-
strate how these features support efficient HLL structures and concepts. Since the
CPU12 instruction set is a superset of the M68HC11 instruction set, some of the dis-
cussions use the M68HC11 as a basis for comparison.

C.1 Data Types

The CPU12 supports the bit-sized data type with bit manipulation instructions which
are available in extended, direct, and indexed variations. The char data type is a sim-
ple 8-bit value that is commonly used to specify variables in a small microcontroller
system because it requires less memory space than a 16-bit integer (provided the vari-
able has a range small enough to fit into eight bits). The 16-bit CPU12 can easily han-
dle 16-bit integer types and the available set of conditional branches (including long
branches) allow branching based on signed or unsigned arithmetic results. Some of
the higher math functions allow for division and multiplication involving 32-bit values,
although it is somewhat less common to use such long values in a microcontroller sys-
tem.

The CPU12 has special sign extension instructions to allow easy type-casting from
smaller data types to larger ones, such as from char to integer. This sign extension is
automatically performed when an 8-bit value is transferred to a 16-bit register.

C.2 Parameters and Variables

High-level languages make extensive use of the stack, both to pass variables and for
temporary and local storage. It follows that there should be easy ways to push and pull
all CPU registers, stack pointer based indexing should be allowed, and that direct
arithmetic manipulation of the stack pointer value should be allowed. The CPU12 in-
struction set provided for all of these needs with improved indexed addressing, the ad-
dition of an LEAS instruction, and the addition of push and pull instructions for the D
accumulator and the CCR.
CPU12 HIGH-LEVEL LANGUAGE SUPPORT MOTOROLA

REFERENCE MANUAL C-1



C.2.1 Register Pushes and Pulls

The M68HC11 has push and pull instructions for A, B, X, and Y, but requires separate
8-bit pushes and pulls of accumulators A and B to stack or unstack the 16-bit D accu-
mulator (the concatenated combination of A:B). The PSHD and PULD instructions al-
low directly stacking the D accumulator in the expected 16-bit order.

Adding PSHC and PULC improved orthogonality by completing the set of stacking in-
structions so that any of the CPU registers can be pushed or pulled. These instructions
are also useful for preserving the CCR value during a function call subroutine.

C.2.2 Allocating and Deallocating Stack Space

The LEAS instruction can be used to allocate or deallocate space on the stack for tem-
porary variables:

LEAS –10,S ;Allocate space for 5 16-bit integers

LEAS 10,S ;Deallocate space for 5 16-bit ints

The (de)allocation can even be combined with a register push or pull as in the following
example:

LDX 8,S+ ;Load return value and deallocate

X is loaded with the 16-bit integer value at the top of the stack, and the stack pointer
is adjusted up by eight to deallocate space for eight bytes worth of temporary storage.
Post-increment indexed addressing is used in this example, but all four combinations
of pre/post increment/decrement are available (offsets from –8 to +8 inclusive, from X,
Y, or SP). This form of indexing can often be used to get an index (or stack pointer)
adjustment for free during an indexed operation (the instruction requires no more code
space or cycles than a zero-offset indexed instruction).

C.2.3 Frame Pointer

In the C language, it is common to have a frame pointer in addition to the CPU stack
pointer. The frame is an area of memory within the system stack which is used for pa-
rameters and local storage of variables used within a function subroutine. The follow-
ing is a description of how a frame pointer can be set up and used.

First, parameters (typically values in CPU registers) are pushed onto the system stack
prior to using a JSR or CALL to get to the function subroutine. At the beginning of the
called subroutine, the frame pointer of the calling program is pushed onto the stack.
Typically, an index register, such as X, is used as the frame pointer, so a PSHX in-
struction would save the frame pointer from the calling program.

Next, the called subroutine establishes a new frame pointer by executing a TFR S,X.
Space is allocated for local variables by executing an LEAS –n,S, where n is the num-
ber of bytes needed for local variables.
 MOTOROLA HIGH-LEVEL LANGUAGE SUPPORT CPU12

C-2 REFERENCE MANUAL



Notice that parameters are at positive offsets from the frame pointer while locals are
at negative offsets. In the M68HC11, the indexed addressing mode uses only positive
offsets, so the frame pointer always points to the lowest address of any parameter or
local. After the function subroutine finishes, calculations are required to restore the
stack pointer to the mid-frame position between the locals and the parameters before
returning to the calling program. The CPU12 only requires execution of TFR X,S to
deallocate the local storage and return.

The concept of a frame pointer is supported in the CPU12 through a combination of
improved indexed addressing, universal transfer/exchange, and the LEA instruction.
These instructions work together to achieve more efficient handling of frame pointers.
It is important to consider the complete instruction set as a complex system with subtle
interrelationships rather than simply examining individual instructions when trying to
improve an instruction set. Adding or removing a single instruction can have unexpect-
ed consequences.

C.3 Increment and Decrement Operators

In C, the notation + + i or i – – is often used to form loop counters. Within limited con-
straints, the CPU12 loop primitives can be used to speed up the loop count and branch
function.

The CPU12 includes a set of six basic loop control instructions which decrement, in-
crement, or test a loop count register, and then branch if it is either equal to zero or not
equal to zero. The loop count register can be A, B, D, X, Y, or SP. A or B could be used
if the loop count fits in an 8-bit char variable; the other choices are all 16-bit registers.
The relative offset for the loop branch is a 9-bit signed value, so these instructions can
be used with loops as long as 256 bytes.

In some cases, the pre- or post-increment operation can be combined with an indexed
instruction to eliminate the cost of the increment operation. This is typically done by
post-compile optimization because the indexed instruction that could absorb the incre-
ment/decrement operation may not be apparent at compile time.

C.4 Higher Math Functions

In the CPU12, subtle characteristics of higher math operations such as IDIVS and
EMUL are arranged so a compiler can handle inputs and outputs more efficiently.

The most apparent case is the IDIVS instruction, which divides two 16-bit signed num-
bers to produce a 16-bit result. While the same function can be accomplished with the
EDIVS instruction (a 32 by 16 divide), doing so is much less efficient because extra
steps are required to prepare inputs to the EDIVS, and because EDIVS uses the Y in-
dex register. EDIVS uses a 32-bit signed numerator and the C compiler would typically
want to use a 16-bit value (the size of an integer data type). The 16-bit C value would
need to be sign-extended into the upper 16-bits of the 32-bit EDIVS numerator before
the divide operation.
CPU12 HIGH-LEVEL LANGUAGE SUPPORT MOTOROLA

REFERENCE MANUAL C-3



Operand size is also a potential problem in the extended multiply operations but the
difficulty can be minimized by putting the results in CPU registers. Having higher pre-
cision math instructions is not necessarily a requirement for supporting high-level lan-
guage because these functions can be performed as library functions. However, if an
application requires these functions, the code is much more efficient if the MCU can
use native instructions instead of relatively large, slow routines.

C.5 Conditional If Constructs

In the CPU12 instruction set, most arithmetic and data manipulation instructions auto-
matically update the condition code register, unlike other architectures that only
change condition codes during a few specific compare instructions. The CPU12 in-
cludes branch instructions that perform conditional branching based on the state of the
indicators in the condition codes register. Short branches use a single byte relative off-
set that allows branching to a destination within about ±128 locations from the branch.
Long branches use a 16-bit relative offset that allows conditional branching to any lo-
cation in the 64-Kbyte map.

C.6 Case and Switch Statements

Case and switch statements (and computed GOTOs) can use PC-relative indirect ad-
dressing to determine which path to take. Depending upon the situation, cases can
use either the constant offset variation or the accumulator D offset variation of indirect
indexed addressing.

C.7 Pointers

The CPU12 supports pointers by allowing direct arithmetic operations on the 16-bit in-
dex registers (LEAS, LEAX, and LEAY instructions) and by allowing indexed indirect
addressing modes.

C.8 Function Calls

Bank switching is a fairly common way of adapting a CPU with a 16-bit address bus to
accommodate more than 64-Kbytes of program memory space. One of the most sig-
nificant drawbacks of this technique has been the requirement to mask (disable) inter-
rupts while the bank page value was being changed. Another problem is that the
physical location of the bank page register can change from one MCU derivative to an-
other (or even due to a change to mapping controls by a user program). In these situ-
ations, an operating system program has to keep track of the physical location of the
page register. The CPU12 addresses both of these problems with the uninterruptible
CALL and return from call (RTC) instructions.

The CALL instruction is similar to a JSR instruction, except that the programmer sup-
plies a destination page value as part of the instruction. When CALL executes, the old
page value is saved on the stack and the new page value is written to the bank page
register. Since the CALL instruction is uninterruptible, this eliminates the need to sep-
arately mask off interrupts during the context switch.
 MOTOROLA HIGH-LEVEL LANGUAGE SUPPORT CPU12

C-4 REFERENCE MANUAL



The CPU12 has dedicated signal lines that allow the CPU to access the bank page
register without having to use an address in the normal 64-Kbyte address space. This
eliminates the need for the program to know where the page register is physically lo-
cated.

The RTC instruction is similar to the RTS instruction, except that RTC uses the byte
of information that was saved on the stack by the corresponding CALL instruction to
restore the bank page register to its old value. Although a CALL/RTC pair can be used
to access any function subroutine regardless of the location of the called routine (on
the current bank page or a different page), it is most efficient to access some subrou-
tines with JSR/RTS instructions when the called subroutine is on the current page or
in an area of memory that is always visible in the 64-Kbyte map regardless of the bank
page selection.

Push and pull instructions can be used to stack some or all the CPU registers during
a function call. The CPU12 can push and pull any of the CPU registers A, B, CCR, D,
X, Y, or SP.

C.9 Instruction Set Orthogonality

One very helpful aspect of the CPU12 instruction set, orthogonality, is difficult to quan-
tify in terms of direct benefit to an HLL compiler. Orthogonality refers to the regularity
of the instruction set. A completely orthogonal instruction set would allow any instruc-
tion to operate in any addressing mode, would have identical code sizes and execution
times for similar operations on different registers, and would include both signed and
unsigned versions of all mathematical instructions. Greater regularity of the instruction
makes it possible to implement compilers more efficiently, because operation is more
consistent, and fewer special cases must be handled.
CPU12 HIGH-LEVEL LANGUAGE SUPPORT MOTOROLA

REFERENCE MANUAL C-5



 MOTOROLA HIGH-LEVEL LANGUAGE SUPPORT CPU12

C-6 REFERENCE MANUAL



APPENDIX D
ASSEMBLY LISTING

D.1 Assembler Test File

The following assembler test file illustrates all possible variations of the M68HC12 in-
struction set and can be used as a quick reference for instruction syntax. Instructions
are in alphabetical order and include redundancy.
* 68HC12 assembly listing
*

0072 immed equ       $72
0055 dir equ       $55
1234 ext equ       $1234
0037 ind equ       $37
000e small equ       $e
00cc mask equ  %11001100

*
*

d000 ORG           $D000

d000 00 02 dw 2
d002 02 db 2
d003 00 02 dc.w 2
d005 02 dc.b 2
d006 02 fcb 2
d007 08 ae fdb 2222
d009 ds 34
d02b ds.b 34
d04d ds.w 34
d091 rmb 34
d0b3 rmw 34

d0f7 18 06 aba
d0f9 1a e5 abx
d0fb 19 ed aby
d0fd 89 72 adca #immed
d0ff 89 72 adca #immed
d101 89 72 adca #immed
d103 89 72 adca #immed
d105 89 72 adca #immed
d107 a9 a0 adca 1,+sp
d109 a9 20 adca 1,+x
d10b a9 60 adca 1,+y
d10d a9 a7 adca 8,+sp
d10f a9 67 adca 8,+y
d111 a9 c0 adca ,pc
d113 a9 80 adca ,sp
d115 a9 00 adca ,x
d117 a9 40 adca ,y
d119 a9 af adca 1,-sp
CPU12 ASSEMBLY

REFERENCE MANUAL
d11b a9 2f adca 1,-x
d11d a9 6f adca 1,-y
d11f a9 a8 adca 8,-sp
d121 a9 28 adca 8,-x
d123 a9 68 adca 8,-y
d125 a9 9f adca -1,sp
d127 a9 1f adca -1,x
d129 a9 5f adca -1,y
d12b a9 90 adca -16,sp
d12d a9 10 adca -16,x
d12f a9 50 adca -16,y
d131 a9 f1 ef adca -17,sp
d134 a9 e1 ef adca -17,x
d137 a9 e9 ef adca -17,y
d13a a9 d2 adca -small,pc
d13c a9 92 adca -small,sp
d13e a9 12 adca -small,x
d140 a9 52 adca -small,y
d142 a9 c0 adca 0,pc
d144 a9 80 adca 0,sp
d146 a9 00 adca 0,x
d148 a9 40 adca 0,y
d14a a9 b0 adca 1,sp+
d14c a9 30 adca 1,x+
d14e a9 e2 01 88 adca ext,x
d152 a9 e2 89 44 adca ext,x
d156 a9 e2 33 33 adca ext,x
d15a a9 e2 44 44 adca ext,x
d15e a9 e2 01 88 adca ext,x
d162 a9 70 adca 1,y+
d164 a9 81 adca 1,sp
d166 a9 01 adca 1,x
d168 a9 41 adca 1,y
d16a a9 bf adca 1,sp-
d16c a9 3f adca 1,x-
d16e a9 7f adca 1,y-
d170 a9 f8 7d adca 125,pc
d173 a9 f0 7d adca 125,sp
d176 a9 e0 7d adca 125,x
d179 a9 e8 7d adca 125,y
d17c a9 8f adca 15,sp
d17e a9 0f adca 15,x
d180 a9 4f adca 15,y
d182 a9 f0 10 adca 16,sp
d185 a9 e0 10 adca 16,x
d188 a9 e8 10 adca 16,y
d18b a9 b7 adca 8,sp+
d18d a9 37 adca 8,x+
d18f a9 77 adca 8,y+
 LISTING MOTOROLA

D-1



d191 a9 b8 adca 8,sp-
d193 a9 38 adca 8,x-
d195 a9 78 adca 8,y-
d197 a9 f4 adca a,sp
d199 a9 e4 adca a,x
d19b a9 ec adca a,y
d19d a9 f5 adca b,sp
d19f a9 e5 adca b,x
d1a1 a9 ed adca b,y
d1a3 a9 f6 adca d,sp
d1a5 a9 e6 adca d,x
d1a7 a9 ee adca d,y
d1a9 99 55 adca dir
d1ab 99 55 adca dir
d1ad b9 01 88 adca ext
d1b0 b9 01 88 adca ext
d1b3 a9 f2 01 88 adca ext,sp
d1b7 a9 e2 01 88 adca ext,x
d1bb a9 ea 01 88 adca ext,y
d1bf a9 f8 37 adca ind,pc
d1c2 a9 f0 37 adca ind,sp
d1c5 a9 e0 37 adca ind,x
d1c8 a9 e8 37 adca ind,y
d1cb a9 ce adca small,pc
d1cd a9 8e adca small,sp
d1cf a9 0e adca small,x
d1d1 a9 4e adca small,y
d1d3 c9 72 adcb #immed
d1d5 e9 a0 adcb 1,+sp
d1d7 e9 d2 adcb -small,pc
d1d9 e9 f8 7d adcb 125,pc
d1dc d9 55 adcb dir
d1de f9 01 88 adcb ext
d1e1 e9 f2 01 88 adcb ext,sp
d1e5 8b 72 adda #immed
d1e7 ab a0 adda 1,+sp
d1e9 9b 55 adda dir
d1eb bb 01 88 adda ext
d1ee bb 01 88 adda ext
d1f1 cb 72 addb #immed
d1f3 eb a0 addb 1,+sp
d1f5 db 55 addb dir
d1f7 fb 01 88 addb ext
d1fa c3 00 72 addd #immed
d1fd e3 a0 addd 1,+sp
d1ff d3 55 addd dir
d201 f3 01 88 addd ext
d204 84 72 anda #immed
d206 a4 a0 anda 1,+sp
d208 94 55 anda dir
d20a b4 01 88 anda ext
d20d c4 72 andb #immed
d20f e4 a0 andb 1,+sp
d211 d4 55 andb dir
d213 f4 01 88 andb ext
d216 10 72 andcc #immed
d218 68 a0 asl 1,+sp
d21a 78 00 55 asl dir
d21d 78 01 88 asl ext
d220 48 asla
d221 58 aslb
d222 59 asld
d223 67 a0 asr 1,+sp
d225 77 00 55 asr dir
d228 77 01 88 asr ext
d22b 47 asra
 MOTOROLA ASSEMB

D-2
d22c 57 asrb
d22d 24 fe bcc *
d22f 25 fe bcs *
d231 27 fe beq *
d233 2c fe bge *
d235 2e fe bgt *
d237 22 fe bhi *
d239 85 72 bita #immed
d23b a5 a0 bita 1,+sp
d23d 95 55 bita dir
d23f b5 01 88 bita ext
d242 c5 72 bitb #immed
d244 e5 a0 bitb 1,+sp
d246 d5 55 bitb dir
d248 f5 01 88 bitb ext
d24b 2f fe ble *
d24d 23 fe bls *
d24f 2d fe blt *
d251 2b fe bmi *
d253 26 fe bne *
d255 2a fe bpl *
d257 20 fe bra *
d259 21 fe brn *
d25b 07 fe bsr *
d25d 28 fe bvc *
d25f 29 fe bvs *
d261 0d a0 55 bclr 1,+sp $55
d264 0d a0 55 bclr 1,+sp #$55
d267 0d a0 55 bclr 1,+sp,#$55
d26a 0d bf 55 bclr 1,sp-,#$55
d26d 0d bf 55 bclr 1,sp- #$55

d270 0d 20 55 bclr 1,+x $55
d273 0d 20 55 bclr 1,+x #$55
d276 0d 20 55 bclr 1,+x,$55
d279 0d 20 55 bclr 1,+x,#$55

d27c 4d 55 55 bclr dir $55
d27f 4d 55 55 bclr dir #$55
d282 4d 55 55 bclr dir,$55
d285 4d 55 55 bclr dir,#$55

d288 1d 01 88 55 bclr ext $55
d28c 1d 01 88 55 bclr ext #$55
d290 1d 01 88 55 bclr ext,$55
d294 1d 01 88 55 bclr ext,#$55

d298 0f a0 55 fc brclr 1,+sp $55 *
d29c 0f a0 55 fc brclr 1,+sp #$55 *
d2a0 0f a0 55 fc brclr 1,+sp,$55 *
d2a4 0f a0 55 fc brclr 1,+sp,#$55 *

d2a8 4f 55 55 fc brclr dir $55 *
d2ac 4f 55 55 fc brclr dir #$55 *
d2b0 4f 55 55 fc brclr dir,$55 *
d2b4 4f 55 55 fc brclr dir,#$55 *

d2b8 1f 01 88 55 fb brclr ext $55 *
d2bd 1f 01 88 55 fb brclr ext #$55 *
d2c2 1f 01 88 55 fb brclr ext,$55,*
d2c7 1f 01 88 55 fb brclr ext,#$55,*

d2cc 0e a0 55 fc brset 1,+sp $55 *
d2d0 0e a0 55 fc brset 1,+sp #$55 *
d2d4 0e a0 55 fc brset 1,+sp,$55,*
d2d8 0e a0 55 fc brset 1,+sp,#$55,*
LY LISTING CPU12

REFERENCE MANUAL



d2dc 4e 55 55 fc brset dir $55 *
d2e0 4e 55 55 fc brset dir #$55 *
d2e4 4e 55 55 fc brset dir,$55,*
d2e8 4e 55 55 fc brset dir,#$55,*

d2ec 1e 01 88 55 fb brset ext $55 *
d2f1 1e 01 88 55 fb brset ext #$55 *
d2f6 1e 01 88 55 fb brset ext,$55,*
d2fb 1e 01 88 55 fb brset ext,#$55,*

d300 0c a0 55 bset 1,+sp $55
d303 0c a0 55 bset 1,+sp #$55
d306 0c a0 55 bset 1,+sp,$55
d309 0c a0 55 bset 1,+sp,#$55

d30c 4c 55 55 bset dir $55
d30f 4c 55 55 bset dir #$55
d312 4c 55 55 bset dir,$55
d315 4c 55 55 bset dir,#$55

d318 1c 01 88 55 bset ext $55
d31c 1c 01 88 55 bset ext #$55
d320 1c 01 88 55 bset ext,$55
d324 1c 01 88 55 bset ext,#$55

d328 4b a0 55 call 1,+sp $55
d32b 4b 20 55 call 1,+x $55
d32e 4b 60 55 call 1,+y $55
d331 4b a7 55 call 8,+sp $55
d334 4b 27 55 call 8,+x $55
d337 4b 67 55 call 8,+y $55
d33a 4b c0 55 call ,pc $55
d33d 4b 80 55 call ,sp $55
d340 4b 00 55 call ,x $55
d343 4b 40 55 call ,y $55
d346 4b af 55 call 1,-sp $55
d349 4b 2f 55 call 1,-x $55
d34c 4b 6f 55 call 1,-y $55
d34f 4b a8 55 call 8,-sp $55
d352 4b 28 55 call 8,-x $55
d355 4b 68 55 call 8,-y $55
d358 4b 9f 55 call -1,sp $55
d35b 4b 1f 55 call -1,x $55
d35e 4b 5f 55 call -1,y $55
d361 4b 90 55 call -16,sp $55
d364 4b 10 55 call -16,x $55
d367 4b 50 55 call -16,y $55
d36a 4b f1 ef 55 call -17,sp $55
d36e 4b e1 ef 55 call -17,x $55
d372 4b e9 ef 55 call -17,y $55
d376 4b d2 55 call -small,pc $55
d379 4b 92 55 call -small,sp $55
d37c 4b 12 55 call -small,x $55
d37f 4b 52 55 call -small,y $55
d382 4b c0 55 call 0,pc $55
d385 4b 80 55 call 0,sp $55
d388 4b 00 55 call 0,x $55
d38b 4b 40 55 call 0,y $55
d38e 4b b0 55 call 1,sp+ $55
d391 4b 30 55 call 1,x+ $55
d394 4b 70 55 call 1,y+ $55
d397 4b 81 55 call 1,sp $55
d39a 4b 01 55 call 1,x $55
d39d 4b 41 55 call 1,y $55
d3a0 4b bf 55 call 1,sp- $55
CPU12 ASSEMBL

REFERENCE MANUAL
d3a3 4b 3f 55 call 1,x- $55
d3a6 4b 7f 55 call 1,y- $55
d3a9 4b f8 7d 55 call 125,pc $55
d3ad 4b f0 7d 55 call 125,sp $55
d3b1 4b e0 7d 55 call 125,x $55
d3b5 4b e8 7d 55 call 125,y $55
d3b9 4b 8f 55 call 15,sp $55
d3bc 4b 0f 55 call 15,x $55
d3bf 4b 4f 55 call 15,y $55
d3c2 4b f0 10 55 call 16,sp $55
d3c6 4b e0 10 55 call 16,x $55
d3ca 4b e8 10 55 call 16,y $55
d3ce 4b b7 55 call 8,sp+ $55
d3d1 4b 37 55 call 8,x+ $55
d3d4 4b 77 55 call 8,y+ $55
d3d7 4b b8 55 call 8,sp- $55
d3da 4b 38 55 call 8,x- $55
d3dd 4b 78 55 call 8,y- $55
d3e0 4b f4 55 call a,sp $55
d3e3 4b e4 55 call a,x $55
d3e6 4b ec 55 call a,y $55
d3e9 4b f5 55 call b,sp $55
d3ec 4b e5 55 call b,x $55
d3ef 4b ed 55 call b,y $55
d3f2 4b f6 55 call d,sp $55
d3f5 4b e6 55 call d,x $55
d3f8 4b ee 55 call d,y $55
d3fb 4a 00 55 55 call dir $55
d3ff 4a 01 88 55 call ext $55
d403 4b f2 01 88 55 call ext,sp $55
d408 4b e2 01 88 55 call ext,x $55
d40d 4b ea 01 88 55 call ext,y $55
d412 4b f8 37 55 call ind,pc $55
d416 4b f0 37 55 call ind,sp $55
d41a 4b e0 37 55 call ind,x $55
d41e 4b e8 37 55 call ind,y $55
d422 4b ce 55 call small,pc $55
d425 4b 8e 55 call small,sp $55
d428 4b 0e 55 call small,x $55
d42b 4b 4e 55 call small,y $55

d42e 18 17 cba
d430 10 fe clc
d432 10 ef cli
d434 69 a0 clr 1,+sp
d436 79 00 55 clr dir
d439 79 01 88 clr ext
d43c 87 clra
d43d c7 clrb
d43e 10 fd clv
d440 81 72 cmpa #immed
d442 a1 a0 cmpa 1,+sp
d444 91 55 cmpa dir
d446 b1 01 88 cmpa ext

d449 c1 72 cmpb #immed
d44b c1 72 cmpb #immed
d44d e1 a0 cmpb 1,+sp
d44f e1 20 cmpb 1,+x
d451 e1 60 cmpb 1,+y
d453 e1 a7 cmpb 8,+sp
d455 e1 27 cmpb 8,+x
d457 e1 67 cmpb 8,+y
d459 e1 c0 cmpb ,pc
d45b e1 80 cmpb ,sp
d45d e1 00 cmpb ,x
Y LISTING MOTOROLA

D-3



d45f e1 40 cmpb ,y
d461 e1 af cmpb 1,-sp
d463 e1 2f cmpb 1,-x
d465 e1 6f cmpb 1,-y
d467 e1 a8 cmpb 8,-sp
d469 e1 28 cmpb 8,-x
d46b e1 68 cmpb 8,-y
d46d e1 9f cmpb -1,sp
d46f e1 1f cmpb -1,x
d471 e1 5f cmpb -1,y
d473 e1 90 cmpb -16,sp
d475 e1 10 cmpb -16,x
d477 e1 50 cmpb -16,y
d479 e1 f1 ef cmpb -17,sp
d47c e1 e1 ef cmpb -17,x
d47f e1 e9 ef cmpb -17,y
d482 e1 d2 cmpb -small,pc
d484 e1 92 cmpb -small,sp
d486 e1 12 cmpb -small,x
d488 e1 52 cmpb -small,y
d48a e1 c0 cmpb 0,pc
d48c e1 80 cmpb 0,sp
d48e e1 00 cmpb 0,x
d490 e1 40 cmpb 0,y
d492 e1 b0 cmpb 1,sp+
d494 e1 30 cmpb 1,x+
d496 e1 70 cmpb 1,y+
d498 e1 81 cmpb 1,sp
d49a e1 01 cmpb 1,x
d49c e1 41 cmpb 1,y
d49e e1 bf cmpb 1,sp-
d4a0 e1 3f cmpb 1,x-
d4a2 e1 7f cmpb 1,y-
d4a4 e1 f8 7d cmpb 125,pc
d4a7 e1 f0 7d cmpb 125,sp
d4aa e1 e0 7d cmpb 125,x
d4ad e1 e8 7d cmpb 125,y
d4b0 e1 8f cmpb 15,sp
d4b2 e1 0f cmpb 15,x
d4b4 e1 4f cmpb 15,y
d4b6 e1 f0 10 cmpb 16,sp
d4b9 e1 e0 10 cmpb 16,x
d4bc e1 e8 10 cmpb 16,y
d4bf e1 b7 cmpb 8,sp+
d4c1 e1 37 cmpb 8,x+
d4c3 e1 77 cmpb 8,y+
d4c5 e1 b8 cmpb 8,sp-
d4c7 e1 38 cmpb 8,x-
d4c9 e1 78 cmpb 8,y-
d4cb e1 f4 cmpb a,sp
d4cd e1 e4 cmpb a,x
d4cf e1 ec cmpb a,y
d4d1 e1 f5 cmpb b,sp
d4d3 e1 e5 cmpb b,x
d4d5 e1 ed cmpb b,y
d4d7 e1 f6 cmpb d,sp
d4d9 e1 e6 cmpb d,x
d4db e1 ee cmpb d,y
d4dd d1 55 cmpb dir
d4df d1 55 cmpb dir
d4e1 f1 01 88 cmpb ext
d4e4 f1 01 88 cmpb ext
d4e7 e1 f2 01 88 cmpb ext,sp
d4eb e1 e2 01 88 cmpb ext,x
d4ef e1 ea 01 88 cmpb ext,y
d4f3 e1 f8 37 cmpb ind,pc
 MOTOROLA ASSEMB

D-4
d4f6 e1 f0 37 cmpb ind,sp
d4f9 e1 e0 37 cmpb ind,x
d4fc e1 e8 37 cmpb ind,y
d4ff e1 ce cmpb small,pc
d501 e1 8e cmpb small,sp
d503 e1 0e cmpb small,x
d505 e1 4e cmpb small,y
d507 61 a0 com 1,+sp
d509 61 20 com 1,+x
d50b 61 60 com 1,+y
d50d 61 a7 com 8,+sp
d50f 61 27 com 8,+x
d511 61 67 com 8,+y
d513 61 c0 com ,pc
d515 61 80 com ,sp
d517 61 00 com ,x
d519 61 40 com ,y
d51b 61 af com 1,-sp
d51d 61 2f com 1,-x
d51f 61 6f com 1,-y
d521 61 a8 com 8,-sp
d523 61 28 com 8,-x
d525 61 68 com 8,-y
d527 61 9f com -1,sp
d529 61 1f com -1,x
d52b 61 5f com -1,y
d52d 61 90 com -16,sp
d52f 61 10 com -16,x
d531 61 50 com -16,y
d533 61 f1 ef com -17,sp
d536 61 e1 ef com -17,x
d539 61 e9 ef com -17,y
d53c 61 d2 com -small,pc
d53e 61 92 com -small,sp
d540 61 12 com -small,x
d542 61 52 com -small,y
d544 61 c0 com 0,pc
d546 61 80 com 0,sp
d548 61 00 com 0,x
d54a 61 40 com 0,y
d54c 61 b0 com 1,sp+
d54e 61 30 com 1,x+
d550 61 70 com 1,y+
d552 61 81 com 1,sp
d554 61 01 com 1,x
d556 61 41 com 1,y
d558 61 bf com 1,sp-
d55a 61 3f com 1,x-
d55c 61 7f com 1,y-
d55e 61 f8 7d com 125,pc
d561 61 f0 7d com 125,sp
d564 61 e0 7d com 125,x
d567 61 e8 7d com 125,y
d56a 61 8f com 15,sp
d56c 61 0f com 15,x
d56e 61 4f com 15,y
d570 61 f0 10 com 16,sp
d573 61 e0 10 com 16,x
d576 61 e8 10 com 16,y
d579 61 b7 com 8,sp+
d57b 61 37 com 8,x+
d57d 61 77 com 8,y+
d57f 61 b8 com 8,sp-
d581 61 38 com 8,x-
d583 61 78 com 8,y-
d585 61 f4 com a,sp
LY LISTING CPU12

REFERENCE MANUAL



d587 61 e4 com a,x
d589 61 ec com a,y
d58b 61 f5 com b,sp
d58d 61 e5 com b,x
d58f 61 ed com b,y
d591 61 f6 com d,sp
d593 61 e6 com d,x
d595 61 ee com d,y
d597 71 00 55 com dir
d59a 71 01 88 com ext
d59d 71 01 88 com ext
d5a0 61 f2 01 88 com ext,sp
d5a4 61 e2 01 88 com ext,x
d5a8 61 ea 01 88 com ext,y
d5ac 61 f8 37 com ind,pc
d5af 61 f0 37 com ind,sp
d5b2 61 e0 37 com ind,x
d5b5 61 e8 37 com ind,y
d5b8 61 ce com small,pc
d5ba 61 8e com small,sp
d5bc 61 0e com small,x
d5be 61 4e com small,y
d5c0 41 coma
d5c1 51 comb
d5c2 8c 00 72 cpd #immed
d5c5 8c 00 72 cpd #immed
d5c8 ac a0 cpd 1,+sp
d5ca ac 20 cpd 1,+x
d5cc ac 60 cpd 1,+y
d5ce ac a7 cpd 8,+sp
d5d0 ac 27 cpd 8,+x
d5d2 ac 67 cpd 8,+y
d5d4 ac c0 cpd ,pc
d5d6 ac 80 cpd ,sp
d5d8 ac 00 cpd ,x
d5da ac 40 cpd ,y
d5dc ac af cpd 1,-sp
d5de ac 2f cpd 1,-x
d5e0 ac 6f cpd 1,-y
d5e2 ac a8 cpd 8,-sp
d5e4 ac 28 cpd 8,-x
d5e6 ac 68 cpd 8,-y
d5e8 ac 9f cpd -1,sp
d5ea ac 1f cpd -1,x
d5ec ac 5f cpd -1,y
d5ee ac 90 cpd -16,sp
d5f0 ac 10 cpd -16,x
d5f2 ac 50 cpd -16,y
d5f4 ac f1 ef cpd -17,sp
d5f7 ac e1 ef cpd -17,x
d5fa ac e9 ef cpd -17,y
d5fd ac d2 cpd -small,pc
d5ff ac 92 cpd -small,sp
d601 ac 12 cpd -small,x
d603 ac 52 cpd -small,y
d605 ac c0 cpd 0,pc
d607 ac 80 cpd 0,sp
d609 ac 00 cpd 0,x
d60b ac 40 cpd 0,y
d60d ac b0 cpd 1,sp+
d60f ac 30 cpd 1,x+
d611 ac 70 cpd 1,y+
d613 ac 81 cpd 1,sp
d615 ac 01 cpd 1,x
d617 ac 41 cpd 1,y
d619 ac bf cpd 1,sp-
CPU12 ASSEMBL

REFERENCE MANUAL
d61b ac 3f cpd 1,x-
d61d ac 7f cpd 1,y-
d61f ac f8 7d cpd 125,pc
d622 ac f0 7d cpd 125,sp
d625 ac e0 7d cpd 125,x
d628 ac e8 7d cpd 125,y
d62b ac 8f cpd 15,sp
d62d ac 0f cpd 15,x
d62f ac 4f cpd 15,y
d631 ac f0 10 cpd 16,sp
d634 ac e0 10 cpd 16,x
d637 ac e8 10 cpd 16,y
d63a ac b7 cpd 8,sp+
d63c ac 37 cpd 8,x+
d63e ac 77 cpd 8,y+
d640 ac b8 cpd 8,sp-
d642 ac 38 cpd 8,x-
d644 ac 78 cpd 8,y-
d646 ac f4 cpd a,sp
d648 ac e4 cpd a,x
d64a ac ec cpd a,y
d64c ac f5 cpd b,sp
d64e ac e5 cpd b,x
d650 ac ed cpd b,y
d652 ac f6 cpd d,sp
d654 ac e6 cpd d,x
d656 ac ee cpd d,y
d658 9c 55 cpd dir
d65a 9c 55 cpd dir
d65c bc 01 88 cpd ext
d65f bc 01 88 cpd ext
d662 ac f2 01 88 cpd ext,sp
d666 ac e2 01 88 cpd ext,x
d66a ac ea 01 88 cpd ext,y
d66e ac f8 37 cpd ind,pc
d671 ac f0 37 cpd ind,sp
d674 ac e0 37 cpd ind,x
d677 ac e8 37 cpd ind,y
d67a ac ce cpd small,pc
d67c ac 8e cpd small,sp
d67e ac 0e cpd small,x
d680 ac 4e cpd small,y
d682 8f 00 72 cps #immed
d685 af a0 cps 1,+sp
d687 af 20 cps 1,+x
d689 af 60 cps 1,+y
d68b af a7 cps 8,+sp
d68d af 27 cps 8,+x
d68f af 67 cps 8,+y
d691 af c0 cps ,pc
d693 af 80 cps ,sp
d695 af 00 cps ,x
d697 af 40 cps ,y
d699 af af cps 1,-sp
d69b af 2f cps 1,-x
d69d af 6f cps 1,-y
d69f af a8 cps 8,-sp
d6a1 af 28 cps 8,-x
d6a3 af 68 cps 8,-y
d6a5 af 9f cps -1,sp
d6a7 af 1f cps -1,x
d6a9 af 5f cps -1,y
d6ab af 90 cps -16,sp
d6ad af 10 cps -16,x
d6af af 50 cps -16,y
d6b1 af f1 ef cps -17,sp
Y LISTING MOTOROLA

D-5



d6b4 af e1 ef cps -17,x
d6b7 af e9 ef cps -17,y
d6ba af d2 cps -small,pc
d6bc af 92 cps -small,sp
d6be af 12 cps -small,x
d6c0 af 52 cps -small,y
d6c2 af c0 cps 0,pc
d6c4 af 80 cps 0,sp
d6c6 af 00 cps 0,x
d6c8 af 40 cps 0,y
d6ca af b0 cps 1,sp+
d6cc af 30 cps 1,x+
d6ce af 70 cps 1,y+
d6d0 af 81 cps 1,sp
d6d2 af 01 cps 1,x
d6d4 af 41 cps 1,y
d6d6 af bf cps 1,sp-
d6d8 af 3f cps 1,x-
d6da af 7f cps 1,y-
d6dc af f8 7d cps 125,pc
d6df af f0 7d cps 125,sp
d6e2 af e0 7d cps 125,x
d6e5 af e8 7d cps 125,y
d6e8 af 8f cps 15,sp
d6ea af 0f cps 15,x
d6ec af 4f cps 15,y
d6ee af f0 10 cps 16,sp
d6f1 af e0 10 cps 16,x
d6f4 af e8 10 cps 16,y
d6f7 af b7 cps 8,sp+
d6f9 af 37 cps 8,x+
d6fb af 77 cps 8,y+
d6fd af b8 cps 8,sp-
d6ff af 38 cps 8,x-
d701 af 78 cps 8,y-
d703 af f4 cps a,sp
d705 af e4 cps a,x
d707 af ec cps a,y
d709 af f5 cps b,sp
d70b af e5 cps b,x
d70d af ed cps b,y
d70f af f6 cps d,sp
d711 af e6 cps d,x
d713 af ee cps d,y
d715 9f 55 cps dir
d717 9f 55 cps dir
d719 bf 01 88 cps ext
d71c bf 01 88 cps ext
d71f af f2 01 88 cps ext,sp
d723 af e2 01 88 cps ext,x
d727 af ea 01 88 cps ext,y
d72b af f8 37 cps ind,pc
d72e af f0 37 cps ind,sp
d731 af e0 37 cps ind,x
d734 af e8 37 cps ind,y
d737 af ce cps small,pc
d739 af 8e cps small,sp
d73b af 0e cps small,x
d73d af 4e cps small,y
d73f 8e 00 72 cpx #immed
d742 8e 00 72 cpx #immed
d745 ae a0 cpx 1,+sp
d747 ae 20 cpx 1,+x
d749 ae 60 cpx 1,+y
d74b ae a7 cpx 8,+sp
d74d ae 27 cpx 8,+x
 MOTOROLA ASSEMB

D-6
d74f ae 67 cpx 8,+y
d751 ae c0 cpx ,pc
d753 ae 80 cpx ,sp
d755 ae 00 cpx ,x
d757 ae 40 cpx ,y
d759 ae af cpx 1,-sp
d75b ae 2f cpx 1,-x
d75d ae 6f cpx 1,-y
d75f ae a8 cpx 8,-sp
d761 ae 28 cpx 8,-x
d763 ae 68 cpx 8,-y
d765 ae 9f cpx -1,sp
d767 ae 1f cpx -1,x
d769 ae 5f cpx -1,y
d76b ae 90 cpx -16,sp
d76d ae 10 cpx -16,x
d76f ae 50 cpx -16,y
d771 ae f1 ef cpx -17,sp
d774 ae e1 ef cpx -17,x
d777 ae e9 ef cpx -17,y
d77a ae d2 cpx -small,pc
d77c ae 92 cpx -small,sp
d77e ae 12 cpx -small,x
d780 ae 52 cpx -small,y
d782 ae c0 cpx 0,pc
d784 ae 80 cpx 0,sp
d786 ae 00 cpx 0,x
d788 ae 40 cpx 0,y
d78a ae b0 cpx 1,sp+
d78c ae 30 cpx 1,x+
d78e ae 70 cpx 1,y+
d790 ae 81 cpx 1,sp
d792 ae 01 cpx 1,x
d794 ae 41 cpx 1,y
d796 ae bf cpx 1,sp-
d798 ae 3f cpx 1,x-
d79a ae 7f cpx 1,y-
d79c ae f8 7d cpx 125,pc
d79f ae f0 7d cpx 125,sp
d7a2 ae e0 7d cpx 125,x
d7a5 ae e8 7d cpx 125,y
d7a8 ae 8f cpx 15,sp
d7aa ae 0f cpx 15,x
d7ac ae 4f cpx 15,y
d7ae ae f0 10 cpx 16,sp
d7b1 ae e0 10 cpx 16,x
d7b4 ae e8 10 cpx 16,y
d7b7 ae b7 cpx 8,sp+
d7b9 ae 37 cpx 8,x+
d7bb ae 77 cpx 8,y+
d7bd ae b8 cpx 8,sp-
d7bf ae 38 cpx 8,x-
d7c1 ae 78 cpx 8,y-
d7c3 ae f4 cpx a,sp
d7c5 ae e4 cpx a,x
d7c7 ae ec cpx a,y
d7c9 ae f5 cpx b,sp
d7cb ae e5 cpx b,x
d7cd ae ed cpx b,y
d7cf ae f6 cpx d,sp
d7d1 ae e6 cpx d,x
d7d3 ae ee cpx d,y
d7d5 9e 55 cpx dir
d7d7 9e 55 cpx dir
d7d9 be 01 88 cpx ext
d7dc be 01 88 cpx ext
LY LISTING CPU12

REFERENCE MANUAL



d7df ae f2 01 88 cpx ext,sp
d7e3 ae e2 01 88 cpx ext,x
d7e7 ae ea 01 88 cpx ext,y
d7eb ae f8 37 cpx ind,pc
d7ee ae f0 37 cpx ind,sp
d7f1 ae e0 37 cpx ind,x
d7f4 ae e8 37 cpx ind,y
d7f7 ae ce cpx small,pc
d7f9 ae 8e cpx small,sp
d7fb ae 0e cpx small,x
d7fd ae 4e cpx small,y
d7ff 8d 00 72 cpy #immed
d802 8d 00 72 cpy #immed
d805 ad a0 cpy 1,+sp
d807 ad 20 cpy 1,+x
d809 ad 60 cpy 1,+y
d80b ad a7 cpy 8,+sp
d80d ad 27 cpy 8,+x
d80f ad 67 cpy 8,+y
d811 ad c0 cpy ,pc
d813 ad 80 cpy ,sp
d815 ad 00 cpy ,x
d817 ad 40 cpy ,y
d819 ad af cpy 1,-sp
d81b ad 2f cpy 1,-x
d81d ad 6f cpy 1,-y
d81f ad a8 cpy 8,-sp
d821 ad 28 cpy 8,-x
d823 ad 68 cpy 8,-y
d825 ad 9f cpy -1,sp
d827 ad 1f cpy -1,x
d829 ad 5f cpy -1,y
d82b ad 90 cpy -16,sp
d82d ad 10 cpy -16,x
d82f ad 50 cpy -16,y
d831 ad f1 ef cpy -17,sp
d834 ad e1 ef cpy -17,x
d837 ad e9 ef cpy -17,y
d83a ad d2 cpy -small,pc
d83c ad 92 cpy -small,sp
d83e ad 12 cpy -small,x
d840 ad 52 cpy -small,y
d842 ad c0 cpy 0,pc
d844 ad 80 cpy 0,sp
d846 ad 00 cpy 0,x
d848 ad 40 cpy 0,y
d84a ad b0 cpy 1,sp+
d84c ad 30 cpy 1,x+
d84e ad 70 cpy 1,y+
d850 ad 81 cpy 1,sp
d852 ad 01 cpy 1,x
d854 ad 41 cpy 1,y
d856 ad bf cpy 1,sp-
d858 ad 3f cpy 1,x-
d85a ad 7f cpy 1,y-
d85c ad f8 7d cpy 125,pc
d85f ad f0 7d cpy 125,sp
d862 ad e0 7d cpy 125,x
d865 ad e8 7d cpy 125,y
d868 ad 8f cpy 15,sp
d86a ad 0f cpy 15,x
d86c ad 4f cpy 15,y
d86e ad f0 10 cpy 16,sp
d871 ad e0 10 cpy 16,x
d874 ad e8 10 cpy 16,y
d877 ad b7 cpy 8,sp+
CPU12 ASSEMBL

REFERENCE MANUAL
d879 ad 37 cpy 8,x+
d87b ad 77 cpy 8,y+
d87d ad b8 cpy 8,sp-
d87f ad 38 cpy 8,x-
d881 ad 78 cpy 8,y-
d883 ad f4 cpy a,sp
d885 ad e4 cpy a,x
d887 ad ec cpy a,y
d889 ad f5 cpy b,sp
d88b ad e5 cpy b,x
d88d ad ed cpy b,y
d88f ad f6 cpy d,sp
d891 ad e6 cpy d,x
d893 ad ee cpy d,y
d895 9d 55 cpy dir
d897 9d 55 cpy dir
d899 bd 01 88 cpy ext
d89c bd 01 88 cpy ext
d89f ad f2 01 88 cpy ext,sp
d8a3 ad e2 01 88 cpy ext,x
d8a7 ad ea 01 88 cpy ext,y
d8ab ad f8 37 cpy ind,pc
d8ae ad f0 37 cpy ind,sp
d8b1 ad e0 37 cpy ind,x
d8b4 ad e8 37 cpy ind,y
d8b7 ad ce cpy small,pc
d8b9 ad 8e cpy small,sp
d8bb ad 0e cpy small,x
d8bd ad 4e cpy small,y
d8bf 18 07 daa
d8c1 04 30 fd dbne a *
d8c4 04 31 fd dbne b *
d8c7 04 35 fd dbne x *
d8ca 04 36 fd dbne y *
d8cd 63 a0 dec 1,+sp
d8cf 63 20 dec 1,+x
d8d1 63 60 dec 1,+y
d8d3 63 a7 dec 8,+sp
d8d5 63 27 dec 8,+x
d8d7 63 67 dec 8,+y
d8d9 63 c0 dec ,pc
d8db 63 80 dec ,sp
d8dd 63 00 dec ,x
d8df 63 40 dec ,y
d8e1 63 af dec 1,-sp
d8e3 63 2f dec 1,-x
d8e5 63 6f dec 1,-y
d8e7 63 a8 dec 8,-sp
d8e9 63 28 dec 8,-x
d8eb 63 68 dec 8,-y
d8ed 63 9f dec -1,sp
d8ef 63 1f dec -1,x
d8f1 63 5f dec -1,y
d8f3 63 90 dec -16,sp
d8f5 63 10 dec -16,x
d8f7 63 50 dec -16,y
d8f9 63 f1 ef dec -17,sp
d8fc 63 e1 ef dec -17,x
d8ff 63 e9 ef dec -17,y
d902 63 d2 dec -small,pc
d904 63 92 dec -small,sp
d906 63 12 dec -small,x
d908 63 52 dec -small,y
d90a 63 c0 dec 0,pc
d90c 63 80 dec 0,sp
d90e 63 00 dec 0,x
Y LISTING MOTOROLA

D-7



d910 63 40 dec 0,y
d912 63 b0 dec 1,sp+
d914 63 30 dec 1,x+
d916 63 70 dec 1,y+
d918 63 81 dec 1,sp
d91a 63 01 dec 1,x
d91c 63 41 dec 1,y
d91e 63 bf dec 1,sp-
d920 63 3f dec 1,x-
d922 63 7f dec 1,y-
d924 63 f8 7d dec 125,pc
d927 63 f0 7d dec 125,sp
d92a 63 e0 7d dec 125,x
d92d 63 e8 7d dec 125,y
d930 63 8f dec 15,sp
d932 63 0f dec 15,x
d934 63 4f dec 15,y
d936 63 f0 10 dec 16,sp
d939 63 e0 10 dec 16,x
d93c 63 e8 10 dec 16,y
d93f 63 b7 dec 8,sp+
d941 63 37 dec 8,x+
d943 63 77 dec 8,y+
d945 63 b8 dec 8,sp-
d947 63 38 dec 8,x-
d949 63 78 dec 8,y-
d94b 63 f4 dec a,sp
d94d 63 e4 dec a,x
d94f 63 ec dec a,y
d951 63 f5 dec b,sp
d953 63 e5 dec b,x
d955 63 ed dec b,y
d957 63 f6 dec d,sp
d959 63 e6 dec d,x
d95b 63 ee dec d,y
d95d 73 00 55 dec dir
d960 73 01 88 dec ext
d963 73 01 88 dec ext
d966 63 f2 01 88 dec ext,sp
d96a 63 e2 01 88 dec ext,x
d96e 63 ea 01 88 dec ext,y
d972 63 f8 37 dec ind,pc
d975 63 f0 37 dec ind,sp
d978 63 e0 37 dec ind,x
d97b 63 e8 37 dec ind,y
d97e 63 ce dec small,pc
d980 63 8e dec small,sp
d982 63 0e dec small,x
d984 63 4e dec small,y
d986 43 deca
d987 53 decb
d988 1b 9f des
d98a 09 dex
d98b 03 dey
d98c 11 ediv
d98d 18 14 edivs
d98f 18 12 00 55 emacs dir
d993 18 12 01 88 emacs ext
d997 18 12 00 0e emacs small
d99b 18 1a a0 emaxd 1,+sp
d99e 18 1a 20 emaxd 1,+x
d9a1 18 1a 60 emaxd 1,+y
d9a4 18 1a a7 emaxd 8,+sp
d9a7 18 1a 27 emaxd 8,+x
d9aa 18 1a 67 emaxd 8,+y
d9ad 18 1a c0 emaxd ,pc
 MOTOROLA ASSEMB

D-8
d9b0 18 1a 80 emaxd ,sp
d9b3 18 1a 00 emaxd ,x
d9b6 18 1a 40 emaxd ,y
d9b9 18 1a af emaxd 1,-sp
d9bc 18 1a 2f emaxd 1,-x
d9bf 18 1a 6f emaxd 1,-y
d9c2 18 1a a8 emaxd 8,-sp
d9c5 18 1a 28 emaxd 8,-x
d9c8 18 1a 68 emaxd 8,-y
d9cb 18 1a 9f emaxd -1,sp
d9ce 18 1a 1f emaxd -1,x
d9d1 18 1a 5f emaxd -1,y
d9d4 18 1a 90 emaxd -16,sp
d9d7 18 1a 10 emaxd -16,x
d9da 18 1a 50 emaxd -16,y
d9dd 18 1a f1 ef emaxd -17,sp
d9e1 18 1a e1 ef emaxd -17,x
d9e5 18 1a e9 ef emaxd -17,y
d9e9 18 1a d2 emaxd -small,pc
d9ec 18 1a 92 emaxd -small,sp
d9ef 18 1a 12 emaxd -small,x
d9f2 18 1a 52 emaxd -small,y
d9f5 18 1a c0 emaxd 0,pc
d9f8 18 1a 80 emaxd 0,sp
d9fb 18 1a 00 emaxd 0,x
d9fe 18 1a 40 emaxd 0,y
da01 18 1a b0 emaxd 1,sp+
da04 18 1a 30 emaxd 1,x+
da07 18 1a 70 emaxd 1,y+
da0a 18 1a 81 emaxd 1,sp
da0d 18 1a 01 emaxd 1,x
da10 18 1a 41 emaxd 1,y
da13 18 1a bf emaxd 1,sp-
da16 18 1a 3f emaxd 1,x-
da19 18 1a 7f emaxd 1,y-
da1c 18 1a f8 7d emaxd 125,pc
da20 18 1a f0 7d emaxd 125,sp
da24 18 1a e0 7d emaxd 125,x
da28 18 1a e8 7d emaxd 125,y
da2c 18 1a 8f emaxd 15,sp
da2f 18 1a 0f emaxd 15,x
da32 18 1a 4f emaxd 15,y
da35 18 1a f0 10 emaxd 16,sp
da39 18 1a e0 10 emaxd 16,x
da3d 18 1a e8 10 emaxd 16,y
da41 18 1a b7 emaxd 8,sp+
da44 18 1a 37 emaxd 8,x+
da47 18 1a 77 emaxd 8,y+
da4a 18 1a b8 emaxd 8,sp-
da4d 18 1a 38 emaxd 8,x-
da50 18 1a 78 emaxd 8,y-
da53 18 1a f4 emaxd a,sp
da56 18 1a e4 emaxd a,x
da59 18 1a ec emaxd a,y
da5c 18 1a f5 emaxd b,sp
da5f 18 1a e5 emaxd b,x
da62 18 1a ed emaxd b,y
da65 18 1a f6 emaxd d,sp
da68 18 1a e6 emaxd d,x
da6b 18 1a ee emaxd d,y
da6e 18 1a f2 01 88 emaxd ext,sp
da73 18 1a e2 01 88 emaxd ext,x
da78 18 1a ea 01 88 emaxd ext,y
da7d 18 1a f8 37 emaxd ind,pc
da81 18 1a f0 37 emaxd ind,sp
da85 18 1a e0 37 emaxd ind,x
LY LISTING CPU12

REFERENCE MANUAL



da89 18 1a e8 37 emaxd ind,y
da8d 18 1a ce emaxd small,pc
da90 18 1a 8e emaxd small,sp
da93 18 1a 0e emaxd small,x
da96 18 1a 4e emaxd small,y
da99 18 1e a0 emaxm 1,+sp
da9c 18 1e 20 emaxm 1,+x
da9f 18 1e 60 emaxm 1,+y
daa2 18 1e a7 emaxm 8,+sp
daa5 18 1e 27 emaxm 8,+x
daa8 18 1e 67 emaxm 8,+y
daab 18 1e c0 emaxm ,pc
daae 18 1e 80 emaxm ,sp
dab1 18 1e 00 emaxm ,x
dab4 18 1e 40 emaxm ,y
dab7 18 1e af emaxm 1,-sp
daba 18 1e 2f emaxm 1,-x
dabd 18 1e 6f emaxm 1,-y
dac0 18 1e a8 emaxm 8,-sp
dac3 18 1e 28 emaxm 8,-x
dac6 18 1e 68 emaxm 8,-y
dac9 18 1e 9f emaxm -1,sp
dacc 18 1e 1f emaxm -1,x
dacf 18 1e 5f emaxm -1,y
dad2 18 1e 90 emaxm -16,sp
dad5 18 1e 10 emaxm -16,x
dad8 18 1e 50 emaxm -16,y
dadb 18 1e f1 ef emaxm -17,sp
dadf 18 1e e1 ef emaxm -17,x
dae3 18 1e e9 ef emaxm -17,y
dae7 18 1e d2 emaxm -small,pc
daea 18 1e 92 emaxm -small,sp
daed 18 1e 12 emaxm -small,x
daf0 18 1e 52 emaxm -small,y
daf3 18 1e c0 emaxm 0,pc
daf6 18 1e 80 emaxm 0,sp
daf9 18 1e 00 emaxm 0,x
dafc 18 1e 40 emaxm 0,y
daff 18 1e b0 emaxm 1,sp+
db02 18 1e 30 emaxm 1,x+
db05 18 1e 70 emaxm 1,y+
db08 18 1e 81 emaxm 1,sp
db0b 18 1e 01 emaxm 1,x
db0e 18 1e 41 emaxm 1,y
db11 18 1e bf emaxm 1,sp-
db14 18 1e 3f emaxm 1,x-
db17 18 1e 7f emaxm 1,y-
db1a 18 1e f8 7d emaxm 125,pc
db1e 18 1e f0 7d emaxm 125,sp
db22 18 1e e0 7d emaxm 125,x
db26 18 1e e8 7d emaxm 125,y
db2a 18 1e 8f emaxm 15,sp
db2d 18 1e 0f emaxm 15,x
db30 18 1e 4f emaxm 15,y
db33 18 1e f0 10 emaxm 16,sp
db37 18 1e e0 10 emaxm 16,x
db3b 18 1e e8 10 emaxm 16,y
db3f 18 1e b7 emaxm 8,sp+
db42 18 1e 37 emaxm 8,x+
db45 18 1e 77 emaxm 8,y+
db48 18 1e b8 emaxm 8,sp-
db4b 18 1e 38 emaxm 8,x-
db4e 18 1e 78 emaxm 8,y-
db51 18 1e f4 emaxm a,sp
db54 18 1e e4 emaxm a,x
db57 18 1e ec emaxm a,y
CPU12 ASSEMBL

REFERENCE MANUAL
db5a 18 1e f5 emaxm b,sp
db5d 18 1e e5 emaxm b,x
db60 18 1e ed emaxm b,y
db63 18 1e f6 emaxm d,sp
db66 18 1e e6 emaxm d,x
db69 18 1e ee emaxm d,y
db6c 18 1e f2 01 88 emaxm ext,sp
db71 18 1e e2 01 88 emaxm ext,x
db76 18 1e ea 01 88 emaxm ext,y
db7b 18 1e f8 37 emaxm ind,pc
db7f 18 1e f0 37 emaxm ind,sp
db83 18 1e e0 37 emaxm ind,x
db87 18 1e e8 37 emaxm ind,y
db8b 18 1e ce emaxm small,pc
db8e 18 1e 8e emaxm small,sp
db91 18 1e 0e emaxm small,x
db94 18 1e 4e emaxm small,y
db97 18 1b a0 emind 1,+sp
db9a 18 1b 20 emind 1,+x
db9d 18 1b 60 emind 1,+y
dba0 18 1b a7 emind 8,+sp
dba3 18 1b 27 emind 8,+x
dba6 18 1b 67 emind 8,+y
dba9 18 1b c0 emind ,pc
dbac 18 1b 80 emind ,sp
dbaf 18 1b 00 emind ,x
dbb2 18 1b 40 emind ,y
dbb5 18 1b af emind 1,-sp
dbb8 18 1b 2f emind 1,-x
dbbb 18 1b 6f emind 1,-y
dbbe 18 1b a8 emind 8,-sp
dbc1 18 1b 28 emind 8,-x
dbc4 18 1b 68 emind 8,-y
dbc7 18 1b 9f emind -1,sp
dbca 18 1b 1f emind -1,x
dbcd 18 1b 5f emind -1,y
dbd0 18 1b 90 emind -16,sp
dbd3 18 1b 10 emind -16,x
dbd6 18 1b 50 emind -16,y
dbd9 18 1b f1 ef emind -17,sp
dbdd 18 1b e1 ef emind -17,x
dbe1 18 1b e9 ef emind -17,y
dbe5 18 1b d2 emind -small,pc
dbe8 18 1b 92 emind -small,sp
dbeb 18 1b 12 emind -small,x
dbee 18 1b 52 emind -small,y
dbf1 18 1b c0 emind 0,pc
dbf4 18 1b 80 emind 0,sp
dbf7 18 1b 00 emind 0,x
dbfa 18 1b 40 emind 0,y
dbfd 18 1b b0 emind 1,sp+
dc00 18 1b 30 emind 1,x+
dc03 18 1b 70 emind 1,y+
dc06 18 1b 81 emind 1,sp
dc09 18 1b 01 emind 1,x
dc0c 18 1b 41 emind 1,y
dc0f 18 1b bf emind 1,sp-
dc12 18 1b 3f emind 1,x-
dc15 18 1b 7f emind 1,y-
dc18 18 1b f8 7d emind 125,pc
dc1c 18 1b f0 7d emind 125,sp
dc20 18 1b e0 7d emind 125,x
dc24 18 1b e8 7d emind 125,y
dc28 18 1b 8f emind 15,sp
dc2b 18 1b 0f emind 15,x
dc2e 18 1b 4f emind 15,y
Y LISTING MOTOROLA

D-9



dc31 18 1b f0 10 emind 16,sp
dc35 18 1b e0 10 emind 16,x
dc39 18 1b e8 10 emind 16,y
dc3d 18 1b b7 emind 8,sp+
dc40 18 1b 37 emind 8,x+
dc43 18 1b 77 emind 8,y+
dc46 18 1b b8 emind 8,sp-
dc49 18 1b 38 emind 8,x-
dc4c 18 1b 78 emind 8,y-
dc4f 18 1b f4 emind a,sp
dc52 18 1b e4 emind a,x
dc55 18 1b ec emind a,y
dc58 18 1b f5 emind b,sp
dc5b 18 1b e5 emind b,x
dc5e 18 1b ed emind b,y
dc61 18 1b f6 emind d,sp
dc64 18 1b e6 emind d,x
dc67 18 1b ee emind d,y
dc6a 18 1b f2 01 88 emind ext,sp
dc6f 18 1b e2 01 88 emind ext,x
dc74 18 1b ea 01 88 emind ext,y
dc79 18 1b f8 37 emind ind,pc
dc7d 18 1b f0 37 emind ind,sp
dc81 18 1b e0 37 emind ind,x
dc85 18 1b e8 37 emind ind,y
dc89 18 1b ce emind small,pc
dc8c 18 1b 8e emind small,sp
dc8f 18 1b 0e emind small,x
dc92 18 1b 4e emind small,y
dc95 18 1f a0 eminm 1,+sp
dc98 18 1f 20 eminm 1,+x
dc9b 18 1f 60 eminm 1,+y
dc9e 18 1f a7 eminm 8,+sp
dca1 18 1f 27 eminm 8,+x
dca4 18 1f 67 eminm 8,+y
dca7 18 1f c0 eminm ,pc
dcaa 18 1f 80 eminm ,sp
dcad 18 1f 00 eminm ,x
dcb0 18 1f 40 eminm ,y
dcb3 18 1f af eminm 1,-sp
dcb6 18 1f 2f eminm 1,-x
dcb9 18 1f 6f eminm 1,-y
dcbc 18 1f a8 eminm 8,-sp
dcbf 18 1f 28 eminm 8,-x
dcc2 18 1f 68 eminm 8,-y
dcc5 18 1f 9f eminm -1,sp
dcc8 18 1f 1f eminm -1,x
dccb 18 1f 5f eminm -1,y
dcce 18 1f 90 eminm -16,sp
dcd1 18 1f 10 eminm -16,x
dcd4 18 1f 50 eminm -16,y
dcd7 18 1f f1 ef eminm -17,sp
dcdb 18 1f e1 ef eminm -17,x
dcdf 18 1f e9 ef eminm -17,y
dce3 18 1f d2 eminm -small,pc
dce6 18 1f 92 eminm -small,sp
dce9 18 1f 12 eminm -small,x
dcec 18 1f 52 eminm -small,y
dcef 18 1f c0 eminm 0,pc
dcf2 18 1f 80 eminm 0,sp
dcf5 18 1f 00 eminm 0,x
dcf8 18 1f 40 eminm 0,y
dcfb 18 1f b0 eminm 1,sp+
dcfe 18 1f 30 eminm 1,x+
dd01 18 1f 70 eminm 1,y+
dd04 18 1f 81 eminm 1,sp
 MOTOROLA ASSEMB

D-10
dd07 18 1f 01 eminm 1,x
dd0a 18 1f 41 eminm 1,y
dd0d 18 1f bf eminm 1,sp-
dd10 18 1f 3f eminm 1,x-
dd13 18 1f 7f eminm 1,y-
dd16 18 1f f8 7d eminm 125,pc
dd1a 18 1f f0 7d eminm 125,sp
dd1e 18 1f e0 7d eminm 125,x
dd22 18 1f e8 7d eminm 125,y
dd26 18 1f 8f eminm 15,sp
dd29 18 1f 0f eminm 15,x
dd2c 18 1f 4f eminm 15,y
dd2f 18 1f f0 10 eminm 16,sp
dd33 18 1f e0 10 eminm 16,x
dd37 18 1f e8 10 eminm 16,y
dd3b 18 1f b7 eminm 8,sp+
dd3e 18 1f 37 eminm 8,x+
dd41 18 1f 77 eminm 8,y+
dd44 18 1f b8 eminm 8,sp-
dd47 18 1f 38 eminm 8,x-
dd4a 18 1f 78 eminm 8,y-
dd4d 18 1f f4 eminm a,sp
dd50 18 1f e4 eminm a,x
dd53 18 1f ec eminm a,y
dd56 18 1f f5 eminm b,sp
dd59 18 1f e5 eminm b,x
dd5c 18 1f ed eminm b,y
dd5f 18 1f f6 eminm d,sp
dd62 18 1f e6 eminm d,x
dd65 18 1f ee eminm d,y
dd68 18 1f f2 01 88 eminm ext,sp
dd6d 18 1f e2 01 88 eminm ext,x
dd72 18 1f ea 01 88 eminm ext,y
dd77 18 1f f8 37 eminm ind,pc
dd7b 18 1f f0 37 eminm ind,sp
dd7f 18 1f e0 37 eminm ind,x
dd83 18 1f e8 37 eminm ind,y
dd87 18 1f ce eminm small,pc
dd8a 18 1f 8e eminm small,sp
dd8d 18 1f 0e eminm small,x
dd90 18 1f 4e eminm small,y
dd93 88 72 eora #immed
dd95 88 72 eora #immed
dd97 a8 a0 eora 1,+sp
dd99 a8 20 eora 1,+x
dd9b a8 60 eora 1,+y
dd9d a8 a7 eora 8,+sp
dd9f a8 27 eora 8,+x
dda1 a8 67 eora 8,+y
dda3 a8 c0 eora ,pc
dda5 a8 80 eora ,sp
dda7 a8 00 eora ,x
dda9 a8 40 eora ,y
ddab a8 af eora 1,-sp
ddad a8 2f eora 1,-x
ddaf a8 6f eora 1,-y
ddb1 a8 a8 eora 8,-sp
ddb3 a8 28 eora 8,-x
ddb5 a8 68 eora 8,-y
ddb7 a8 9f eora -1,sp
ddb9 a8 1f eora -1,x
ddbb a8 5f eora -1,y
ddbd a8 90 eora -16,sp
ddbf a8 10 eora -16,x
ddc1 a8 50 eora -16,y
ddc3 a8 f1 ef eora -17,sp
LY LISTING CPU12

REFERENCE MANUAL



ddc6 a8 e1 ef eora -17,x
ddc9 a8 e9 ef eora -17,y
ddcc a8 d2 eora -small,pc
ddce a8 92 eora -small,sp
ddd0 a8 12 eora -small,x
ddd2 a8 52 eora -small,y
ddd4 a8 c0 eora 0,pc
ddd6 a8 80 eora 0,sp
ddd8 a8 00 eora 0,x
ddda a8 40 eora 0,y
dddc a8 b0 eora 1,sp+
ddde a8 30 eora 1,x+
dde0 a8 70 eora 1,y+
dde2 a8 81 eora 1,sp
dde4 a8 01 eora 1,x
dde6 a8 41 eora 1,y
dde8 a8 bf eora 1,sp-
ddea a8 3f eora 1,x-
ddec a8 7f eora 1,y-
ddee a8 f8 7d eora 125,pc
ddf1 a8 f0 7d eora 125,sp
ddf4 a8 e0 7d eora 125,x
ddf7 a8 e8 7d eora 125,y
ddfa a8 8f eora 15,sp
ddfc a8 0f eora 15,x
ddfe a8 4f eora 15,y
de00 a8 f0 10 eora 16,sp
de03 a8 e0 10 eora 16,x
de06 a8 e8 10 eora 16,y
de09 a8 b7 eora 8,sp+
de0b a8 37 eora 8,x+
de0d a8 77 eora 8,y+
de0f a8 b8 eora 8,sp-
de11 a8 38 eora 8,x-
de13 a8 78 eora 8,y-
de15 a8 f4 eora a,sp
de17 a8 e4 eora a,x
de19 a8 ec eora a,y
de1b a8 f5 eora b,sp
de1d a8 e5 eora b,x
de1f a8 ed eora b,y
de21 a8 f6 eora d,sp
de23 a8 e6 eora d,x
de25 a8 ee eora d,y
de27 98 55 eora dir
de29 98 55 eora dir
de2b b8 01 88 eora ext
de2e b8 01 88 eora ext
de31 a8 f2 01 88 eora ext,sp
de35 a8 e2 01 88 eora ext,x
de39 a8 ea 01 88 eora ext,y
de3d a8 f8 37 eora ind,pc
de40 a8 f0 37 eora ind,sp
de43 a8 e0 37 eora ind,x
de46 a8 e8 37 eora ind,y
de49 a8 ce eora small,pc
de4b a8 8e eora small,sp
de4d a8 0e eora small,x
de4f a8 4e eora small,y
de51 c8 72 eorb #immed
de53 c8 72 eorb #immed
de55 e8 a0 eorb 1,+sp
de57 e8 20 eorb 1,+x
de59 e8 60 eorb 1,+y
de5b e8 a7 eorb 8,+sp
de5d e8 27 eorb 8,+x
CPU12 ASSEMBL

REFERENCE MANUAL
de5f e8 67 eorb 8,+y
de61 e8 c0 eorb ,pc
de63 e8 80 eorb ,sp
de65 e8 00 eorb ,x
de67 e8 40 eorb ,y
de69 e8 af eorb 1,-sp
de6b e8 2f eorb 1,-x
de6d e8 6f eorb 1,-y
de6f e8 a8 eorb 8,-sp
de71 e8 28 eorb 8,-x
de73 e8 68 eorb 8,-y
de75 e8 9f eorb -1,sp
de77 e8 1f eorb -1,x
de79 e8 5f eorb -1,y
de7b e8 90 eorb -16,sp
de7d e8 10 eorb -16,x
de7f e8 50 eorb -16,y
de81 e8 f1 ef eorb -17,sp
de84 e8 e1 ef eorb -17,x
de87 e8 e9 ef eorb -17,y
de8a e8 d2 eorb -small,pc
de8c e8 92 eorb -small,sp
de8e e8 12 eorb -small,x
de90 e8 52 eorb -small,y
de92 e8 c0 eorb 0,pc
de94 e8 80 eorb 0,sp
de96 e8 00 eorb 0,x
de98 e8 40 eorb 0,y
de9a e8 b0 eorb 1,sp+
de9c e8 30 eorb 1,x+
de9e e8 70 eorb 1,y+
dea0 e8 81 eorb 1,sp
dea2 e8 01 eorb 1,x
dea4 e8 41 eorb 1,y
dea6 e8 bf eorb 1,sp-
dea8 e8 3f eorb 1,x-
deaa e8 7f eorb 1,y-
deac e8 f8 7d eorb 125,pc
deaf e8 f0 7d eorb 125,sp
deb2 e8 e0 7d eorb 125,x
deb5 e8 e8 7d eorb 125,y
deb8 e8 8f eorb 15,sp
deba e8 0f eorb 15,x
debc e8 4f eorb 15,y
debe e8 f0 10 eorb 16,sp
dec1 e8 e0 10 eorb 16,x
dec4 e8 e8 10 eorb 16,y
dec7 e8 b7 eorb 8,sp+
dec9 e8 37 eorb 8,x+
decb e8 77 eorb 8,y+
decd e8 b8 eorb 8,sp-
decf e8 38 eorb 8,x-
ded1 e8 78 eorb 8,y-
ded3 e8 f4 eorb a,sp
ded5 e8 e4 eorb a,x
ded7 e8 ec eorb a,y
ded9 e8 f5 eorb b,sp
dedb e8 e5 eorb b,x
dedd e8 ed eorb b,y
dedf e8 f6 eorb d,sp
dee1 e8 e6 eorb d,x
dee3 e8 ee eorb d,y
dee5 d8 55 eorb dir
dee7 d8 55 eorb dir
dee9 f8 01 88 eorb ext
deec f8 01 88 eorb ext
Y LISTING MOTOROLA

D-11



deef e8 f2 01 88 eorb ext,sp
def3 e8 e2 01 88 eorb ext,x
def7 e8 ea 01 88 eorb ext,y
defb e8 f8 37 eorb ind,pc
defe e8 f0 37 eorb ind,sp
df01 e8 e0 37 eorb ind,x
df04 e8 e8 37 eorb ind,y
df07 e8 ce eorb small,pc
df09 e8 8e eorb small,sp
df0b e8 0e eorb small,x
df0d e8 4e eorb small,y
df0f 18 3f 05 etbl 5++,x
df12 b7 80 exg a a
df14 b7 81 exg a b
df16 b7 81 exg a,b
df18 b7 82 exg a ccr
df1a b7 84 exg a d
df1c b7 87 exg a sp
df1e b7 85 exg a x
df20 b7 85 exg a,x
df22 b7 86 exg a y
df24 b7 85 exg a,x
df26 b7 90 exg b a
df28 b7 91 exg b b
df2a b7 92 exg b ccr
df2c b7 94 exg b d
df2e b7 97 exg b sp
df30 b7 95 exg b x
df32 b7 96 exg b y
df34 b7 a0 exg ccr a
df36 b7 a1 exg ccr b
df38 b7 a2 exg ccr ccr
df3a b7 a4 exg ccr d
df3c b7 a7 exg ccr sp
df3e b7 a5 exg ccr x
df40 b7 a6 exg ccr y
df42 b7 c0 exg d a
df44 b7 c1 exg d b
df46 b7 c2 exg d ccr
df48 b7 c4 exg d d
df4a b7 c7 exg d sp
df4c b7 c5 exg d x
df4e b7 c6 exg d y
df50 b7 f0 exg sp a
df52 b7 f1 exg sp b
df54 b7 f2 exg sp ccr
df56 b7 f4 exg sp d
df58 b7 f7 exg sp sp
df5a b7 f5 exg sp x
df5c b7 f6 exg sp y
df5e b7 d0 exg x a
df60 b7 d1 exg x b
df62 b7 d2 exg x ccr
df64 b7 d4 exg x d
df66 b7 d7 exg x sp
df68 b7 d5 exg x x
df6a b7 d6 exg x y
df6c b7 d6 exg x,y
df6e b7 e0 exg y a
df70 b7 e1 exg y b
df72 b7 e2 exg y ccr
df74 b7 e4 exg y d
df76 b7 e7 exg y sp
df78 b7 e5 exg y x
df7a b7 e6 exg y y
df7c 18 11 fdiv
 MOTOROLA ASSEMB

D-12
df7e 18 10 idiv
df80 62 a0 inc 1,+sp
df82 62 20 inc 1,+x
df84 62 60 inc 1,+y
df86 62 a7 inc 8,+sp
df88 62 27 inc 8,+x
df8a 62 67 inc 8,+y
df8c 62 c0 inc ,pc
df8e 62 80 inc ,sp
df90 62 00 inc ,x
df92 62 40 inc ,y
df94 62 af inc 1,-sp
df96 62 2f inc 1,-x
df98 62 6f inc 1,-y
df9a 62 a8 inc 8,-sp
df9c 62 28 inc 8,-x
df9e 62 68 inc 8,-y
dfa0 62 9f inc -1,sp
dfa2 62 1f inc -1,x
dfa4 62 5f inc -1,y
dfa6 62 90 inc -16,sp
dfa8 62 10 inc -16,x
dfaa 62 50 inc -16,y
dfac 62 f1 ef inc -17,sp
dfaf 62 e1 ef inc -17,x
dfb2 62 e9 ef inc -17,y
dfb5 62 d2 inc -small,pc
dfb7 62 92 inc -small,sp
dfb9 62 12 inc -small,x
dfbb 62 52 inc -small,y
dfbd 62 c0 inc 0,pc
dfbf 62 80 inc 0,sp
dfc1 62 00 inc 0,x
dfc3 62 40 inc 0,y
dfc5 62 b0 inc 1,sp+
dfc7 62 30 inc 1,x+
dfc9 62 70 inc 1,y+
dfcb 62 81 inc 1,sp
dfcd 62 01 inc 1,x
dfcf 62 41 inc 1,y
dfd1 62 bf inc 1,sp-
dfd3 62 3f inc 1,x-
dfd5 62 7f inc 1,y-
dfd7 62 f8 7d inc 125,pc
dfda 62 f0 7d inc 125,sp
dfdd 62 e0 7d inc 125,x
dfe0 62 e8 7d inc 125,y
dfe3 62 8f inc 15,sp
dfe5 62 0f inc 15,x
dfe7 62 4f inc 15,y
dfe9 62 f0 10 inc 16,sp
dfec 62 e0 10 inc 16,x
dfef 62 e8 10 inc 16,y
dff2 62 b7 inc 8,sp+
dff4 62 37 inc 8,x+
dff6 62 77 inc 8,y+
dff8 62 b8 inc 8,sp-
dffa 62 38 inc 8,x-
dffc 62 78 inc 8,y-
dffe 62 f4 inc a,sp
e000 62 e4 inc a,x
e002 62 ec inc a,y
e004 62 f5 inc b,sp
e006 62 e5 inc b,x
e008 62 ed inc b,y
e00a 62 f6 inc d,sp
LY LISTING CPU12

REFERENCE MANUAL



e00c 62 e6 inc d,x
e00e 62 ee inc d,y
e010 72 00 55 inc dir
e013 72 01 88 inc ext
e016 72 01 88 inc ext
e019 62 f2 01 88 inc ext,sp
e01d 62 e2 01 88 inc ext,x
e021 62 ea 01 88 inc ext,y
e025 62 f8 37 inc ind,pc
e028 62 f0 37 inc ind,sp
e02b 62 e0 37 inc ind,x
e02e 62 e8 37 inc ind,y
e031 62 ce inc small,pc
e033 62 8e inc small,sp
e035 62 0e inc small,x
e037 62 4e inc small,y
e039 42 inca
e03a 52 incb
e03b 1b 81 ins
e03d 08 inx
e03e 02 iny
e03f 05 a0 jmp 1,+sp
e041 05 20 jmp 1,+x
e043 05 60 jmp 1,+y
e045 05 a7 jmp 8,+sp
e047 05 27 jmp 8,+x
e049 05 67 jmp 8,+y
e04b 05 c0 jmp ,pc
e04d 05 80 jmp ,sp
e04f 05 00 jmp ,x
e051 05 40 jmp ,y
e053 05 af jmp 1,-sp
e055 05 2f jmp 1,-x
e057 05 6f jmp 1,-y
e059 05 a8 jmp 8,-sp
e05b 05 28 jmp 8,-x
e05d 05 68 jmp 8,-y
e05f 05 9f jmp -1,sp
e061 05 1f jmp -1,x
e063 05 5f jmp -1,y
e065 05 90 jmp -16,sp
e067 05 10 jmp -16,x
e069 05 50 jmp -16,y
e06b 05 f1 ef jmp -17,sp
e06e 05 e1 ef jmp -17,x
e071 05 e9 ef jmp -17,y
e074 05 d2 jmp -small,pc
e076 05 92 jmp -small,sp
e078 05 12 jmp -small,x
e07a 05 52 jmp -small,y
e07c 05 c0 jmp 0,pc
e07e 05 80 jmp 0,sp
e080 05 00 jmp 0,x
e082 05 40 jmp 0,y
e084 05 b0 jmp 1,sp+
e086 05 30 jmp 1,x+
e088 05 70 jmp 1,y+
e08a 05 81 jmp 1,sp
e08c 05 01 jmp 1,x
e08e 05 41 jmp 1,y
e090 05 bf jmp 1,sp-
e092 05 3f jmp 1,x-
e094 05 7f jmp 1,y-
e096 05 f8 7d jmp 125,pc
e099 05 f0 7d jmp 125,sp
e09c 05 e0 7d jmp 125,x
CPU12 ASSEMBL

REFERENCE MANUAL
e09f 05 e8 7d jmp 125,y
e0a2 05 8f jmp 15,sp
e0a4 05 0f jmp 15,x
e0a6 05 4f jmp 15,y
e0a8 05 f0 10 jmp 16,sp
e0ab 05 e0 10 jmp 16,x
e0ae 05 e8 10 jmp 16,y
e0b1 05 b7 jmp 8,sp+
e0b3 05 37 jmp 8,x+
e0b5 05 77 jmp 8,y+
e0b7 05 b8 jmp 8,sp-
e0b9 05 38 jmp 8,x-
e0bb 05 78 jmp 8,y-
e0bd 05 f4 jmp a,sp
e0bf 05 e4 jmp a,x
e0c1 05 ec jmp a,y
e0c3 05 f5 jmp b,sp
e0c5 05 e5 jmp b,x
e0c7 05 ed jmp b,y
e0c9 05 f6 jmp d,sp
e0cb 05 e6 jmp d,x
e0cd 05 ee jmp d,y
e0cf 06 00 55 jmp dir
e0d2 06 01 88 jmp ext
e0d5 06 01 88 jmp ext
e0d8 05 f2 01 88 jmp ext,sp
e0dc 05 e2 01 88 jmp ext,x
e0e0 05 ea 01 88 jmp ext,y
e0e4 05 f8 37 jmp ind,pc
e0e7 05 f0 37 jmp ind,sp
e0ea 05 e0 37 jmp ind,x
e0ed 05 e8 37 jmp ind,y
e0f0 05 ce jmp small,pc
e0f2 05 8e jmp small,sp
e0f4 05 0e jmp small,x
e0f6 05 4e jmp small,y
e0f8 15 a0 jsr 1,+sp
e0fa 15 20 jsr 1,+x
e0fc 15 60 jsr 1,+y
e0fe 15 a7 jsr 8,+sp
e100 15 27 jsr 8,+x
e102 15 67 jsr 8,+y
e104 15 c0 jsr ,pc
e106 15 80 jsr ,sp
e108 15 00 jsr ,x
e10a 15 40 jsr ,y
e10c 15 af jsr 1,-sp
e10e 15 2f jsr 1,-x
e110 15 6f jsr 1,-y
e112 15 a8 jsr 8,-sp
e114 15 28 jsr 8,-x
e116 15 68 jsr 8,-y
e118 15 9f jsr -1,sp
e11a 15 1f jsr -1,x
e11c 15 5f jsr -1,y
e11e 15 90 jsr -16,sp
e120 15 10 jsr -16,x
e122 15 50 jsr -16,y
e124 15 f1 ef jsr -17,sp
e127 15 e1 ef jsr -17,x
e12a 15 e9 ef jsr -17,y
e12d 15 d2 jsr -small,pc
e12f 15 92 jsr -small,sp
e131 15 12 jsr -small,x
e133 15 52 jsr -small,y
e135 15 c0 jsr 0,pc
Y LISTING MOTOROLA

D-13



e137 15 80 jsr 0,sp
e139 15 00 jsr 0,x
e13b 15 40 jsr 0,y
e13d 15 b0 jsr 1,sp+
e13f 15 30 jsr 1,x+
e141 15 70 jsr 1,y+
e143 15 81 jsr 1,sp
e145 15 01 jsr 1,x
e147 15 41 jsr 1,y
e149 15 bf jsr 1,sp-
e14b 15 3f jsr 1,x-
e14d 15 7f jsr 1,y-
e14f 15 f8 7d jsr 125,pc
e152 15 f0 7d jsr 125,sp
e155 15 e0 7d jsr 125,x
e158 15 e8 7d jsr 125,y
e15b 15 8f jsr 15,sp
e15d 15 0f jsr 15,x
e15f 15 4f jsr 15,y
e161 15 f0 10 jsr 16,sp
e164 15 e0 10 jsr 16,x
e167 15 e8 10 jsr 16,y
e16a 15 b7 jsr 8,sp+
e16c 15 37 jsr 8,x+
e16e 15 77 jsr 8,y+
e170 15 b8 jsr 8,sp-
e172 15 38 jsr 8,x-
e174 15 78 jsr 8,y-
e176 15 f4 jsr a,sp
e178 15 e4 jsr a,x
e17a 15 ec jsr a,y
e17c 15 f5 jsr b,sp
e17e 15 e5 jsr b,x
e180 15 ed jsr b,y
e182 15 f6 jsr d,sp
e184 15 e6 jsr d,x
e186 15 ee jsr d,y
e188 17 55 jsr dir
e18a 17 55 jsr dir
e18c 16 01 88 jsr ext
e18f 16 01 88 jsr ext
e192 16 01 88 jsr ext
e195 15 f2 01 88 jsr ext,sp
e199 15 e2 01 88 jsr ext,x
e19d 15 ea 01 88 jsr ext,y
e1a1 15 f8 37 jsr ind,pc
e1a4 15 f0 37 jsr ind,sp
e1a7 15 e0 37 jsr ind,x
e1aa 15 e8 37 jsr ind,y
e1ad 15 ce jsr small,pc
e1af 15 8e jsr small,sp
e1b1 15 0e jsr small,x
e1b3 15 4e jsr small,y
e1b5 18 24 ff fc lbcc *
e1b9 18 24 ff fc lbcc *
e1bd 18 25 ff fc lbcs *
e1c1 18 27 ff fc lbeq *
e1c5 18 2c ff fc lbge *
e1c9 18 2e ff fc lbgt *
e1cd 18 22 ff fc lbhi *
e1d1 18 2f ff fc lble *
e1d5 18 23 ff fc lbls *
e1d9 18 2d ff fc lblt *
e1dd 18 2b ff fc lbmi *
e1e1 18 26 ff fc lbne *
e1e5 18 2a ff fc lbpl *
 MOTOROLA ASSEMB

D-14
e1e9 18 20 ff fc lbra *
e1ed 18 21 ff fc lbrn *
e1f1 15 fa ff fc lbsr *
e1f5 18 28 ff fc lbvc *
e1f9 18 29 ff fc lbvs *
e1fd 86 72 ldaa #immed
e1ff 86 72 ldaa #immed
e201 a6 a0 ldaa 1,+sp
e203 a6 20 ldaa 1,+x
e205 a6 60 ldaa 1,+y
e207 a6 a7 ldaa 8,+sp
e209 a6 27 ldaa 8,+x
e20b a6 67 ldaa 8,+y
e20d a6 c0 ldaa ,pc
e20f a6 80 ldaa ,sp
e211 a6 00 ldaa ,x
e213 a6 40 ldaa ,y
e215 a6 af ldaa 1,-sp
e217 a6 2f ldaa 1,-x
e219 a6 6f ldaa 1,-y
e21b a6 a8 ldaa 8,-sp
e21d a6 28 ldaa 8,-x
e21f a6 68 ldaa 8,-y
e221 a6 9f ldaa -1,sp
e223 a6 1f ldaa -1,x
e225 a6 5f ldaa -1,y
e227 a6 90 ldaa -16,sp
e229 a6 10 ldaa -16,x
e22b a6 50 ldaa -16,y
e22d a6 f1 ef ldaa -17,sp
e230 a6 e1 ef ldaa -17,x
e233 a6 e9 ef ldaa -17,y
e236 a6 d2 ldaa -small,pc
e238 a6 92 ldaa -small,sp
e23a a6 12 ldaa -small,x
e23c a6 52 ldaa -small,y
e23e a6 c0 ldaa 0,pc
e240 a6 80 ldaa 0,sp
e242 a6 00 ldaa 0,x
e244 a6 40 ldaa 0,y
e246 a6 b0 ldaa 1,sp+
e248 a6 30 ldaa 1,x+
e24a a6 70 ldaa 1,y+
e24c a6 81 ldaa 1,sp
e24e a6 01 ldaa 1,x
e250 a6 41 ldaa 1,y
e252 a6 bf ldaa 1,sp-
e254 a6 3f ldaa 1,x-
e256 a6 7f ldaa 1,y-
e258 a6 f8 7d ldaa 125,pc
e25b a6 f0 7d ldaa 125,sp
e25e a6 e0 7d ldaa 125,x
e261 a6 e8 7d ldaa 125,y
e264 a6 8f ldaa 15,sp
e266 a6 0f ldaa 15,x
e268 a6 4f ldaa 15,y
e26a a6 f0 10 ldaa 16,sp
e26d a6 e0 10 ldaa 16,x
e270 a6 e8 10 ldaa 16,y
e273 a6 b7 ldaa 8,sp+
e275 a6 37 ldaa 8,x+
e277 a6 77 ldaa 8,y+
e279 a6 b8 ldaa 8,sp-
e27b a6 38 ldaa 8,x-
e27d a6 78 ldaa 8,y-
e27f a6 f4 ldaa a,sp
LY LISTING CPU12

REFERENCE MANUAL



e281 a6 e4 ldaa a,x
e283 a6 ec ldaa a,y
e285 a6 f5 ldaa b,sp
e287 a6 e5 ldaa b,x
e289 a6 ed ldaa b,y
e28b a6 f6 ldaa d,sp
e28d a6 e6 ldaa d,x
e28f a6 ee ldaa d,y
e291 96 55 ldaa dir
e293 96 55 ldaa dir
e295 b6 01 88 ldaa ext
e298 b6 01 88 ldaa ext
e29b a6 f2 01 88 ldaa ext,sp
e29f a6 e2 01 88 ldaa ext,x
e2a3 a6 ea 01 88 ldaa ext,y
e2a7 a6 f8 37 ldaa ind,pc
e2aa a6 f0 37 ldaa ind,sp
e2ad a6 e0 37 ldaa ind,x
e2b0 a6 e8 37 ldaa ind,y
e2b3 a6 ce ldaa small,pc
e2b5 a6 8e ldaa small,sp
e2b7 a6 0e ldaa small,x
e2b9 a6 4e ldaa small,y
e2bb c6 72 ldab #immed
e2bd c6 72 ldab #immed
e2bf e6 a0 ldab 1,+sp
e2c1 e6 20 ldab 1,+x
e2c3 e6 60 ldab 1,+y
e2c5 e6 a7 ldab 8,+sp
e2c7 e6 27 ldab 8,+x
e2c9 e6 67 ldab 8,+y
e2cb e6 c0 ldab ,pc
e2cd e6 80 ldab ,sp
e2cf e6 00 ldab ,x
e2d1 e6 40 ldab ,y
e2d3 e6 af ldab 1,-sp
e2d5 e6 2f ldab 1,-x
e2d7 e6 6f ldab 1,-y
e2d9 e6 a8 ldab 8,-sp
e2db e6 28 ldab 8,-x
e2dd e6 68 ldab 8,-y
e2df e6 9f ldab -1,sp
e2e1 e6 1f ldab -1,x
e2e3 e6 5f ldab -1,y
e2e5 e6 90 ldab -16,sp
e2e7 e6 10 ldab -16,x
e2e9 e6 50 ldab -16,y
e2eb e6 f1 ef ldab -17,sp
e2ee e6 e1 ef ldab -17,x
e2f1 e6 e9 ef ldab -17,y
e2f4 e6 d2 ldab -small,pc
e2f6 e6 92 ldab -small,sp
e2f8 e6 12 ldab -small,x
e2fa e6 52 ldab -small,y
e2fc e6 c0 ldab 0,pc
e2fe e6 80 ldab 0,sp
e300 e6 00 ldab 0,x
e302 e6 40 ldab 0,y
e304 e6 b0 ldab 1,sp+
e306 e6 30 ldab 1,x+
e308 e6 70 ldab 1,y+
e30a e6 81 ldab 1,sp
e30c e6 01 ldab 1,x
e30e e6 41 ldab 1,y
e310 e6 bf ldab 1,sp-
e312 e6 3f ldab 1,x-
CPU12 ASSEMBL

REFERENCE MANUAL
e314 e6 7f ldab 1,y-
e316 e6 f8 7d ldab 125,pc
e319 e6 f0 7d ldab 125,sp
e31c e6 e0 7d ldab 125,x
e31f e6 e8 7d ldab 125,y
e322 e6 8f ldab 15,sp
e324 e6 0f ldab 15,x
e326 e6 4f ldab 15,y
e328 e6 f0 10 ldab 16,sp
e32b e6 e0 10 ldab 16,x
e32e e6 e8 10 ldab 16,y
e331 e6 b7 ldab 8,sp+
e333 e6 37 ldab 8,x+
e335 e6 77 ldab 8,y+
e337 e6 b8 ldab 8,sp-
e339 e6 38 ldab 8,x-
e33b e6 78 ldab 8,y-
e33d e6 f4 ldab a,sp
e33f e6 e4 ldab a,x
e341 e6 ec ldab a,y
e343 e6 f5 ldab b,sp
e345 e6 e5 ldab b,x
e347 e6 ed ldab b,y
e349 e6 f6 ldab d,sp
e34b e6 e6 ldab d,x
e34d e6 ee ldab d,y
e34f d6 55 ldab dir
e351 d6 55 ldab dir
e353 f6 01 88 ldab ext
e356 f6 01 88 ldab ext
e359 e6 f2 01 88 ldab ext,sp
e35d e6 e2 01 88 ldab ext,x
e361 e6 ea 01 88 ldab ext,y
e365 e6 f8 37 ldab ind,pc
e368 e6 f0 37 ldab ind,sp
e36b e6 e0 37 ldab ind,x
e36e e6 e8 37 ldab ind,y
e371 e6 ce ldab small,pc
e373 e6 8e ldab small,sp
e375 e6 0e ldab small,x
e377 e6 4e ldab small,y
e379 cc 00 72 ldd #immed
e37c cc 00 72 ldd #immed
e37f ec a0 ldd 1,+sp
e381 ec 20 ldd 1,+x
e383 ec 60 ldd 1,+y
e385 ec a7 ldd 8,+sp
e387 ec 27 ldd 8,+x
e389 ec 67 ldd 8,+y
e38b ec c0 ldd ,pc
e38d ec 80 ldd ,sp
e38f ec 00 ldd ,x
e391 ec 40 ldd ,y
e393 ec af ldd 1,-sp
e395 ec 2f ldd 1,-x
e397 ec 6f ldd 1,-y
e399 ec a8 ldd 8,-sp
e39b ec 28 ldd 8,-x
e39d ec 68 ldd 8,-y
e39f ec 9f ldd -1,sp
e3a1 ec 1f ldd -1,x
e3a3 ec 5f ldd -1,y
e3a5 ec 90 ldd -16,sp
e3a7 ec 10 ldd -16,x
e3a9 ec 50 ldd -16,y
e3ab ec f1 ef ldd -17,sp
Y LISTING MOTOROLA

D-15



e3ae ec e1 ef ldd -17,x
e3b1 ec e9 ef ldd -17,y
e3b4 ec d2 ldd -small,pc
e3b6 ec 92 ldd -small,sp
e3b8 ec 12 ldd -small,x
e3ba ec 52 ldd -small,y
e3bc ec c0 ldd 0,pc
e3be ec 80 ldd 0,sp
e3c0 ec 00 ldd 0,x
e3c2 ec 40 ldd 0,y
e3c4 ec b0 ldd 1,sp+
e3c6 ec 30 ldd 1,x+
e3c8 ec 70 ldd 1,y+
e3ca ec 81 ldd 1,sp
e3cc ec 01 ldd 1,x
e3ce ec 41 ldd 1,y
e3d0 ec bf ldd 1,sp-
e3d2 ec 3f ldd 1,x-
e3d4 ec 7f ldd 1,y-
e3d6 ec f8 7d ldd 125,pc
e3d9 ec f0 7d ldd 125,sp
e3dc ec e0 7d ldd 125,x
e3df ec e8 7d ldd 125,y
e3e2 ec 8f ldd 15,sp
e3e4 ec 0f ldd 15,x
e3e6 ec 4f ldd 15,y
e3e8 ec f0 10 ldd 16,sp
e3eb ec e0 10 ldd 16,x
e3ee ec e8 10 ldd 16,y
e3f1 ec b7 ldd 8,sp+
e3f3 ec 37 ldd 8,x+
e3f5 ec 77 ldd 8,y+
e3f7 ec b8 ldd 8,sp-
e3f9 ec 38 ldd 8,x-
e3fb ec 78 ldd 8,y-
e3fd ec f4 ldd a,sp
e3ff ec e4 ldd a,x
e401 ec ec ldd a,y
e403 ec f5 ldd b,sp
e405 ec e5 ldd b,x
e407 ec ed ldd b,y
e409 ec f6 ldd d,sp
e40b ec e6 ldd d,x
e40d ec ee ldd d,y
e40f dc 55 ldd dir
e411 dc 55 ldd dir
e413 fc 01 88 ldd ext
e416 fc 01 88 ldd ext
e419 ec f2 01 88 ldd ext,sp
e41d ec e2 01 88 ldd ext,x
e421 ec ea 01 88 ldd ext,y
e425 ec f8 37 ldd ind,pc
e428 ec f0 37 ldd ind,sp
e42b ec e0 37 ldd ind,x
e42e ec e8 37 ldd ind,y
e431 ec ce ldd small,pc
e433 ec 8e ldd small,sp
e435 ec 0e ldd small,x
e437 ec 4e ldd small,y
e439 cf 00 72 lds #immed
e43c cf 00 72 lds #immed
e43f ef a0 lds 1,+sp
e441 ef 20 lds 1,+x
e443 ef 60 lds 1,+y
e445 ef a7 lds 8,+sp
e447 ef 27 lds 8,+x
 MOTOROLA ASSEMB

D-16
e449 ef 67 lds 8,+y
e44b ef c0 lds ,pc
e44d ef 80 lds ,sp
e44f ef 00 lds ,x
e451 ef 40 lds ,y
e453 ef af lds 1,-sp
e455 ef 2f lds 1,-x
e457 ef 6f lds 1,-y
e459 ef a8 lds 8,-sp
e45b ef 28 lds 8,-x
e45d ef 68 lds 8,-y
e45f ef 9f lds -1,sp
e461 ef 1f lds -1,x
e463 ef 5f lds -1,y
e465 ef 90 lds -16,sp
e467 ef 10 lds -16,x
e469 ef 50 lds -16,y
e46b ef f1 ef lds -17,sp
e46e ef e1 ef lds -17,x
e471 ef e9 ef lds -17,y
e474 ef d2 lds -small,pc
e476 ef 92 lds -small,sp
e478 ef 12 lds -small,x
e47a ef 52 lds -small,y
e47c ef c0 lds 0,pc
e47e ef 80 lds 0,sp
e480 ef 00 lds 0,x
e482 ef 40 lds 0,y
e484 ef b0 lds 1,sp+
e486 ef 30 lds 1,x+
e488 ef 70 lds 1,y+
e48a ef 81 lds 1,sp
e48c ef 01 lds 1,x
e48e ef 41 lds 1,y
e490 ef bf lds 1,sp-
e492 ef 3f lds 1,x-
e494 ef 7f lds 1,y-
e496 ef f8 7d lds 125,pc
e499 ef f0 7d lds 125,sp
e49c ef e0 7d lds 125,x
e49f ef e8 7d lds 125,y
e4a2 ef 8f lds 15,sp
e4a4 ef 0f lds 15,x
e4a6 ef 4f lds 15,y
e4a8 ef f0 10 lds 16,sp
e4ab ef e0 10 lds 16,x
e4ae ef e8 10 lds 16,y
e4b1 ef b7 lds 8,sp+
e4b3 ef 37 lds 8,x+
e4b5 ef 77 lds 8,y+
e4b7 ef b8 lds 8,sp-
e4b9 ef 38 lds 8,x-
e4bb ef 78 lds 8,y-
e4bd ef f4 lds a,sp
e4bf ef e4 lds a,x
e4c1 ef ec lds a,y
e4c3 ef f5 lds b,sp
e4c5 ef e5 lds b,x
e4c7 ef ed lds b,y
e4c9 ef f6 lds d,sp
e4cb ef e6 lds d,x
e4cd ef ee lds d,y
e4cf df 55 lds dir
e4d1 ff 01 88 lds ext
e4d4 ef f2 01 88 lds ext,sp
e4d8 ef e2 01 88 lds ext,x
LY LISTING CPU12

REFERENCE MANUAL



e4dc ef ea 01 88 lds ext,y
e4e0 ef f8 37 lds ind,pc
e4e3 ef f0 37 lds ind,sp
e4e6 ef e0 37 lds ind,x
e4e9 ef e8 37 lds ind,y
e4ec ef ce lds small,pc
e4ee ef 8e lds small,sp
e4f0 ef 0e lds small,x
e4f2 ef 4e lds small,y
e4f4 ce 00 72 ldx #immed
e4f7 ce 00 72 ldx #immed
e4fa ee a0 ldx 1,+sp
e4fc ee 20 ldx 1,+x
e4fe ee 60 ldx 1,+y
e500 ee a7 ldx 8,+sp
e502 ee 27 ldx 8,+x
e504 ee 67 ldx 8,+y
e506 ee c0 ldx ,pc
e508 ee 80 ldx ,sp
e50a ee 00 ldx ,x
e50c ee 40 ldx ,y
e50e ee af ldx 1,-sp
e510 ee 2f ldx 1,-x
e512 ee 6f ldx 1,-y
e514 ee a8 ldx 8,-sp
e516 ee 28 ldx 8,-x
e518 ee 68 ldx 8,-y
e51a ee 9f ldx -1,sp
e51c ee 1f ldx -1,x
e51e ee 5f ldx -1,y
e520 ee 90 ldx -16,sp
e522 ee 10 ldx -16,x
e524 ee 50 ldx -16,y
e526 ee f1 ef ldx -17,sp
e529 ee e1 ef ldx -17,x
e52c ee e9 ef ldx -17,y
e52f ee d2 ldx -small,pc
e531 ee 92 ldx -small,sp
e533 ee 12 ldx -small,x
e535 ee 52 ldx -small,y
e537 ee c0 ldx 0,pc
e539 ee 80 ldx 0,sp
e53b ee 00 ldx 0,x
e53d ee 40 ldx 0,y
e53f ee b0 ldx 1,sp+
e541 ee 30 ldx 1,x+
e543 ee 70 ldx 1,y+
e545 ee 81 ldx 1,sp
e547 ee 01 ldx 1,x
e549 ee 41 ldx 1,y
e54b ee bf ldx 1,sp-
e54d ee 3f ldx 1,x-
e54f ee 7f ldx 1,y-
e551 ee f8 7d ldx 125,pc
e554 ee f0 7d ldx 125,sp
e557 ee e0 7d ldx 125,x
e55a ee e8 7d ldx 125,y
e55d ee 8f ldx 15,sp
e55f ee 0f ldx 15,x
e561 ee 4f ldx 15,y
e563 ee f0 10 ldx 16,sp
e566 ee e0 10 ldx 16,x
e569 ee e8 10 ldx 16,y
e56c ee b7 ldx 8,sp+
e56e ee 37 ldx 8,x+
e570 ee 77 ldx 8,y+
CPU12 ASSEMBL

REFERENCE MANUAL
e572 ee b8 ldx 8,sp-
e574 ee 38 ldx 8,x-
e576 ee 78 ldx 8,y-
e578 ee f4 ldx a,sp
e57a ee e4 ldx a,x
e57c ee ec ldx a,y
e57e ee f5 ldx b,sp
e580 ee e5 ldx b,x
e582 ee ed ldx b,y
e584 ee f6 ldx d,sp
e586 ee e6 ldx d,x
e588 ee ee ldx d,y
e58a de 55 ldx dir
e58c de 55 ldx dir
e58e fe 01 88 ldx ext
e591 fe 01 88 ldx ext
e594 ee f2 01 88 ldx ext,sp
e598 ee e2 01 88 ldx ext,x
e59c ee ea 01 88 ldx ext,y
e5a0 ee f8 37 ldx ind,pc
e5a3 ee f0 37 ldx ind,sp
e5a6 ee e0 37 ldx ind,x
e5a9 ee e8 37 ldx ind,y
e5ac ee ce ldx small,pc
e5ae ee 8e ldx small,sp
e5b0 ee 0e ldx small,x
e5b2 ee 4e ldx small,y
e5b4 cd 00 72 ldy #immed
e5b7 cd 00 72 ldy #immed
e5ba ed a0 ldy 1,+sp
e5bc ed 20 ldy 1,+x
e5be ed 60 ldy 1,+y
e5c0 ed a7 ldy 8,+sp
e5c2 ed 27 ldy 8,+x
e5c4 ed 67 ldy 8,+y
e5c6 ed c0 ldy ,pc
e5c8 ed 80 ldy ,sp
e5ca ed 00 ldy ,x
e5cc ed 40 ldy ,y
e5ce ed af ldy 1,-sp
e5d0 ed 2f ldy 1,-x
e5d2 ed 6f ldy 1,-y
e5d4 ed a8 ldy 8,-sp
e5d6 ed 28 ldy 8,-x
e5d8 ed 68 ldy 8,-y
e5da ed 9f ldy -1,sp
e5dc ed 1f ldy -1,x
e5de ed 5f ldy -1,y
e5e0 ed 90 ldy -16,sp
e5e2 ed 10 ldy -16,x
e5e4 ed 50 ldy -16,y
e5e6 ed f1 ef ldy -17,sp
e5e9 ed e1 ef ldy -17,x
e5ec ed e9 ef ldy -17,y
e5ef ed d2 ldy -small,pc
e5f1 ed 92 ldy -small,sp
e5f3 ed 12 ldy -small,x
e5f5 ed 52 ldy -small,y
e5f7 ed c0 ldy 0,pc
e5f9 ed 80 ldy 0,sp
e5fb ed 00 ldy 0,x
e5fd ed 40 ldy 0,y
e5ff ed b0 ldy 1,sp+
e601 ed 30 ldy 1,x+
e603 ed 70 ldy 1,y+
e605 ed 81 ldy 1,sp
Y LISTING MOTOROLA

D-17



e607 ed 01 ldy 1,x
e609 ed 41 ldy 1,y
e60b ed bf ldy 1,sp-
e60d ed 3f ldy 1,x-
e60f ed 7f ldy 1,y-
e611 ed f8 7d ldy 125,pc
e614 ed f0 7d ldy 125,sp
e617 ed e0 7d ldy 125,x
e61a ed e8 7d ldy 125,y
e61d ed 8f ldy 15,sp
e61f ed 0f ldy 15,x
e621 ed 4f ldy 15,y
e623 ed f0 10 ldy 16,sp
e626 ed e0 10 ldy 16,x
e629 ed e8 10 ldy 16,y
e62c ed b7 ldy 8,sp+
e62e ed 37 ldy 8,x+
e630 ed 77 ldy 8,y+
e632 ed b8 ldy 8,sp-
e634 ed 38 ldy 8,x-
e636 ed 78 ldy 8,y-
e638 ed f4 ldy a,sp
e63a ed e4 ldy a,x
e63c ed ec ldy a,y
e63e ed f5 ldy b,sp
e640 ed e5 ldy b,x
e642 ed ed ldy b,y
e644 ed f6 ldy d,sp
e646 ed e6 ldy d,x
e648 ed ee ldy d,y
e64a dd 55 ldy dir
e64c dd 55 ldy dir
e64e fd 01 88 ldy ext
e651 fd 01 88 ldy ext
e654 ed f2 01 88 ldy ext,sp
e658 ed e2 01 88 ldy ext,x
e65c ed ea 01 88 ldy ext,y
e660 ed f8 37 ldy ind,pc
e663 ed f0 37 ldy ind,sp
e666 ed e0 37 ldy ind,x
e669 ed e8 37 ldy ind,y
e66c ed ce ldy small,pc
e66e ed 8e ldy small,sp
e670 ed 0e ldy small,x
e672 ed 4e ldy small,y
e674 1b a0 leas 1,+sp
e676 1b 20 leas 1,+x
e678 1b 60 leas 1,+y
e67a 1b a7 leas 8,+sp
e67c 1b 27 leas 8,+x
e67e 1b 67 leas 8,+y
e680 1b c0 leas ,pc
e682 1b 80 leas ,sp
e684 1b 00 leas ,x
e686 1b 40 leas ,y
e688 1b af leas 1,-sp
e68a 1b 2f leas 1,-x
e68c 1b 6f leas 1,-y
e68e 1b a8 leas 8,-sp
e690 1b 28 leas 8,-x
e692 1b 68 leas 8,-y
e694 1b 9f leas -1,sp
e696 1b 1f leas -1,x
e698 1b 5f leas -1,y
e69a 1b 90 leas -16,sp
e69c 1b 10 leas -16,x
 MOTOROLA ASSEMB

D-18
e69e 1b 50 leas -16,y
e6a0 1b f1 ef leas -17,sp
e6a3 1b e1 ef leas -17,x
e6a6 1b e9 ef leas -17,y
e6a9 1b d2 leas -small,pc
e6ab 1b 92 leas -small,sp
e6ad 1b 12 leas -small,x
e6af 1b 52 leas -small,y
e6b1 1b c0 leas 0,pc
e6b3 1b 80 leas 0,sp
e6b5 1b 00 leas 0,x
e6b7 1b 40 leas 0,y
e6b9 1b b0 leas 1,sp+
e6bb 1b 30 leas 1,x+
e6bd 1b 70 leas 1,y+
e6bf 1b 81 leas 1,sp
e6c1 1b 01 leas 1,x
e6c3 1b 41 leas 1,y
e6c5 1b bf leas 1,sp-
e6c7 1b 3f leas 1,x-
e6c9 1b 7f leas 1,y-
e6cb 1b f8 7d leas 125,pc
e6ce 1b f0 7d leas 125,sp
e6d1 1b e0 7d leas 125,x
e6d4 1b e8 7d leas 125,y
e6d7 1b 8f leas 15,sp
e6d9 1b 0f leas 15,x
e6db 1b 4f leas 15,y
e6dd 1b f0 10 leas 16,sp
e6e0 1b e0 10 leas 16,x
e6e3 1b e8 10 leas 16,y
e6e6 1b b7 leas 8,sp+
e6e8 1b 37 leas 8,x+
e6ea 1b 77 leas 8,y+
e6ec 1b b8 leas 8,sp-
e6ee 1b 38 leas 8,x-
e6f0 1b 78 leas 8,y-
e6f2 1b f4 leas a,sp
e6f4 1b e4 leas a,x
e6f6 1b ec leas a,y
e6f8 1b f5 leas b,sp
e6fa 1b e5 leas b,x
e6fc 1b ed leas b,y
e6fe 1b f6 leas d,sp
e700 1b e6 leas d,x
e702 1b ee leas d,y
e704 1b f2 01 88 leas ext,sp
e708 1b e2 01 88 leas ext,x
e70c 1b ea 01 88 leas ext,y
e710 1b f8 37 leas ind,pc
e713 1b f0 37 leas ind,sp
e716 1b e0 37 leas ind,x
e719 1b e8 37 leas ind,y
e71c 1b ce leas small,pc
e71e 1b 8e leas small,sp
e720 1b 0e leas small,x
e722 1b 4e leas small,y
e724 1a a0 leax 1,+sp
e726 1a 20 leax 1,+x
e728 1a 60 leax 1,+y
e72a 1a a7 leax 8,+sp
e72c 1a 27 leax 8,+x
e72e 1a 67 leax 8,+y
e730 1a c0 leax ,pc
e732 1a 80 leax ,sp
e734 1a 00 leax ,x
LY LISTING CPU12

REFERENCE MANUAL



e736 1a 40 leax ,y
e738 1a af leax 1,-sp
e73a 1a 2f leax 1,-x
e73c 1a 6f leax 1,-y
e73e 1a a8 leax 8,-sp
e740 1a 28 leax 8,-x
e742 1a 68 leax 8,-y
e744 1a 9f leax -1,sp
e746 1a 1f leax -1,x
e748 1a 5f leax -1,y
e74a 1a 90 leax -16,sp
e74c 1a 10 leax -16,x
e74e 1a 50 leax -16,y
e750 1a f1 ef leax -17,sp
e753 1a e1 ef leax -17,x
e756 1a e9 ef leax -17,y
e759 1a d2 leax -small,pc
e75b 1a 92 leax -small,sp
e75d 1a 12 leax -small,x
e75f 1a 52 leax -small,y
e761 1a c0 leax 0,pc
e763 1a 80 leax 0,sp
e765 1a 00 leax 0,x
e767 1a 40 leax 0,y
e769 1a b0 leax 1,sp+
e76b 1a 30 leax 1,x+
e76d 1a 70 leax 1,y+
e76f 1a 81 leax 1,sp
e771 1a 01 leax 1,x
e773 1a 41 leax 1,y
e775 1a bf leax 1,sp-
e777 1a 3f leax 1,x-
e779 1a 7f leax 1,y-
e77b 1a f8 7d leax 125,pc
e77e 1a f0 7d leax 125,sp
e781 1a e0 7d leax 125,x
e784 1a e8 7d leax 125,y
e787 1a 8f leax 15,sp
e789 1a 0f leax 15,x
e78b 1a 4f leax 15,y
e78d 1a f0 10 leax 16,sp
e790 1a e0 10 leax 16,x
e793 1a e8 10 leax 16,y
e796 1a b7 leax 8,sp+
e798 1a 37 leax 8,x+
e79a 1a 77 leax 8,y+
e79c 1a b8 leax 8,sp-
e79e 1a 38 leax 8,x-
e7a0 1a 78 leax 8,y-
e7a2 1a f4 leax a,sp
e7a4 1a e4 leax a,x
e7a6 1a ec leax a,y
e7a8 1a f5 leax b,sp
e7aa 1a e5 leax b,x
e7ac 1a ed leax b,y
e7ae 1a f6 leax d,sp
e7b0 1a e6 leax d,x
e7b2 1a ee leax d,y
e7b4 1a f2 01 88 leax ext,sp
e7b8 1a e2 01 88 leax ext,x
e7bc 1a ea 01 88 leax ext,y
e7c0 1a f8 37 leax ind,pc
e7c3 1a f0 37 leax ind,sp
e7c6 1a e0 37 leax ind,x
e7c9 1a e8 37 leax ind,y
e7cc 1a ce leax small,pc
CPU12 ASSEMBL

REFERENCE MANUAL
e7ce 1a 8e leax small,sp
e7d0 1a 0e leax small,x
e7d2 1a 4e leax small,y
e7d4 19 a0 leay 1,+sp
e7d6 19 20 leay 1,+x
e7d8 19 60 leay 1,+y
e7da 19 a7 leay 8,+sp
e7dc 19 27 leay 8,+x
e7de 19 67 leay 8,+y
e7e0 19 c0 leay ,pc
e7e2 19 80 leay ,sp
e7e4 19 00 leay ,x
e7e6 19 40 leay ,y
e7e8 19 af leay 1,-sp
e7ea 19 2f leay 1,-x
e7ec 19 6f leay 1,-y
e7ee 19 a8 leay 8,-sp
e7f0 19 28 leay 8,-x
e7f2 19 68 leay 8,-y
e7f4 19 9f leay -1,sp
e7f6 19 1f leay -1,x
e7f8 19 5f leay -1,y
e7fa 19 90 leay -16,sp
e7fc 19 10 leay -16,x
e7fe 19 50 leay -16,y
e800 19 f1 ef leay -17,sp
e803 19 e1 ef leay -17,x
e806 19 e9 ef leay -17,y
e809 19 d2 leay -small,pc
e80b 19 92 leay -small,sp
e80d 19 12 leay -small,x
e80f 19 52 leay -small,y
e811 19 c0 leay 0,pc
e813 19 80 leay 0,sp
e815 19 00 leay 0,x
e817 19 40 leay 0,y
e819 19 b0 leay 1,sp+
e81b 19 30 leay 1,x+
e81d 19 70 leay 1,y+
e81f 19 81 leay 1,sp
e821 19 01 leay 1,x
e823 19 41 leay 1,y
e825 19 bf leay 1,sp-
e827 19 3f leay 1,x-
e829 19 7f leay 1,y-
e82b 19 f8 7d leay 125,pc
e82e 19 f0 7d leay 125,sp
e831 19 e0 7d leay 125,x
e834 19 e8 7d leay 125,y
e837 19 8f leay 15,sp
e839 19 0f leay 15,x
e83b 19 4f leay 15,y
e83d 19 f0 10 leay 16,sp
e840 19 e0 10 leay 16,x
e843 19 e8 10 leay 16,y
e846 19 b7 leay 8,sp+
e848 19 37 leay 8,x+
e84a 19 77 leay 8,y+
e84c 19 b8 leay 8,sp-
e84e 19 38 leay 8,x-
e850 19 78 leay 8,y-
e852 19 f4 leay a,sp
e854 19 e4 leay a,x
e856 19 ec leay a,y
e858 19 f5 leay b,sp
e85a 19 e5 leay b,x
Y LISTING MOTOROLA

D-19



e85c 19 ed leay b,y
e85e 19 f6 leay d,sp
e860 19 e6 leay d,x
e862 19 ee leay d,y
e864 19 f2 01 88 leay ext,sp
e868 19 e2 01 88 leay ext,x
e86c 19 ea 01 88 leay ext,y
e870 19 f8 37 leay ind,pc
e873 19 f0 37 leay ind,sp
e876 19 e0 37 leay ind,x
e879 19 e8 37 leay ind,y
e87c 19 ce leay small,pc
e87e 19 8e leay small,sp
e880 19 0e leay small,x
e882 19 4e leay small,y
e884 68 a0 lsl 1,+sp
e886 68 20 lsl 1,+x
e888 68 60 lsl 1,+y
e88a 68 a7 lsl 8,+sp
e88c 68 27 lsl 8,+x
e88e 68 67 lsl 8,+y
e890 68 c0 lsl ,pc
e892 68 80 lsl ,sp
e894 68 00 lsl ,x
e896 68 40 lsl ,y
e898 68 af lsl 1,-sp
e89a 68 2f lsl 1,-x
e89c 68 6f lsl 1,-y
e89e 68 a8 lsl 8,-sp
e8a0 68 28 lsl 8,-x
e8a2 68 68 lsl 8,-y
e8a4 68 9f lsl -1,sp
e8a6 68 1f lsl -1,x
e8a8 68 5f lsl -1,y
e8aa 68 90 lsl -16,sp
e8ac 68 10 lsl -16,x
e8ae 68 50 lsl -16,y
e8b0 68 f1 ef lsl -17,sp
e8b3 68 e1 ef lsl -17,x
e8b6 68 e9 ef lsl -17,y
e8b9 68 d2 lsl -small,pc
e8bb 68 92 lsl -small,sp
e8bd 68 12 lsl -small,x
e8bf 68 52 lsl -small,y
e8c1 68 c0 lsl 0,pc
e8c3 68 80 lsl 0,sp
e8c5 68 00 lsl 0,x
e8c7 68 40 lsl 0,y
e8c9 68 b0 lsl 1,sp+
e8cb 68 30 lsl 1,x+
e8cd 68 70 lsl 1,y+
e8cf 68 81 lsl 1,sp
e8d1 68 01 lsl 1,x
e8d3 68 41 lsl 1,y
e8d5 68 bf lsl 1,sp-
e8d7 68 3f lsl 1,x-
e8d9 68 7f lsl 1,y-
e8db 68 f8 7d lsl 125,pc
e8de 68 f0 7d lsl 125,sp
e8e1 68 e0 7d lsl 125,x
e8e4 68 e8 7d lsl 125,y
e8e7 68 8f lsl 15,sp
e8e9 68 0f lsl 15,x
e8eb 68 4f lsl 15,y
e8ed 68 f0 10 lsl 16,sp
e8f0 68 e0 10 lsl 16,x
 MOTOROLA ASSEMB

D-20
e8f3 68 e8 10 lsl 16,y
e8f6 68 b7 lsl 8,sp+
e8f8 68 37 lsl 8,x+
e8fa 68 77 lsl 8,y+
e8fc 68 b8 lsl 8,sp-
e8fe 68 38 lsl 8,x-
e900 68 78 lsl 8,y-
e902 68 f4 lsl a,sp
e904 68 e4 lsl a,x
e906 68 ec lsl a,y
e908 68 f5 lsl b,sp
e90a 68 e5 lsl b,x
e90c 68 ed lsl b,y
e90e 68 f6 lsl d,sp
e910 68 e6 lsl d,x
e912 68 ee lsl d,y
e914 78 00 55 lsl dir
e917 78 01 88 lsl ext
e91a 78 01 88 lsl ext
e91d 68 f2 01 88 lsl ext,sp
e921 68 e2 01 88 lsl ext,x
e925 68 ea 01 88 lsl ext,y
e929 68 f8 37 lsl ind,pc
e92c 68 f0 37 lsl ind,sp
e92f 68 e0 37 lsl ind,x
e932 68 e8 37 lsl ind,y
e935 68 ce lsl small,pc
e937 68 8e lsl small,sp
e939 68 0e lsl small,x
e93b 68 4e lsl small,y
e93d 48 lsla
e93e 58 lslb
e93f 59 lsld
e940 64 a0 lsr 1,+sp
e942 64 20 lsr 1,+x
e944 64 60 lsr 1,+y
e946 64 a7 lsr 8,+sp
e948 64 27 lsr 8,+x
e94a 64 67 lsr 8,+y
e94c 64 c0 lsr ,pc
e94e 64 80 lsr ,sp
e950 64 00 lsr ,x
e952 64 40 lsr ,y
e954 64 af lsr 1,-sp
e956 64 2f lsr 1,-x
e958 64 6f lsr 1,-y
e95a 64 a8 lsr 8,-sp
e95c 64 28 lsr 8,-x
e95e 64 68 lsr 8,-y
e960 64 9f lsr -1,sp
e962 64 1f lsr -1,x
e964 64 5f lsr -1,y
e966 64 90 lsr -16,sp
e968 64 10 lsr -16,x
e96a 64 50 lsr -16,y
e96c 64 f1 ef lsr -17,sp
e96f 64 e1 ef lsr -17,x
e972 64 e9 ef lsr -17,y
e975 64 d2 lsr -small,pc
e977 64 92 lsr -small,sp
e979 64 12 lsr -small,x
e97b 64 52 lsr -small,y
e97d 64 c0 lsr 0,pc
e97f 64 80 lsr 0,sp
e981 64 00 lsr 0,x
e983 64 40 lsr 0,y
LY LISTING CPU12

REFERENCE MANUAL



e985 64 b0 lsr 1,sp+
e987 64 30 lsr 1,x+
e989 64 70 lsr 1,y+
e98b 64 81 lsr 1,sp
e98d 64 01 lsr 1,x
e98f 64 41 lsr 1,y
e991 64 bf lsr 1,sp-
e993 64 3f lsr 1,x-
e995 64 7f lsr 1,y-
e997 64 f8 7d lsr 125,pc
e99a 64 f0 7d lsr 125,sp
e99d 64 e0 7d lsr 125,x
e9a0 64 e8 7d lsr 125,y
e9a3 64 8f lsr 15,sp
e9a5 64 0f lsr 15,x
e9a7 64 4f lsr 15,y
e9a9 64 f0 10 lsr 16,sp
e9ac 64 e0 10 lsr 16,x
e9af 64 e8 10 lsr 16,y
e9b2 64 b7 lsr 8,sp+
e9b4 64 37 lsr 8,x+
e9b6 64 77 lsr 8,y+
e9b8 64 b8 lsr 8,sp-
e9ba 64 38 lsr 8,x-
e9bc 64 78 lsr 8,y-
e9be 64 f4 lsr a,sp
e9c0 64 e4 lsr a,x
e9c2 64 ec lsr a,y
e9c4 64 f5 lsr b,sp
e9c6 64 e5 lsr b,x
e9c8 64 ed lsr b,y
e9ca 64 f6 lsr d,sp
e9cc 64 e6 lsr d,x
e9ce 64 ee lsr d,y
e9d0 74 00 55 lsr dir
e9d3 74 01 88 lsr ext
e9d6 74 01 88 lsr ext
e9d9 64 f2 01 88 lsr ext,sp
e9dd 64 e2 01 88 lsr ext,x
e9e1 64 ea 01 88 lsr ext,y
e9e5 64 f8 37 lsr ind,pc
e9e8 64 f0 37 lsr ind,sp
e9eb 64 e0 37 lsr ind,x
e9ee 64 e8 37 lsr ind,y
e9f1 64 ce lsr small,pc
e9f3 64 8e lsr small,sp
e9f5 64 0e lsr small,x
e9f7 64 4e lsr small,y
e9f9 44 lsra
e9fa 54 lsrb
e9fb 49 lsrd
e9fc 49 lsrd
e9fd 18 18 a0 maxa 1,+sp
ea00 18 18 20 maxa 1,+x
ea03 18 18 60 maxa 1,+y
ea06 18 18 a7 maxa 8,+sp
ea09 18 18 27 maxa 8,+x
ea0c 18 18 67 maxa 8,+y
ea0f 18 18 c0 maxa ,pc
ea12 18 18 80 maxa ,sp
ea15 18 18 00 maxa ,x
ea18 18 18 40 maxa ,y
ea1b 18 18 af maxa 1,-sp
ea1e 18 18 2f maxa 1,-x
ea21 18 18 6f maxa 1,-y
ea24 18 18 a8 maxa 8,-sp
CPU12 ASSEMBL

REFERENCE MANUAL
ea27 18 18 28 maxa 8,-x
ea2a 18 18 68 maxa 8,-y
ea2d 18 18 9f maxa -1,sp
ea30 18 18 1f maxa -1,x
ea33 18 18 5f maxa -1,y
ea36 18 18 90 maxa -16,sp
ea39 18 18 10 maxa -16,x
ea3c 18 18 50 maxa -16,y
ea3f 18 18 f1 ef maxa -17,sp
ea43 18 18 e1 ef maxa -17,x
ea47 18 18 e9 ef maxa -17,y
ea4b 18 18 d2 maxa -small,pc
ea4e 18 18 92 maxa -small,sp
ea51 18 18 12 maxa -small,x
ea54 18 18 52 maxa -small,y
ea57 18 18 c0 maxa 0,pc
ea5a 18 18 80 maxa 0,sp
ea5d 18 18 00 maxa 0,x
ea60 18 18 40 maxa 0,y
ea63 18 18 b0 maxa 1,sp+
ea66 18 18 30 maxa 1,x+
ea69 18 18 70 maxa 1,y+
ea6c 18 18 81 maxa 1,sp
ea6f 18 18 01 maxa 1,x
ea72 18 18 41 maxa 1,y
ea75 18 18 bf maxa 1,sp-
ea78 18 18 3f maxa 1,x-
ea7b 18 18 7f maxa 1,y-
ea7e 18 18 f8 7d maxa 125,pc
ea82 18 18 f0 7d maxa 125,sp
ea86 18 18 e0 7d maxa 125,x
ea8a 18 18 e8 7d maxa 125,y
ea8e 18 18 8f maxa 15,sp
ea91 18 18 0f maxa 15,x
ea94 18 18 4f maxa 15,y
ea97 18 18 f0 10 maxa 16,sp
ea9b 18 18 e0 10 maxa 16,x
ea9f 18 18 e8 10 maxa 16,y
eaa3 18 18 b7 maxa 8,sp+
eaa6 18 18 37 maxa 8,x+
eaa9 18 18 77 maxa 8,y+
eaac 18 18 b8 maxa 8,sp-
eaaf 18 18 38 maxa 8,x-
eab2 18 18 78 maxa 8,y-
eab5 18 18 f4 maxa a,sp
eab8 18 18 e4 maxa a,x
eabb 18 18 ec maxa a,y
eabe 18 18 f5 maxa b,sp
eac1 18 18 e5 maxa b,x
eac4 18 18 ed maxa b,y
eac7 18 18 f6 maxa d,sp
eaca 18 18 e6 maxa d,x
eacd 18 18 ee maxa d,y
ead0 18 18 f2 01 88 maxa ext,sp
ead5 18 18 e2 01 88 maxa ext,x
eada 18 18 ea 01 88 maxa ext,y
eadf 18 18 f8 37 maxa ind,pc
eae3 18 18 f0 37 maxa ind,sp
eae7 18 18 e0 37 maxa ind,x
eaeb 18 18 e8 37 maxa ind,y
eaef 18 18 ce maxa small,pc
eaf2 18 18 8e maxa small,sp
eaf5 18 18 0e maxa small,x
eaf8 18 18 4e maxa small,y
eafb 18 1c a0 maxm 1,+sp
eafe 18 1c 20 maxm 1,+x
Y LISTING MOTOROLA

D-21



eb01 18 1c 60 maxm 1,+y
eb04 18 1c a7 maxm 8,+sp
eb07 18 1c 27 maxm 8,+x
eb0a 18 1c 67 maxm 8,+y
eb0d 18 1c c0 maxm ,pc
eb10 18 1c 80 maxm ,sp
eb13 18 1c 00 maxm ,x
eb16 18 1c 40 maxm ,y
eb19 18 1c af maxm 1,-sp
eb1c 18 1c 2f maxm 1,-x
eb1f 18 1c 6f maxm 1,-y
eb22 18 1c a8 maxm 8,-sp
eb25 18 1c 28 maxm 8,-x
eb28 18 1c 68 maxm 8,-y
eb2b 18 1c 9f maxm -1,sp
eb2e 18 1c 1f maxm -1,x
eb31 18 1c 5f maxm -1,y
eb34 18 1c 90 maxm -16,sp
eb37 18 1c 10 maxm -16,x
eb3a 18 1c 50 maxm -16,y
eb3d 18 1c f1 ef maxm -17,sp
eb41 18 1c e1 ef maxm -17,x
eb45 18 1c e9 ef maxm -17,y
eb49 18 1c d2 maxm -small,pc
eb4c 18 1c 92 maxm -small,sp
eb4f 18 1c 12 maxm -small,x
eb52 18 1c 52 maxm -small,y
eb55 18 1c c0 maxm 0,pc
eb58 18 1c 80 maxm 0,sp
eb5b 18 1c 00 maxm 0,x
eb5e 18 1c 40 maxm 0,y
eb61 18 1c b0 maxm 1,sp+
eb64 18 1c 30 maxm 1,x+
eb67 18 1c 70 maxm 1,y+
eb6a 18 1c 81 maxm 1,sp
eb6d 18 1c 01 maxm 1,x
eb70 18 1c 41 maxm 1,y
eb73 18 1c bf maxm 1,sp-
eb76 18 1c 3f maxm 1,x-
eb79 18 1c 7f maxm 1,y-
eb7c 18 1c f8 7d maxm 125,pc
eb80 18 1c f0 7d maxm 125,sp
eb84 18 1c e0 7d maxm 125,x
eb88 18 1c e8 7d maxm 125,y
eb8c 18 1c 8f maxm 15,sp
eb8f 18 1c 0f maxm 15,x
eb92 18 1c 4f maxm 15,y
eb95 18 1c f0 10 maxm 16,sp
eb99 18 1c e0 10 maxm 16,x
eb9d 18 1c e8 10 maxm 16,y
eba1 18 1c b7 maxm 8,sp+
eba4 18 1c 37 maxm 8,x+
eba7 18 1c 77 maxm 8,y+
ebaa 18 1c b8 maxm 8,sp-
ebad 18 1c 38 maxm 8,x-
ebb0 18 1c 78 maxm 8,y-
ebb3 18 1c f4 maxm a,sp
ebb6 18 1c e4 maxm a,x
ebb9 18 1c ec maxm a,y
ebbc 18 1c f5 maxm b,sp
ebbf 18 1c e5 maxm b,x
ebc2 18 1c ed maxm b,y
ebc5 18 1c f6 maxm d,sp
ebc8 18 1c e6 maxm d,x
ebcb 18 1c ee maxm d,y
ebce 18 1c f2 01 88 maxm ext,sp
 MOTOROLA ASSEMB

D-22
ebd3 18 1c e2 01 88 maxm ext,x
ebd8 18 1c ea 01 88 maxm ext,y
ebdd 18 1c f8 37 maxm ind,pc
ebe1 18 1c f0 37 maxm ind,sp
ebe5 18 1c e0 37 maxm ind,x
ebe9 18 1c e8 37 maxm ind,y
ebed 18 1c ce maxm small,pc
ebf0 18 1c 8e maxm small,sp
ebf3 18 1c 0e maxm small,x
ebf6 18 1c 4e maxm small,y
ebf9 01 mem
ebfa 18 19 a0 mina 1,+sp
ebfd 18 19 20 mina 1,+x
ec00 18 19 60 mina 1,+y
ec03 18 19 a7 mina 8,+sp
ec06 18 19 27 mina 8,+x
ec09 18 19 67 mina 8,+y
ec0c 18 19 c0 mina ,pc
ec0f 18 19 80 mina ,sp
ec12 18 19 00 mina ,x
ec15 18 19 40 mina ,y
ec18 18 19 af mina 1,-sp
ec1b 18 19 2f mina 1,-x
ec1e 18 19 6f mina 1,-y
ec21 18 19 a8 mina 8,-sp
ec24 18 19 28 mina 8,-x
ec27 18 19 68 mina 8,-y
ec2a 18 19 9f mina -1,sp
ec2d 18 19 1f mina -1,x
ec30 18 19 5f mina -1,y
ec33 18 19 90 mina -16,sp
ec36 18 19 10 mina -16,x
ec39 18 19 50 mina -16,y
ec3c 18 19 f1 ef mina -17,sp
ec40 18 19 e1 ef mina -17,x
ec44 18 19 e9 ef mina -17,y
ec48 18 19 d2 mina -small,pc
ec4b 18 19 92 mina -small,sp
ec4e 18 19 12 mina -small,x
ec51 18 19 52 mina -small,y
ec54 18 19 c0 mina 0,pc
ec57 18 19 80 mina 0,sp
ec5a 18 19 00 mina 0,x
ec5d 18 19 40 mina 0,y
ec60 18 19 b0 mina 1,sp+
ec63 18 19 30 mina 1,x+
ec66 18 19 70 mina 1,y+
ec69 18 19 81 mina 1,sp
ec6c 18 19 01 mina 1,x
ec6f 18 19 41 mina 1,y
ec72 18 19 bf mina 1,sp-
ec75 18 19 3f mina 1,x-
ec78 18 19 7f mina 1,y-
ec7b 18 19 f8 7d mina 125,pc
ec7f 18 19 f0 7d mina 125,sp
ec83 18 19 e0 7d mina 125,x
ec87 18 19 e8 7d mina 125,y
ec8b 18 19 8f mina 15,sp
ec8e 18 19 0f mina 15,x
ec91 18 19 4f mina 15,y
ec94 18 19 f0 10 mina 16,sp
ec98 18 19 e0 10 mina 16,x
ec9c 18 19 e8 10 mina 16,y
eca0 18 19 b7 mina 8,sp+
eca3 18 19 37 mina 8,x+
eca6 18 19 77 mina 8,y+
LY LISTING CPU12

REFERENCE MANUAL



eca9 18 19 b8 mina 8,sp-
ecac 18 19 38 mina 8,x-
ecaf 18 19 78 mina 8,y-
ecb2 18 19 f4 mina a,sp
ecb5 18 19 e4 mina a,x
ecb8 18 19 ec mina a,y
ecbb 18 19 f5 mina b,sp
ecbe 18 19 e5 mina b,x
ecc1 18 19 ed mina b,y
ecc4 18 19 f6 mina d,sp
ecc7 18 19 e6 mina d,x
ecca 18 19 ee mina d,y
eccd 18 19 f2 01 88 mina ext,sp
ecd2 18 19 e2 01 88 mina ext,x
ecd7 18 19 ea 01 88 mina ext,y
ecdc 18 19 f8 37 mina ind,pc
ece0 18 19 f0 37 mina ind,sp
ece4 18 19 e0 37 mina ind,x
ece8 18 19 e8 37 mina ind,y
ecec 18 19 ce mina small,pc
ecef 18 19 8e mina small,sp
ecf2 18 19 0e mina small,x
ecf5 18 19 4e mina small,y
ecf8 18 1d a0 minm 1,+sp
ecfb 18 1d 20 minm 1,+x
ecfe 18 1d 60 minm 1,+y
ed01 18 1d a7 minm 8,+sp
ed04 18 1d 27 minm 8,+x
ed07 18 1d 67 minm 8,+y
ed0a 18 1d c0 minm ,pc
ed0d 18 1d 80 minm ,sp
ed10 18 1d 00 minm ,x
ed13 18 1d 40 minm ,y
ed16 18 1d af minm 1,-sp
ed19 18 1d 2f minm 1,-x
ed1c 18 1d 6f minm 1,-y
ed1f 18 1d a8 minm 8,-sp
ed22 18 1d 28 minm 8,-x
ed25 18 1d 68 minm 8,-y
ed28 18 1d 9f minm -1,sp
ed2b 18 1d 1f minm -1,x
ed2e 18 1d 5f minm -1,y
ed31 18 1d 90 minm -16,sp
ed34 18 1d 10 minm -16,x
ed37 18 1d 50 minm -16,y
ed3a 18 1d f1 ef minm -17,sp
ed3e 18 1d e1 ef minm -17,x
ed42 18 1d e9 ef minm -17,y
ed46 18 1d d2 minm -small,pc
ed49 18 1d 92 minm -small,sp
ed4c 18 1d 12 minm -small,x
ed4f 18 1d 52 minm -small,y
ed52 18 1d c0 minm 0,pc
ed55 18 1d 80 minm 0,sp
ed58 18 1d 00 minm 0,x
ed5b 18 1d 40 minm 0,y
ed5e 18 1d b0 minm 1,sp+
ed61 18 1d 30 minm 1,x+
ed64 18 1d 70 minm 1,y+
ed67 18 1d 81 minm 1,sp
ed6a 18 1d 01 minm 1,x
ed6d 18 1d 41 minm 1,y
ed70 18 1d bf minm 1,sp-
ed73 18 1d 3f minm 1,x-
ed76 18 1d 7f minm 1,y-
ed79 18 1d f8 7d minm 125,pc
CPU12 ASSEMBL

REFERENCE MANUAL
ed7d 18 1d f0 7d minm 125,sp
ed81 18 1d e0 7d minm 125,x
ed85 18 1d e8 7d minm 125,y
ed89 18 1d 8f minm 15,sp
ed8c 18 1d 0f minm 15,x
ed8f 18 1d 4f minm 15,y
ed92 18 1d f0 10 minm 16,sp
ed96 18 1d e0 10 minm 16,x
ed9a 18 1d e8 10 minm 16,y
ed9e 18 1d b7 minm 8,sp+
eda1 18 1d 37 minm 8,x+
eda4 18 1d 77 minm 8,y+
eda7 18 1d b8 minm 8,sp-
edaa 18 1d 38 minm 8,x-
edad 18 1d 78 minm 8,y-
edb0 18 1d f4 minm a,sp
edb3 18 1d e4 minm a,x
edb6 18 1d ec minm a,y
edb9 18 1d f5 minm b,sp
edbc 18 1d e5 minm b,x
edbf 18 1d ed minm b,y
edc2 18 1d f6 minm d,sp
edc5 18 1d e6 minm d,x
edc8 18 1d ee minm d,y
edcb 18 1d f2 01 88 minm ext,sp
edd0 18 1d e2 01 88 minm ext,x
edd5 18 1d ea 01 88 minm ext,y
edda 18 1d f8 37 minm ind,pc
edde 18 1d f0 37 minm ind,sp
ede2 18 1d e0 37 minm ind,x
ede6 18 1d e8 37 minm ind,y
edea 18 1d ce minm small,pc
eded 18 1d 8e minm small,sp
edf0 18 1d 0e minm small,x
edf3 18 1d 4e minm small,y
edf6 18 0a 6b 90 movb 5,-y -16,sp
edfa 18 0a 6b 90 movb 5,-y,-16,sp

; funny ` test
; stinky `000 test

;

edfe 18 0a 6b d2 movb 5,-y -small,pc
ee02 18 0a 6b d2 movb 5,-y,-small,pc

happy`
ee06 18 0d 81 01 88 movb 1,sp ext
ee0b 18 0a 81 0c movb 1,sp 12,x

ee0f 18 08 af 72 movb #immed 1,-sp

ee13 18 09 af 01 88 movb ext 1,-sp
ee18 18 0a 6b 92 movb 5,-y -small,sp
ee1c 18 0a 6b 92 movb 5,-y,-small,sp
ee20 18 0a 7b 92 movb 5,y- -small,sp
ee24 18 0a 7b 92 movb 5,y-,-small,sp
ee28 18 0a 30 7f movb 1,x+ 1,y-
ee2c 18 0d 00 00 00 movb 0,x
ee31 18 0a 6b 12 movb 5,-y -small,x
ee35 18 0a 6b 12 movb 5,-y,-small,x
ee39 18 0a 6b 52 movb 5,-y -small,y
ee3d 18 0a 6b 52 movb 5,-y,-small,y
ee41 18 0a 6b c0 movb 5,-y 0,pc
ee45 18 0a 6b c0 movb 5,-y,0,pc
ee49 18 0a 6b 80 movb 5,-y 0,sp
ee4d 18 0a 6b 80 movb 5,-y,0,sp
ee51 18 08 22 72 movb #immed 3,+x
Y LISTING MOTOROLA

D-23



ee55 18 08 6b 72 movb #immed 5,-y
ee59 18 08 85 72 movb #immed 5,sp
ee5d 18 0b 72 01 88 movb #immed ext
ee62 18 0a a0 22 movb 1,+sp 3,+x
ee66 18 0a a0 6b movb 1,+sp 5,-y
ee6a 18 0a a0 85 movb 1,+sp 5,sp
ee6e 18 0d a0 01 88 movb 1,+sp ext
ee73 18 0a 20 22 movb 1,+x 3,+x
ee77 18 0a 20 6b movb 1,+x 5,-y
ee7b 18 0a 20 85 movb 1,+x 5,sp
ee7f 18 0d 20 01 88 movb 1,+x ext
ee84 18 0a 60 22 movb 1,+y 3,+x
ee88 18 0a 60 6b movb 1,+y 5,-y
ee8c 18 0a 60 85 movb 1,+y 5,sp
ee90 18 0d 60 01 88 movb 1,+y ext
ee95 18 0a 22 a0 movb 3,+x 1,+sp
ee99 18 0a 22 20 movb 3,+x 1,+x
ee9d 18 0a 22 60 movb 3,+x 1,+y
eea1 18 0a 22 a7 movb 3,+x 8,+sp
eea5 18 0a 22 27 movb 3,+x 8,+x
eea9 18 0a 22 67 movb 3,+x 8,+y
eead 18 0a 22 c0 movb 3,+x ,pc
eeb1 18 0a 22 80 movb 3,+x ,sp
eeb5 18 0a 22 00 movb 3,+x ,x
eeb9 18 0a 22 40 movb 3,+x ,y
eebd 18 0a 22 af movb 3,+x 1,-sp
eec1 18 0a 22 2f movb 3,+x 1,-x
eec5 18 0a 22 6f movb 3,+x 1,-y
eec9 18 0a 22 a8 movb 3,+x 8,-sp
eecd 18 0a 22 28 movb 3,+x 8,-x
eed1 18 0a 22 68 movb 3,+x 8,-y
eed5 18 0a 22 9f movb 3,+x -1,sp
eed9 18 0a 22 1f movb 3,+x -1,x
eedd 18 0a 22 5f movb 3,+x -1,y
eee1 18 0a 22 90 movb 3,+x -16,sp
eee5 18 0a 22 10 movb 3,+x -16,x
eee9 18 0a 22 50 movb 3,+x -16,y
eeed 18 0a 22 d2 movb 3,+x -small,pc
eef1 18 0a 22 92 movb 3,+x -small,sp
eef5 18 0a 22 12 movb 3,+x -small,x
eef9 18 0a 22 52 movb 3,+x -small,y
eefd 18 0a 22 c0 movb 3,+x 0,pc
ef01 18 0a 22 80 movb 3,+x 0,sp
ef05 18 0a 22 00 movb 3,+x 0,x
ef09 18 0a 22 40 movb 3,+x 0,y
ef0d 18 0a 22 b0 movb 3,+x 1,sp+
ef11 18 0a 22 30 movb 3,+x 1,x+
ef15 18 0a 22 70 movb 3,+x 1,y+
ef19 18 0a 22 81 movb 3,+x 1,sp
ef1d 18 0a 22 01 movb 3,+x 1,x
ef21 18 0a 22 41 movb 3,+x 1,y
ef25 18 0a 22 bf movb 3,+x 1,sp-
ef29 18 0a 22 3f movb 3,+x 1,x-
ef2d 18 0a 22 7f movb 3,+x 1,y-
ef31 18 0a 22 8f movb 3,+x 15,sp
ef35 18 0a 22 0f movb 3,+x 15,x
ef39 18 0a 22 4f movb 3,+x 15,y
ef3d 18 0a 22 b7 movb 3,+x 8,sp+
ef41 18 0a 22 37 movb 3,+x 8,x+
ef45 18 0a 22 77 movb 3,+x 8,y+
ef49 18 0a 22 b8 movb 3,+x 8,sp-
ef4d 18 0a 22 38 movb 3,+x 8,x-
ef51 18 0a 22 78 movb 3,+x 8,y-
ef55 18 0a 22 f4 movb 3,+x a,sp
ef59 18 0a 22 e4 movb 3,+x a,x
ef5d 18 0a 22 ec movb 3,+x a,y
 MOTOROLA ASSEMB

D-24
ef61 18 0a 22 f5 movb 3,+x b,sp
ef65 18 0a 22 e5 movb 3,+x b,x
ef69 18 0a 22 ed movb 3,+x b,y
ef6d 18 0a 22 f6 movb 3,+x d,sp
ef71 18 0a 22 e6 movb 3,+x d,x
ef75 18 0a 22 ee movb 3,+x d,y
ef79 18 0d 22 01 88 movb 3,+x ext
ef7e 18 0a 22 ce movb 3,+x small,pc
ef82 18 0a 22 8e movb 3,+x small,sp
ef86 18 0a 22 0e movb 3,+x small,x
ef8a 18 0a 22 4e movb 3,+x small,y
ef8e 18 0a a7 22 movb 8,+sp 3,+x
ef92 18 0a a7 6b movb 8,+sp 5,-y
ef96 18 0a a7 85 movb 8,+sp 5,sp
ef9a 18 0d a7 01 88 movb 8,+sp ext
ef9f 18 0a 27 22 movb 8,+x 3,+x
efa3 18 0a 27 6b movb 8,+x 5,-y
efa7 18 0a 27 85 movb 8,+x 5,sp
efab 18 0d 27 01 88 movb 8,+x ext
efb0 18 0a 67 22 movb 8,+y 3,+x
efb4 18 0a 67 6b movb 8,+y 5,-y
efb8 18 0a 67 85 movb 8,+y 5,sp
efbc 18 0d 67 01 88 movb 8,+y ext
efc1 18 0a c0 22 movb ,pc 3,+x
efc5 18 0a c0 6b movb ,pc 5,-y
efc9 18 0a c0 85 movb ,pc 5,sp
efcd 18 09 c0 00 00 movb ,pc ext
efd2 18 0a 80 22 movb ,sp 3,+x
efd6 18 0a 80 6b movb ,sp 5,-y
efda 18 0a 80 85 movb ,sp 5,sp
efde 18 09 80 00 00 movb ,sp ext
efe3 18 0a 00 22 movb ,x 3,+x
efe7 18 0a 00 6b movb ,x 5,-y
efeb 18 0a 00 85 movb ,x 5,sp
efef 18 09 00 00 00 movb ,x ext
eff4 18 0a 40 22 movb ,y 3,+x
eff8 18 0a 40 6b movb ,y 5,-y
effc 18 0a 40 85 movb ,y 5,sp
f000 18 09 40 00 00 movb ,y ext
f005 18 0a af 22 movb 1,-sp 3,+x
f009 18 0a af 6b movb 1,-sp 5,-y
f00d 18 0a af 85 movb 1,-sp 5,sp
f011 18 0d af 01 88 movb 1,-sp ext
f016 18 0a 2f 22 movb 1,-x 3,+x
f01a 18 0a 2f 6b movb 1,-x 5,-y
f01e 18 0a 2f 85 movb 1,-x 5,sp
f022 18 0d 2f 01 88 movb 1,-x ext
f027 18 0a 6f 22 movb 1,-y 3,+x
f02b 18 0a 6f 6b movb 1,-y 5,-y
f02f 18 0a 6f 85 movb 1,-y 5,sp
f033 18 0d 6f 01 88 movb 1,-y ext
f038 18 0a a8 22 movb 8,-sp 3,+x
f03c 18 0a a8 6b movb 8,-sp 5,-y
f040 18 0a a8 85 movb 8,-sp 5,sp
f044 18 0d a8 01 88 movb 8,-sp ext
f049 18 0a 28 22 movb 8,-x 3,+x
f04d 18 0a 28 6b movb 8,-x 5,-y
f051 18 0a 28 85 movb 8,-x 5,sp
f055 18 0d 28 01 88 movb 8,-x ext
f05a 18 0a 68 22 movb 8,-y 3,+x
f05e 18 0a 68 6b movb 8,-y 5,-y
f062 18 0a 68 85 movb 8,-y 5,sp
f066 18 0d 68 01 88 movb 8,-y ext
f06b 18 0a 9f 22 movb -1,sp 3,+x
f06f 18 0a 9f 6b movb -1,sp 5,-y
f073 18 0a 9f 85 movb -1,sp 5,sp
LY LISTING CPU12

REFERENCE MANUAL



f077 18 0d 9f 01 88 movb -1,sp ext
f07c 18 0a 1f 22 movb -1,x 3,+x
f080 18 0a 1f 6b movb -1,x 5,-y
f084 18 0a 1f 85 movb -1,x 5,sp
f088 18 0d 1f 01 88 movb -1,x ext
f08d 18 0a 5f 22 movb -1,y 3,+x
f091 18 0a 5f 6b movb -1,y 5,-y
f095 18 0a 5f 85 movb -1,y 5,sp
f099 18 0d 5f 01 88 movb -1,y ext
f09e 18 0a 90 22 movb -16,sp 3,+x
f0a2 18 0a 90 6b movb -16,sp 5,-y
f0a6 18 0a 90 85 movb -16,sp 5,sp
f0aa 18 0d 90 01 88 movb -16,sp ext
f0af 18 0a 10 22 movb -16,x 3,+x
f0b3 18 0a 10 6b movb -16,x 5,-y
f0b7 18 0a 10 85 movb -16,x 5,sp
f0bb 18 0d 10 01 88 movb -16,x ext
f0c0 18 0a 50 22 movb -16,y 3,+x
f0c4 18 0a 50 6b movb -16,y 5,-y
f0c8 18 0a 50 85 movb -16,y 5,sp
f0cc 18 0d 50 01 88 movb -16,y ext
f0d1 18 0a d2 22 movb -small,pc 3,+x
f0d5 18 0a d2 6b movb -small,pc 5,-y
f0d9 18 0a d2 85 movb -small,pc 5,sp
f0dd 18 0d d2 01 88 movb -small,pc ext
f0e2 18 0a 92 22 movb -small,sp 3,+x
f0e6 18 0a 92 6b movb -small,sp 5,-y
f0ea 18 0a 92 85 movb -small,sp 5,sp
f0ee 18 0d 92 01 88 movb -small,sp ext
f0f3 18 0a 12 22 movb -small,x 3,+x
f0f7 18 0a 12 6b movb -small,x 5,-y
f0fb 18 0a 12 85 movb -small,x 5,sp
f0ff 18 0d 12 01 88 movb -small,x ext
f104 18 0a 52 22 movb -small,y 3,+x
f108 18 0a 52 6b movb -small,y 5,-y
f10c 18 0a 52 85 movb -small,y 5,sp
f110 18 0d 52 01 88 movb -small,y ext
f115 18 0a c0 22 movb 0,pc 3,+x
f119 18 0a c0 6b movb 0,pc 5,-y
f11d 18 0a c0 85 movb 0,pc 5,sp
f121 18 0d c0 01 88 movb 0,pc ext
f126 18 0a 80 22 movb 0,sp 3,+x
f12a 18 0a 80 6b movb 0,sp 5,-y
f12e 18 0a 80 85 movb 0,sp 5,sp
f132 18 0d 80 01 88 movb 0,sp ext
f137 18 0a 00 22 movb 0,x 3,+x
f13b 18 0a 00 6b movb 0,x 5,-y
f13f 18 0a 00 85 movb 0,x 5,sp
f143 18 0d 00 01 88 movb 0,x ext
f148 18 0a 40 22 movb 0,y 3,+x
f14c 18 0a 40 6b movb 0,y 5,-y
f150 18 0a 40 85 movb 0,y 5,sp
f154 18 0d 40 01 88 movb 0,y ext
f159 18 0a b0 22 movb 1,sp+ 3,+x
f15d 18 0a b0 6b movb 1,sp+ 5,-y
f161 18 0a b0 85 movb 1,sp+ 5,sp
f165 18 0d b0 01 88 movb 1,sp+ ext
f16a 18 0a 30 22 movb 1,x+ 3,+x
f16e 18 0a 30 6b movb 1,x+ 5,-y
f172 18 0a 30 85 movb 1,x+ 5,sp
f176 18 0d 30 01 88 movb 1,x+ ext
f17b 18 0a 70 22 movb 1,y+ 3,+x
f17f 18 0a 70 6b movb 1,y+ 5,-y
f183 18 0a 70 85 movb 1,y+ 5,sp
f187 18 0d 70 01 88 movb 1,y+ ext
f18c 18 0a 81 22 movb 1,sp 3,+x
CPU12 ASSEMBL

REFERENCE MANUAL
f190 18 0a 81 6b movb 1,sp 5,-y
f194 18 0a 81 85 movb 1,sp 5,sp
f198 18 0d 81 01 88 movb 1,sp ext
f19d 18 0a 01 22 movb 1,x 3,+x
f1a1 18 0a 01 6b movb 1,x 5,-y
f1a5 18 0a 01 85 movb 1,x 5,sp
f1a9 18 0d 01 01 88 movb 1,x ext
f1ae 18 0a 41 22 movb 1,y 3,+x
f1b2 18 0a 41 6b movb 1,y 5,-y
f1b6 18 0a 41 85 movb 1,y 5,sp
f1ba 18 0d 41 01 88 movb 1,y ext
f1bf 18 0a bf 22 movb 1,sp- 3,+x
f1c3 18 0a bf 6b movb 1,sp- 5,-y
f1c7 18 0a bf 85 movb 1,sp- 5,sp
f1cb 18 0d bf 01 88 movb 1,sp- ext
f1d0 18 0a 3f 22 movb 1,x- 3,+x
f1d4 18 0a 3f 6b movb 1,x- 5,-y
f1d8 18 0a 3f 85 movb 1,x- 5,sp
f1dc 18 0d 3f 01 88 movb 1,x- ext
f1e1 18 0a 7f 22 movb 1,y- 3,+x
f1e5 18 0a 7f 6b movb 1,y- 5,-y
f1e9 18 0a 7f 85 movb 1,y- 5,sp
f1ed 18 0d 7f 01 88 movb 1,y- ext
f1f2 18 0a 6b a0 movb 5,-y 1,+sp
f1f6 18 0a 6b 20 movb 5,-y 1,+x
f1fa 18 0a 6b 60 movb 5,-y 1,+y
f1fe 18 0a 6b a7 movb 5,-y 8,+sp
f202 18 0a 6b 27 movb 5,-y 8,+x
f206 18 0a 6b 67 movb 5,-y 8,+y
f20a 18 0a 6b c0 movb 5,-y ,pc
f20e 18 0a 6b 80 movb 5,-y ,sp
f212 18 0a 6b 00 movb 5,-y ,x
f216 18 0a 6b 40 movb 5,-y ,y
f21a 18 0a 6b af movb 5,-y 1,-sp
f21e 18 0a 6b 2f movb 5,-y 1,-x
f222 18 0a 6b 6f movb 5,-y 1,-y
f226 18 0a 6b a8 movb 5,-y 8,-sp
f22a 18 0a 6b 28 movb 5,-y 8,-x
f22e 18 0a 6b 68 movb 5,-y 8,-y
f232 18 0a 6b 9f movb 5,-y -1,sp
f236 18 0a 6b 1f movb 5,-y -1,x
f23a 18 0a 6b 5f movb 5,-y -1,y
f23e 18 0a 6b 90 movb 5,-y -16,sp
f242 18 0a 6b 10 movb 5,-y -16,x
f246 18 0a 6b 50 movb 5,-y -16,y
f24a 18 0a 6b d2 movb 5,-y -small,pc
f24e 18 0a 6b 92 movb 5,-y -small,sp
f252 18 0a 6b 12 movb 5,-y -small,x
f256 18 0a 6b 52 movb 5,-y -small,y
f25a 18 0a 6b c0 movb 5,-y 0,pc
f25e 18 0a 6b 80 movb 5,-y 0,sp
f262 18 0a 6b 00 movb 5,-y 0,x
f266 18 0a 6b 40 movb 5,-y 0,y
f26a 18 0a 6b b0 movb 5,-y 1,sp+
f26e 18 0a 6b 30 movb 5,-y 1,x+
f272 18 0a 6b 70 movb 5,-y 1,y+
f276 18 0a 6b 81 movb 5,-y 1,sp
f27a 18 0a 6b 01 movb 5,-y 1,x
f27e 18 0a 6b 41 movb 5,-y 1,y
f282 18 0a 6b bf movb 5,-y 1,sp-
f286 18 0a 6b 3f movb 5,-y 1,x-
f28a 18 0a 6b 7f movb 5,-y 1,y-
f28e 18 0a 6b 8f movb 5,-y 15,sp
f292 18 0a 6b 0f movb 5,-y 15,x
f296 18 0a 6b 4f movb 5,-y 15,y
f29a 18 0a 6b b7 movb 5,-y 8,sp+
Y LISTING MOTOROLA

D-25



f29e 18 0a 6b 37 movb 5,-y 8,x+
f2a2 18 0a 6b 77 movb 5,-y 8,y+
f2a6 18 0a 6b b8 movb 5,-y 8,sp-
f2aa 18 0a 6b 38 movb 5,-y 8,x-
f2ae 18 0a 6b 78 movb 5,-y 8,y-
f2b2 18 0a 6b f4 movb 5,-y a,sp
f2b6 18 0a 6b e4 movb 5,-y a,x
f2ba 18 0a 6b ec movb 5,-y a,y
f2be 18 0a 6b f5 movb 5,-y b,sp
f2c2 18 0a 6b e5 movb 5,-y b,x
f2c6 18 0a 6b ed movb 5,-y b,y
f2ca 18 0a 6b f6 movb 5,-y d,sp
f2ce 18 0a 6b e6 movb 5,-y d,x
f2d2 18 0a 6b ee movb 5,-y d,y
f2d6 18 0d 6b 01 88 movb 5,-y ext
f2db 18 0a 6b ce movb 5,-y small,pc
f2df 18 0a 6b 8e movb 5,-y small,sp
f2e3 18 0a 6b 0e movb 5,-y small,x
f2e7 18 0a 6b 4e movb 5,-y small,y
f2eb 18 0a 8f 22 movb 15,sp 3,+x
f2ef 18 0a 8f 6b movb 15,sp 5,-y
f2f3 18 0a 8f 85 movb 15,sp 5,sp
f2f7 18 0d 8f 01 88 movb 15,sp ext
f2fc 18 0a 0f 22 movb 15,x 3,+x
f300 18 0a 0f 6b movb 15,x 5,-y
f304 18 0a 0f 85 movb 15,x 5,sp
f308 18 0d 0f 01 88 movb 15,x ext
f30d 18 0a 4f 22 movb 15,y 3,+x
f311 18 0a 4f 6b movb 15,y 5,-y
f315 18 0a 4f 85 movb 15,y 5,sp
f319 18 0d 4f 01 88 movb 15,y ext
f31e 18 0a 85 a0 movb 5,sp 1,+sp
f322 18 0a 85 20 movb 5,sp 1,+x
f326 18 0a 85 60 movb 5,sp 1,+y
f32a 18 0a 85 a7 movb 5,sp 8,+sp
f32e 18 0a 85 27 movb 5,sp 8,+x
f332 18 0a 85 67 movb 5,sp 8,+y
f336 18 0a 85 c0 movb 5,sp ,pc
f33a 18 0a 85 80 movb 5,sp ,sp
f33e 18 0a 85 00 movb 5,sp ,x
f342 18 0a 85 40 movb 5,sp ,y
f346 18 0a 85 af movb 5,sp 1,-sp
f34a 18 0a 85 2f movb 5,sp 1,-x
f34e 18 0a 85 6f movb 5,sp 1,-y
f352 18 0a 85 a8 movb 5,sp 8,-sp
f356 18 0a 85 28 movb 5,sp 8,-x
f35a 18 0a 85 68 movb 5,sp 8,-y
f35e 18 0a 85 9f movb 5,sp -1,sp
f362 18 0a 85 1f movb 5,sp -1,x
f366 18 0a 85 5f movb 5,sp -1,y
f36a 18 0a 85 90 movb 5,sp -16,sp
f36e 18 0a 85 10 movb 5,sp -16,x
f372 18 0a 85 50 movb 5,sp -16,y
f376 18 0a 85 d2 movb 5,sp -small,pc
f37a 18 0a 85 92 movb 5,sp -small,sp
f37e 18 0a 85 12 movb 5,sp -small,x
f382 18 0a 85 52 movb 5,sp -small,y
f386 18 0a 85 c0 movb 5,sp 0,pc
f38a 18 0a 85 80 movb 5,sp 0,sp
f38e 18 0a 85 00 movb 5,sp 0,x
f392 18 0a 85 40 movb 5,sp 0,y
f396 18 0a 85 b0 movb 5,sp 1,sp+
f39a 18 0a 85 30 movb 5,sp 1,x+
f39e 18 0a 85 70 movb 5,sp 1,y+
f3a2 18 0a 85 81 movb 5,sp 1,sp
f3a6 18 0a 85 01 movb 5,sp 1,x
 MOTOROLA ASSEMB

D-26
f3aa 18 0a 85 41 movb 5,sp 1,y
f3ae 18 0a 85 bf movb 5,sp 1,sp-
f3b2 18 0a 85 3f movb 5,sp 1,x-
f3b6 18 0a 85 7f movb 5,sp 1,y-
f3ba 18 0a 85 b7 movb 5,sp 8,sp+
f3be 18 0a 85 37 movb 5,sp 8,x+
f3c2 18 0a 85 77 movb 5,sp 8,y+
f3c6 18 0a 85 b8 movb 5,sp 8,sp-
f3ca 18 0a 85 38 movb 5,sp 8,x-
f3ce 18 0a 85 78 movb 5,sp 8,y-
f3d2 18 0a 85 f4 movb 5,sp a,sp
f3d6 18 0a 85 e4 movb 5,sp a,x
f3da 18 0a 85 ec movb 5,sp a,y
f3de 18 0a 85 f5 movb 5,sp b,sp
f3e2 18 0a 85 e5 movb 5,sp b,x
f3e6 18 0a 85 ed movb 5,sp b,y
f3ea 18 0a 85 f6 movb 5,sp d,sp
f3ee 18 0a 85 e6 movb 5,sp d,x
f3f2 18 0a 85 ee movb 5,sp d,y
f3f6 18 0d 85 01 88 movb 5,sp ext
f3fb 18 0a 85 ce movb 5,sp small,pc
f3ff 18 0a 85 8e movb 5,sp small,sp
f403 18 0a 85 0e movb 5,sp small,x
f407 18 0a 85 4e movb 5,sp small,y
f40b 18 0a b7 22 movb 8,sp+ 3,+x
f40f 18 0a b7 6b movb 8,sp+ 5,-y
f413 18 0a b7 85 movb 8,sp+ 5,sp
f417 18 0d b7 01 88 movb 8,sp+ ext
f41c 18 0a 37 22 movb 8,x+ 3,+x
f420 18 0a 37 6b movb 8,x+ 5,-y
f424 18 0a 37 85 movb 8,x+ 5,sp
f428 18 0d 37 01 88 movb 8,x+ ext
f42d 18 0a 77 22 movb 8,y+ 3,+x
f431 18 0a 77 6b movb 8,y+ 5,-y
f435 18 0a 77 85 movb 8,y+ 5,sp
f439 18 0d 77 01 88 movb 8,y+ ext
f43e 18 0a b8 22 movb 8,sp- 3,+x
f442 18 0a b8 6b movb 8,sp- 5,-y
f446 18 0a b8 85 movb 8,sp- 5,sp
f44a 18 0d b8 01 88 movb 8,sp- ext
f44f 18 0a 38 22 movb 8,x- 3,+x
f453 18 0a 38 6b movb 8,x- 5,-y
f457 18 0a 38 85 movb 8,x- 5,sp
f45b 18 0d 38 01 88 movb 8,x- ext
f460 18 0a 78 22 movb 8,y- 3,+x
f464 18 0a 78 6b movb 8,y- 5,-y
f468 18 0a 78 85 movb 8,y- 5,sp
f46c 18 0d 78 01 88 movb 8,y- ext
f471 18 0a f4 22 movb a,sp 3,+x
f475 18 0a f4 6b movb a,sp 5,-y
f479 18 0a f4 85 movb a,sp 5,sp
f47d 18 0d f4 01 88 movb a,sp ext
f482 18 0a e4 22 movb a,x 3,+x
f486 18 0a e4 6b movb a,x 5,-y
f48a 18 0a e4 85 movb a,x 5,sp
f48e 18 0d e4 01 88 movb a,x ext
f493 18 0a ec 22 movb a,y 3,+x
f497 18 0a ec 6b movb a,y 5,-y
f49b 18 0a ec 85 movb a,y 5,sp
f49f 18 0d ec 01 88 movb a,y ext
f4a4 18 0a f5 22 movb b,sp 3,+x
f4a8 18 0a f5 6b movb b,sp 5,-y
f4ac 18 0a f5 85 movb b,sp 5,sp
f4b0 18 0d f5 01 88 movb b,sp ext
f4b5 18 0a e5 22 movb b,x 3,+x
f4b9 18 0a e5 6b movb b,x 5,-y
LY LISTING CPU12

REFERENCE MANUAL



f4bd 18 0a e5 85 movb b,x 5,sp
f4c1 18 0d e5 01 88 movb b,x ext
f4c6 18 0a ed 22 movb b,y 3,+x
f4ca 18 0a ed 6b movb b,y 5,-y
f4ce 18 0a ed 85 movb b,y 5,sp
f4d2 18 0d ed 01 88 movb b,y ext
f4d7 18 0a f6 22 movb d,sp 3,+x
f4db 18 0a f6 6b movb d,sp 5,-y
f4df 18 0a f6 85 movb d,sp 5,sp
f4e3 18 0d f6 01 88 movb d,sp ext
f4e8 18 0a e6 22 movb d,x 3,+x
f4ec 18 0a e6 6b movb d,x 5,-y
f4f0 18 0a e6 85 movb d,x 5,sp
f4f4 18 0d e6 01 88 movb d,x ext
f4f9 18 0a ee 22 movb d,y 3,+x
f4fd 18 0a ee 6b movb d,y 5,-y
f501 18 0a ee 85 movb d,y 5,sp
f505 18 0d ee 01 88 movb d,y ext
f50a 18 09 a0 01 88 movb ext 1,+sp
f50f 18 09 20 01 88 movb ext 1,+x
f514 18 09 60 01 88 movb ext 1,+y
f519 18 09 a7 01 88 movb ext 8,+sp
f51e 18 09 27 01 88 movb ext 8,+x
f523 18 09 67 01 88 movb ext 8,+y
f528 18 09 c0 01 88 movb ext ,pc
f52d 18 09 80 01 88 movb ext ,sp
f532 18 09 00 01 88 movb ext ,x
f537 18 09 40 01 88 movb ext ,y
f53c 18 09 af 01 88 movb ext 1,-sp
f541 18 09 2f 01 88 movb ext 1,-x
f546 18 09 6f 01 88 movb ext 1,-y
f54b 18 09 a8 01 88 movb ext 8,-sp
f550 18 09 28 01 88 movb ext 8,-x
f555 18 09 68 01 88 movb ext 8,-y
f55a 18 09 9f 01 88 movb ext -1,sp
f55f 18 09 1f 01 88 movb ext -1,x
f564 18 09 5f 01 88 movb ext -1,y
f569 18 09 90 01 88 movb ext -16,sp
f56e 18 09 10 01 88 movb ext -16,x
f573 18 09 50 01 88 movb ext -16,y
f578 18 09 d2 01 88 movb ext -small,pc
f57d 18 09 92 01 88 movb ext -small,sp
f582 18 09 12 01 88 movb ext -small,x
f587 18 09 52 01 88 movb ext -small,y
f58c 18 09 c0 01 88 movb ext 0,pc
f591 18 09 80 01 88 movb ext 0,sp
f596 18 09 00 01 88 movb ext 0,x
f59b 18 09 40 01 88 movb ext 0,y
f5a0 18 09 b0 01 88 movb ext 1,sp+
f5a5 18 09 30 01 88 movb ext 1,x+
f5aa 18 09 70 01 88 movb ext 1,y+
f5af 18 09 81 01 88 movb ext 1,sp
f5b4 18 09 01 01 88 movb ext 1,x
f5b9 18 09 41 01 88 movb ext 1,y
f5be 18 09 bf 01 88 movb ext 1,sp-
f5c3 18 09 3f 01 88 movb ext 1,x-
f5c8 18 09 7f 01 88 movb ext 1,y-
f5cd 18 09 b7 01 88 movb ext 8,sp+
f5d2 18 09 37 01 88 movb ext 8,x+
f5d7 18 09 77 01 88 movb ext 8,y+
f5dc 18 09 b8 01 88 movb ext 8,sp-
f5e1 18 09 38 01 88 movb ext 8,x-
f5e6 18 09 78 01 88 movb ext 8,y-
f5eb 18 09 f4 01 88 movb ext a,sp
f5f0 18 09 e4 01 88 movb ext a,x
f5f5 18 09 ec 01 88 movb ext a,y
CPU12 ASSEMBL

REFERENCE MANUAL
f5fa 18 09 f5 01 88 movb ext b,sp
f5ff 18 09 e5 01 88 movb ext b,x
f604 18 09 ed 01 88 movb ext b,y
f609 18 09 f6 01 88 movb ext d,sp
f60e 18 09 e6 01 88 movb ext d,x
f613 18 09 ee 01 88 movb ext d,y
f618 18 0c 01 88 01 88 movb ext ext
f61e 18 09 ce 01 88 movb ext small,pc
f623 18 09 8e 01 88 movb ext small,sp
f628 18 09 0e 01 88 movb ext small,x
f62d 18 09 4e 01 88 movb ext small,y
f632 18 0a ce 22 movb small,pc 3,+x
f636 18 0a ce 6b movb small,pc 5,-y
f63a 18 0a ce 85 movb small,pc 5,sp
f63e 18 0d ce 01 88 movb small,pc ext
f643 18 0a 8e 22 movb small,sp 3,+x
f647 18 0a 8e 6b movb small,sp 5,-y
f64b 18 0a 8e 85 movb small,sp 5,sp
f64f 18 0d 8e 01 88 movb small,sp ext
f654 18 0a 0e 22 movb small,x 3,+x
f658 18 0a 0e 6b movb small,x 5,-y
f65c 18 0a 0e 85 movb small,x 5,sp
f660 18 0d 0e 01 88 movb small,x ext
f665 18 0a 4e 22 movb small,y 3,+x
f669 18 0a 4e 6b movb small,y 5,-y
f66d 18 0a 4e 85 movb small,y 5,sp
f671 18 0d 4e 01 88 movb small,y ext
f676 18 05 82 01 88 movw 2,sp ext
f67b 18 02 82 0c movw 2,sp 12,x
f67f 18 01 02 01 88 movw ext  2,x
f684 18 02 02 00 movw 2,x  0,x
f688 18 01 ae 01 88 movw ext 2,-sp
f68d 18 00 ae 00 72 movw #immed 2,-sp
f692 18 00 ae 00 72 movw #immed 2,-sp
f697 18 00 22 00 72 movw #immed 3,+x
f69c 18 00 6b 00 72 movw #immed 5,-y
f6a1 18 00 85 00 72 movw #immed 5,sp
f6a6 18 03 00 72 01 88 movw #immed ext
f6ac 18 02 a0 22 movw 1,+sp 3,+x
f6b0 18 02 a0 6b movw 1,+sp 5,-y
f6b4 18 02 a0 85 movw 1,+sp 5,sp
f6b8 18 05 a0 01 88 movw 1,+sp ext
f6bd 18 02 20 22 movw 1,+x 3,+x
f6c1 18 02 20 6b movw 1,+x 5,-y
f6c5 18 02 20 85 movw 1,+x 5,sp
f6c9 18 05 20 01 88 movw 1,+x ext
f6ce 18 02 60 22 movw 1,+y 3,+x
f6d2 18 02 60 6b movw 1,+y 5,-y
f6d6 18 02 60 85 movw 1,+y 5,sp
f6da 18 05 60 01 88 movw 1,+y ext
f6df 18 02 22 a0 movw 3,+x 1,+sp
f6e3 18 02 22 20 movw 3,+x 1,+x
f6e7 18 02 22 60 movw 3,+x 1,+y
f6eb 18 02 22 a7 movw 3,+x 8,+sp
f6ef 18 02 22 27 movw 3,+x 8,+x
f6f3 18 02 22 67 movw 3,+x 8,+y
f6f7 18 02 22 c0 movw 3,+x ,pc
f6fb 18 02 22 80 movw 3,+x ,sp
f6ff 18 02 22 00 movw 3,+x ,x
f703 18 02 22 40 movw 3,+x ,y
f707 18 02 22 af movw 3,+x 1,-sp
f70b 18 02 22 2f movw 3,+x 1,-x
f70f 18 02 22 6f movw 3,+x 1,-y
f713 18 02 22 a8 movw 3,+x 8,-sp
f717 18 02 22 28 movw 3,+x 8,-x
f71b 18 02 22 68 movw 3,+x 8,-y
Y LISTING MOTOROLA

D-27



f71f 18 02 22 9f movw 3,+x -1,sp
f723 18 02 22 1f movw 3,+x -1,x
f727 18 02 22 5f movw 3,+x -1,y
f72b 18 02 22 90 movw 3,+x -16,sp
f72f 18 02 22 10 movw 3,+x -16,x
f733 18 02 22 50 movw 3,+x -16,y
f737 18 02 22 d2 movw 3,+x -small,pc
f73b 18 02 22 92 movw 3,+x -small,sp
f73f 18 02 22 12 movw 3,+x -small,x
f743 18 02 22 52 movw 3,+x -small,y
f747 18 02 22 c0 movw 3,+x 0,pc
f74b 18 02 22 80 movw 3,+x 0,sp
f74f 18 02 22 00 movw 3,+x 0,x
f753 18 02 22 40 movw 3,+x 0,y
f757 18 02 22 b0 movw 3,+x 1,sp+
f75b 18 02 22 30 movw 3,+x 1,x+
f75f 18 02 22 70 movw 3,+x 1,y+
f763 18 02 22 81 movw 3,+x 1,sp
f767 18 02 22 01 movw 3,+x 1,x
f76b 18 02 22 41 movw 3,+x 1,y
f76f 18 02 22 bf movw 3,+x 1,sp-
f773 18 02 22 3f movw 3,+x 1,x-
f777 18 02 22 7f movw 3,+x 1,y-
f77b 18 02 22 b7 movw 3,+x 8,sp+
f77f 18 02 22 37 movw 3,+x 8,x+
f783 18 02 22 77 movw 3,+x 8,y+
f787 18 02 22 b8 movw 3,+x 8,sp-
f78b 18 02 22 38 movw 3,+x 8,x-
f78f 18 02 22 78 movw 3,+x 8,y-
f793 18 02 22 f4 movw 3,+x a,sp
f797 18 02 22 e4 movw 3,+x a,x
f79b 18 02 22 ec movw 3,+x a,y
f79f 18 02 22 f5 movw 3,+x b,sp
f7a3 18 02 22 e5 movw 3,+x b,x
f7a7 18 02 22 ed movw 3,+x b,y
f7ab 18 02 22 f6 movw 3,+x d,sp
f7af 18 02 22 e6 movw 3,+x d,x
f7b3 18 02 22 ee movw 3,+x d,y
f7b7 18 05 22 01 88 movw 3,+x ext
f7bc 18 02 22 ce movw 3,+x small,pc
f7c0 18 02 22 8e movw 3,+x small,sp
f7c4 18 02 22 0e movw 3,+x small,x
f7c8 18 02 22 4e movw 3,+x small,y
f7cc 18 02 a7 22 movw 8,+sp 3,+x
f7d0 18 02 a7 6b movw 8,+sp 5,-y
f7d4 18 02 a7 85 movw 8,+sp 5,sp
f7d8 18 05 a7 01 88 movw 8,+sp ext
f7dd 18 02 27 22 movw 8,+x 3,+x
f7e1 18 02 27 6b movw 8,+x 5,-y
f7e5 18 02 27 85 movw 8,+x 5,sp
f7e9 18 05 27 01 88 movw 8,+x ext
f7ee 18 02 67 22 movw 8,+y 3,+x
f7f2 18 02 67 6b movw 8,+y 5,-y
f7f6 18 02 67 85 movw 8,+y 5,sp
f7fa 18 05 67 01 88 movw 8,+y ext
f7ff 18 02 c0 22 movw ,pc 3,+x
f803 18 02 c0 6b movw ,pc 5,-y
f807 18 02 c0 85 movw ,pc 5,sp
f80b 18 01 c0 00 00 movw ,pc ext
f810 18 02 80 22 movw ,sp 3,+x
f814 18 02 80 6b movw ,sp 5,-y
f818 18 02 80 85 movw ,sp 5,sp
f81c 18 01 80 00 00 movw ,sp ext
f821 18 02 00 22 movw ,x 3,+x
f825 18 02 00 6b movw ,x 5,-y
f829 18 02 00 85 movw ,x 5,sp
 MOTOROLA ASSEMB

D-28
f82d 18 01 00 00 00 movw ,x ext
f832 18 02 40 22 movw ,y 3,+x
f836 18 02 40 6b movw ,y 5,-y
f83a 18 02 40 85 movw ,y 5,sp
f83e 18 01 40 00 00 movw ,y ext
f843 18 02 af 22 movw 1,-sp 3,+x
f847 18 02 af 6b movw 1,-sp 5,-y
f84b 18 02 af 85 movw 1,-sp 5,sp
f84f 18 05 af 01 88 movw 1,-sp ext
f854 18 02 2f 22 movw 1,-x 3,+x
f858 18 02 2f 6b movw 1,-x 5,-y
f85c 18 02 2f 85 movw 1,-x 5,sp
f860 18 05 2f 01 88 movw 1,-x ext
f865 18 02 6f 22 movw 1,-y 3,+x
f869 18 02 6f 6b movw 1,-y 5,-y
f86d 18 02 6f 85 movw 1,-y 5,sp
f871 18 05 6f 01 88 movw 1,-y ext
f876 18 02 a8 22 movw 8,-sp 3,+x
f87a 18 02 a8 6b movw 8,-sp 5,-y
f87e 18 02 a8 85 movw 8,-sp 5,sp
f882 18 05 a8 01 88 movw 8,-sp ext
f887 18 02 28 22 movw 8,-x 3,+x
f88b 18 02 28 6b movw 8,-x 5,-y
f88f 18 02 28 85 movw 8,-x 5,sp
f893 18 05 28 01 88 movw 8,-x ext
f898 18 02 68 22 movw 8,-y 3,+x
f89c 18 02 68 6b movw 8,-y 5,-y
f8a0 18 02 68 85 movw 8,-y 5,sp
f8a4 18 05 68 01 88 movw 8,-y ext
f8a9 18 02 9f 22 movw -1,sp 3,+x
f8ad 18 02 9f 6b movw -1,sp 5,-y
f8b1 18 02 9f 85 movw -1,sp 5,sp
f8b5 18 05 9f 01 88 movw -1,sp ext
f8ba 18 02 1f 22 movw -1,x 3,+x
f8be 18 02 1f 6b movw -1,x 5,-y
f8c2 18 02 1f 85 movw -1,x 5,sp
f8c6 18 05 1f 01 88 movw -1,x ext
f8cb 18 02 5f 22 movw -1,y 3,+x
f8cf 18 02 5f 6b movw -1,y 5,-y
f8d3 18 02 5f 85 movw -1,y 5,sp
f8d7 18 05 5f 01 88 movw -1,y ext
f8dc 18 02 90 22 movw -16,sp 3,+x
f8e0 18 02 90 6b movw -16,sp 5,-y
f8e4 18 02 90 85 movw -16,sp 5,sp
f8e8 18 05 90 01 88 movw -16,sp ext
f8ed 18 02 10 22 movw -16,x 3,+x
f8f1 18 02 10 6b movw -16,x 5,-y
f8f5 18 02 10 85 movw -16,x 5,sp
f8f9 18 05 10 01 88 movw -16,x ext
f8fe 18 02 50 22 movw -16,y 3,+x
f902 18 02 50 6b movw -16,y 5,-y
f906 18 02 50 85 movw -16,y 5,sp
f90a 18 05 50 01 88 movw -16,y ext
f90f 18 02 d2 22 movw -small,pc 3,+x
f913 18 02 d2 6b movw -small,pc 5,-y
f917 18 02 d2 85 movw -small,pc 5,sp
f91b 18 05 d2 01 88 movw -small,pc ext
f920 18 02 92 22 movw -small,sp 3,+x
f924 18 02 92 6b movw -small,sp 5,-y
f928 18 02 92 85 movw -small,sp 5,sp
f92c 18 05 92 01 88 movw -small,sp ext
f931 18 02 12 22 movw -small,x 3,+x
f935 18 02 12 6b movw -small,x 5,-y
f939 18 02 12 85 movw -small,x 5,sp
f93d 18 05 12 01 88 movw -small,x ext
f942 18 02 52 22 movw -small,y 3,+x
LY LISTING CPU12

REFERENCE MANUAL



f946 18 02 52 6b movw -small,y 5,-y
f94a 18 02 52 85 movw -small,y 5,sp
f94e 18 05 52 01 88 movw -small,y ext
f953 18 02 c0 22 movw 0,pc 3,+x
f957 18 02 c0 6b movw 0,pc 5,-y
f95b 18 02 c0 85 movw 0,pc 5,sp
f95f 18 05 c0 01 88 movw 0,pc ext
f964 18 02 80 22 movw 0,sp 3,+x
f968 18 02 80 6b movw 0,sp 5,-y
f96c 18 02 80 85 movw 0,sp 5,sp
f970 18 05 80 01 88 movw 0,sp ext
f975 18 02 00 22 movw 0,x 3,+x
f979 18 02 00 6b movw 0,x 5,-y
f97d 18 02 00 85 movw 0,x 5,sp
f981 18 05 00 01 88 movw 0,x ext
f986 18 02 40 22 movw 0,y 3,+x
f98a 18 02 40 6b movw 0,y 5,-y
f98e 18 02 40 85 movw 0,y 5,sp
f992 18 05 40 01 88 movw 0,y ext
f997 18 02 b0 22 movw 1,sp+ 3,+x
f99b 18 02 b0 6b movw 1,sp+ 5,-y
f99f 18 02 b0 85 movw 1,sp+ 5,sp
f9a3 18 05 b0 01 88 movw 1,sp+ ext
f9a8 18 02 30 22 movw 1,x+ 3,+x
f9ac 18 02 30 6b movw 1,x+ 5,-y
f9b0 18 02 30 85 movw 1,x+ 5,sp
f9b4 18 05 30 01 88 movw 1,x+ ext
f9b9 18 02 70 22 movw 1,y+ 3,+x
f9bd 18 02 70 6b movw 1,y+ 5,-y
f9c1 18 02 70 85 movw 1,y+ 5,sp
f9c5 18 05 70 01 88 movw 1,y+ ext
f9ca 18 02 81 22 movw 1,sp 3,+x
f9ce 18 02 81 6b movw 1,sp 5,-y
f9d2 18 02 81 85 movw 1,sp 5,sp
f9d6 18 05 81 01 88 movw 1,sp ext
f9db 18 02 01 22 movw 1,x 3,+x
f9df 18 02 01 6b movw 1,x 5,-y
f9e3 18 02 01 85 movw 1,x 5,sp
f9e7 18 05 01 01 88 movw 1,x ext
f9ec 18 02 41 22 movw 1,y 3,+x
f9f0 18 02 41 6b movw 1,y 5,-y
f9f4 18 02 41 85 movw 1,y 5,sp
f9f8 18 05 41 01 88 movw 1,y ext
f9fd 18 02 bf 22 movw 1,sp- 3,+x
fa01 18 02 bf 6b movw 1,sp- 5,-y
fa05 18 02 bf 85 movw 1,sp- 5,sp
fa09 18 05 bf 01 88 movw 1,sp- ext
fa0e 18 02 3f 22 movw 1,x- 3,+x
fa12 18 02 3f 6b movw 1,x- 5,-y
fa16 18 02 3f 85 movw 1,x- 5,sp
fa1a 18 05 3f 01 88 movw 1,x- ext
fa1f 18 02 7f 22 movw 1,y- 3,+x
fa23 18 02 7f 6b movw 1,y- 5,-y
fa27 18 02 7f 85 movw 1,y- 5,sp
fa2b 18 05 7f 01 88 movw 1,y- ext
fa30 18 02 6b a0 movw 5,-y 1,+sp
fa34 18 02 6b 20 movw 5,-y 1,+x
fa38 18 02 6b 60 movw 5,-y 1,+y
fa3c 18 02 6b a7 movw 5,-y 8,+sp
fa40 18 02 6b 27 movw 5,-y 8,+x
fa44 18 02 6b 67 movw 5,-y 8,+y
fa48 18 02 6b c0 movw 5,-y ,pc
fa4c 18 02 6b 80 movw 5,-y ,sp
fa50 18 02 6b 00 movw 5,-y ,x
fa54 18 02 6b 40 movw 5,-y ,y
fa58 18 02 6b af movw 5,-y 1,-sp
CPU12 ASSEMBL

REFERENCE MANUAL
fa5c 18 02 6b 2f movw 5,-y 1,-x
fa60 18 02 6b 6f movw 5,-y 1,-y
fa64 18 02 6b a8 movw 5,-y 8,-sp
fa68 18 02 6b 28 movw 5,-y 8,-x
fa6c 18 02 6b 68 movw 5,-y 8,-y
fa70 18 02 6b 9f movw 5,-y -1,sp
fa74 18 02 6b 1f movw 5,-y -1,x
fa78 18 02 6b 5f movw 5,-y -1,y
fa7c 18 02 6b 90 movw 5,-y -16,sp
fa80 18 02 6b 10 movw 5,-y -16,x
fa84 18 02 6b 50 movw 5,-y -16,y
fa88 18 02 6b d2 movw 5,-y -small,pc
fa8c 18 02 6b 92 movw 5,-y -small,sp
fa90 18 02 6b 12 movw 5,-y -small,x
fa94 18 02 6b 52 movw 5,-y -small,y
fa98 18 02 6b c0 movw 5,-y 0,pc
fa9c 18 02 6b 80 movw 5,-y 0,sp
faa0 18 02 6b 00 movw 5,-y 0,x
faa4 18 02 6b 40 movw 5,-y 0,y
faa8 18 02 6b b0 movw 5,-y 1,sp+
faac 18 02 6b 30 movw 5,-y 1,x+
fab0 18 02 6b 70 movw 5,-y 1,y+
fab4 18 02 6b 81 movw 5,-y 1,sp
fab8 18 02 6b 01 movw 5,-y 1,x
fabc 18 02 6b 41 movw 5,-y 1,y
fac0 18 02 6b bf movw 5,-y 1,sp-
fac4 18 02 6b 3f movw 5,-y 1,x-
fac8 18 02 6b 7f movw 5,-y 1,y-
facc 18 02 6b 8f movw 5,-y 15,sp
fad0 18 02 6b 0f movw 5,-y 15,x
fad4 18 02 6b 4f movw 5,-y 15,y
fad8 18 02 6b b7 movw 5,-y 8,sp+
fadc 18 02 6b 37 movw 5,-y 8,x+
fae0 18 02 6b 77 movw 5,-y 8,y+
fae4 18 02 6b b8 movw 5,-y 8,sp-
fae8 18 02 6b 38 movw 5,-y 8,x-
faec 18 02 6b 78 movw 5,-y 8,y-
faf0 18 02 6b f4 movw 5,-y a,sp
faf4 18 02 6b e4 movw 5,-y a,x
faf8 18 02 6b ec movw 5,-y a,y
fafc 18 02 6b f5 movw 5,-y b,sp
fb00 18 02 6b e5 movw 5,-y b,x
fb04 18 02 6b ed movw 5,-y b,y
fb08 18 02 6b f6 movw 5,-y d,sp
fb0c 18 02 6b e6 movw 5,-y d,x
fb10 18 02 6b ee movw 5,-y d,y
fb14 18 05 6b 01 88 movw 5,-y ext
fb19 18 02 6b ce movw 5,-y small,pc
fb1d 18 02 6b 8e movw 5,-y small,sp
fb21 18 02 6b 0e movw 5,-y small,x
fb25 18 02 6b 4e movw 5,-y small,y
fb29 18 02 8f 22 movw 15,sp 3,+x
fb2d 18 02 8f 6b movw 15,sp 5,-y
fb31 18 02 8f 85 movw 15,sp 5,sp
fb35 18 05 8f 01 88 movw 15,sp ext
fb3a 18 02 0f 22 movw 15,x 3,+x
fb3e 18 02 0f 6b movw 15,x 5,-y
fb42 18 02 0f 85 movw 15,x 5,sp
fb46 18 05 0f 01 88 movw 15,x ext
fb4b 18 02 4f 22 movw 15,y 3,+x
fb4f 18 02 4f 6b movw 15,y 5,-y
fb53 18 02 4f 85 movw 15,y 5,sp
fb57 18 05 4f 01 88 movw 15,y ext
fb5c 18 02 85 a0 movw 5,sp 1,+sp
fb60 18 02 85 20 movw 5,sp 1,+x
fb64 18 02 85 60 movw 5,sp 1,+y
Y LISTING MOTOROLA

D-29



fb68 18 02 85 a7 movw 5,sp 8,+sp
fb6c 18 02 85 27 movw 5,sp 8,+x
fb70 18 02 85 67 movw 5,sp 8,+y
fb74 18 02 85 c0 movw 5,sp ,pc
fb78 18 02 85 80 movw 5,sp ,sp
fb7c 18 02 85 00 movw 5,sp ,x
fb80 18 02 85 40 movw 5,sp ,y
fb84 18 02 85 af movw 5,sp 1,-sp
fb88 18 02 85 2f movw 5,sp 1,-x
fb8c 18 02 85 6f movw 5,sp 1,-y
fb90 18 02 85 a8 movw 5,sp 8,-sp
fb94 18 02 85 28 movw 5,sp 8,-x
fb98 18 02 85 68 movw 5,sp 8,-y
fb9c 18 02 85 9f movw 5,sp -1,sp
fba0 18 02 85 1f movw 5,sp -1,x
fba4 18 02 85 5f movw 5,sp -1,y
fba8 18 02 85 90 movw 5,sp -16,sp
fbac 18 02 85 10 movw 5,sp -16,x
fbb0 18 02 85 50 movw 5,sp -16,y
fbb4 18 02 85 d2 movw 5,sp -small,pc
fbb8 18 02 85 92 movw 5,sp -small,sp
fbbc 18 02 85 12 movw 5,sp -small,x
fbc0 18 02 85 52 movw 5,sp -small,y
fbc4 18 02 85 c0 movw 5,sp 0,pc
fbc8 18 02 85 80 movw 5,sp 0,sp
fbcc 18 02 85 00 movw 5,sp 0,x
fbd0 18 02 85 40 movw 5,sp 0,y
fbd4 18 02 85 b0 movw 5,sp 1,sp+
fbd8 18 02 85 30 movw 5,sp 1,x+
fbdc 18 02 85 70 movw 5,sp 1,y+
fbe0 18 02 85 81 movw 5,sp 1,sp
fbe4 18 02 85 01 movw 5,sp 1,x
fbe8 18 02 85 41 movw 5,sp 1,y
fbec 18 02 85 bf movw 5,sp 1,sp-
fbf0 18 02 85 3f movw 5,sp 1,x-
fbf4 18 02 85 7f movw 5,sp 1,y-
fbf8 18 02 85 b7 movw 5,sp 8,sp+
fbfc 18 02 85 37 movw 5,sp 8,x+
fc00 18 02 85 77 movw 5,sp 8,y+
fc04 18 02 85 b8 movw 5,sp 8,sp-
fc08 18 02 85 38 movw 5,sp 8,x-
fc0c 18 02 85 78 movw 5,sp 8,y-
fc10 18 02 85 f4 movw 5,sp a,sp
fc14 18 02 85 e4 movw 5,sp a,x
fc18 18 02 85 ec movw 5,sp a,y
fc1c 18 02 85 f5 movw 5,sp b,sp
fc20 18 02 85 e5 movw 5,sp b,x
fc24 18 02 85 ed movw 5,sp b,y
fc28 18 02 85 f6 movw 5,sp d,sp
fc2c 18 02 85 e6 movw 5,sp d,x
fc30 18 02 85 ee movw 5,sp d,y
fc34 18 05 85 01 88 movw 5,sp ext
fc39 18 02 85 ce movw 5,sp small,pc
fc3d 18 02 85 8e movw 5,sp small,sp
fc41 18 02 85 0e movw 5,sp small,x
fc45 18 02 85 4e movw 5,sp small,y
fc49 18 02 b7 22 movw 8,sp+ 3,+x
fc4d 18 02 b7 6b movw 8,sp+ 5,-y
fc51 18 02 b7 85 movw 8,sp+ 5,sp
fc55 18 05 b7 01 88 movw 8,sp+ ext
fc5a 18 02 37 22 movw 8,x+ 3,+x
fc5e 18 02 37 6b movw 8,x+ 5,-y
fc62 18 02 37 85 movw 8,x+ 5,sp
fc66 18 05 37 01 88 movw 8,x+ ext
fc6b 18 02 77 22 movw 8,y+ 3,+x
fc6f 18 02 77 6b movw 8,y+ 5,-y
 MOTOROLA ASSEMB

D-30
fc73 18 02 77 85 movw 8,y+ 5,sp
fc77 18 05 77 01 88 movw 8,y+ ext
fc7c 18 02 b8 22 movw 8,sp- 3,+x
fc80 18 02 b8 6b movw 8,sp- 5,-y
fc84 18 02 b8 85 movw 8,sp- 5,sp
fc88 18 05 b8 01 88 movw 8,sp- ext
fc8d 18 02 38 22 movw 8,x- 3,+x
fc91 18 02 38 6b movw 8,x- 5,-y
fc95 18 02 38 85 movw 8,x- 5,sp
fc99 18 05 38 01 88 movw 8,x- ext
fc9e 18 02 78 22 movw 8,y- 3,+x
fca2 18 02 78 6b movw 8,y- 5,-y
fca6 18 02 78 85 movw 8,y- 5,sp
fcaa 18 05 78 01 88 movw 8,y- ext
fcaf 18 02 f4 22 movw a,sp 3,+x
fcb3 18 02 f4 6b movw a,sp 5,-y
fcb7 18 02 f4 85 movw a,sp 5,sp
fcbb 18 05 f4 01 88 movw a,sp ext
fcc0 18 02 e4 22 movw a,x 3,+x
fcc4 18 02 e4 6b movw a,x 5,-y
fcc8 18 02 e4 85 movw a,x 5,sp
fccc 18 05 e4 01 88 movw a,x ext
fcd1 18 02 ec 22 movw a,y 3,+x
fcd5 18 02 ec 6b movw a,y 5,-y
fcd9 18 02 ec 85 movw a,y 5,sp
fcdd 18 05 ec 01 88 movw a,y ext
fce2 18 02 f5 22 movw b,sp 3,+x
fce6 18 02 f5 6b movw b,sp 5,-y
fcea 18 02 f5 85 movw b,sp 5,sp
fcee 18 05 f5 01 88 movw b,sp ext
fcf3 18 02 e5 22 movw b,x 3,+x
fcf7 18 02 e5 6b movw b,x 5,-y
fcfb 18 02 e5 85 movw b,x 5,sp
fcff 18 05 e5 01 88 movw b,x ext
fd04 18 02 ed 22 movw b,y 3,+x
fd08 18 02 ed 6b movw b,y 5,-y
fd0c 18 02 ed 85 movw b,y 5,sp
fd10 18 05 ed 01 88 movw b,y ext
fd15 18 02 f6 22 movw d,sp 3,+x
fd19 18 02 f6 6b movw d,sp 5,-y
fd1d 18 02 f6 85 movw d,sp 5,sp
fd21 18 05 f6 01 88 movw d,sp ext
fd26 18 02 e6 22 movw d,x 3,+x
fd2a 18 02 e6 6b movw d,x 5,-y
fd2e 18 02 e6 85 movw d,x 5,sp
fd32 18 05 e6 01 88 movw d,x ext
fd37 18 02 ee 22 movw d,y 3,+x
fd3b 18 02 ee 6b movw d,y 5,-y
fd3f 18 02 ee 85 movw d,y 5,sp
fd43 18 05 ee 01 88 movw d,y ext
fd48 18 01 a0 01 88 movw ext 1,+sp
fd4d 18 01 20 01 88 movw ext 1,+x
fd52 18 01 60 01 88 movw ext 1,+y
fd57 18 01 a7 01 88 movw ext 8,+sp
fd5c 18 01 27 01 88 movw ext 8,+x
fd61 18 01 67 01 88 movw ext 8,+y
fd66 18 01 c0 01 88 movw ext ,pc
fd6b 18 01 80 01 88 movw ext ,sp
fd70 18 01 00 01 88 movw ext ,x
fd75 18 01 40 01 88 movw ext ,y
fd7a 18 01 af 01 88 movw ext 1,-sp
fd7f 18 01 2f 01 88 movw ext 1,-x
fd84 18 01 6f 01 88 movw ext 1,-y
fd89 18 01 a8 01 88 movw ext 8,-sp
fd8e 18 01 28 01 88 movw ext 8,-x
fd93 18 01 68 01 88 movw ext 8,-y
LY LISTING CPU12

REFERENCE MANUAL



fd98 18 01 9f 01 88 movw ext -1,sp
fd9d 18 01 1f 01 88 movw ext -1,x
fda2 18 01 5f 01 88 movw ext -1,y
fda7 18 01 90 01 88 movw ext -16,sp
fdac 18 01 10 01 88 movw ext -16,x
fdb1 18 01 50 01 88 movw ext -16,y
fdb6 18 01 d2 01 88 movw ext -small,pc
fdbb 18 01 92 01 88 movw ext -small,sp
fdc0 18 01 12 01 88 movw ext -small,x
fdc5 18 01 52 01 88 movw ext -small,y
fdca 18 01 c0 01 88 movw ext 0,pc
fdcf 18 01 80 01 88 movw ext 0,sp
fdd4 18 01 00 01 88 movw ext 0,x
fdd9 18 01 40 01 88 movw ext 0,y
fdde 18 01 b0 01 88 movw ext 1,sp+
fde3 18 01 30 01 88 movw ext 1,x+
fde8 18 01 70 01 88 movw ext 1,y+
fded 18 01 81 01 88 movw ext 1,sp
fdf2 18 01 01 01 88 movw ext 1,x
fdf7 18 01 41 01 88 movw ext 1,y
fdfc 18 01 bf 01 88 movw ext 1,sp-
fe01 18 01 3f 01 88 movw ext 1,x-
fe06 18 01 7f 01 88 movw ext 1,y-
fe0b 18 01 b7 01 88 movw ext 8,sp+
fe10 18 01 37 01 88 movw ext 8,x+
fe15 18 01 77 01 88 movw ext 8,y+
fe1a 18 01 b8 01 88 movw ext 8,sp-
fe1f 18 01 38 01 88 movw ext 8,x-
fe24 18 01 78 01 88 movw ext 8,y-
fe29 18 01 f4 01 88 movw ext a,sp
fe2e 18 01 e4 01 88 movw ext a,x
fe33 18 01 ec 01 88 movw ext a,y
fe38 18 01 f5 01 88 movw ext b,sp
fe3d 18 01 e5 01 88 movw ext b,x
fe42 18 01 ed 01 88 movw ext b,y
fe47 18 01 f6 01 88 movw ext d,sp
fe4c 18 01 e6 01 88 movw ext d,x
fe51 18 01 ee 01 88 movw ext d,y
fe56 18 04 01 88 01 88 movw ext ext
fe5c 18 01 ce 01 88 movw ext small,pc
fe61 18 01 8e 01 88 movw ext small,sp
fe66 18 01 0e 01 88 movw ext small,x
fe6b 18 01 4e 01 88 movw ext small,y
fe70 18 02 ce 22 movw small,pc 3,+x
fe74 18 02 ce 6b movw small,pc 5,-y
fe78 18 02 ce 85 movw small,pc 5,sp
fe7c 18 05 ce 01 88 movw small,pc ext
fe81 18 02 8e 22 movw small,sp 3,+x
fe85 18 02 8e 6b movw small,sp 5,-y
fe89 18 02 8e 85 movw small,sp 5,sp
fe8d 18 05 8e 01 88 movw small,sp ext
fe92 18 02 0e 22 movw small,x 3,+x
fe96 18 02 0e 6b movw small,x 5,-y
fe9a 18 02 0e 85 movw small,x 5,sp
fe9e 18 05 0e 01 88 movw small,x ext
fea3 18 02 4e 22 movw small,y 3,+x
fea7 18 02 4e 6b movw small,y 5,-y
feab 18 02 4e 85 movw small,y 5,sp
feaf 18 05 4e 01 88 movw small,y ext
feb4 12 mul
feb5 60 a0 neg 1,+sp
feb7 60 20 neg 1,+x
feb9 60 60 neg 1,+y
febb 60 a7 neg 8,+sp
febd 60 27 neg 8,+x
febf 60 67 neg 8,+y
CPU12 ASSEMBL

REFERENCE MANUAL
fec1 60 c0 neg ,pc
fec3 60 80 neg ,sp
fec5 60 00 neg ,x
fec7 60 40 neg ,y
fec9 60 af neg 1,-sp
fecb 60 2f neg 1,-x
fecd 60 6f neg 1,-y
fecf 60 a8 neg 8,-sp
fed1 60 28 neg 8,-x
fed3 60 68 neg 8,-y
fed5 60 9f neg -1,sp
fed7 60 1f neg -1,x
fed9 60 5f neg -1,y
fedb 60 90 neg -16,sp
fedd 60 10 neg -16,x
fedf 60 50 neg -16,y
fee1 60 f1 ef neg -17,sp
fee4 60 e1 ef neg -17,x
fee7 60 e9 ef neg -17,y
feea 60 d2 neg -small,pc
feec 60 92 neg -small,sp
feee 60 12 neg -small,x
fef0 60 52 neg -small,y
fef2 60 c0 neg 0,pc
fef4 60 80 neg 0,sp
fef6 60 00 neg 0,x
fef8 60 40 neg 0,y
fefa 60 b0 neg 1,sp+
fefc 60 30 neg 1,x+
fefe 60 70 neg 1,y+
ff00 60 81 neg 1,sp
ff02 60 01 neg 1,x
ff04 60 41 neg 1,y
ff06 60 bf neg 1,sp-
ff08 60 3f neg 1,x-
ff0a 60 7f neg 1,y-
ff0c 60 f8 7d neg 125,pc
ff0f 60 f0 7d neg 125,sp
ff12 60 e0 7d neg 125,x
ff15 60 e8 7d neg 125,y
ff18 60 8f neg 15,sp
ff1a 60 0f neg 15,x
ff1c 60 4f neg 15,y
ff1e 60 f0 10 neg 16,sp
ff21 60 e0 10 neg 16,x
ff24 60 e8 10 neg 16,y
ff27 60 b7 neg 8,sp+
ff29 60 37 neg 8,x+
ff2b 60 77 neg 8,y+
ff2d 60 b8 neg 8,sp-
ff2f 60 38 neg 8,x-
ff31 60 78 neg 8,y-
ff33 60 f4 neg a,sp
ff35 60 e4 neg a,x
ff37 60 ec neg a,y
ff39 60 f5 neg b,sp
ff3b 60 e5 neg b,x
ff3d 60 ed neg b,y
ff3f 60 f6 neg d,sp
ff41 60 e6 neg d,x
ff43 60 ee neg d,y
ff45 70 00 55 neg dir
ff48 70 01 88 neg ext
ff4b 70 01 88 neg ext
ff4e 60 f2 01 88 neg ext,sp
ff52 60 e2 01 88 neg ext,x
Y LISTING MOTOROLA

D-31



ff56 60 ea 01 88 neg ext,y
ff5a 60 f8 37 neg ind,pc
ff5d 60 f0 37 neg ind,sp
ff60 60 e0 37 neg ind,x
ff63 60 e8 37 neg ind,y
ff66 60 ce neg small,pc
ff68 60 8e neg small,sp
ff6a 60 0e neg small,x
ff6c 60 4e neg small,y
ff6e 40 nega
ff6f 50 negb
ff70 a7 nop
ff71 8a 72 oraa #immed
ff73 8a 72 oraa #immed
ff75 aa a0 oraa 1,+sp
ff77 aa 20 oraa 1,+x
ff79 aa 60 oraa 1,+y
ff7b aa a7 oraa 8,+sp
ff7d aa 27 oraa 8,+x
ff7f aa 67 oraa 8,+y
ff81 aa c0 oraa ,pc
ff83 aa 80 oraa ,sp
ff85 aa 00 oraa ,x
ff87 aa 40 oraa ,y
ff89 aa af oraa 1,-sp
ff8b aa 2f oraa 1,-x
ff8d aa 6f oraa 1,-y
ff8f aa a8 oraa 8,-sp
ff91 aa 28 oraa 8,-x
ff93 aa 68 oraa 8,-y
ff95 aa 9f oraa -1,sp
ff97 aa 1f oraa -1,x
ff99 aa 5f oraa -1,y
ff9b aa 90 oraa -16,sp
ff9d aa 10 oraa -16,x
ff9f aa 50 oraa -16,y
ffa1 aa f1 ef oraa -17,sp
ffa4 aa e1 ef oraa -17,x
ffa7 aa e9 ef oraa -17,y
ffaa aa d2 oraa -small,pc
ffac aa 92 oraa -small,sp
ffae aa 12 oraa -small,x
ffb0 aa 52 oraa -small,y
ffb2 aa c0 oraa 0,pc
ffb4 aa 80 oraa 0,sp
ffb6 aa 00 oraa 0,x
ffb8 aa 40 oraa 0,y
ffba aa b0 oraa 1,sp+
ffbc aa 30 oraa 1,x+
ffbe aa 70 oraa 1,y+
ffc0 aa 81 oraa 1,sp
ffc2 aa 01 oraa 1,x
ffc4 aa 41 oraa 1,y
ffc6 aa bf oraa 1,sp-
ffc8 aa 3f oraa 1,x-
ffca aa 7f oraa 1,y-
ffcc aa f8 7d oraa 125,pc
ffcf aa f0 7d oraa 125,sp
ffd2 aa e0 7d oraa 125,x
ffd5 aa e8 7d oraa 125,y
ffd8 aa 8f oraa 15,sp
ffda aa 0f oraa 15,x
ffdc aa 4f oraa 15,y
ffde aa f0 10 oraa 16,sp
ffe1 aa e0 10 oraa 16,x
ffe4 aa e8 10 oraa 16,y
 MOTOROLA ASSEMB

D-32
ffe7 aa b7 oraa 8,sp+
ffe9 aa 37 oraa 8,x+
ffeb aa 77 oraa 8,y+
ffed aa b8 oraa 8,sp-
ffef aa 38 oraa 8,x-
fff1 aa 78 oraa 8,y-
fff3 aa f4 oraa a,sp
fff5 aa e4 oraa a,x
fff7 aa ec oraa a,y
fff9 aa f5 oraa b,sp
fffb aa e5 oraa b,x
fffd aa ed oraa b,y
ffff aa f6 oraa d,sp
0001 aa e6 oraa d,x
0003 aa ee oraa d,y
0005 9a 55 oraa dir
0007 9a 55 oraa dir
0009 ba 01 88 oraa ext
000c ba 01 88 oraa ext
000f aa f2 01 88 oraa ext,sp
0013 aa e2 01 88 oraa ext,x
0017 aa ea 01 88 oraa ext,y
001b aa f8 37 oraa ind,pc
001e aa f0 37 oraa ind,sp
0021 aa e0 37 oraa ind,x
0024 aa e8 37 oraa ind,y
0027 aa ce oraa small,pc
0029 aa 8e oraa small,sp
002b aa 0e oraa small,x
002d aa 4e oraa small,y
002f ca 72 orab #immed
0031 ca 72 orab #immed
0033 ea a0 orab 1,+sp
0035 ea 20 orab 1,+x
0037 ea 60 orab 1,+y
0039 ea a7 orab 8,+sp
003b ea 27 orab 8,+x
003d ea 67 orab 8,+y
003f ea c0 orab ,pc
0041 ea 80 orab ,sp
0043 ea 00 orab ,x
0045 ea 40 orab ,y
0047 ea af orab 1,-sp
0049 ea 2f orab 1,-x
004b ea 6f orab 1,-y
004d ea a8 orab 8,-sp
004f ea 28 orab 8,-x
0051 ea 68 orab 8,-y
0053 ea 9f orab -1,sp
0055 ea 1f orab -1,x
0057 ea 5f orab -1,y
0059 ea 90 orab -16,sp
005b ea 10 orab -16,x
005d ea 50 orab -16,y
005f ea f1 ef orab -17,sp
0062 ea e1 ef orab -17,x
0065 ea e9 ef orab -17,y
0068 ea d2 orab -small,pc
006a ea 92 orab -small,sp
006c ea 12 orab -small,x
006e ea 52 orab -small,y
0070 ea c0 orab 0,pc
0072 ea 80 orab 0,sp
0074 ea 00 orab 0,x
0076 ea 40 orab 0,y
0078 ea b0 orab 1,sp+
LY LISTING CPU12

REFERENCE MANUAL



007a ea 30 orab 1,x+
007c ea 70 orab 1,y+
007e ea 81 orab 1,sp
0080 ea 01 orab 1,x
0082 ea 41 orab 1,y
0084 ea bf orab 1,sp-
0086 ea 3f orab 1,x-
0088 ea 7f orab 1,y-
008a ea f8 7d orab 125,pc
008d ea f0 7d orab 125,sp
0090 ea e0 7d orab 125,x
0093 ea e8 7d orab 125,y
0096 ea 8f orab 15,sp
0098 ea 0f orab 15,x
009a ea 4f orab 15,y
009c ea f0 10 orab 16,sp
009f ea e0 10 orab 16,x
00a2 ea e8 10 orab 16,y
00a5 ea b7 orab 8,sp+
00a7 ea 37 orab 8,x+
00a9 ea 77 orab 8,y+
00ab ea b8 orab 8,sp-
00ad ea 38 orab 8,x-
00af ea 78 orab 8,y-
00b1 ea f4 orab a,sp
00b3 ea e4 orab a,x
00b5 ea ec orab a,y
00b7 ea f5 orab b,sp
00b9 ea e5 orab b,x
00bb ea ed orab b,y
00bd ea f6 orab d,sp
00bf ea e6 orab d,x
00c1 ea ee orab d,y
00c3 da 55 orab dir
00c5 da 55 orab dir
00c7 fa 01 88 orab ext
00ca fa 01 88 orab ext
00cd ea f2 01 88 orab ext,sp
00d1 ea e2 01 88 orab ext,x
00d5 ea ea 01 88 orab ext,y
00d9 ea f8 37 orab ind,pc
00dc ea f0 37 orab ind,sp
00df ea e0 37 orab ind,x
00e2 ea e8 37 orab ind,y
00e5 ea ce orab small,pc
00e7 ea 8e orab small,sp
00e9 ea 0e orab small,x
00eb ea 4e orab small,y
00ed 14 72 orcc #immed
00ef 36 psha
00f0 37 pshb
00f1 3b pshd
00f2 34 pshx
00f3 35 pshy
00f4 32 pula
00f5 33 pulb
00f6 38 pulc
00f7 3a puld
00f8 30 pulx
00f9 31 puly
00fa 18 3a rev
00fc 65 a0 rol 1,+sp
00fe 65 20 rol 1,+x
0100 65 60 rol 1,+y
0102 65 a7 rol 8,+sp
0104 65 27 rol 8,+x
CPU12 ASSEMBL

REFERENCE MANUAL
0106 65 67 rol 8,+y
0108 65 c0 rol ,pc
010a 65 80 rol ,sp
010c 65 00 rol ,x
010e 65 40 rol ,y
0110 65 af rol 1,-sp
0112 65 2f rol 1,-x
0114 65 6f rol 1,-y
0116 65 a8 rol 8,-sp
0118 65 28 rol 8,-x
011a 65 68 rol 8,-y
011c 65 9f rol -1,sp
011e 65 1f rol -1,x
0120 65 5f rol -1,y
0122 65 90 rol -16,sp
0124 65 10 rol -16,x
0126 65 50 rol -16,y
0128 65 f1 ef rol -17,sp
012b 65 e1 ef rol -17,x
012e 65 e9 ef rol -17,y
0131 65 d2 rol -small,pc
0133 65 92 rol -small,sp
0135 65 12 rol -small,x
0137 65 52 rol -small,y
0139 65 c0 rol 0,pc
013b 65 80 rol 0,sp
013d 65 00 rol 0,x
013f 65 40 rol 0,y
0141 65 b0 rol 1,sp+
0143 65 30 rol 1,x+
0145 65 70 rol 1,y+
0147 65 81 rol 1,sp
0149 65 01 rol 1,x
014b 65 41 rol 1,y
014d 65 bf rol 1,sp-
014f 65 3f rol 1,x-
0151 65 7f rol 1,y-
0153 65 f8 7d rol 125,pc
0156 65 f0 7d rol 125,sp
0159 65 e0 7d rol 125,x
015c 65 e8 7d rol 125,y
015f 65 8f rol 15,sp
0161 65 0f rol 15,x
0163 65 4f rol 15,y
0165 65 f0 10 rol 16,sp
0168 65 e0 10 rol 16,x
016b 65 e8 10 rol 16,y
016e 65 b7 rol 8,sp+
0170 65 37 rol 8,x+
0172 65 77 rol 8,y+
0174 65 b8 rol 8,sp-
0176 65 38 rol 8,x-
0178 65 78 rol 8,y-
017a 65 f4 rol a,sp
017c 65 e4 rol a,x
017e 65 ec rol a,y
0180 65 f5 rol b,sp
0182 65 e5 rol b,x
0184 65 ed rol b,y
0186 65 f6 rol d,sp
0188 65 e6 rol d,x
018a 65 ee rol d,y
018c 75 00 55 rol dir
018f 75 01 88 rol ext
0192 75 01 88 rol ext
0195 65 f2 01 88 rol ext,sp
Y LISTING MOTOROLA

D-33



0199 65 e2 01 88 rol ext,x
019d 65 ea 01 88 rol ext,y
01a1 65 f8 37 rol ind,pc
01a4 65 f0 37 rol ind,sp
01a7 65 e0 37 rol ind,x
01aa 65 e8 37 rol ind,y
01ad 65 ce rol small,pc
01af 65 8e rol small,sp
01b1 65 0e rol small,x
01b3 65 4e rol small,y
01b5 45 rola
01b6 55 rolb
01b7 66 a0 ror 1,+sp
01b9 66 20 ror 1,+x
01bb 66 60 ror 1,+y
01bd 66 a7 ror 8,+sp
01bf 66 27 ror 8,+x
01c1 66 67 ror 8,+y
01c3 66 c0 ror ,pc
01c5 66 80 ror ,sp
01c7 66 00 ror ,x
01c9 66 40 ror ,y
01cb 66 af ror 1,-sp
01cd 66 2f ror 1,-x
01cf 66 6f ror 1,-y
01d1 66 a8 ror 8,-sp
01d3 66 28 ror 8,-x
01d5 66 68 ror 8,-y
01d7 66 9f ror -1,sp
01d9 66 1f ror -1,x
01db 66 5f ror -1,y
01dd 66 90 ror -16,sp
01df 66 10 ror -16,x
01e1 66 50 ror -16,y
01e3 66 f1 ef ror -17,sp
01e6 66 e1 ef ror -17,x
01e9 66 e9 ef ror -17,y
01ec 66 d2 ror -small,pc
01ee 66 92 ror -small,sp
01f0 66 12 ror -small,x
01f2 66 52 ror -small,y
01f4 66 c0 ror 0,pc
01f6 66 80 ror 0,sp
01f8 66 00 ror 0,x
01fa 66 40 ror 0,y
01fc 66 b0 ror 1,sp+
01fe 66 30 ror 1,x+
0200 66 70 ror 1,y+
0202 66 81 ror 1,sp
0204 66 01 ror 1,x
0206 66 41 ror 1,y
0208 66 bf ror 1,sp-
020a 66 3f ror 1,x-
020c 66 7f ror 1,y-
020e 66 f8 7d ror 125,pc
0211 66 f0 7d ror 125,sp
0214 66 e0 7d ror 125,x
0217 66 e8 7d ror 125,y
021a 66 8f ror 15,sp
021c 66 0f ror 15,x
021e 66 4f ror 15,y
0220 66 f0 10 ror 16,sp
0223 66 e0 10 ror 16,x
0226 66 e8 10 ror 16,y
0229 66 b7 ror 8,sp+
022b 66 37 ror 8,x+
 MOTOROLA ASSEMB

D-34
022d 66 77 ror 8,y+
022f 66 b8 ror 8,sp-
0231 66 38 ror 8,x-
0233 66 78 ror 8,y-
0235 66 f4 ror a,sp
0237 66 e4 ror a,x
0239 66 ec ror a,y
023b 66 f5 ror b,sp
023d 66 e5 ror b,x
023f 66 ed ror b,y
0241 66 f6 ror d,sp
0243 66 e6 ror d,x
0245 66 ee ror d,y
0247 76 00 55 ror dir
024a 76 01 88 ror ext
024d 76 01 88 ror ext
0250 66 f2 01 88 ror ext,sp
0254 66 e2 01 88 ror ext,x
0258 66 ea 01 88 ror ext,y
025c 66 f8 37 ror ind,pc
025f 66 f0 37 ror ind,sp
0262 66 e0 37 ror ind,x
0265 66 e8 37 ror ind,y
0268 66 ce ror small,pc
026a 66 8e ror small,sp
026c 66 0e ror small,x
026e 66 4e ror small,y
0270 46 rora
0271 56 rorb
0272 0b rti
0273 3d rts
0274 18 16 sba
0276 82 72 sbca #immed
0278 82 72 sbca #immed
027a a2 a0 sbca 1,+sp
027c a2 20 sbca 1,+x
027e a2 60 sbca 1,+y
0280 a2 a7 sbca 8,+sp
0282 a2 27 sbca 8,+x
0284 a2 67 sbca 8,+y
0286 a2 c0 sbca ,pc
0288 a2 80 sbca ,sp
028a a2 00 sbca ,x
028c a2 40 sbca ,y
028e a2 af sbca 1,-sp
0290 a2 2f sbca 1,-x
0292 a2 6f sbca 1,-y
0294 a2 a8 sbca 8,-sp
0296 a2 28 sbca 8,-x
0298 a2 68 sbca 8,-y
029a a2 9f sbca -1,sp
029c a2 1f sbca -1,x
029e a2 5f sbca -1,y
02a0 a2 90 sbca -16,sp
02a2 a2 10 sbca -16,x
02a4 a2 50 sbca -16,y
02a6 a2 f1 ef sbca -17,sp
02a9 a2 e1 ef sbca -17,x
02ac a2 e9 ef sbca -17,y
02af a2 d2 sbca -small,pc
02b1 a2 92 sbca -small,sp
02b3 a2 12 sbca -small,x
02b5 a2 52 sbca -small,y
02b7 a2 c0 sbca 0,pc
02b9 a2 80 sbca 0,sp
02bb a2 00 sbca 0,x
LY LISTING CPU12

REFERENCE MANUAL



02bd a2 40 sbca 0,y
02bf a2 b0 sbca 1,sp+
02c1 a2 30 sbca 1,x+
02c3 a2 70 sbca 1,y+
02c5 a2 81 sbca 1,sp
02c7 a2 01 sbca 1,x
02c9 a2 41 sbca 1,y
02cb a2 bf sbca 1,sp-
02cd a2 3f sbca 1,x-
02cf a2 7f sbca 1,y-
02d1 a2 f8 7d sbca 125,pc
02d4 a2 f0 7d sbca 125,sp
02d7 a2 e0 7d sbca 125,x
02da a2 e8 7d sbca 125,y
02dd a2 8f sbca 15,sp
02df a2 0f sbca 15,x
02e1 a2 4f sbca 15,y
02e3 a2 f0 10 sbca 16,sp
02e6 a2 e0 10 sbca 16,x
02e9 a2 e8 10 sbca 16,y
02ec a2 b7 sbca 8,sp+
02ee a2 37 sbca 8,x+
02f0 a2 77 sbca 8,y+
02f2 a2 b8 sbca 8,sp-
02f4 a2 38 sbca 8,x-
02f6 a2 78 sbca 8,y-
02f8 a2 f4 sbca a,sp
02fa a2 e4 sbca a,x
02fc a2 ec sbca a,y
02fe a2 f5 sbca b,sp
0300 a2 e5 sbca b,x
0302 a2 ed sbca b,y
0304 a2 f6 sbca d,sp
0306 a2 e6 sbca d,x
0308 a2 ee sbca d,y
030a 92 55 sbca dir
030c 92 55 sbca dir
030e b2 01 88 sbca ext
0311 b2 01 88 sbca ext
0314 a2 f2 01 88 sbca ext,sp
0318 a2 e2 01 88 sbca ext,x
031c a2 ea 01 88 sbca ext,y
0320 a2 f8 37 sbca ind,pc
0323 a2 f0 37 sbca ind,sp
0326 a2 e0 37 sbca ind,x
0329 a2 e8 37 sbca ind,y
032c a2 ce sbca small,pc
032e a2 8e sbca small,sp
0330 a2 0e sbca small,x
0332 a2 4e sbca small,y
0334 c2 72 sbcb #immed
0336 c2 72 sbcb #immed
0338 e2 a0 sbcb 1,+sp
033a e2 20 sbcb 1,+x
033c e2 60 sbcb 1,+y
033e e2 a7 sbcb 8,+sp
0340 e2 27 sbcb 8,+x
0342 e2 67 sbcb 8,+y
0344 e2 c0 sbcb ,pc
0346 e2 80 sbcb ,sp
0348 e2 00 sbcb ,x
034a e2 40 sbcb ,y
034c e2 af sbcb 1,-sp
034e e2 2f sbcb 1,-x
0350 e2 6f sbcb 1,-y
0352 e2 a8 sbcb 8,-sp
CPU12 ASSEMBL

REFERENCE MANUAL
0354 e2 28 sbcb 8,-x
0356 e2 68 sbcb 8,-y
0358 e2 9f sbcb -1,sp
035a e2 1f sbcb -1,x
035c e2 5f sbcb -1,y
035e e2 90 sbcb -16,sp
0360 e2 10 sbcb -16,x
0362 e2 50 sbcb -16,y
0364 e2 f1 ef sbcb -17,sp
0367 e2 e1 ef sbcb -17,x
036a e2 e9 ef sbcb -17,y
036d e2 d2 sbcb -small,pc
036f e2 92 sbcb -small,sp
0371 e2 12 sbcb -small,x
0373 e2 52 sbcb -small,y
0375 e2 c0 sbcb 0,pc
0377 e2 80 sbcb 0,sp
0379 e2 00 sbcb 0,x
037b e2 40 sbcb 0,y
037d e2 b0 sbcb 1,sp+
037f e2 30 sbcb 1,x+
0381 e2 70 sbcb 1,y+
0383 e2 81 sbcb 1,sp
0385 e2 01 sbcb 1,x
0387 e2 41 sbcb 1,y
0389 e2 bf sbcb 1,sp-
038b e2 3f sbcb 1,x-
038d e2 7f sbcb 1,y-
038f e2 f8 7d sbcb 125,pc
0392 e2 f0 7d sbcb 125,sp
0395 e2 e0 7d sbcb 125,x
0398 e2 e8 7d sbcb 125,y
039b e2 8f sbcb 15,sp
039d e2 0f sbcb 15,x
039f e2 4f sbcb 15,y
03a1 e2 f0 10 sbcb 16,sp
03a4 e2 e0 10 sbcb 16,x
03a7 e2 e8 10 sbcb 16,y
03aa e2 b7 sbcb 8,sp+
03ac e2 37 sbcb 8,x+
03ae e2 77 sbcb 8,y+
03b0 e2 b8 sbcb 8,sp-
03b2 e2 38 sbcb 8,x-
03b4 e2 78 sbcb 8,y-
03b6 e2 f4 sbcb a,sp
03b8 e2 e4 sbcb a,x
03ba e2 ec sbcb a,y
03bc e2 f5 sbcb b,sp
03be e2 e5 sbcb b,x
03c0 e2 ed sbcb b,y
03c2 e2 f6 sbcb d,sp
03c4 e2 e6 sbcb d,x
03c6 e2 ee sbcb d,y
03c8 d2 55 sbcb dir
03ca d2 55 sbcb dir
03cc f2 01 88 sbcb ext
03cf f2 01 88 sbcb ext
03d2 e2 f2 01 88 sbcb ext,sp
03d6 e2 e2 01 88 sbcb ext,x
03da e2 ea 01 88 sbcb ext,y
03de e2 f8 37 sbcb ind,pc
03e1 e2 f0 37 sbcb ind,sp
03e4 e2 e0 37 sbcb ind,x
03e7 e2 e8 37 sbcb ind,y
03ea e2 ce sbcb small,pc
03ec e2 8e sbcb small,sp
Y LISTING MOTOROLA

D-35



03ee e2 0e sbcb small,x
03f0 e2 4e sbcb small,y
03f2 14 01 sec
03f4 14 10 sei
03f6 14 02 sev
03f8 b7 04 sex a d
03fa b7 07 sex a sp
03fc b7 07 sex a,sp
03fe b7 05 sex a x
0400 b7 05 sex a,x
0402 b7 06 sex a y
0404 b7 06 sex a,y
0406 b7 14 sex b d
0408 b7 17 sex b sp
040a b7 17 sex b,sp
040c b7 15 sex b x
040e b7 15 sex b,x
0410 b7 16 sex b y
0412 b7 16 sex b,y
0414 b7 24 sex ccr d
0416 b7 27 sex ccr sp
0418 b7 25 sex ccr x
041a b7 26 sex ccr y
041c 6a a0 staa 1,+sp
041e 6a 20 staa 1,+x
0420 6a 60 staa 1,+y
0422 6a a7 staa 8,+sp
0424 6a 27 staa 8,+x
0426 6a 67 staa 8,+y
0428 6a c0 staa ,pc
042a 6a 80 staa ,sp
042c 6a 00 staa ,x
042e 6a 40 staa ,y
0430 6a af staa 1,-sp
0432 6a 2f staa 1,-x
0434 6a 6f staa 1,-y
0436 6a a8 staa 8,-sp
0438 6a 28 staa 8,-x
043a 6a 68 staa 8,-y
043c 6a 9f staa -1,sp
043e 6a 1f staa -1,x
0440 6a 5f staa -1,y
0442 6a 90 staa -16,sp
0444 6a 10 staa -16,x
0446 6a 50 staa -16,y
0448 6a f1 ef staa -17,sp
044b 6a e1 ef staa -17,x
044e 6a e9 ef staa -17,y
0451 6a d2 staa -small,pc
0453 6a 92 staa -small,sp
0455 6a 12 staa -small,x
0457 6a 52 staa -small,y
0459 6a c0 staa 0,pc
045b 6a 80 staa 0,sp
045d 6a 00 staa 0,x
045f 6a 40 staa 0,y
0461 6a b0 staa 1,sp+
0463 6a 30 staa 1,x+
0465 6a 70 staa 1,y+
0467 6a 81 staa 1,sp
0469 6a 01 staa 1,x
046b 6a 41 staa 1,y
046d 6a bf staa 1,sp-
046f 6a 3f staa 1,x-
0471 6a 7f staa 1,y-
0473 6a f8 7d staa 125,pc
 MOTOROLA ASSEMB

D-36
0476 6a f0 7d staa 125,sp
0479 6a e0 7d staa 125,x
047c 6a e8 7d staa 125,y
047f 6a 8f staa 15,sp
0481 6a 0f staa 15,x
0483 6a 4f staa 15,y
0485 6a f0 10 staa 16,sp
0488 6a e0 10 staa 16,x
048b 6a e8 10 staa 16,y
048e 6a b7 staa 8,sp+
0490 6a 37 staa 8,x+
0492 6a 77 staa 8,y+
0494 6a b8 staa 8,sp-
0496 6a 38 staa 8,x-
0498 6a 78 staa 8,y-
049a 6a f4 staa a,sp
049c 6a e4 staa a,x
049e 6a ec staa a,y
04a0 6a f5 staa b,sp
04a2 6a e5 staa b,x
04a4 6a ed staa b,y
04a6 6a f6 staa d,sp
04a8 6a e6 staa d,x
04aa 6a ee staa d,y
04ac 5a 55 staa dir
04ae 5a 55 staa dir
04b0 7a 01 88 staa ext
04b3 7a 01 88 staa ext
04b6 6a f2 01 88 staa ext,sp
04ba 6a e2 01 88 staa ext,x
04be 6a ea 01 88 staa ext,y
04c2 6a f8 37 staa ind,pc
04c5 6a f0 37 staa ind,sp
04c8 6a e0 37 staa ind,x
04cb 6a e8 37 staa ind,y
04ce 6a ce staa small,pc
04d0 6a 8e staa small,sp
04d2 6a 0e staa small,x
04d4 6a 4e staa small,y
04d6 6b a0 stab 1,+sp
04d8 6b 20 stab 1,+x
04da 6b 60 stab 1,+y
04dc 6b a7 stab 8,+sp
04de 6b 27 stab 8,+x
04e0 6b 67 stab 8,+y
04e2 6b c0 stab ,pc
04e4 6b 80 stab ,sp
04e6 6b 00 stab ,x
04e8 6b 40 stab ,y
04ea 6b af stab 1,-sp
04ec 6b 2f stab 1,-x
04ee 6b 6f stab 1,-y
04f0 6b a8 stab 8,-sp
04f2 6b 28 stab 8,-x
04f4 6b 68 stab 8,-y
04f6 6b 9f stab -1,sp
04f8 6b 1f stab -1,x
04fa 6b 5f stab -1,y
04fc 6b 90 stab -16,sp
04fe 6b 10 stab -16,x
0500 6b 50 stab -16,y
0502 6b f1 ef stab -17,sp
0505 6b e1 ef stab -17,x
0508 6b e9 ef stab -17,y
050b 6b d2 stab -small,pc
050d 6b 92 stab -small,sp
LY LISTING CPU12

REFERENCE MANUAL



050f 6b 12 stab -small,x
0511 6b 52 stab -small,y
0513 6b c0 stab 0,pc
0515 6b 80 stab 0,sp
0517 6b 00 stab 0,x
0519 6b 40 stab 0,y
051b 6b b0 stab 1,sp+
051d 6b 30 stab 1,x+
051f 6b 70 stab 1,y+
0521 6b 81 stab 1,sp
0523 6b 01 stab 1,x
0525 6b 41 stab 1,y
0527 6b bf stab 1,sp-
0529 6b 3f stab 1,x-
052b 6b 7f stab 1,y-
052d 6b f8 7d stab 125,pc
0530 6b f0 7d stab 125,sp
0533 6b e0 7d stab 125,x
0536 6b e8 7d stab 125,y
0539 6b 8f stab 15,sp
053b 6b 0f stab 15,x
053d 6b 4f stab 15,y
053f 6b f0 10 stab 16,sp
0542 6b e0 10 stab 16,x
0545 6b e8 10 stab 16,y
0548 6b b7 stab 8,sp+
054a 6b 37 stab 8,x+
054c 6b 77 stab 8,y+
054e 6b b8 stab 8,sp-
0550 6b 38 stab 8,x-
0552 6b 78 stab 8,y-
0554 6b f4 stab a,sp
0556 6b e4 stab a,x
0558 6b ec stab a,y
055a 6b f5 stab b,sp
055c 6b e5 stab b,x
055e 6b ed stab b,y
0560 6b f6 stab d,sp
0562 6b e6 stab d,x
0564 6b ee stab d,y
0566 5b 55 stab dir
0568 5b 55 stab dir
056a 7b 01 88 stab ext
056d 7b 01 88 stab ext
0570 6b f2 01 88 stab ext,sp
0574 6b e2 01 88 stab ext,x
0578 6b ea 01 88 stab ext,y
057c 6b f8 37 stab ind,pc
057f 6b f0 37 stab ind,sp
0582 6b e0 37 stab ind,x
0585 6b e8 37 stab ind,y
0588 6b ce stab small,pc
058a 6b 8e stab small,sp
058c 6b 0e stab small,x
058e 6b 4e stab small,y
0590 6c a0 std 1,+sp
0592 6c 20 std 1,+x
0594 6c 60 std 1,+y
0596 6c a7 std 8,+sp
0598 6c 27 std 8,+x
059a 6c 67 std 8,+y
059c 6c c0 std ,pc
059e 6c 80 std ,sp
05a0 6c 00 std ,x
05a2 6c 40 std ,y
05a4 6c af std 1,-sp
CPU12 ASSEMBL

REFERENCE MANUAL
05a6 6c 2f std 1,-x
05a8 6c 6f std 1,-y
05aa 6c a8 std 8,-sp
05ac 6c 28 std 8,-x
05ae 6c 68 std 8,-y
05b0 6c 9f std -1,sp
05b2 6c 1f std -1,x
05b4 6c 5f std -1,y
05b6 6c 90 std -16,sp
05b8 6c 10 std -16,x
05ba 6c 50 std -16,y
05bc 6c f1 ef std -17,sp
05bf 6c e1 ef std -17,x
05c2 6c e9 ef std -17,y
05c5 6c d2 std -small,pc
05c7 6c 92 std -small,sp
05c9 6c 12 std -small,x
05cb 6c 52 std -small,y
05cd 6c c0 std 0,pc
05cf 6c 80 std 0,sp
05d1 6c 00 std 0,x
05d3 6c 40 std 0,y
05d5 6c b0 std 1,sp+
05d7 6c 30 std 1,x+
05d9 6c 70 std 1,y+
05db 6c 81 std 1,sp
05dd 6c 01 std 1,x
05df 6c 41 std 1,y
05e1 6c bf std 1,sp-
05e3 6c 3f std 1,x-
05e5 6c 7f std 1,y-
05e7 6c f8 7d std 125,pc
05ea 6c f0 7d std 125,sp
05ed 6c e0 7d std 125,x
05f0 6c e8 7d std 125,y
05f3 6c 8f std 15,sp
05f5 6c 0f std 15,x
05f7 6c 4f std 15,y
05f9 6c f0 10 std 16,sp
05fc 6c e0 10 std 16,x
05ff 6c e8 10 std 16,y
0602 6c b7 std 8,sp+
0604 6c 37 std 8,x+
0606 6c 77 std 8,y+
0608 6c b8 std 8,sp-
060a 6c 38 std 8,x-
060c 6c 78 std 8,y-
060e 6c f4 std a,sp
0610 6c e4 std a,x
0612 6c ec std a,y
0614 6c f5 std b,sp
0616 6c e5 std b,x
0618 6c ed std b,y
061a 6c f6 std d,sp
061c 6c e6 std d,x
061e 6c ee std d,y
0620 5c 55 std dir
0622 5c 55 std dir
0624 7c 01 88 std ext
0627 7c 01 88 std ext
062a 6c f2 01 88 std ext,sp
062e 6c e2 01 88 std ext,x
0632 6c ea 01 88 std ext,y
0636 6c f8 37 std ind,pc
0639 6c f0 37 std ind,sp
063c 6c e0 37 std ind,x
Y LISTING MOTOROLA

D-37



063f 6c e8 37 std ind,y
0642 6c ce std small,pc
0644 6c 8e std small,sp
0646 6c 0e std small,x
0648 6c 4e std small,y
064a 18 3e stop
064c 6f a0 sts 1,+sp
064e 6f 20 sts 1,+x
0650 6f 60 sts 1,+y
0652 6f a7 sts 8,+sp
0654 6f 27 sts 8,+x
0656 6f 67 sts 8,+y
0658 6f c0 sts ,pc
065a 6f 80 sts ,sp
065c 6f 00 sts ,x
065e 6f 40 sts ,y
0660 6f af sts 1,-sp
0662 6f 2f sts 1,-x
0664 6f 6f sts 1,-y
0666 6f a8 sts 8,-sp
0668 6f 28 sts 8,-x
066a 6f 68 sts 8,-y
066c 6f 9f sts -1,sp
066e 6f 1f sts -1,x
0670 6f 5f sts -1,y
0672 6f 90 sts -16,sp
0674 6f 10 sts -16,x
0676 6f 50 sts -16,y
0678 6f f1 ef sts -17,sp
067b 6f e1 ef sts -17,x
067e 6f e9 ef sts -17,y
0681 6f d2 sts -small,pc
0683 6f 92 sts -small,sp
0685 6f 12 sts -small,x
0687 6f 52 sts -small,y
0689 6f c0 sts 0,pc
068b 6f 80 sts 0,sp
068d 6f 00 sts 0,x
068f 6f 40 sts 0,y
0691 6f b0 sts 1,sp+
0693 6f 30 sts 1,x+
0695 6f 70 sts 1,y+
0697 6f 81 sts 1,sp
0699 6f 01 sts 1,x
069b 6f 41 sts 1,y
069d 6f bf sts 1,sp-
069f 6f 3f sts 1,x-
06a1 6f 7f sts 1,y-
06a3 6f f8 7d sts 125,pc
06a6 6f f0 7d sts 125,sp
06a9 6f e0 7d sts 125,x
06ac 6f e8 7d sts 125,y
06af 6f 8f sts 15,sp
06b1 6f 0f sts 15,x
06b3 6f 4f sts 15,y
06b5 6f f0 10 sts 16,sp
06b8 6f e0 10 sts 16,x
06bb 6f e8 10 sts 16,y
06be 6f b7 sts 8,sp+
06c0 6f 37 sts 8,x+
06c2 6f 77 sts 8,y+
06c4 6f b8 sts 8,sp-
06c6 6f 38 sts 8,x-
06c8 6f 78 sts 8,y-
06ca 6f f4 sts a,sp
06cc 6f e4 sts a,x
 MOTOROLA ASSEMB

D-38
06ce 6f ec sts a,y
06d0 6f f5 sts b,sp
06d2 6f e5 sts b,x
06d4 6f ed sts b,y
06d6 6f f6 sts d,sp
06d8 6f e6 sts d,x
06da 6f ee sts d,y
06dc 5f 55 sts dir
06de 7f 01 88 sts ext
06e1 6f f2 01 88 sts ext,sp
06e5 6f e2 01 88 sts ext,x
06e9 6f ea 01 88 sts ext,y
06ed 6f f8 37 sts ind,pc
06f0 6f f0 37 sts ind,sp
06f3 6f e0 37 sts ind,x
06f6 6f e8 37 sts ind,y
06f9 6f ce sts small,pc
06fb 6f 8e sts small,sp
06fd 6f 0e sts small,x
06ff 6f 4e sts small,y
0701 6e a0 stx 1,+sp
0703 6e 20 stx 1,+x
0705 6e 60 stx 1,+y
0707 6e a7 stx 8,+sp
0709 6e 27 stx 8,+x
070b 6e 67 stx 8,+y
070d 6e c0 stx ,pc
070f 6e 80 stx ,sp
0711 6e 00 stx ,x
0713 6e 40 stx ,y
0715 6e af stx 1,-sp
0717 6e 2f stx 1,-x
0719 6e 6f stx 1,-y
071b 6e a8 stx 8,-sp
071d 6e 28 stx 8,-x
071f 6e 68 stx 8,-y
0721 6e 9f stx -1,sp
0723 6e 1f stx -1,x
0725 6e 5f stx -1,y
0727 6e 90 stx -16,sp
0729 6e 10 stx -16,x
072b 6e 50 stx -16,y
072d 6e f1 ef stx -17,sp
0730 6e e1 ef stx -17,x
0733 6e e9 ef stx -17,y
0736 6e d2 stx -small,pc
0738 6e 92 stx -small,sp
073a 6e 12 stx -small,x
073c 6e 52 stx -small,y
073e 6e c0 stx 0,pc
0740 6e 80 stx 0,sp
0742 6e 00 stx 0,x
0744 6e 40 stx 0,y
0746 6e b0 stx 1,sp+
0748 6e 30 stx 1,x+
074a 6e 70 stx 1,y+
074c 6e 81 stx 1,sp
074e 6e 01 stx 1,x
0750 6e 41 stx 1,y
0752 6e bf stx 1,sp-
0754 6e 3f stx 1,x-
0756 6e 7f stx 1,y-
0758 6e f8 7d stx 125,pc
075b 6e f0 7d stx 125,sp
075e 6e e0 7d stx 125,x
0761 6e e8 7d stx 125,y
LY LISTING CPU12

REFERENCE MANUAL



0764 6e 8f stx 15,sp
0766 6e 0f stx 15,x
0768 6e 4f stx 15,y
076a 6e f0 10 stx 16,sp
076d 6e e0 10 stx 16,x
0770 6e e8 10 stx 16,y
0773 6e b7 stx 8,sp+
0775 6e 37 stx 8,x+
0777 6e 77 stx 8,y+
0779 6e b8 stx 8,sp-
077b 6e 38 stx 8,x-
077d 6e 78 stx 8,y-
077f 6e f4 stx a,sp
0781 6e e4 stx a,x
0783 6e ec stx a,y
0785 6e f5 stx b,sp
0787 6e e5 stx b,x
0789 6e ed stx b,y
078b 6e f6 stx d,sp
078d 6e e6 stx d,x
078f 6e ee stx d,y
0791 5e 55 stx dir
0793 5e 55 stx dir
0795 7e 01 88 stx ext
0798 7e 01 88 stx ext
079b 6e f2 01 88 stx ext,sp
079f 6e e2 01 88 stx ext,x
07a3 6e ea 01 88 stx ext,y
07a7 6e f8 37 stx ind,pc
07aa 6e f0 37 stx ind,sp
07ad 6e e0 37 stx ind,x
07b0 6e e8 37 stx ind,y
07b3 6e ce stx small,pc
07b5 6e 8e stx small,sp
07b7 6e 0e stx small,x
07b9 6e 4e stx small,y
07bb 6d a0 sty 1,+sp
07bd 6d 20 sty 1,+x
07bf 6d 60 sty 1,+y
07c1 6d a7 sty 8,+sp
07c3 6d 27 sty 8,+x
07c5 6d 67 sty 8,+y
07c7 6d c0 sty ,pc
07c9 6d 80 sty ,sp
07cb 6d 00 sty ,x
07cd 6d 40 sty ,y
07cf 6d af sty 1,-sp
07d1 6d 2f sty 1,-x
07d3 6d 6f sty 1,-y
07d5 6d a8 sty 8,-sp
07d7 6d 28 sty 8,-x
07d9 6d 68 sty 8,-y
07db 6d 9f sty -1,sp
07dd 6d 1f sty -1,x
07df 6d 5f sty -1,y
07e1 6d 90 sty -16,sp
07e3 6d 10 sty -16,x
07e5 6d 50 sty -16,y
07e7 6d f1 ef sty -17,sp
07ea 6d e1 ef sty -17,x
07ed 6d e9 ef sty -17,y
07f0 6d d2 sty -small,pc
07f2 6d 92 sty -small,sp
07f4 6d 12 sty -small,x
07f6 6d 52 sty -small,y
07f8 6d c0 sty 0,pc
CPU12 ASSEMBL

REFERENCE MANUAL
07fa 6d 80 sty 0,sp
07fc 6d 00 sty 0,x
07fe 6d 40 sty 0,y
0800 6d b0 sty 1,sp+
0802 6d 30 sty 1,x+
0804 6d 70 sty 1,y+
0806 6d 81 sty 1,sp
0808 6d 01 sty 1,x
080a 6d 41 sty 1,y
080c 6d bf sty 1,sp-
080e 6d 3f sty 1,x-
0810 6d 7f sty 1,y-
0812 6d f8 7d sty 125,pc
0815 6d f0 7d sty 125,sp
0818 6d e0 7d sty 125,x
081b 6d e8 7d sty 125,y
081e 6d 8f sty 15,sp
0820 6d 0f sty 15,x
0822 6d 4f sty 15,y
0824 6d f0 10 sty 16,sp
0827 6d e0 10 sty 16,x
082a 6d e8 10 sty 16,y
082d 6d b7 sty 8,sp+
082f 6d 37 sty 8,x+
0831 6d 77 sty 8,y+
0833 6d b8 sty 8,sp-
0835 6d 38 sty 8,x-
0837 6d 78 sty 8,y-
0839 6d f4 sty a,sp
083b 6d e4 sty a,x
083d 6d ec sty a,y
083f 6d f5 sty b,sp
0841 6d e5 sty b,x
0843 6d ed sty b,y
0845 6d f6 sty d,sp
0847 6d e6 sty d,x
0849 6d ee sty d,y
084b 5d 55 sty dir
084d 5d 55 sty dir
084f 7d 01 88 sty ext
0852 7d 01 88 sty ext
0855 6d f2 01 88 sty ext,sp
0859 6d e2 01 88 sty ext,x
085d 6d ea 01 88 sty ext,y
0861 6d f8 37 sty ind,pc
0864 6d f0 37 sty ind,sp
0867 6d e0 37 sty ind,x
086a 6d e8 37 sty ind,y
086d 6d ce sty small,pc
086f 6d 8e sty small,sp
0871 6d 0e sty small,x
0873 6d 4e sty small,y
0875 80 72 suba #immed
0877 a0 a0 suba 1,+sp
0879 a0 20 suba 1,+x
087b a0 60 suba 1,+y
087d a0 a7 suba 8,+sp
087f a0 27 suba 8,+x
0881 a0 67 suba 8,+y
0883 a0 c0 suba ,pc
0885 a0 80 suba ,sp
0887 a0 00 suba ,x
0889 a0 40 suba ,y
088b a0 af suba 1,-sp
088d a0 2f suba 1,-x
088f a0 6f suba 1,-y
Y LISTING MOTOROLA

D-39



0891 a0 a8 suba 8,-sp
0893 a0 28 suba 8,-x
0895 a0 68 suba 8,-y
0897 a0 9f suba -1,sp
0899 a0 1f suba -1,x
089b a0 5f suba -1,y
089d a0 90 suba -16,sp
089f a0 10 suba -16,x
08a1 a0 50 suba -16,y
08a3 a0 f1 ef suba -17,sp
08a6 a0 e1 ef suba -17,x
08a9 a0 e9 ef suba -17,y
08ac a0 d2 suba -small,pc
08ae a0 92 suba -small,sp
08b0 a0 12 suba -small,x
08b2 a0 52 suba -small,y
08b4 a0 c0 suba 0,pc
08b6 a0 80 suba 0,sp
08b8 a0 00 suba 0,x
08ba a0 40 suba 0,y
08bc a0 b0 suba 1,sp+
08be a0 30 suba 1,x+
08c0 a0 70 suba 1,y+
08c2 a0 81 suba 1,sp
08c4 a0 01 suba 1,x
08c6 a0 41 suba 1,y
08c8 a0 bf suba 1,sp-
08ca a0 3f suba 1,x-
08cc a0 7f suba 1,y-
08ce a0 f8 7d suba 125,pc
08d1 a0 f0 7d suba 125,sp
08d4 a0 e0 7d suba 125,x
08d7 a0 e8 7d suba 125,y
08da a0 8f suba 15,sp
08dc a0 0f suba 15,x
08de a0 4f suba 15,y
08e0 a0 f0 10 suba 16,sp
08e3 a0 e0 10 suba 16,x
08e6 a0 e8 10 suba 16,y
08e9 a0 b7 suba 8,sp+
08eb a0 37 suba 8,x+
08ed a0 77 suba 8,y+
08ef a0 b8 suba 8,sp-
08f1 a0 38 suba 8,x-
08f3 a0 78 suba 8,y-
08f5 a0 f4 suba a,sp
08f7 a0 e4 suba a,x
08f9 a0 ec suba a,y
08fb a0 f5 suba b,sp
08fd a0 e5 suba b,x
08ff a0 ed suba b,y
0901 a0 f6 suba d,sp
0903 a0 e6 suba d,x
0905 a0 ee suba d,y
0907 90 55 suba dir
0909 b0 01 88 suba ext
090c a0 f2 01 88 suba ext,sp
0910 a0 e2 01 88 suba ext,x
0914 a0 ea 01 88 suba ext,y
0918 a0 f8 37 suba ind,pc
091b a0 f0 37 suba ind,sp
091e a0 e0 37 suba ind,x
0921 a0 e8 37 suba ind,y
0924 a0 ce suba small,pc
0926 a0 8e suba small,sp
0928 a0 0e suba small,x
 MOTOROLA ASSEMB

D-40
092a a0 4e suba small,y
092c c0 72 subb #immed
092e c0 72 subb #immed
0930 e0 a0 subb 1,+sp
0932 e0 20 subb 1,+x
0934 e0 60 subb 1,+y
0936 e0 a7 subb 8,+sp
0938 e0 27 subb 8,+x
093a e0 67 subb 8,+y
093c e0 c0 subb ,pc
093e e0 80 subb ,sp
0940 e0 00 subb ,x
0942 e0 40 subb ,y
0944 e0 af subb 1,-sp
0946 e0 2f subb 1,-x
0948 e0 6f subb 1,-y
094a e0 a8 subb 8,-sp
094c e0 28 subb 8,-x
094e e0 68 subb 8,-y
0950 e0 9f subb -1,sp
0952 e0 1f subb -1,x
0954 e0 5f subb -1,y
0956 e0 90 subb -16,sp
0958 e0 10 subb -16,x
095a e0 50 subb -16,y
095c e0 f1 ef subb -17,sp
095f e0 e1 ef subb -17,x
0962 e0 e9 ef subb -17,y
0965 e0 d2 subb -small,pc
0967 e0 92 subb -small,sp
0969 e0 12 subb -small,x
096b e0 52 subb -small,y
096d e0 c0 subb 0,pc
096f e0 80 subb 0,sp
0971 e0 00 subb 0,x
0973 e0 40 subb 0,y
0975 e0 b0 subb 1,sp+
0977 e0 30 subb 1,x+
0979 e0 70 subb 1,y+
097b e0 81 subb 1,sp
097d e0 01 subb 1,x
097f e0 41 subb 1,y
0981 e0 bf subb 1,sp-
0983 e0 3f subb 1,x-
0985 e0 7f subb 1,y-
0987 e0 f8 7d subb 125,pc
098a e0 f0 7d subb 125,sp
098d e0 e0 7d subb 125,x
0990 e0 e8 7d subb 125,y
0993 e0 8f subb 15,sp
0995 e0 0f subb 15,x
0997 e0 4f subb 15,y
0999 e0 f0 10 subb 16,sp
099c e0 e0 10 subb 16,x
099f e0 e8 10 subb 16,y
09a2 e0 b7 subb 8,sp+
09a4 e0 37 subb 8,x+
09a6 e0 77 subb 8,y+
09a8 e0 b8 subb 8,sp-
09aa e0 38 subb 8,x-
09ac e0 78 subb 8,y-
09ae e0 f4 subb a,sp
09b0 e0 e4 subb a,x
09b2 e0 ec subb a,y
09b4 e0 f5 subb b,sp
09b6 e0 e5 subb b,x
LY LISTING CPU12

REFERENCE MANUAL



09b8 e0 ed subb b,y
09ba e0 f6 subb d,sp
09bc e0 e6 subb d,x
09be e0 ee subb d,y
09c0 d0 55 subb dir
09c2 d0 55 subb dir
09c4 f0 01 88 subb ext
09c7 f0 01 88 subb ext
09ca e0 f2 01 88 subb ext,sp
09ce e0 e2 01 88 subb ext,x
09d2 e0 ea 01 88 subb ext,y
09d6 e0 f8 37 subb ind,pc
09d9 e0 f0 37 subb ind,sp
09dc e0 e0 37 subb ind,x
09df e0 e8 37 subb ind,y
09e2 e0 ce subb small,pc
09e4 e0 8e subb small,sp
09e6 e0 0e subb small,x
09e8 e0 4e subb small,y
09ea 83 00 72 subd #immed
09ed 83 00 72 subd #immed
09f0 a3 a0 subd 1,+sp
09f2 a3 20 subd 1,+x
09f4 a3 60 subd 1,+y
09f6 a3 a7 subd 8,+sp
09f8 a3 27 subd 8,+x
09fa a3 67 subd 8,+y
09fc a3 c0 subd ,pc
09fe a3 80 subd ,sp
0a00 a3 00 subd ,x
0a02 a3 40 subd ,y
0a04 a3 af subd 1,-sp
0a06 a3 2f subd 1,-x
0a08 a3 6f subd 1,-y
0a0a a3 a8 subd 8,-sp
0a0c a3 28 subd 8,-x
0a0e a3 68 subd 8,-y
0a10 a3 9f subd -1,sp
0a12 a3 1f subd -1,x
0a14 a3 5f subd -1,y
0a16 a3 90 subd -16,sp
0a18 a3 10 subd -16,x
0a1a a3 50 subd -16,y
0a1c a3 f1 ef subd -17,sp
0a1f a3 e1 ef subd -17,x
0a22 a3 e9 ef subd -17,y
0a25 a3 d2 subd -small,pc
0a27 a3 92 subd -small,sp
0a29 a3 12 subd -small,x
0a2b a3 52 subd -small,y
0a2d a3 c0 subd 0,pc
0a2f a3 80 subd 0,sp
0a31 a3 00 subd 0,x
0a33 a3 40 subd 0,y
0a35 a3 b0 subd 1,sp+
0a37 a3 30 subd 1,x+
0a39 a3 70 subd 1,y+
0a3b a3 81 subd 1,sp
0a3d a3 01 subd 1,x
0a3f a3 41 subd 1,y
0a41 a3 bf subd 1,sp-
0a43 a3 3f subd 1,x-
0a45 a3 7f subd 1,y-
0a47 a3 f8 7d subd 125,pc
0a4a a3 f0 7d subd 125,sp
0a4d a3 e0 7d subd 125,x
CPU12 ASSEMBL

REFERENCE MANUAL
0a50 a3 e8 7d subd 125,y
0a53 a3 8f subd 15,sp
0a55 a3 0f subd 15,x
0a57 a3 4f subd 15,y
0a59 a3 f0 10 subd 16,sp
0a5c a3 e0 10 subd 16,x
0a5f a3 e8 10 subd 16,y
0a62 a3 b7 subd 8,sp+
0a64 a3 37 subd 8,x+
0a66 a3 77 subd 8,y+
0a68 a3 b8 subd 8,sp-
0a6a a3 38 subd 8,x-
0a6c a3 78 subd 8,y-
0a6e a3 f4 subd a,sp
0a70 a3 e4 subd a,x
0a72 a3 ec subd a,y
0a74 a3 f5 subd b,sp
0a76 a3 e5 subd b,x
0a78 a3 ed subd b,y
0a7a a3 f6 subd d,sp
0a7c a3 e6 subd d,x
0a7e a3 ee subd d,y
0a80 93 55 subd dir
0a82 93 55 subd dir
0a84 b3 01 88 subd ext
0a87 b3 01 88 subd ext
0a8a a3 f2 01 88 subd ext,sp
0a8e a3 e2 01 88 subd ext,x
0a92 a3 ea 01 88 subd ext,y
0a96 a3 f8 37 subd ind,pc
0a99 a3 f0 37 subd ind,sp
0a9c a3 e0 37 subd ind,x
0a9f a3 e8 37 subd ind,y
0aa2 a3 ce subd small,pc
0aa4 a3 8e subd small,sp
0aa6 a3 0e subd small,x
0aa8 a3 4e subd small,y
0aaa 3f swi
0aab b7 c4 swpb d
0aad 18 0e tab
0aaf b7 02 tap
0ab1 18 0f tba
0ab3 18 3d e5 tbl b,x
0ab6 b7 00 tfr a a
0ab8 b7 00 tfr a,a
0aba b7 01 tfr a b
0abc b7 01 tfr a,b
0abe b7 02 tfr a ccr
0ac0 b7 04 tfr a d
0ac2 b7 07 tfr a sp
0ac4 b7 05 tfr a x
0ac6 b7 05 tfr a,x
0ac8 b7 06 tfr a y
0aca b7 06 tfr a,y
0acc b7 10 tfr b a
0ace b7 11 tfr b b
0ad0 b7 12 tfr b ccr
0ad2 b7 14 tfr b d
0ad4 b7 17 tfr b sp
0ad6 b7 15 tfr b x
0ad8 b7 16 tfr b y
0ada b7 20 tfr ccr a
0adc b7 21 tfr ccr b
0ade b7 22 tfr ccr ccr
0ae0 b7 24 tfr ccr d
0ae2 b7 27 tfr ccr sp
Y LISTING MOTOROLA

D-41



0ae4 b7 25 tfr ccr x
0ae6 b7 26 tfr ccr y
0ae8 b7 40 tfr d a
0aea b7 41 tfr d b
0aec b7 42 tfr d ccr
0aee b7 44 tfr d d
0af0 b7 47 tfr d sp
0af2 b7 45 tfr d x
0af4 b7 46 tfr d y
0af6 b7 70 tfr sp a
0af8 b7 71 tfr sp b
0afa b7 72 tfr sp ccr
0afc b7 74 tfr sp d
0afe b7 77 tfr sp sp
0b00 b7 75 tfr sp x
0b02 b7 76 tfr sp y
0b04 b7 50 tfr x a
0b06 b7 51 tfr x b
0b08 b7 52 tfr x ccr
0b0a b7 54 tfr x d
0b0c b7 57 tfr x sp
0b0e b7 55 tfr x x
0b10 b7 56 tfr x y
0b12 b7 60 tfr y a
0b14 b7 61 tfr y b
0b16 b7 62 tfr y ccr
0b18 b7 64 tfr y d
0b1a b7 67 tfr y sp
0b1c b7 65 tfr y x
0b1e b7 66 tfr y y
0b20 b7 20 tpa
0b22 e7 a0 tst 1,+sp
0b24 e7 20 tst 1,+x
0b26 e7 60 tst 1,+y
0b28 e7 a7 tst 8,+sp
0b2a e7 27 tst 8,+x
0b2c e7 67 tst 8,+y
0b2e e7 c0 tst ,pc
0b30 e7 80 tst ,sp
0b32 e7 00 tst ,x
0b34 e7 40 tst ,y
0b36 e7 af tst 1,-sp
0b38 e7 2f tst 1,-x
0b3a e7 6f tst 1,-y
0b3c e7 a8 tst 8,-sp
0b3e e7 28 tst 8,-x
0b40 e7 68 tst 8,-y
0b42 e7 9f tst -1,sp
0b44 e7 1f tst -1,x
0b46 e7 5f tst -1,y
0b48 e7 90 tst -16,sp
0b4a e7 10 tst -16,x
0b4c e7 50 tst -16,y
0b4e e7 f1 ef tst -17,sp
0b51 e7 e1 ef tst -17,x
0b54 e7 e9 ef tst -17,y
0b57 e7 d2 tst -small,pc
0b59 e7 92 tst -small,sp
0b5b e7 12 tst -small,x
0b5d e7 52 tst -small,y
0b5f e7 c0 tst 0,pc
0b61 e7 80 tst 0,sp
0b63 e7 00 tst 0,x
0b65 e7 40 tst 0,y
0b67 e7 b0 tst 1,sp+
0b69 e7 30 tst 1,x+
 MOTOROLA ASSEMB

D-42
0b6b e7 70 tst 1,y+
0b6d e7 81 tst 1,sp
0b6f e7 01 tst 1,x
0b71 e7 41 tst 1,y
0b73 e7 bf tst 1,sp-
0b75 e7 3f tst 1,x-
0b77 e7 7f tst 1,y-
0b79 e7 f8 7d tst 125,pc
0b7c e7 f0 7d tst 125,sp
0b7f e7 e0 7d tst 125,x
0b82 e7 e8 7d tst 125,y
0b85 e7 8f tst 15,sp
0b87 e7 0f tst 15,x
0b89 e7 4f tst 15,y
0b8b e7 f0 10 tst 16,sp
0b8e e7 e0 10 tst 16,x
0b91 e7 e8 10 tst 16,y
0b94 e7 b7 tst 8,sp+
0b96 e7 37 tst 8,x+
0b98 e7 77 tst 8,y+
0b9a e7 b8 tst 8,sp-
0b9c e7 38 tst 8,x-
0b9e e7 78 tst 8,y-
0ba0 e7 f4 tst a,sp
0ba2 e7 e4 tst a,x
0ba4 e7 ec tst a,y
0ba6 e7 f5 tst b,sp
0ba8 e7 e5 tst b,x
0baa e7 ed tst b,y
0bac e7 f6 tst d,sp
0bae e7 e6 tst d,x
0bb0 e7 ee tst d,y
0bb2 f7 00 55 tst dir
0bb5 f7 01 88 tst ext
0bb8 f7 01 88 tst ext
0bbb e7 f2 01 88 tst ext,sp
0bbf e7 e2 01 88 tst ext,x
0bc3 e7 ea 01 88 tst ext,y
0bc7 e7 f8 37 tst ind,pc
0bca e7 f0 37 tst ind,sp
0bcd e7 e0 37 tst ind,x
0bd0 e7 e8 37 tst ind,y
0bd3 e7 ce tst small,pc
0bd5 e7 8e tst small,sp
0bd7 e7 0e tst small,x
0bd9 e7 4e tst small,y
0bdb 97 tsta
0bdc d7 tstb
0bdd b7 75 tsx
0bdf b7 76 tsy
0be1 b7 57 txs
0be3 b7 67 tys
0be5 18 39 trap $39
0be7 3e wai
0be8 18 3c wav
0bea b7 c5 xgdx
0bec b7 c6 xgdy
0bee 39 pshc
0bef 0a rtc
LY LISTING CPU12

REFERENCE MANUAL



INDEXINDEX
A
ABA instruction 6-8
Abbreviations for system resources 1-2
ABX instruction 6-9
ABY instruction 6-10
Accumulator direct indexed addressing mode 3-9
Accumulator offset indexed addressing mode 3-9
Accumulators 2-1, 5-8, 5-19

A 2-1, 3-5, 5-8, 6-8, 6-11, 6-13, 6-15 to 6-16,
6-20, 6-24, 6-35, 6-53, 6-57, 6-60, 6-63,
6-69 to 6-71, 6-73, 6-87, 6-90, 6-92 to 6-93,
6-97, 6-122, 6-124, 6-132, 6-134, 6-136,
6-139 to 6-140, 6-142 to 6-143, 6-146,
6-148, 6-151, 6-154, 6-157, 6-160, 6-167,
6-169, 6-171, 6-174, 6-177, 6-179 to 6-180,
6-185 to 6-186, 6-193, 6-196 to 6-204, 6-207

B 2-1, 3-5, 5-8, 6-8 to 6-10, 6-12, 6-14 to 6-15,
6-17, 6-21, 6-25, 6-36, 6-53, 6-58, 6-61, 6-64,
6-70 to 6-71, 6-74, 6-88 to 6-90,
6-92 to 6-93, 6-98, 6-123 to 6-124, 6-133,
6-137, 6-146, 6-149, 6-152, 6-155, 6-161,
6-172, 6-175, 6-177, 6-179, 6-181, 6-185,
6-187, 6-194, 6-196 to 6-197,
6-199 to 6-203, 6-208

D 2-1, 3-5, 5-8, 6-15, 6-22, 6-65, 6-70 to 6-71,
6-78 to 6-79, 6-81 to 6-86, 6-89 to 6-95,
6-124, 6-134, 6-138, 6-146, 6-157, 6-163,
6-185, 6-188, 6-195 to 6-196, 6-200,
6-202 to 6-203, 6-215 to 6-216

Indexed addressing 3-9
ADCA instruction 6-11
ADCB instruction 6-12
ADDA instruction 6-13
ADDB instruction 6-14
ADDD instruction 6-15
Addition instructions 5-3, 6-8 to 6-15
ADDR mnemonic 1-3
Addressing modes 3-1

Direct 3-3
Extended 3-3
Immediate 3-2
Indexed 2-2, 3-5
Inherent 3-2
Memory expansion 10-7
Relative 3-4

ANDA instruction 6-16
ANDB instruction 6-17
ANDCC instruction 6-18
ASL instruction 6-19
ASLA instruction 6-20
ASLB instruction 6-21
ASLD instruction 6-22
ASR instruction 6-23

ASRA instruction 6-24
ASRB instruction 6-25
Asserted 1-3
Automatic indexing 3-8
Automatic program stack 2-2

B
Background debugging mode 5-22, 8-6

BKGD pin 8-7 to 8-9
Commands 8-9 to 8-10
Enabling and disabling 8-6
Instruction 5-22, 6-31, 8-6
Registers 8-11
ROM 8-6
Serial interface 8-7 to 8-9

Base index register 3-6, 3-10
BCC instruction 6-26
BCLR instruction 6-27
BCS instruction 6-28
BEQ instruction 6-29
BGE instruction 6-30
BGND instruction 5-22, 6-31, 8-6
BGT instruction 6-32
BHI instruction 6-33
BHS instruction 6-34
Binary-coded decimal instructions 5-4, 6-8,

6-11 to 6-14, 6-69
Bit manipulation instructions 5-7, 6-27, 6-48, B-15,

C-1
Mask operand 3-11, 6-27, 6-48
Multiple addressing modes 3-11, 6-27, 6-48

Bit test instructions 5-7, 6-35 to 6-36, C-1
BITA instruction 6-35
BITB instruction 6-36
Bit-condition branches 5-16, 6-45, 6-47
BKGD pin 8-7 to 8-9
BLE instruction 6-37
BLO instruction 6-38
BLS instruction 6-39
BLT instruction 6-40
BMI instruction 6-41
BNE instruction 6-42
Boolean logic instructions 5-6

AND 6-16 to 6-18
Complement 6-62 to 6-64
Exclusive OR 6-87 to 6-88
Inclusive OR 6-151 to 6-153
Negate 6-147 to 6-149

BPL instruction 6-43
BRA instruction 6-44
Branch instructions 3-4, 4-4 to 4-5, 5-13, C-4

Bit-condition 4-4 to 4-5, 5-16, 6-45, 6-47
Long 4-4 to 4-5, 5-13, 6-104 to 6-121, B-13
CPU12 MOTOROLA

REFERENCE MANUAL I-1



Loop primitive 4-5, 5-16, 6-70 to 6-71,
6-92 to 6-93, 6-200, 6-202

Offset values 5-13, 5-16
Offsets 3-4
Short 4-4 to 4-5, 5-13, 6-26, 6-28 to 6-30,

6-32 to 6-34, 6-37 to 6-44, 6-46, 6-50 to 6-51
Signed 5-13, 6-30, 6-32, 6-37, 6-40,

6-107 to 6-108, 6-111, 6-114
Simple 5-13, 6-26, 6-28 to 6-29, 6-41 to 6-43,

6-50 to 6-51, 6-104 to 6-106, 6-115 to 6-117,
6-120 to 6-121

Subroutine 5-17, 6-49
Taken/not-taken cases 4-4, 6-7
Unary 5-13, 6-44, 6-46, 6-118 to 6-119
Unsigned 5-13, 6-33 to 6-34, 6-38 to 6-39,

6-109 to 6-110, 6-112 to 6-113
BRCLR instruction 6-45
BRN instruction 6-46
BRSET instruction 6-47
BSET instruction 6-48
BSR instruction 4-3, 6-49
Bus cycles 6-5
Bus structure B-4
BVC instruction 6-50
BVS instruction 6-51
Byte moves 6-144
Byte order in memory 2-5
Byte-sized instructions 4-4 to 4-5

C
C status bit 2-5, 6-19 to 6-26, 6-28, 6-33 to 6-34,

6-38 to 6-39, 6-54, 6-69, 6-72 to 6-74,
6-78 to 6-79, 6-81 to 6-86, 6-95 to 6-98,
6-104 to 6-105, 6-109 to 6-110,
6-112 to 6-113, 6-131 to 6-140,
6-142 to 6-143, 6-168, 6-170 to 6-175,
6-179 to 6-182, 6-193 to 6-195

CALL instruction 3-12, 4-3, 5-17, 6-52,
10-2 to 10-3, B-16, C-4 to C-5

Case statements C-4
CBA instruction 6-53
Changes in execution flow 4-2 to 4-5,

6-102 to 6-103, 6-176 to 6-178, 6-196,
7-1 to 7-6

CLC instruction 6-54
Clear instructions 5-6, 6-56 to 6-58
Cleared 1-3
CLI instruction 6-55
Clock monitor reset 7-3
CLR instruction 6-56
CLRA instruction 6-57
CLRB instruction 6-58
CLV instruction 6-59
CMPA instruction 6-60

CMPB instruction 6-61
Code size B-10
COM instruction 6-62
COMA instruction 6-63
COMB instruction 6-64
Compare instructions 5-5, 6-53, 6-60 to 6-61,

6-65 to 6-68
Complement instructions 5-6, 6-62 to 6-64
Computer operating properly monitor 7-3
Condition codes instructions 5-21, 6-18,

6-54 to 6-55, 6-59, 6-153, 6-156, 6-162,
6-182 to 6-184, 6-198, 6-203 to 6-204, B-15

Condition codes register 2-1, 2-3, 6-18,
6-54 to 6-55, 6-59, 6-90, 6-128, 6-153, 6-156,
6-162, 6-177, 6-183 to 6-185, 6-198,
6-203 to 6-204, 6-206 to 6-208, C-4

C status bit 2-5, 6-19 to 6-26, 6-28, 6-33 to 6-34,
6-38 to 6-39, 6-54, 6-69, 6-72 to 6-74,
6-78 to 6-79, 6-81 to 6-86, 6-95 to 6-98,
6-104 to 6-105, 6-109 to 6-110,
6-112 to 6-113, 6-131 to 6-140,
6-142 to 6-143, 6-168, 6-170 to 6-175,
6-179 to 6-182, 6-193 to 6-195

H status bit 2-4, 6-8, 6-11 to 6-14, 6-69
I mask bit 2-4, 6-18, 6-55, 6-183, 6-196, 6-205,

6-213, 7-2, 7-4
Manipulation 5-21, 6-18, 6-54 to 6-55, 6-59,

6-153, 6-182 to 6-184, 6-198, 6-204
N status bit 2-4, 6-41, 6-43, 6-115, 6-117
S control bit 2-3, 6-189
Stacking 6-156, 6-162
V status bit 2-4, 6-50 to 6-51, 6-59,

6-120 to 6-121, 6-166 to 6-169, 6-184
X mask bit 2-3, 6-90, 6-162, 6-177, 6-189, 6-198,

6-203, 6-213, 7-2, 7-4
Z status bit 2-4, 6-29, 6-42, 6-81 to 6-84,

6-100 to 6-101, 6-106, 6-116,
6-139 to 6-140, 6-142 to 6-143

Conditional 16-bit read cycle 6-7
Conditional 8-bit read cycle 6-7
Conditional 8-bit write cycle 6-7
Conserving power 5-21, 6-189
Constant indirect indexed addressing mode 3-7
Constant offset indexed addressing mode

3-6 to 3-7
Conventions 1-3
COP reset 7-3
CPD instruction 6-65
CPS instruction 6-66
CPU wait 6-213
CPX instruction 6-67
CPY instruction 6-68
Cycle code letters 6-5
Cycle counts B-9
 MOTOROLA CPU12

I-2 REFERENCE MANUAL



Cycle-by-cycle operation 6-5

D
DAA instruction 6-69
DATA mnemonic 1-3
Data types 2-5
DBEQ instruction 6-70, A-25
DBNE instruction 6-71, A-25
DEC instruction 6-72
DECA instruction 6-73
DECB instruction 6-74
Decrement instructions 5-4, 6-72 to 6-77
Defuzzification 9-6, 9-22 to 9-24, 9-26, 9-29
DES instruction 6-75
DEX instruction 6-76
DEY instruction 6-77
Direct addressing mode 3-3
Division instructions 5-7

16-bit fractional 6-91
16-bit integer 6-94 to 6-95
32-bit extended 6-78 to 6-79

Divsion instructions C-3

E
EDIV instruction 6-78
EDIVS instruction 6-79
Effective address 3-2, 3-5, 6-128 to 6-130
EMACS instruction 5-11, 6-80, 9-1, 9-29
EMAXD 6-81
EMAXD instruction 6-81
EMAXM instruction 6-82, 9-1
EMIND instruction 6-83, 9-1
EMINM instruction 6-84
EMUL instruction 6-85
EMULS instruction 6-86
Enabling maskable interrupts 2-4
EORA instruction 6-87
EORB instruction 6-88
ETBL instruction 5-12, 6-89, 9-1
Even bytes 2-5
Exceptions 4-3, 7-1

Interrupts 7-3
Maskable interrupts 7-1, 7-4 to 7-5
Non-maskable interrupts 7-1, 7-4
Priority 7-2
Processing flow 7-6
Resets 7-1 to 7-3
Software interrupts 5-18, 6-196, 7-1, 7-6
Unimplemented opcode trap 7-1 to 7-2, 7-5
Vectors 7-1, 7-6

Exchange instructions 5-2, 6-90, 6-215 to 6-216,
B-11, B-13

Postbyte encoding A-24

Execution cycles 6-5
Conditional 16-bit read 6-7
Conditional 8-bit read 6-7
Conditional 8-bit write 6-7
Free 6-5
Optional 4-4 to 4-5, 6-6
Program word access 6-6
Read indirect pointer 6-5
Read indirect PPAGE value 6-5
Read PPAGE 6-5
Read 16-bit data 6-6
Read 8-bit data 6-6
Stack 16-bit data 6-6
Stack 8-bit data 6-6
Unstack 16-bit data 6-7
Unstack 8-bit data 6-6
Vector fetch 6-7
Write PPAGE 6-5
Write 16-bit data 6-6
Write 8-bit data 6-6

Execution time 6-5
EXG instruction 6-90
Expanded memory 3-12, 4-3, 10-1, B-16,

C-4 to C-5
Addressing modes 3-12, 10-4 to 10-6
Bank switching 3-12, 10-1, 10-3 to 10-6
Chip-select circuits 10-4
Instructions 3-12, 5-17, 6-52, 6-176, 10-2 to 10-3
Overlay windows 10-1, 10-3 to 10-6
Page registers 3-12, 10-1, 10-4 to 10-6
Registers 10-5 to 10-6
Subroutines 5-17, 10-2, C-4 to C-5

Extended addressing mode 3-3
Extended division 5-7
Extension byte 3-5
External interrupts 7-5
External queue reconstruction 8-1
External reset 7-3

F
Fast math B-9
FDIV instruction 6-91
Fractional division 5-7
Frame pointer C-2 to C-3
Free cycle 6-5
Fuzzy logic 9-1

Antecedants 9-5
Consequents 9-5
Custom programming 9-26
Defuzzification 5-9, 9-6, 9-22 to 9-24, 9-26, 9-29
Fuzzification 5-9, 9-3, 9-26
Inference kernel 5-9, 9-2, 9-7
Inputs 5-9, 9-30
CPU12 MOTOROLA

REFERENCE MANUAL I-3



Instructions 5-9, 6-141, 6-166, 6-168, 6-214, 9-1,
9-9, 9-13 to 9-14, 9-17 to 9-19, 9-22, B-14

Interrupts 9-20, 9-23 to 9-24, 9-26
Knowledge base 9-2, 9-5
Membership functions 5-9, 6-141, 9-1 to 9-3,

9-9 to 9-13, 9-26 to 9-27
Outputs 5-9, 9-30
Rule evaluation 5-9, 6-166, 6-168, 9-1, 9-5,

9-13 to 9-15, 9-17 to 9-20, 9-22, 9-29
Rules 9-2, 9-5
Sets 9-2
Tabular membership functions 5-12, 9-26
Weighted average 5-9, 6-214, 9-1, 9-6,

9-22 to 9-24, 9-26

G
General purpose accumulators 2-1

H
H status bit 2-4, 6-8, 6-11 to 6-14, 6-69
High-level language C-1, C-3

Addressing modes C-1, C-3 to C-4
Condition codes register C-4
Expanded memory C-4 to C-5
Instructions C-1
Loop primitives C-3
Stack C-1 to C-2

I
I mask bit 2-4, 6-18, 6-55, 6-183, 6-196, 6-205,

6-213, 7-2
IBEQ instruction 6-92, A-25
IBNE A-25
IBNE instruction 6-93
IDIV instruction 6-94
IDIVS instruction 6-95, C-3
Immediate addressing mode 3-2
INC instruction 6-96
INCA instruction 6-97
INCB instruction 6-98
Increment instructions 5-4, 6-96 to 6-101
Index calculation instructions 5-20, 6-9 to 6-10,

6-76 to 6-77, 6-100 to 6-101, 6-129 to 6-130,
B-11

Index manipulation instructions 5-19, 6-67 to 6-68,
6-90, 6-126 to 6-127, 6-158 to 6-159,
6-164 to 6-165, 6-191 to 6-192, 6-203,
6-209 to 6-212, 6-215 to 6-216

Index registers 2-1 to 2-2, 5-19, C-2
X 3-5, 6-9, 6-67, 6-70 to 6-71, 6-76, 6-90 to 6-95,

6-100, 6-126, 6-128 to 6-130, 6-158, 6-164,
6-166, 6-168, 6-177, 6-185, 6-191, 6-196,
6-200 to 6-203, 6-209, 6-211, 6-215

Y 3-5, 6-10, 6-68, 6-70 to 6-71, 6-77 to 6-80,

6-85 to 6-86, 6-90, 6-92 to 6-93, 6-101,
6-127 to 6-130, 6-159, 6-165 to 6-166,
6-168, 6-177, 6-185, 6-192, 6-196,
6-200 to 6-203, 6-210, 6-212, 6-216

Indexed addressing modes 2-2, 3-5, A-22,
B-6 to B-9

Accumulator direct 3-9
Accumulator offset 3-9
Automatic indexing 3-8
Base index register 3-6, 3-10
Extension byte 3-5
Postbyte 3-5
Postbyte encoding 3-5, A-22
16-bit constant indirect 3-7
16-bit constant offset 3-7
5-bit constant offset 3-6
9-bit constant offset 3-7

Inference kernel, fuzzy logic 9-7
Inherent addressing mode 3-2
INS instruction 6-99
Instruction queue 1-1, 2-5, 4-1, 8-1, B-4

Alignment 4-1
Buffer 4-1
Debugging 8-1
Movement cycles 4-2
Reconstruction 8-1, 8-3, 8-5
Stages 4-1, 8-1
Status registers 8-4 to 8-5
Status signals 4-1, 8-1 to 8-3, 8-5 to 8-6

Instruction set A-2
Integer division 5-7
Interrupt instructions 5-18
Interrupts 7-3

Enabling and disabling 2-3 to 2-4, 6-55, 6-183,
7-2

External 7-5
I mask bit 2-4, 6-55, 6-183, 6-196, 6-213, 7-4
Instructions 5-18, 6-55, 6-177, 6-183, 6-196,

6-205
Low-power stop 5-21, 6-189
Maskable 2-4, 7-4
Non-maskable 2-3, 7-2, 7-4
Recognition 7-4
Return 2-4, 5-18, 6-177, 7-5
Service routines 7-4
Software 5-18, 6-196, 7-1, 7-6
Stacking 7-4
Vectors 7-3
Wait instruction 5-21, 6-213
X mask bit 2-3, 6-189, 6-213, 7-4

INX instruction 6-100
INY instruction 6-101
 MOTOROLA CPU12

I-4 REFERENCE MANUAL



J
JMP instruction 4-5, 6-102
JSR instruction 4-3, 6-103
Jump instructions 5-17
Jumps 4-5

K
Knowledge base 9-2

L
LBCC instruction 6-104
LBCS instruction 6-105
LBEQ instruction 6-106
LBGE instruction 6-107
LBGT instruction 6-108
LBHI instruction 6-109
LBHS instruction 6-110
LBLE instruction 6-111
LBLO instruction 6-112
LBLS instruction 6-113
LBLT instruction 6-114
LBMI instruction 6-115
LBNE instruction 6-116
LBPL instruction 6-117
LBRA instruction 6-118
LBRN instruction 6-119
LBVC instruction 6-120
LBVS instruction 6-121
LDAA instruction 6-122
LDAB instruction 6-123
LDD instruction 6-124
LDS instruction 6-125
LDX instruction 6-126
LDY instruction 6-127
LEAS instruction 6-128, C-2, C-4
Least signficant byte 1-3
Least significant word 1-3
LEAX instruction 6-129, C-4
LEAY instruction 6-130, C-4
Legal label 6-3
Literal expression 6-3
Load instructions 5-1, 6-122 to 6-130
Logic level one 1-3
Logic level zero 1-3
Loop primitive instructions 4-5, 6-70 to 6-71,

6-92 to 6-93, 6-200, 6-202, A-25, B-13, C-3
Offset values 5-16
Postbyte encoding A-25

Low-power stop 5-21, 6-189
LSL instruction 6-131
LSL mnemonics 5-8
LSLA instruction 6-132
LSLB instruction 6-133

LSLD instruction 6-134
LSR instruction 6-135
LSRA instruction 6-136
LSRB instruction 6-137
LSRD instruction 6-138

M
Maskable interrupts 7-1, 7-4
MAXA instruction 6-139
Maximum instructions 5-11, B-14

16-bit 6-81 to 6-82
8-bit 6-139 to 6-140

MAXM instruction 6-140, 9-1
MEM instruction 5-9, 6-141, 9-1, 9-9 to 9-13
Membership functions 9-2
Memory and addressing symbols 1-2
Memory expansion

Addressing 10-7
Bank switching 10-7
Overlay windows 10-7
Page registers 10-3, 10-7

MINA instruction 6-142, 9-1
Minimum instructions 5-11, B-14

16-bit 6-83 to 6-84
8-bit 6-142 to 6-143

MINM instruction 6-143
Misaligned instructions 4-4 to 4-5
Mnemonic 1-3
Mnemonic ranges 1-3
Most significant byte 1-3
Most significant word 1-3
MOVB instruction 6-144
Move instructions 5-3, 6-144 to 6-145, B-10, B-13

Destination 3-10
Multiple addressing modes 3-10
PC relative addressing 3-10
Reference index register 3-10
Source 3-10

MOVW instruction 6-145
MUL instruction 6-146
Multiple addressing modes

Bit manipulation instructions 3-11, 6-27, 6-48
Move instructions 3-10, 6-144 to 6-145

Multiplication instructions 5-7
16-bit 6-85 to 6-86
8-bit 6-146

Multiply and accumulate instructions 5-11, 6-80,
6-214

M68HC11 compatibility 3-2, B-1
M68HC11 instruction mnemonics B-1

N
N status bit 2-4, 6-41, 6-43, 6-115, 6-117
CPU12 MOTOROLA

REFERENCE MANUAL I-5



NEG instruction 6-147
NEGA instruction 6-148
Negate instructions 5-6, 6-147 to 6-149
Negated 1-3
Negative integers 2-5
NEGB instruction 6-149
Non-maskable interrupts 7-1 to 7-2, 7-4
NOP instruction 5-22, 6-150
Notation

Branch taken/not taken 6-7
Changes in CCR bits 6-2
Cycle-by-cycle operation 6-5
Memory and addressing 1-2
Object code 6-2
Operators 1-3
Source forms 6-3
System resources 1-2

Null operation instruction 5-22, 6-150
Numeric range of branch offsets 3-4

O
Object code notation 6-2
Odd bytes 2-5
Opcodes B-2, B-9

Map A-20
Operators 1-3
Optional cycles 4-4 to 4-5, 6-6
ORAA instruction 6-151
ORAB instruction 6-152
ORCC instruction 6-153
Orthogonality C-5

P
Pointer calculation instructions 5-20,

6-128 to 6-130
Pointers C-4
Postbyte 3-5, 6-90, 6-185, 6-203
Postbyte encoding

Exchange instructions A-24
Indexed addressing modes A-22
Loop primitive instruction A-25
Transfer instructions A-24

Post-decrement indexed addressing mode 3-8
Post-increment indexed addressing mode 3-8
Power conservation 5-21, 6-189, 6-213
Power-on reset 7-3
Pre-decrement indexed addressing mode 3-8
Pre-increment indexed addressing mode 3-8
Priority, exception 7-2
Program counter 2-1 to 2-2, 3-5, 6-31, 6-49, 6-52,

6-103, 6-128 to 6-130, 6-144 to 6-145, 6-150,
6-177 to 6-178, 6-196, 6-201, 6-205

Program word access cycle 6-6
Programming model 1-1, 2-1, B-3

Pseudo-non-maskable interrupt 7-2
PSHA instruction 6-154
PSHB instruction 6-155
PSHC instruction 6-156
PSHD instruction 6-157
PSHX instruction 6-158
PSHY instruction 6-159
PULA instruction 6-160
PULB instruction 6-161
PULC instruction 6-162
PULD instruction 6-163, C-2
Pull instructions C-5
PULX instruction 6-164
PULY instruction 6-165
Push instructions C-5
PUSHD instruction C-2

R
Range of mnemonics 1-3
Read indirect PPAGE cycle 6-5
Read PPAGE cycle 6-5
Read 8-bit data cycle 6-6
Read16-bit data cycle 6-6
Register designators 6-3
Relative addressing mode 3-4
Relative offset 3-4
Resets 7-1 to 7-2

Clock monitor 7-3
COP 7-3
External 7-3
Power-on 7-3

REV instruction 5-9, 6-166, 9-1, 9-5, 9-13 to 9-15,
9-17 to 9-20, 9-22, 9-29

REVW instruction 5-9, 6-168, 9-1, 9-5,
9-13 to 9-15, 9-17 to 9-20, 9-22, 9-29

ROL instruction 6-170
ROLA instruction 6-171
ROLB instruction 6-172
ROM, BDM 8-6
ROR instruction 6-173
RORA instruction 6-174
RORB instruction 6-175
Rotate instructions 5-8, 6-170 to 6-175
RTC instruction 3-12, 4-3, 5-17, 6-176,

10-2 to 10-3, B-16, C-4 to C-5
RTI instruction 2-4, 5-18, 6-177, 7-5
RTS instruction 4-3, 6-178

S
S control bit 2-3, 6-189
SBA instruction 6-179
SBCA instruction 6-180
SBCB instruction 6-181
SEC instruction 6-182
 MOTOROLA CPU12

I-6 REFERENCE MANUAL



SEI instruction 6-183
Set 1-3
Setting memory bits 6-48
SEV instruction 6-184
SEX instruction 5-2, 6-185
Shift instructions 5-8

Arithmetic 6-19 to 6-25
Logical 6-131 to 6-138

Sign extension instruction 6-185
Signed branches 5-13
Signed integers 2-5
Signed multiplication 5-7
Sign-extension instruction 5-2, C-1
Simple branches 5-13
Software interrupts 6-196, 7-1
Source code compatibility 1-1, B-1
Source form notation 6-3
Specific mnemonic 1-3
STAA instruction 6-186
STAB instruction 6-187
Stack 2-2, B-5 to B-6

Interrupts 6-177, 6-196
Stop and wait 6-189, 6-213
Subroutines 6-49, 6-52, 6-103, 6-176, 6-178
Traps 6-205

Stack operation instructions 5-20, 6-154 to 6-165
Stack pointer 2-1 to 2-2, 3-5, 6-49, 6-52, 6-66,

6-70 to 6-71, 6-75, 6-90, 6-92 to 6-93, 6-99,
6-103, 6-125, 6-128 to 6-130, 6-155 to 6-165,
6-178, 6-185, 6-190, 6-200 to 6-203,
6-209 to 6-212, C-1

Initialization 2-2
Manipulation 5-20, 6-66, 6-75, 6-99, 6-125,

6-128, 6-154 to 6-155, 6-190, 6-209 to 6-212
Stacking order 2-2, B-5

Stack pointer instructions 5-20, 6-66, 6-75, 6-99,
6-125, 6-128, 6-190, 6-203, 6-209 to 6-212,
B-15, C-1

Stack 16-bit data cycle 6-6
Stack 8-bit data cycle 6-6
Stacking instructions 6-154 to 6-155
Standard CPU12 address space 2-5
STD instruction 6-188
STOP instruction 2-3, 5-21, 6-189
Store instructions 5-1, 6-186 to 6-188,

6-190 to 6-192
STS instruction 6-190
STX instruction 6-191
STY instruction 6-192
SUBA instruction 6-193
SUBB instruction 6-194
SUBD instruction 6-195
Subroutine instructions 5-17

Subroutines 4-3, 6-103, C-4 to C-5
Expanded memory 4-3, 5-17, 6-52, 6-176
Instructions 5-17, 6-49, 6-103, C-4 to C-5
Return 6-176, 6-178

Subtraction instructions 5-3, 6-179 to 6-181,
6-193 to 6-195

SWI instruction 5-18, 6-196, 7-6
Switch statements C-4
Symbols and notation 1-2

T
TAB instruction 6-197
Table interpolation instructions 5-12, 6-89, 6-201,

B-15
Tabular membership functions 9-26 to 9-27
TAP instruction 6-198
TBA instruction 6-199
TBEQ instruction 6-200, A-25
TBL instruction 5-12, 6-201, 9-1, 9-26 to 9-27
TBNE instruction 6-202, A-25
Termination of interrupt service routines 5-18,

6-177, 7-5
Termination of subroutines 6-176, 6-178
Test instructions 5-5, 6-35 to 6-36, 6-200, 6-202,

6-206 to 6-208
TFR instruction 6-185, 6-198, 6-203 to 6-204,

6-209 to 6-212
TPA instruction 6-204
Transfer and exchange instructions C-1
Transfer instructions 5-2, 6-197 to 6-199,

6-203 to 6-204, 6-209 to 6-212, B-11, B-13
Postbyte encoding A-24

TRAP instruction 5-18, 6-205, 7-5
TST 6-206
TST instruction 6-206
TSTA instruction 6-207
TSTB instruction 6-208
TSX instruction 6-209
TSY instruction 6-210
Twos-complement form 2-5
TXS instruction 6-211
Types of instructions

Addition and Subtraction 5-3
Background and null 5-22
Binary-coded decimal 5-4
Bit test and manipulation 5-7
Boolean logic 5-6
Branch 5-13
Clear, complement, and negate 5-6
Compare and test 5-5
Condition code 5-21
Decrement and increment 5-4
Fuzzy logic 5-9
CPU12 MOTOROLA

REFERENCE MANUAL I-7



Index manipulation 5-19
Interrupt 5-18
Jump and subroutine 5-17
Load and store 5-1
Loop primitives 5-16
Maximum and minimum 5-11
Move 5-3
Multiplication and division 5-7
Multiply and accumulate 5-11
Pointer and index calculation 5-20
Shift and rotate 5-8
Sign extension 5-2
Stacking 5-20
Stop and wait 5-21
Table interpolation 5-12
Transfer and exchange 5-2

TYS instruction 6-212

U
Unary branches 5-13
Unimplemented opcode trap 5-18, 6-205,

7-1 to 7-2
Unsigned branches 5-13
Unsigned multiplication 5-7
Unstack 16-bit data cycle 6-7
Unstack 8-bit data cycle 6-6
Unweighted rule evaluation 6-166, 9-5,

9-13 to 9-15, 9-17 to 9-20, 9-22, 9-29

V
V status bit 2-4, 6-50 to 6-51, 6-59, 6-120 to 6-121,

6-166 to 6-169, 6-184
Vector fetch cycle 6-7
Vectors, exception 7-1, 7-6

W
WAI instruction 5-21, 6-213
WAV instruction 5-9, 5-11, 6-214, 9-1, 9-6,

9-22 to 9-24, 9-26, 9-29
Wavr pseudoinstruction 9-23 to 9-24, 9-26
Weighted average 6-214
Weighted rule evaluation 6-168, 9-5, 9-13 to 9-15,

9-17 to 9-20, 9-22, 9-29
Word moves 6-145
Write PPAGE cycle 6-5
Write 16-bit data cycle 6-6
Write 8-bit data cycle 6-6

X
X mask bit 2-3, 6-90, 6-162, 6-177, 6-189, 6-198,

6-203, 6-213
XGDX instruction 6-215
XGDY instruction 6-216

Z
Z status bit 2-4, 6-29, 6-42, 6-81 to 6-84,

6-100 to 6-101, 6-106, 6-116, 6-139 to 6-140,
6-142 to 6-143

Zero-page addressing 3-3
 MOTOROLA CPU12

I-8 REFERENCE MANUAL



SUMMARY OF CHANGES
This is a complete revision and reprint. All known errors in the publication have been
corrected. The following summary lists significant changes.

Page Change

3-6 Additional information provided in Table 3-2.

3-9 Changed paragraph 3.8.6 to indicate accumulator offset is an unsigned value.

4-5 Changed paragraph 4.3.3.4 to show that both taken and not taken cases for loop primitives
use the same number of P cycles.

5-18 Table 5-22, operation sequence of RTI instruction modified to match sequence in Sec. 6.

6-3 and 6-4 Removed spurious letter “e” from “opr” source forms.

6-11 to 6-14 Added overbars to terms in Boolean formulae for ADCA, ADCB, ADDA, and ADDB.

6-27 Modified V bit description of condition code register.

6-70, 6-71, 6-92, 6-93,
6-200 and 6-202

Corrected access details for loop primitives to show that taken and not taken cases both
use three P cycles.

6-78, 6-79, 6-94 Correction in descriptions for EDIV, EDIVS, and IDIV: “dividend” is divided by “divisor.”

6-78 Comment removed in EDIV description regarding C status bit.

6-81, 6-82, 6-83, 6-84,
6-139, 6-140, 6-142,
6-143, 6-193, 6-194,
6-195

In condition code C bit description of EMAXD, EMAXM, EMIND, EMINM, MAXA, MAXM,
MINA, MINM, SUBA, SUBB and SUBD, two occurrences of the word “absolute” have been
removed.

6-148 Overbar added to term in NEGA operation description.

6-167 Corrected access detail for REV instruction.

6-177 Corrected operation sequence for RTI instruction.

6-189 Corrected operation sequence for STOP instruction. Also, fourth paragraph of description
modified so as to not indicate that SP is changed.

6-196 Condition code register corrected; status bit I is set (1) following the SWI instruction.

6-213 Corrected operation sequence for WAI instruction.

6-214 Corrected access detail for WAV instruction.

8-7 Section 8.4.2, second paragraph, time-out of 256 E clock cycles is changed to 512 E clock
cycles. Fourth paragraph, “Nine target E-cycles later,” is now “Ten target E-cycles later.”

8-8 Figure 8-2, nine cycle reference is changed to ten cycles; art is modified accordingly.

8-10 Table 8-2, command order changed, footnote explanations added, ENTER_TAG_MODE
command deleted.

8-12 Section 8.4.4.1, reset conditions for STATUS register corrected. ITF bit name is changed
to ENTAG, Instruction Tagging Enable.

9-16 and 9-21 Corrected flow arrow and font substitution errors in Figures 9-9 and 9-10.

9-24 Changed paragraph 9.6.3. to reflect a three-cycle delay rather than a four-cycle delay.

9-25 Corrected flow arrow error and removed cycle 10.1 Figure 9-11.

9-28 Figure 9-12, Corrected inappropriate line break in code.

B-10 Table B-3, last row (EMACS) math operation corrected and two occurrences of
“per iteration” removed.

B-13 Section B.7.2, first sentence, “six transfer instructions” is now “eight transfer instructions.”

General Minor grammatical and typographic corrections to improve consistency and presentation.
New index markers.
CPU12 SUMMARY OF CHANGES MOTOROLA

REFERENCE MANUAL S-1



 MOTOROLA SUMMARY OF CHANGES CPU12

S-2 REFERENCE MANUAL





CPU12RM/AD

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed:  Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN:  Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE:  http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1998


	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	SECTION 1 INTRODUCTION
	1.1 CPU12 Features
	1.2 Readership
	1.3 Symbols and Notation
	1.3.1 Abbreviations for System Resources
	1.3.2 Memory and Addressing
	1.3.3 Operators
	1.3.4 Conventions


	SECTION 2 OVERVIEW
	2.1 Programming Model
	2.1.1 Accumulators
	2.1.2 Index Registers
	2.1.3 Stack Pointer
	2.1.4 Program Counter
	2.1.5 Condition Code Register

	2.2 Data Types
	2.3 Memory Organization
	2.4 Instruction Queue

	SECTION 3 ADDRESSING MODES
	3.1 Mode Summary
	3.2 Effective Address
	3.3 Inherent Addressing Mode
	3.4 Immediate Addressing Mode
	3.5 Direct Addressing Mode
	3.6 Extended Addressing Mode
	3.7 Relative Addressing Mode
	3.8 Indexed Addressing Modes
	3.8.1 5-Bit Constant Offset Indexed Addressing
	3.8.2 9-Bit Constant Offset Indexed Addressing
	3.8.3 16-Bit Constant Offset Indexed Addressing
	3.8.4 16-Bit Constant Indirect Indexed Addressing
	3.8.5 Auto Pre/Post Decrement/Increment Indexed Addressing
	3.8.6 Accumulator Offset Indexed Addressing
	3.8.7 Accumulator D Indirect Indexed Addressing

	3.9 Instructions Using Multiple Modes
	3.9.1 Move Instructions
	3.9.2 Bit Manipulation Instructions

	3.10 Addressing More than 64 Kbytes

	SECTION 4 INSTRUCTION QUEUE
	4.1 Queue Description
	4.2 Data Movement in the Queue
	4.2.1 No Movement
	4.2.2 Latch Data from Bus
	4.2.3 Advance and Load from Data Bus
	4.2.4 Advance and Load from Buffer

	4.3 Changes in Execution Flow
	4.3.1 Exceptions
	4.3.2 Subroutines
	4.3.3 Branches
	4.3.4 Jumps


	SECTION 5 INSTRUCTION SET OVERVIEW
	5.1 Instruction Set Description
	5.2 Load and Store Instructions
	5.3 Transfer and Exchange Instructions
	5.4 Move Instructions
	5.5 Addition and Subtraction Instructions
	5.6 Binary Coded Decimal Instructions
	5.7 Decrement and Increment Instructions
	5.8 Compare and Test Instructions
	5.9 Boolean Logic Instructions
	5.10 Clear, Complement, and Negate Instructions
	5.11 Multiplication and Division Instructions
	5.12 Bit Test and Manipulation Instructions
	5.13 Shift and Rotate Instructions
	5.14 Fuzzy Logic Instructions
	5.14.1 Fuzzy Logic Membership Instruction
	5.14.2 Fuzzy Logic Rule Evaluation Instructions
	5.14.3 Fuzzy Logic Averaging Instruction

	5.15 Maximum and Minimum Instructions
	5.16 Multiply and Accumulate Instruction
	5.17 Table Interpolation Instructions
	5.18 Branch Instructions
	5.18.1 Short Branch Instructions
	5.18.2 Long Branch Instructions
	5.18.3 Bit Condition Branch Instructions

	5.19 Loop Primitive Instructions
	5.20 Jump and Subroutine Instructions
	5.21 Interrupt Instructions
	5.22 Index Manipulation Instructions
	5.23 Stacking Instructions
	5.24 Pointer and Index Calculation Instructions
	5.25 Condition Code Instructions
	5.26 Stop and Wait Instructions
	5.27 Background Mode and Null Operations

	SECTION 6 INSTRUCTION GLOSSARY
	6.1 Glossary Information
	6.2 Condition Code Changes
	6.3 Object Code Notation
	6.4 Source Forms
	6.5 Cycle-by-Cycle Execution
	6.6 Glossary

	SECTION 7 EXCEPTION PROCESSING
	7.1 Types of Exceptions
	7.2 Exception Priority
	7.3 Resets
	7.3.1 Power-On Reset
	7.3.2 External Reset
	7.3.3 COP Reset
	7.3.4 Clock Monitor Reset

	7.4 Interrupts
	7.4.1 Non-Maskable Interrupt Request (XIRQ)
	7.4.2 Maskable Interrupts
	7.4.3 Interrupt Recognition
	7.4.4 External Interrupts
	7.4.5 Return from Interrupt Instruction (RTI)

	7.5 Unimplemented Opcode Trap
	7.6 Software Interrupt Instruction
	7.7 Exception Processing Flow
	7.7.1 Vector Fetch
	7.7.2 Reset Exception Processing
	7.7.3 Interrupt and Unimplemented Opcode Trap Exception Processing


	SECTION 8 DEVELOPMENT AND DEBUG SUPPORT
	8.1 External Reconstruction of the Queue
	8.2 Instruction Queue Status Signals
	8.2.1 Zero Encoding (0:0)
	8.2.2 LAT — Latch Data from Bus Encoding (0:1)
	8.2.3 ALD — Advance and Load from Data Bus Encoding (1:0)
	8.2.4 ALL — Advance and Load from Latch Encoding (1:1)
	8.2.5 INT — Interrupt Sequence Encoding (0:1)
	8.2.6 SEV — Start Instruction on Even Address Encoding (1:0)
	8.2.7 SOD — Start Instruction on Odd Address Encoding (1:1)

	8.3 Implementing Queue Reconstruction
	8.3.1 Queue Status Registers
	8.3.2 Reconstruction Algorithm

	8.4 Background Debug Mode
	8.4.1 Enabling BDM
	8.4.2 BDM Serial Interface
	8.4.3 BDM Commands
	8.4.4 BDM Registers

	8.5 Instruction Tagging
	8.6 Breakpoints
	8.6.1 Breakpoint Type
	8.6.2 Breakpoint Operation


	SECTION 9 FUZZY LOGIC SUPPORT
	9.1 Introduction
	9.2 Fuzzy Logic Basics
	9.2.1 Fuzzification (MEM)
	9.2.2 Rule Evaluation (REV and REVW)
	9.2.3 Defuzzification (WAV)

	9.3 Example Inference Kernel
	9.4 MEM Instruction Details
	9.4.1 Membership Function Definitions
	9.4.2 Abnormal Membership Function Definitions

	9.5 REV, REVW Instruction Details
	9.5.1 Unweighted Rule Evaluation (REV)
	9.5.2 Weighted Rule Evaluation (REVW)

	9.6 WAV Instruction Details
	9.6.1 Setup Prior to Executing WAV
	9.6.2 WAV Interrupt Details
	9.6.3 Cycle-by-Cycle Details for WAV and wavr

	9.7 Custom Fuzzy Logic Programming
	9.7.1 Fuzzification Variations
	9.7.2 Rule Evaluation Variations
	9.7.3 Defuzzification Variations


	SECTION 10 MEMORY EXPANSION
	10.1 Expansion System Description
	10.2 CALL and Return from Call Instructions
	10.3 Address Lines for Expansion Memory
	10.4 Overlay Window Controls
	10.5 Using Chip-Select Circuits
	10.5.1 Program Memory Expansion Chip-Select Controls
	10.5.2 Data Expansion Chip Select Controls
	10.5.3 Extra Expansion Chip Select Controls

	10.6 System Notes

	APPENDIX A INSTRUCTION REFERENCE
	A.1 Instruction Set Summary
	A.2 Opcode Map
	A.3 Indexed Addressing Postbyte Encoding
	A.4 Transfer and Exchange Postbyte Encoding
	A.5 Loop Primitive Postbyte Encoding

	APPENDIX B M68HC11 TO M68HC12 UPGRADE PATH
	B.1 CPU12 Design Goals
	B.2 Source Code Compatibility
	B.3 Programmer’s Model and Stacking
	B.4 True 16-Bit Architecture
	B.4.1 Bus Structures
	B.4.2 Instruction Queue
	B.4.3 Stack Function

	B.5 Improved Indexing
	B.5.1 Constant Offset Indexing
	B.5.2 Auto-Increment Indexing
	B.5.3 Accumulator Offset Indexing
	B.5.4 Indirect Indexing

	B.6 Improved Performance
	B.6.1 Reduced Cycle Counts
	B.6.2 Fast Math
	B.6.3 Code Size Reduction

	B.7 Additional Functions
	B.7.1 Memory-to-Memory Moves
	B.7.2 Universal Transfer and Exchange
	B.7.3 Loop Construct
	B.7.4 Long Branches
	B.7.5 Minimum and Maximum Instructions
	B.7.6 Fuzzy Logic Support
	B.7.7 Table Lookup and Interpolation
	B.7.8 Extended Bit Manipulation
	B.7.9 Push and Pull D and CCR
	B.7.10 Compare SP
	B.7.11 Support for Memory Expansion


	APPENDIX C HIGH-LEVEL LANGUAGE SUPPORT
	C.1 Data Types
	C.2 Parameters and Variables
	C.2.1 Register Pushes and Pulls
	C.2.2 Allocating and Deallocating Stack Space
	C.2.3 Frame Pointer

	C.3 Increment and Decrement Operators
	C.4 Higher Math Functions
	C.5 Conditional If Constructs
	C.6 Case and Switch Statements
	C.7 Pointers
	C.8 Function Calls
	C.9 Instruction Set Orthogonality

	APPENDIX D ASSEMBLY LISTING
	INDEX
	SUMMARY OF CHANGES

