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CHAPTER 1 Introduction

NOTE: This document does not yet describe the new SystemC 2.0 specific language 
features. Please refer to the Functional Specification for SystemC 2.0 document.

SystemC is a C++ class library and a methodology that you can use to effectively 
create a cycle-accurate model of software algorithms, hardware architecture, and 
interfaces of your SoC (System On a Chip) and system-level designs. You can use 
SystemC and standard C++ development tools to create a system-level model, 
quickly simulate to validate and optimize the design, explore various algorithms, 
and provide the hardware and software development team with an executable spec-
ification of the system. An executable specification is essentially a C++ program 
that exhibits the same behavior as the system when executed. 

C or C++ are the language choice for software algorithm and interface specifica-
tions because they provide the control and data abstractions necessary to develop 
compact and efficient system descriptions. Most designers are familiar with these 
languages and the large number of development tools associated with them. 

The SystemC Class Library provides the necessary constructs to model system 
architecture including hardware timing, concurrency, and reactive behavior that are 
missing in standard C++. Adding these constructs to C would require proprietary 
extensions to the language, which is not an acceptable solution for the industry. The 
C++ object-oriented programming language provides the ability to extend the lan-
guage through classes, without adding new syntactic constructs. SystemC provides 
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these necessary classes and allows designers to continue to use the familiar C++ 
language and development tools. 

If you are familiar with the C++ programming language, you can learn to program 
with SystemC by understanding the additional semantics introduced by the Sys-
temC classes; no additional syntax has to be learned. If you are one of the many that 
are more familiar with the C programming language, you need to learn some C++ 
syntax in addition to the semantics introduced by the classes. The use of C++ has 
been kept to a minimum in SystemC. If you are familiar with the Verilog and 
VHDL hardware description languages and the C programming language, learning 
SystemC will be easy.

This document describes how to use the SystemC Class Library version 2.0 to cre-
ate an executable specification for your system-level designs.

Using Executable Specifications

There are many benefits to creating an accurate executable specification of your 
complex system at the beginning of your design flow. These benefits are

• An executable specification avoids inconsistency and errors and helps ensure 
completeness of the specification. This is because in creating an executable 
specification, you are essentially creating a program that behaves the same way 
as the system. The process of creating the program unearths inconsistencies and 
errors, and the process of testing the program helps ensure completeness of the 
specification. 

• An executable specification ensures unambiguous interpretation of the specifi-
cation. Whenever implementers are in doubt about the design, they can run the 
executable specification to determine what the system is supposed to be doing. 

• An executable specification helps validate system functionality before imple-
mentation begins.

• An executable specification helps create early performance models of the sys-
tem and validate system performance. 

• The testbench used to test the executable specification can be refined or used as 
is to test the implementation of the specification. This can provide tremendous 
benefits to implementers and drastically reduce the time for implementation 
verification. 
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SystemC Highlights

SystemC Highlights 

SystemC supports hardware-software co-design and the description of the architec-
ture of complex systems consisting of both hardware and software components. It 
supports the description of hardware, software, and interfaces in a C++ environ-
ment. The following features of SystemC version 2.0 allow it to be used as a co-
design language:

• Modules: SystemC has a notion of a container class called a module. This is a 
hierarchical entity that can have other modules or processes contained in it. 

• Processes: Processes are used to describe functionality. Processes are contained 
inside modules. SystemC provides three different process abstractions to be 
used by hardware and software designers.

• Ports: Modules have ports through which they connect to other modules. Sys-
temC supports single-direction and bidirectional ports. 

• Signals: SystemC supports resolved and unresolved signals. Resolved signals 
can have more than one driver (a bus) while unresolved signals can have only 
one driver.

• Rich set of port and signal types: To support modeling at different levels of 
abstraction, from the functional to the RTL, SystemC supports a rich set of port 
and signal types. This is different than languages like Verilog that only support 
bits and bit-vectors as port and signal types. SystemC supports both two-valued 
and four-valued signal types.

• Rich set of data types: SystemC has a rich set of data types to support multiple 
design domains and abstraction levels. The fixed precision data types allow for 
fast simulation, the arbitrary precision types can be used for computations with 
large numbers, and the fixed-point data types can be used for DSP applications. 
SystemC supports both two-valued and four-valued data types. There are no 
size limitations for arbitrary precision SystemC types.

• Clocks: SystemC has the notion of clocks (as special signals). Clocks are the 
timekeepers of the system during simulation. Multiple clocks, with arbitrary 
phase relationship, are supported.

• Cycle-based simulation: SystemC includes an ultra light-weight cycle-based 
simulation kernel that allows high-speed simulation.

• Multiple abstraction levels: SystemC supports untimed models at different lev-
els of abstraction, ranging from high-level functional models to detailed clock 
cycle accurate RTL models. It supports iterative refinement of high level models 
into lower levels of abstraction. 
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• Communication protocols: SystemC provides multi-level communication 
semantics that enable you to describe SoC and system I/O protocols with differ-
ent levels for abstraction.

• Debugging support: SystemC classes have run-time error checking that can be 
turned on with a compilation flag. 

• Waveform tracing: SystemC supports tracing of waveforms in VCD, WIF, and 
ISDB formats.

Current System Design Methodology

The current system design methodology starts with a system engineer writing a C 
or C++ model of the system to verify the concepts and algorithms at the system 
level. After the concepts and algorithms are validated, the parts of the C/C++ model 
to be implemented in hardware are manually converted to a VHDL or Verilog 
description for actual hardware implementation. This is shown in the figure below:

System Level Model
C, C++

Analysis

Results

Manual Conversion

VHDL/Verilog

Simulation

Synthesis

Rest of Process

Refine
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SystemC Design Methodology

There are a number of problems with this approach. 

Manual Conversion from C to HDL Creates Errors

With the current methodology, the designer creates the C model, verifies that the C 
model works as expected, and then translates the design manually into an HDL. 
This process is very tedious and error prone. 

Disconnect Between System Model and HDL Model

After the model is converted to HDL, the HDL model becomes the focus of devel-
opment. The C model quickly becomes out of date as changes are made. Typically 
changes are made only to the HDL model and not implemented in the C model. 

Multiple System Tests

Tests that are created to validate the C model functionality typically cannot be run 
against the HDL model without conversion. Not only does the designer have to 
convert the C model to HDL, but the test suite has to be converted to the HDL envi-
ronment as well. 

For the parts of the original model to be implemented in software, the model has to 
be rewritten with calls to an RTOS. The model is the simulated and verified with an 
RTOS emulator. Though parts of the original code can be reused, the change in 
abstraction from the original model to an RTOS-based model requires significant 
manual recoding and verifying the changes becomes a significant problem. 

SystemC Design Methodology

The SystemC design approach offers many advantages over the traditional 
approach for system level design. The SystemC design methodology for hardware 
is shown in the figure below:
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This technique has a number of advantages over the current design methodology, 
including the following: 

Refinement Methodology

With the SystemC approach, the design is not converted from a C level description 
to an HDL in one large effort. The design is slowly refined in small sections to add 
the necessary hardware and timing constructs to produce a good design. Using this 
refinement methodology, the designer can more easily implement design changes 
and detect bugs during refinement. 

Written in a Single Language

Using the SystemC approach, the designer does not have to be an expert in multiple 
languages. SystemC allows modeling from the system level to RTL, if necessary. 

SystemC Model

Simulation

Refinement

Synthesis

Rest of Process
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Compatibility with Earlier Versions of SystemC

The SystemC approach provides higher productivity because the designer can 
model at a higher level. Writing at a higher level can result in smaller code, that is 
easier to write and simulates faster than traditional modeling environments. 

Testbenches can be reused from the system level model to the RTL model saving 
conversion time. Using the same testbench also gives the designer a higher confi-
dence that the system level and the RTL model implement the same functionality. 

Though the current release of SystemC does not have the appropriate constructs to 
model RTOS, future version will. That will enable a similar refinement-based 
design methodology for the software parts of the system. Software designers will 
reap similar benefits as hardware designers. 

Compatibility with Earlier Versions of SystemC

SystemC 2.0 is fully backwards compatible with earlier versions of SystemC, 
except SystemC versions 0.9x. The following syntax and classes from SystemC 
0.9x are no longer supported:

• sc_bool_vector

• sc_logic_vector

• sc_array

• sc_2d

• sc_signal_bool_vector

• sc_signal_logic_vector

• sc_signal_array

• sc_signal_resolved_vector

• sc_channel

• sc_sync

• sc_aproc

• sc_async
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CHAPTER 2 Starting with a Simple 
Example

This section shows you a simple data protocol model example written first in C/
C++. The same model is then implemented in SystemC to show the highlights of 
using SystemC, along with instructions for compiling, executing, and debugging 
the design.

SystemC syntax and details about usage are described in subsequent chapters.

Simplex Data Protocol

The simplex data protocol is a simple data protocol used to transfer data from one 
device to another in a single direction. (A duplex data protocol would transfer data 
in both directions.) The simplex data protocol can detect transfer errors, and it can 
resend data packets to successfully complete the data transfer if errors are detected. 

The basic design consists of a transmitter, a receiver, and a model representing the 
data transfer medium (or channel). The data transfer medium can model wired and 
wireless networks. It can be a simple or complex model of data and error rates to 
match the actual physical medium. 

A block diagram of the system is shown below:
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The transmitter sends data packets to the data transfer medium. The data transfer 
medium receives those packets, and sends them on to the receiver. The data transfer 
medium can introduce errors to represent the actual error rate of the physical 
medium. 

The receiver receives the data packets from the data transfer medium and analyzes 
the data packets for errors. If the data packet has no errors, the receiver generates an 
acknowledge packet and sends the acknowledgement packet back to the data trans-
fer medium. The data transfer medium receives the acknowledge packet and sends 
this packet to the transmitter. The data transfer medium can introduce errors when 
sending the acknowledge packet that causes the acknowledge packet to not be prop-
erly received. After the transmitter has received the acknowledge packet for the 
previously sent data packet, the transmitter sends the next packet. This process con-
tinues until all data packets are sent. 

This protocol works well for sending data in one direction across a noisy medium.

Transmit Receive
Transfer
Medium

Packets

Acknowledge
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C/C++ Model

C/C++ Model

An example model that implements this system in C/C++ is shown below:

frame data; //global data frame storage for Channel

void transmit(void) { //Transmits frames to Channel
  int framenum; // sequence number for frames
  frame s; // Local frame
  packet buffer;     // Buffer to hold intermediate data
  event_t event; // Event to trigger actions 

//in transmit

  framenum = 1;      // initialize sequence numbers

  get_data_fromApp(&buffer); // Get initial data
                             // from Application
  while (true) {
    s.info = buffer; // Put data into frame to be sent
    s.seq = framenum; // Set sequence number of frame
    send_data_toChannel(&s); // Pass frame to Channel
                             // to be sent
    start_timer(s.seq);     // Start timer to wait
                            // for acknowledge
    // If timer times out packet was lost
    wait_for_event(&event); // Wait for events from
                            // channel and timer
      if (event==new_frame) { // Got an event,
                              // check which kind
        get_data_fromChannel(s); // Read frame 
                                  // from channel
        if (s.ack==framenum){ // Did we get the correct
                              // acknowledge
          get_data_fromApp(&buffer); 
          // Yes, then get more data from
          // application, else send old packet again

          inc(framenum);      // Increase framenum
                              // for new frame
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        }
      }
    }
}

void receiver(void) { // Gets frames from channel
  int framenum;       // Scratchpad frame number
  frame r,s;       // Temp frames to save information
  event_t event;   // Event to cause actions in receiver

  framenum = 1;   // Start framenum at 1
  while (true) {
    wait_for_event(&event);// Wait for data from channel
    if (event==new_frame){ // Event arrived see 
                           //if it is a frame event
      get_data_fromChannel(r); // If so get the data
                                // from channel
      if (r.seq==framenum) {   // Is this the frame
                               // we expect
        send_data_toApp(&r.info); // Yes, then send
                                  //data to application
        inc(framenum); // Get ready for the next frame
      }
      s.ack = framenum -1; 
      // Send back an acknowledge that frame 
      // was received properly

      send_data_toChannel(&s);  // Send acknowledge
    }
  }
}

void send_data_toChannel(frame &f) { // Stores data
                                     // for channel
  data = f;    // Copy frame to storage area
}

void get_data_fromChannel(frame &f) { // Gets data from
                                      // channel
  int i;
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C/C++ Model

  i = rand();  // Generate a random number
               // to cause receive errors

  if ( i > 10 && i < 500) { 
    // If the random number is between 10 and 500
    // mess up the sequence number in the packet

    data.seq = 0;
      // This will cause the packet reception to
  } // fail - protocol should resend packet

  f = data;  // Copy data out of channel
}

The C/C++ model contains a transmit function, a receiver function, and two data 
transfer medium (or channel) functions. These channel functions get data from and 
put data to the channel (data transfer medium). This description is not a complete 
implementation of the entire algorithm but only a fragment to show the typical style 
of a C/C++ model. Some of the model complexity is hidden in the wait_for_event() 
function calls. These calls are needed to take advantage of a scheduling mechanism 
built into the operating system, or you can implement a user defined scheduling 
system. In either case, this is a complex task. 

The transmit function, at the beginning of the C/C++ model, has local storage to 
keep frames and local data, and then it calls the function get_data_fromApp(). This 
function gets the first piece of data to send from the transmitter to the receiver. 

The next statement is a while loop that continuously sends data packets to the 
receiver. In a real system, this while loop would have a termination condition based 
on how many packets were sent. However, in this example the designer wants to 
determine the data rate with varying noise on the channel, rather than sending real 
packets from one place to another. 

The statements in the while loop fill in the data fields of the packet, the sequence 
number of the packet, and send the packet to the channel. The sequence number is 
used to uniquely identify the data packet so the correct acknowledge packets can be 
sent. 

After the transmitter sends the packet to the channel, a timer is started. The timer 
allows the receiver to receive the frame and send back an acknowledge before the 
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the timer times out. If the transmitter does not receive an acknowledge after the 
timer has timed out, then the transmitter determines that the data frame was not suc-
cessfully sent, and it will resend the packet. 

When the transmitter sends a data packet and starts the timer, the transmitter waits 
for events to occur. These events can be timeout events from the timer, or they can 
be new_frame events from the channel. If the event received is a new_frame event, 
the transmit function gets the frame from the channel and examines the sequence 
number of the frame to determine if the acknowledge is for the frame just sent. If 
the sequence number is correct, the frame has been successfully received. Then, the 
transmitter gets the next piece of data to send and increments the sequence number 
of the frame. The transmitter sends the data frame and waits again for events. 

If the timeout event was received, the test for a new_frame event fails and the trans-
mitter resends the frame. This process continues until the frame is successfully sent. 

The receiver function also has temporary storage to keep track of local data. At the 
first invocation, it initializes the frame sequence number to 1, similar to the trans-
mitter function. This allows the two functions to get synchronized.

The receiver function has a main loop that waits only for new_frame events. After a 
new_frame is received, the receiver gets the frame from the channel and analyzes 
the contents. 

If the sequence number of the frame matches the framenum variable, then the 
expected frame was sent and received properly. The receiver increments the fra-
menum to get ready for the next frame. 

The receiver generates an acknowledgement frame containing the sequence number 
minus 1. Because the frame sequence number is already incremented, the acknowl-
edgement frame needs to subtract 1 from the framenum to acknowledge the last 
frame received. If the wrong frame was received, the acknowledgement contains an 
improper sequence number to inform the transmitter that the proper frame was not 
correctly transmitted. 

The last two functions in the C/C++ model send data to the channel and get data 
from the channel. These two functions are very simple in this model, but they could 
be complex, depending on the factors to be analyzed. Function 
send_data_to_channel() simply copies the received frame from the transmitter to a 
local variable. Function get_data_from_channel() reads the data from the local 
variable, but adds noise to the data so some frames are not passed intact. Noise is 
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SystemC Model

generated by a random number generator that selectively zeroes the sequence num-
ber of the frame. The amount of noise is dependent on the total range of the 
sequence numbers and the range of numbers that cause the sequence number to be 
zeroed.

Using the C/C++ model, the designer can analyze the total data rate, effective data 
rate, error recovery, error recovery time, and numerous other factors. The designer 
can modify parameters such as frame rate size, error range size, data packet size, 
timer length to verify that the protocol works, and analyze the effects of these 
parameters.

SystemC Model

Using SystemC the designer can design at a high level of abstraction using C++ 
high level techniques, and refine the design down to a level that allows hardware or 
software implementation. The block diagram for the SystemC implementation is 
shown below:

This block diagram is slightly different than the C model because the SystemC 
implementation is a more complete model. The SystemC description contains the 
transmit block, the receiver block, the channel block, a timer block, and a display 
block. The transmit, the receiver, and the channel blocks are the same as the C++ 
implementation. The display block emulates the application interface on the 
receiver side and the timer block generates timeout events. Packets are generated 
by a function in the transmit block and are sent through the channel to the receiver 

Channel Receive DisplayTransmit

Timer

Acknowledge

Packets
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block. The receiver block sends data to the display block where the data is dis-
played. 

Let’s examine each block to see the descriptions and how they work. 

User Defined Packet Type

Before we describe the blocks, we need to look at the underlying packet data struc-
ture that passes data from module to module. The packet type is defined by a struct 
as shown below:

// packet.h file

#ifndef PACKETINC
#define PACKETINC

#include "systemc.h"

struct packet_type {
    long info;
    int  seq;

 int  retry;

  inline bool operator == (const packet_type& rhs) const
  {
    return (rhs.info == info && rhs.seq == seq &&
       rhs.retry == retry);
  }
};

extern
void sc_trace(sc_trace_file *tf, const packet_type& v, 
const sc_string& NAME);

#endif

// packet.cc file
#include "packet.h"
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Transmit Module

  void sc_trace(sc_trace_file *tf, const packet_type& v,
                const sc_string& NAME) {

  sc_trace(tf,v.info, NAME + ".info");
  sc_trace(tf,v.seq, NAME + ".seq");
  sc_trace(tf,v.retry, NAME + ".retry");

  }

The struct has three fields, info, seq, and retry. Field info carries the data sent in the 
packet. The goal of this simulation is to measure the protocol behavior with respect 
to noise, not the data transfer characteristics. Therefore, the info field for data is of 
type long. Future versions of this data packet type could use a struct type for the 
data. 

The second field is named seq and represents the sequence number assigned to this 
packet. For better error handling, this number will uniquely identify the packet dur-
ing data transfers.

The third field in the packet is the retry field. This field contains the number of 
times the packet has been sent. 

Other constructs in the packet.h and packet.cc files will be discussed later. 

Let’s now take a look at the first block, the transmit block. 

Transmit Module

Notice that the transmit module includes the packet.h file which includes sys-
temc.h. The systemc.h file gives the design access to all of the SystemC class meth-
ods and members. The packet.h file gives the design access to the packet definition 
and methods associated with the packet.

Note: In C++, function members are similar to C functions and data members are 
similar to C variables.

The SystemC description of the transmit module, described in the sections that fol-
low, is shown below:
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// transmit.h

#include "packet.h"

SC_MODULE(transmit) {
  sc_in<packet_type> tpackin;    // input port
  sc_in<bool> timeout;           // input port
  sc_out<packet_type> tpackout;  // output port
  sc_inout<bool> start_timer;      // output port
  sc_in<bool>  clock;

  int buffer;
  int framenum;
  packet_type packin, tpackold;
  packet_type s;
  int retry;
  bool start;

  void send_data();
  int get_data_fromApp();

  // Constructor
  SC_CTOR(transmit) {
    SC_METHOD(send_data);            // Method Process
    sensitive << timeout;
    sensitive_pos << clock;
    framenum = 1;
    retry = 0;
    start = false;
    buffer = get_data_fromApp();
  }
};

// transmit.cc

#include "transmit.h"

  int transmit::get_data_fromApp() {
    int result;
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Transmit Module

    result = rand();
    cout <<"Generate:Sending Data Value = "<<result
         << "\n";
    return result;
  }

  void transmit::send_data() {
    if (timeout) {
      s.info = buffer;
      s.seq = framenum;
      s.retry = retry;
      retry++;
      tpackout = s;
      start_timer = true;
      cout <<"Transmit:Sending packet no. "<<s.seq
           << "\n";

     } else {        
       packin = tpackin; 
       if (!(packin == tpackold)) {
         if (packin.seq == framenum) {
           buffer = get_data_fromApp();
           framenum++;
           retry = 0;
          }
        tpackold = tpackin;
        s.info = buffer;
        s.seq = framenum;
        s.retry = retry;
        retry++;
        tpackout = s;
        start_timer = true;
        cout <<"Transmit:Sending packet no. "<<s.seq
             << "\n";
        }
     }
  }

Module
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A module is the basic container object for SystemC. Modules include ports, con-
structors, data members, and function members. A module starts with the macro 
SC_MODULE and ends with a closing brace. A large design will typically be 
divided into a number of modules that represent logical areas of functionality of the 
design. 

Ports

Module transmit has three input, one output, and one inout ports as shown below:

  sc_in<packet_type>  tpackin;      // input port
  sc_in<bool>         timeout;      // input port
  sc_out<packet_type> tpackout;     // output port
  sc_inout<bool>      start_timer;  // inout port
  sc_in<bool>         clock;        // input port

Port tpackin is used to receive acknowledgement packets from the channel. Port 
timeout is used to receive the timeout signal from the timer module and lets the 
transmit module know that the acknowledge packet was not received before the 
timer times out. The clock port is used to synchronize the different modules 
together so that events happen in the correct order. 

Output port tpackout is the port that module transmit uses to send packets to the 
channel. Inout port start_timer is used by the transmit module to start the timer after 
a packet has been sent to the channel. 

Data and Function Members

After the port statements, local data members used within the module are declared. 

The function members send_data() and get_data_fromApp() are declared in the 
transmit.h file and implemented in the transmit.cc file. This is the standard way to 
describe functionality in C++ and SystemC. 

Constructor

The module constructor identifies process send_data() as an SC_METHOD pro-
cess, which is sensitive to clock and timeout. The constructor also initializes the 
variables used in the module. This is an important step. In HDL languages such as 
VHDL and Verilog, all processes are executed once at the beginning of simulation 
to initialize variable and signal values. In SystemC the constructor of a module is 
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called at initialization, and all initialization that needs to be performed is defined in 
the constructor. 

The constructor initializes variable framenum to 1, which is used as the sequence 
number in all packets. Variable retry is initialized to 0, and variable start is initial-
ized to false. Then the buffer, used to hold data is initialized by getting the first 
piece of data. 

Implementation of Methods

Let’s now take a look at the transmit.cc file. This file implements the two methods 
declared in the header file. One method is a process, i.e. it executes concurrently 
with all other processes, the other is not. 

Method get_data_fromApp() is a local method that generates a new piece of data to 
send across the channel. In the implementation you can see that this method calls 
the random number generator rand() to generate a new data value to send. Because 
we are validating the effects of noise on the protocol, the data values sent are not 
important at this stage of the design. 

The method send_data() is a process because it is declared as such in the construc-
tor for module transmit.The process checks first to see if timeout is true. Timeout 
will be true when the timer has completed. 

Next the process checks to see if the current value of port tpackin is equivalent to 
the old value. This check is used to see if an acknowledgement packet was received 
from the channel. 

If the values differ an acknowledgement packet has been received from the channel. 
Notice that tpackin was copied to local variable packin. Using a local variable 
allows you to access to the packet fields that cannot be accessed directly from the 
port. 

The sequence number of the packet is checked against the last sent packet to see if 
they match. If they match, a correct acknowledgement was received and the next 
piece of data can be sent. The buffer will be filled with the next piece of data and 
the framenum is incremented. Field retry is also reset to 0, which is the initial value. 

If no acknowledgement packet was received, the process was triggered by an event 
from the timeout port. This means the timer block completed its count or "timed 
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out". If a timeout event occurs, that means the packet was sent, but no acknowledge 
was received. In this case, the packet must be transmitted again. 

A local packet named s has all of its fields filled with the new data values to be sent, 
and it is assigned to tpackout. Notice that retry is incremented each time the packet 
is sent. This number is required to ensure the uniqueness of each packet. 

Whenever a packet is written, the timer is started by the transmit process by setting 
the start_timer signal to true.

In summary, the transmit module sends a new packet to the channel. The timer is 
started to keep track of how long ago the packet was sent to the channel. If the 
acknowledge packet does not return before the timer times out, then the packet or 
acknowledge were lost and the packet needs to be transmitted again. 

Channel Module

The channel module accepts packets from the transmitter and passes them to the 
receiver. The channel also accepts acknowledge packets from the receiver to send 
back to the transmit module. The channel adds some noise to the transmission of 
packets to model the behavior of the transmission medium. This causes the packets 
to fail to be properly received at the receiver module, and acknowledge packets fail 
to get back to the transmit module. The amount of noise added is dependent on the 
type of transfer medium being modeled. 

The SystemC channel description is shown below:

// channel.h

#include "packet.h"

SC_MODULE(channel) {
  sc_in<packet_type> tpackin;      // input port
  sc_in<packet_type> rpackin;      // input port
  sc_out<packet_type> tpackout;    // output port
  sc_out<packet_type> rpackout;    // output port

  packet_type packin;
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  packet_type packout;

  packet_type ackin;
  packet_type ackout;

  void receive_data();
  void send_ack();

  // Constructor
  SC_CTOR(channel) {
    SC_METHOD(receive_data);   // Method Process
    sensitive << tpackin;

    SC_METHOD(send_ack);       // Method Process
    sensitive << rpackin;
  }
};

// channel.cc

#include "channel.h"

  void channel::receive_data() {
    int i;
    packin = tpackin;
    cout << "Channel:Received packet seq no. 
             = " << packin.seq << "\n";
    i = rand();
    packout = packin;
    cout <<"Channel: Random number = "<<i<<endl;

    if ((i > 1000) && (i < 5000)) {
      packout.seq = 0;
    }
    rpackout = packout;
  }

  void channel::send_ack(){
     int i;
     ackin = rpackin;
     cout <<"Channel:Received Ack for packet 
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            = " << ackin.seq << "\n";
     i = rand();
     ackout = ackin;

     if ((i > 10) && (i < 500)) {
       ackout.seq = 0;
     }
     tpackout = ackout;
  }

Ports

The channel description contains four ports, two input ports and two output ports. 
Port tpackin accepts packets from the transmit module and port rpackin accepts 
acknowledge packets from the receiver. Port tpackout sends acknowledge packets 
to the transmit module and port rpackout sends data packets to the receiver. 

Data and Function Members

Notice the four local packet variable declarations to hold the values of the packet 
ports. Local variables are necessary so you can access the packet internal data 
fields. 

The channel description has two processes. Process receive_data() is used to get 
data from the transmit module and pass the data to the receiver module. Process 
send_ack() gets acknowledge packets from the receiver module and sends them to 
the transmit module. 

Process receive_data is sensitive to events on port tpackin. Thus when a new packet 
is sent from the transmit module, process receive_data() is invoked and analyzes 
the packet. Process send_ack() is sensitive to events on port rpackin. When the 
receiver module sends an acknowledge packet to the channel module, the value of 
port rpackin is updated and causes process send_ack to be invoked. 

Constructor

In the channel constructor, we can see that both processes are SC_METHOD pro-
cesses. 
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Implementation of Methods

Let’s take a closer look at process receive_data. The first step is to copy tpackin to a 
local variable so that the packet fields can be accessed. A message is printed for 
debugging purposes. A random number is generated to add noise to the channel. 
The packet is assigned to the output packet and another debugging message is 
printed displaying the random number value. Finally, an if statement determines 
whether the packet passes through as received, or if the packet is altered by adding 
noise. 

If the random number is within the specified range, the sequence number of the 
packet is set to 0. This means the packet was corrupted. The last two statements of 
the process receive_data copies the altered or unaltered packet to output port rpack-
out

You can modify the range of random numbers generated and the range of numbers 
that modify the packet sequence number to control the amount of noise injected. 

The send_ack process, triggered by events on port rpackin, is very similar to the 
receive_data process. It assigns rpackin to the local packet ackin so the fields of the 
packet can be examined. Next, a debug message is written, and a random number 
representing the noise in the channel for acknowledgements is generated. This pro-
cess also uses a specified range to modify the sequence number field of the packet. 
Finally, the packet is assigned to tpackout where it will be passed to the transmit 
module. 

Receiver Module

The receiver module accepts packets from the channel module and passes the data 
received to the virtual application. In this design the virtual application is a display, 
modeled in the display module. When the receiver module successfully receives a 
packet, it send an acknowledgement packet back to the transmit module. Incoming 
packet sequence numbers are compared with an internal counter to ensure the cor-
rect packets are being transmitted. 

The receiver module is shown below:

// receiver.h
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#include "packet.h"

SC_MODULE(receiver) {
  sc_in<packet_type> rpackin;      // input port
  sc_out<packet_type> rpackout;    // output port
  sc_out<long> dout;               // output port
  sc_in<bool>  rclk;

  int framenum;
  packet_type packin, packold;
  packet_type s;
  int retry;

  void receive_data();

  // Constructor
  SC_CTOR(receiver) {
    SC_METHOD(receive_data);       // Method Process
    sensitive_pos << rclk;
    framenum = 1;
    retry = 1;
  }
};

// receiver.cc

#include "receiver.h"

  void receiver::receive_data(){
    packin = rpackin;
    if (packin == packold) return;
    cout <<"Receiver: got packet no. = "<<packin.seq
          << "\n";
    if (packin.seq == framenum) {
      dout = packin.info;
      framenum++;
      retry++;
      s.retry = retry;
      s.seq = framenum -1;
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      rpackout = s;
    }
    packold = packin; 
  }

Ports

The receiver module has four ports, two input port, and two output ports. Input port 
rpackin accepts packets from the channel. Input rclk is the receiver block clock sig-
nal. Output port rpackout is used to send acknowledge packets to the channel where 
they may be passed to the transmit module. Output port dout transfers the data 
value contained in the packet to the display module for printing. 

Constructor

The receiver module contains one SC_METHOD process named receive_data, 
which is sensitive to positive edge transitions on input port rclk. Notice in the 
receiver module constructor that variable framenum is initialized to 1. Module 
transmit also initializes a framenum variable to 1, so both transmit and receiver are 
synchronized at the start of packet transfer. 

Implementation of Methods

As we have already seen, process receive_data is invoked when a new packet 
arrives on the rpackin port. The first step in the process is to copy rpackin to the 
local variable packin for packet field access. The receiver block, like the transmit 
block, compares the new packet value with the old packet value to determine if a 
new packet has been received. A debug message is printed and the process checks 
to see if the sequence number of the incoming packet matches the expected fra-
menum. If so, the packet data is placed on the dout port where it will be sent to the 
display module. Next, the framenum variable is incremented to reflect the next fra-
menum expected. 

If a packet is successfully received an acknowledge packet needs to be sent back to 
the transmit module. A local packet named s has its sequence number filled in with 
framenum. After the sequence number field is updated, packet s is assigned to port 
rpackout. 
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Display Module

The display module is used to format and display the packet data received by the 
receiver module. In this example the data is a very simple type long value. This 
makes the display module very simple. However, as the simplex protocol is more 
completely implemented, the data being sent could grow in complexity to the point 
that more complex display formatting is needed. The display module is shown 
below:

// display.h

#include "systemc.h"
#include "packet.h"

SC_MODULE(display) {
  sc_in<long> din;     // input port

  void print_data();

  // Constructor
  SC_CTOR(display) {
    SC_METHOD(print_data);  // Method process to print 
data
    sensitive << din;       
  }
};

// display.cc

#include "display.h"

void display::print_data() {
  cout <<"Display:Data Value Received, Data = "
       <<din << "\n";
}
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This module only has one input port named din. It accepts data values from the 
receiver module. When a new value is received, process print_data is invoked and 
writes the new data item to the output stream. 

Timer Module

The timer module implements a timer for packet retransmission. The delay allows a 
packet to propagate to the receiver and the acknowledge to propagate back before a 
retransmit occurs. Setting the delay properly is a key factor in determining the max-
imum data rate in a noisy environment. Without the timer, the transmitter would not 
know when to retransmit a packet that was lost in transmission. The delay value is a 
parameter that can easily be modified to find the optimum value. 

The timer module is shown below:

// timer.h

#include "systemc.h"

SC_MODULE(timer) {
  sc_inout<bool> start;       // input port
  sc_out<bool> timeout;    // output port
  sc_in<bool> clock;       // input port

  int count;

  void runtimer();

  // Constructor
  SC_CTOR(timer) {
    SC_THREAD(runtimer);    // Thread process
    sensitive_pos << clock;
    sensitive << start;
    count = 0;
  }
};
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// timer.cc

#include "timer.h"

  void timer::runtimer() {
    while (true) {
      if (start) {

    cout <<"Timer: timer start detected"<<endl;
        count = 5;   // need to make this a constant
        timeout = false;
        start = false;
      } else {
        if (count > 0) {
          count--;
          timeout = false;
        } else {
          timeout = true;
        }
      }
      wait();
    }
  }

Ports

The timer module has one input port, one inout port, and one output port. Port start 
is an inout port of type bool. The transmit module activates the timer by setting start 
to true. The timer module starts the count and resets the start signal to false. Port 
clock is an input port of type bool that is used to provide a time reference signal to 
the timer module. Output port timeout connects to the transmit module and alerts 
the transmit module when the timer expires. This means that either the packet or 
acknowledge were lost during transmission and the packet needs to be transmitted 
again. 

Constructor

The timer module contains one process called runtimer. This process is sensitive to 
the positive edge of port clock. 
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Implementation of Methods

If the value of the start signal is 1 the timer is started. When the timer is started, a 
debug message is written out, the value of variable count is set to the timer delay 
value, and output port timeout is set to false. The false value signifies that the timer 
is running and has not timed out yet. The timer process then resets the start signal to 
0.

If variable count is greater than 0, the timer is still counting down. Variable count is 
decremented and port timeout stays false. If variable count is equal to 0, the timer 
has expired and timeout is set to true. At this point the transmit module knows that 
the packet was lost and retransmits the packet. 

Putting it all together - The main routine

The sc_main routine is the top-level routine that ties all the modules together and 
provides the clock generation and tracing capabilities. The sc_main routine is 
shown below:

// main.cc

#include "packet.h"
#include "timer.h"
#include "transmit.h"
#include "channel.h"
#include "receiver.h"
#include "display.h"

int sc_main(int argc, char* argv[]) {

  sc_signal<packet_type> PACKET1, PACKET2, PACKET3, 
PACKET4;
  sc_signal<long> DOUT;
  sc_signal<bool> TIMEOUT, START;

  sc_clock CLOCK("clock", 20);  // transmit clock
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  sc_clock RCLK("rclk", 15);    // receive clock

  transmit t1("transmit");
  t1.tpackin(PACKET2);
  t1.timeout(TIMEOUT);
  t1.tpackout(PACKET1);
  t1.start_timer(START);
  t1.clock(CLOCK);

  channel c1("channel");
  c1.tpackin(PACKET1);
  c1.rpackin(PACKET3);
  c1.tpackout(PACKET2);
  c1.rpackout(PACKET4);

  receiver r1("receiver");
  r1.rpackin(PACKET4);
  r1.rpackout(PACKET3);
  r1.dout(DOUT);
  r1.rclk(RCLK);

  display d1("display");
  d1 <<DOUT;

  timer tm1("timer");
  tm1 <<START<<TIMEOUT<<CLOCK.signal();

  // tracing:
  // trace file creation
  sc_trace_file *tf = sc_create_vcd_trace_file
     ("simplex");
  // External Signals
  sc_trace(tf, CLOCK.signal(), "clock");
  sc_trace(tf, TIMEOUT, "timeout");
  sc_trace(tf, START, "start");
  sc_trace(tf, PACKET1, "packet1");
  sc_trace(tf, PACKET2, "packet2");
  sc_trace(tf, PACKET3, "packet3");
  sc_trace(tf, PACKET4, "packet4");
  sc_trace(tf, DOUT, "dout");
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  sc_start(10000);

  sc_close_vcd_trace_file(tf);

  return(0);
}

Include Files

Notice that the sc_main file includes all of the other modules in the design. You 
instantiate each of the lower level modules and connect their ports with signals to 
create the design in sc_main. To instantiate a lower level module, the interface of 
the module must be visible. Including the .h file from the instantiated module pro-
vides the necessary visibility. 

Argument to sc_main

The sc_main routine takes the following arguments:

int sc_main(int argc, char* argv[]) {

The argc argument is a count of the number of command line arguments and the 
argv is an array containing the arguments as char* strings. This is the standard C++ 
way of parsing command line arguments to programs. 

Signals

After the sc_main statement, the local signals are declared to connect the module 
ports together. Four signals are needed for packet_type to cross connect the trans-
mit, receiver, and channel modules. There are two clock declarations, clock and 
rclk. Clock is used as the transmitter clock and will synchronize the transmit block 
and the timer block. Rclk is used as the receiver clock and will synchronize the 
receiver block and the display block. 

Module Instantiation

After the declaration statements, the modules in the design are instantiated. The 
transmit, channel, receiver, display, and timer are instantiated and connected 
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together with the locally declared signals. This completes the implementation of the 
design. 

Positional and Named Connections

In the sc_main file two different types of connections were used to connect signals 
to the module instantiations. Modules transmit, channel, and receiver used named 
connections. A named connection connects a port name to a signal name. Notice 
that the port names were in lowercase and the signal names in uppercase.

Modules display and timer used positional connections to connect signals to the 
module instantiations. With this style of connection a list of signals is passed to the 
instantiation and the first signal in the list connects to the first port, the second sig-
nal to the second port, etc. 

Using Trace

The program can now be built and run. To make is easier to determine if the design 
works as intended, you can create a trace file with the built-in signal tracing meth-
ods in SystemC. The first trace command, shown below, creates a trace file named 
simplex.vcd into which the results of simulation can be written:

  sc_trace_file *tf = sc_create_vcd_trace_file
   ("simplex");

Next, a set of sc_trace commands trace the signals and variables of a module, as 
follows:

  sc_trace(tf, CLOCK.signal(), "clock");
  sc_trace(tf, TIMEOUT, "timeout");

These commands write the value of the signal specified to the trace file previously 
created. The last argument specifies the name of the signal in the trace file. 

After simulation is executed, you can examine the results stored in the trace file 
with a number of visualization tools that generate waveforms and tables of results. 

Simulation Start

After the trace commands, the following function call instructs the simulation ker-
nel to run for 10,000 default time units and stop:
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  sc_start(10000);

Alternatively, you can use an sc_start value of -1, as shown below:

sc_start(-1);

This command tells the simulation to run forever. 

After the example is completely described in SystemC, the commands to build the 
simulator need to be specified. The following sections provide procedures for com-
piling under UNIX and Windows. 

Compiling the Example for UNIX

The following steps are needed to compile the design for the UNIX environment:

1. Create a new directory for the design and create all the design files in it.

2. Copy file Makefile and Makefile.defs from the SystemC installation examples 
directory into the new directory. 

3. Edit the Makefile so that the list of files includes all of the design source files. 
An example Makefile is shown below:

TARGET_ARCH = gccsparcOS5

MODULE = demo 
SRCS = channel.cc display.cc packet.cc receiver.cc 
timer.cc transmit.cc main.cc
OBJS = $(SRCS:.cc=.o)

include ./Makefile.defs

Edit the SRCS line to list all of the source files in the design. 

Don’t remove the line "include ./Makefile.defs". 

The MODULE line specifies the name of the executable to run when the compi-
lation is done. In this example, the compilation creates a program named demo. 

4. Open the Makefile.defs and make sure that the SYSTEMC line points to the 
current location of the SystemC class libraries. 

An example is shown below:



Starting with a Simple Example

36 SystemC 2.0 User’s Guide

TARGET_ARCH = gccsparcOS5
CC     = g++
OPT    = 
DEBUG  = -g 
SYSTEMC = /remote/dtg403/dperry/systemc-2.0
INCDIR = -I. -I.. -I$(SYSTEMC)/include
LIBDIR = -L. -L.. -L$(SYSTEMC)/lib-$(TARGET_ARCH)
CFLAGS = -Wall $(DEBUG) $(OPT) $(INCDIR) $(LIBDIR)
LIBS   =  -lsystemc -lm $(EXTRA_LIBS)

// rest of file not shown

5. By default the simulation is built with debugging turned on. Modify the 
DEBUG line to turn on or off the debugging options as desired. 

6. To compile the design, enter the following in the command line:
unix% gmake

or 
   unix% make

Compiling the Example for Windows

The SystemC distribution includes project and workspace files for Visual C++. If 
you use these project and workspace files the SystemC source files are available to 
your new project. For Visual C++ 6.0 the project and workspace files are located in 
directory:

  ...\systemc-2.0\msvc60

This directory contains two subdirectories: systemc and examples.

The systemc directory contains the project and workspace files to compile the sys-
temc.lib library. Double-click on the systemc.dsw file to launch Visual C++ with 
the workspace file. The workspace file will have the proper switches set to compile 
for Visual C++ 6.0. Select "Build systemc.lib" under the Build menu or press F7 to 
build systemc.lib.

The examples directory contains the project and workspace files to compile the 
SystemC examples. Go to one of the examples subdirectories and double-click on 
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the .dsw file to launch Visual C++ with the workspace file. The workspace file will 
have the proper switches set to compile for Visual C++ 6.0. Select "Build <exam-
ple>.exe" under the Build menu or press F7 to build the example executable.

To create a new design, first create a new project by using the "New" menu item 
under the File menu. Select the Projects tab on the dialog box that appears and 
select Win32 Console Application. Create an empty project.

For your own SystemC applications, make sure that the Run Time Type Informa-
tion switch is on by using the "Settings..." menu item under the Project menu. 
Select the C/C++ tab, and select the C++ Language category. Make sure that the 
Enable Run Time Type Information (RTTI) checkbox is checked.

Also make sure that the SystemC header files are included by selecting the C/C++ 
tab, selecting the Preprocessor category, and typing the path to the SystemC src 
directory in the text entry field labeled "Additional include directories". The exam-
ples use e.g. "../../../src".

Next add the source files to the project by using the "Add To Project>Files..." menu 
item under the Project menu. Make sure that the files are added to the new project 
directory just created. Do the same for the systemc.lib library before building your 
SystemC application.

Now use the Compile and Build menu selections to compile and build the SystemC 
application. When the application has been built, the design can be run from Visual 
C++ to debug the application.

Executing the Example

After the simulation executable is built, you run the simulation by executing the 
simulation executable created in the compilation step. The simulation executable is 
a batch program that executes the simulation. For example, to run a simulation for a 
module named demo, simply type demo at the command prompt and press return. If 
you built a console application in Visual C++ you can run the application in a Win-
dows Command Prompt window by typing the name of the project created. 

The duration of the simulation is specified by method sc_start in the sc_main mod-
ule. The data created by the simulation is specified with the sc_trace commands in 
the sc_main module. 
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When the simulation is complete, a trace file of the traced signals is created. You 
can use tools to view waveforms and tables from this data and analyze the results of 
simulation and determine whether or not the simulation succeeded.



SystemC 2.0 User’s Guide 39

CHAPTER 3 Modules and Hierarchy

Modules are the basic building block within SystemC to partition a design. Mod-
ules allow designers to break complex systems into smaller more manageable 
pieces. Modules help split complex designs among a number of different designers 
in a design group. Modules allow designers to hide internal data representation and 
algorithms from other modules. This forces designers to use public interfaces to 
other modules, and the entire system becomes easier to change and easier to main-
tain. For example, a designer can decide to completely change the internal data rep-
resentation and implementation of a particular module. However, if the external 
interface and internal function remain the same, the users of the module do not 
know that the internals were changed. This allows designers to optimize the design 
locally. 

Modules are declared with the SystemC keyword SC_MODULE as shown by the 
example below:

SC_MODULE(transmit) {

The identifier after the SC_MODULE keyword is the name of the module, which is 
transmit in this example. This syntax uses a macro named SC_MODULE to declare 
a new module named transmit. Another way to declare a module is the following:
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struct transmit : sc_module {

This form of declaration resembles a typical C++ declaration of a struct or a class. 
The macro SC_MODULE provides an easy and very readable way to describe the 
module. 

A module can contain a number of other elements such as ports, local signals, local 
data, other modules, processes, and constructors. These elements implement the 
required functionality of the module. 

Module Ports

Module Ports pass data to and from the processes of a module. You declare a port 
mode as in, out, or inout. You also declare the data type of the port as any C++ data 
type, SystemC data type, or user defined type. 

The figure above shows a fifo module with a number of ports. The ports on the left 
are input ports or inout ports while the ports on the right are output ports. Each port 
has an identifying name. Graphic symbols like the one shown above typically do 
not contain port types, so it is not clear from the symbol which port types are 
present. The SystemC description of these ports is shown below:

SC_MODULE(fifo) {
  sc_in<bool>   load;

Load

Read

Data

Full

Empty

Fifo



SystemC 2.0 User’s Guide 41

Module Signals

  sc_in<bool>   read;
  sc_inout<int> data;
  sc_out<bool>  full;
  sc_out<bool>  empty;

  //rest of module not shown
}

Each port on the block diagram has a matching port statement in the SystemC 
description. Port modes sc_in, sc_out, and sc_inout are predefined by the SystemC 
class library. 

Module Signals

Signals can be local to a module, and are used to connect ports of lower level mod-
ules together. These signals represent the physical wires that interconnect devices 
on the physical implementation of the design. Signals carry data, while ports deter-
mine the direction of data from one module to another. Signals aren’t declared with 
a mode such as in, out, or inout. The direction of the data transfer is dependent on 
the port modes of the connecting components. 

FIGURE 1. Filter Design
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The example in Figure 1 shows the data path of a simple filter design. There are 
three lower level modules instantiated in the filter design, sample, coeff, and mult 
modules. The module ports are connected by three local signals q, s, and c. 

Note: Instantiation means that an instance of an object is created. It is the same as 
declaring a new object in C++.

Positional Connection

There are two ways to connect signals to ports in SystemC.

• named mapping 

• positional mapping

First let’s examine the example in Figure 1 using positional mapping. 

The SystemC description for this example looks as follows:

// filter.h
#include "systemc.h"
#include "mult.h"
#include "coeff.h"
#include "sample.h"

SC_MODULE(filter) {

  sample *s1;
  coeff  *c1;
  mult   *m1;
  sc_signal<sc_uint<32> > q, s, c;

  SC_CTOR(filter) {
    s1 = new sample ("s1");
    (*s1)(q,s);

    c1 = new coeff ("c1");
    (*c1)(c);

    m1 = new mult ("m1");
    (*m1)(s,c,q);
  }
}
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The four include files at the beginning of the module give the designer access to the 
SystemC classes and the declarations of the instantiated modules. The top level of 
the design and the module are both named filter. The top level module does not 
have any ports, which is legal for the top of the design. 

Below the include statements are pointer declarations that allow allocation of the 
objects to be instantiated in the design. You declare a pointer variable for each 
object that will be instantiated later. 

Next, the local signal are declared using the SystemC template class sc_signal. The 
type of the signal being passed is entered between the angle brackets (<>). In this 
example the type of the signal is a SystemC data type sc_uint. Notice that there is 
an extra space inserted between the "32>" and the ">" in the declaration. This is 
required to allow the description to compile. The three modules in this design are 
instantiated in the constructor SC_CTOR.

Each instantiation contains two line of SystemC description. The first line creates a 
new object and a pointer to the object. The second line uses the object pointer to 
map signals to the object ports. This style of mapping is called positional mapping. 
Each signal in the mapping matches the port of the instantiated module on a posi-
tional basis. The first signal listed in the mapping connects to the first port in the 
instantiation, the second signal connects to the second port, etc. The order and num-
ber of ports in this style of mapping is very important. If the order is not followed 
properly signals of one type can get connected to ports of another type. This will 
produce a runtime error. 

Positional connections can work very well for small instantiations with few ports to 
make the description small. However, for instantiations with a large number of 
ports, connecting with positional connection can be confusing. For these cases, it is 
better to use named connection. 

Named Connection

The same design with named mapping is shown below:

#include "systemc.h"
#include "mult.h"
#include "coeff.h"
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#include "sample.h"

SC_MODULE(filter) {
  sample *s1;
  coeff  *c1;
  mult   *m1;

  sc_signal<sc_uint<32> > q, s, c;

  SC_CTOR(filter) {
    s1 = new sample ("s1");
    s1->din(q);
    s1->dout(s);

    c1 = new coeff ("c1");
    c1->out(c);

    m1 = new mult ("m1");
    m1->a(s);
    m1->b(c);
    m1->q(q);
  }
}

This example uses named connection for the component instantiations. The first 
named connection connects port din of module s1(sample) to signal q of module fil-
ter. The second named connection connects port dout of module s1 to signal s of 
module filter. Using named connection the designer can create the signal to port 
connections in any order. 

Internal Data Storage

For storage of data within a module, the designer can declare local variables. Inter-
nal data storage can be of any legal C++ type, SystemC type, or user defined type. 
Local storage is not visible outside the module unless the designer specifically 
makes the data visible. 

// count.h
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#include "systemc.h"

SC_MODULE(count) {
  sc_in<bool> load;   
  sc_in<int>  din;     // input port
  sc_in<bool> clock;   // input port
  sc_out<int> dout;    // output port

  int count_val;       // internal data storage

  void count_up();

  SC_CTOR(count) {
    SC_METHOD(count_up);   // Method process
    sensitive_pos << clock;
  }
};

// count.cc

#include "count.h"

void count::count_up() {
  if (load) {
    count_val = din;
  } else {
    count_val = count_val + 1;  // could also 
                                //write count_val++
  }
  dout = count_val;   
}

The example above implements an integer counter. On a rising edge of port clock, 
the process count_up executes. If the load input is true, port din is loaded into the 
counter. Otherwise, the counter increments its value by 1. The count_val variable is 
used to store the intermediate value of the counter. It is local storage, not visible 
outside the counter module. 
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Processes

So far the interface and storage of modules have been discussed, but not the part of 
the module that provides the functionality. The real work of the modules are per-
formed in processes. Processes are functions that are identified to the SystemC ker-
nel and called whenever signals these processes are “sensitive to” change value. A 
process contains a number of statements that implement the functionality of the 
process. These statements are executed sequentially until the end of the process 
occurs, or the process is suspended by one of the wait function calls. 

 Processes look very much like normal C++ methods and functions with slight 
exceptions. Processes are methods that are registered with the SystemC kernel. 
There are a number of different types of processes including method processes, 
thread processes, and clocked thread processes. Process types are discussed in 
Chapter 4, “Processes,”. The process type determines how the process is called and 
executed. Processes can contain calls to a function named wait() that will halt exe-
cution of the process at different points. Signal value changes cause the process to 
receive events and execute statements in a process. An example process is shown 
below:

// dff.h

#include "systemc.h"

SC_MODULE(dff) {
  sc_in<bool>  din;
  sc_in<bool>  clock;
  sc_out<bool> dout;

  void doit();

  SC_CTOR(dff) {
    SC_METHOD(doit);
    sensitive_pos << clock;
  }
};

// dff.cc

#include "dff.h"
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void dff::doit() {
  dout = din;
}

This module describes a flip flop device. The module has a clock input (clock), a 
data input (din), and a data output (dout). When a rising edge (0 to 1 value) occurs 
on the clock input object, input port data is assigned to output port dout. The value 
change on input clock triggers method doit to execute. Let’s take a closer look at 
how this occurs in SystemC. 

Process doit() is described as a method in the module. This method will be called 
whenever a positive edge occurs on port clock. 

This behavior is described by the following statements in the constructor for mod-
ule dff:

SC_METHOD(doit);
sensitive_pos << clock;

The first statement specifies that module dff contains a process named doit. It also 
specifies that this process is an SC_METHOD process. An SC_METHOD process 
is triggered by events and executes all of the statements in the method before 
returning control to the SystemC kernel (more about processes later). The second 
statement specifies that the process is sensitive to positive edge changes on input 
port clock. 

The process runs once when the first event (positive edge on clock) is received. It 
executes the assignment of din to dout and then returns control to the SystemC ker-
nel. Another event causes the process to be invoked again, and the assignment 
statement is executed again.

Module Constructors

The final item that makes up a module is the constructor. The module constructor 
creates and initializes an instance of a module. The constructor creates the internal 
data structures that are used for the module and initializes these data structures to 
known values. The module constructors in SystemC are implemented such that the 
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instance name of the module is passed to the constructor at instantiation (creation) 
time. This helps identify the module when errors occur or when reporting informa-
tion from the module. Example constructors have already been looked at briefly, 
but let’s take a more detailed look at slightly more complex constructors. Below is 
an example RAM:

// ram.h

#include "systemc.h"

SC_MODULE(ram) {
  sc_in<int>  addr;
  sc_in<int>  datain;
  sc_in<bool> rwb;
  sc_out<int> dout;

  int memdata[64];   // local memory storage
  int i;

  void ramread();
  void ramwrite();

  SC_CTOR(ram){
    SC_METHOD(ramread);
    sensitive << addr << rwb;

    SC_METHOD(ramwrite)
    sensitive << addr << datain << rwb;

    for (i=0; i++; i<64) {
      memdata[i] = 0;
    }
  }
};

// rest of module not shown
  

This example implements a RAM memory device. The RAM can be written to and 
read from the two processes, read() and write(). The constructor contains declara-
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tions for each of the processes. Both are described as SC_METHOD type pro-

cesses1. The for loop is used to initialize the memory to 0 values.

 When a RAM module is instantiated the constructor will be called, data allocated 
for the module, and the two processes registered with the SystemC kernel. Finally 
the for loop will be executed which will initialize all the memory locations of the 
newly created ram module. 

TestBenches

Testbenches are used to provide stimulus to a design under test and check design 
results. The testbench can be implemented in a number of ways. The stimulus can 
be generated by one process and results checked by another. The stimulus can be 
embedded in the main program and results checked in another process. The check-
ing can be embedded in the main program, etc. There is no clear "right" way to do a 
testbench, it is dependent on the user application. 

A typical testbench might look as follows:

The stimulus module will provide stimulus to the Device Under Test (DUT) and the 
Results Checking module will look at the device output and verify the results are 
correct. 

1. Described in Chapter 4, “Processes,”

Device 
Under 
TestStimulus

Results
Checking

Main Module



Modules and Hierarchy

50 SystemC 2.0 User’s Guide

The stimulus module can be implemented by reading stimulus from a file, or as an 
SC_THREAD process, or an SC_CTHREAD process. The same is true of the 
results checking module. Some designers combine the stimulus and results check-
ing modules into one module. Also the results checking module can be left out if 
the designer does manual analysis of the output results. For some designs this tech-
nique works well because the output results are easy to check. For example if the 
device under test is a graphics manipulation device and the stimulus is a picture to 
be manipulated, the designer just needs to look at the output picture to verify that 
the results are as expected. 

An example testbench for the counter example described on page 44 is shown 
below:

// count_stim.h

#include "systemc.h"

SC_MODULE(count_stim) {
  sc_out<bool> load;   
  sc_out<int>  din;     // input port
  sc_in<bool>  clock;   // input port
  sc_in<int>   dout;

  void stimgen();

  SC_CTOR(count_stim) {
    SC_THREAD(stimgen);
    sensitive_pos (clock);
  }
};

// count_stim.cc

#include "count_stim.h"

void count_stim::stimgen() {
  while (true) {
    load = true;    // load 0
    din = 0;

    wait();         // count up, value = 1
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    load = false;
    
    wait();         // count up, value = 2
    wait();         // count up, value = 3
    wait();         // count up, value = 4
    wait();         // count up, value = 5
    wait();         // count up, value = 6
    wait();         // count up, value = 7
  }
}

The testbench will drive the load and din inputs of the count module. The clock 
input of the count module and the clock input of the count_stim module will be 
generated from a clock object located in the sc_main routine discussed in the next 
section. 

The first two statements in the while loop of the process will load the value 0 into 
the count module. The count module is loaded when the load input is true. The 
value loaded into the count module is the value of din. When the load signal goes to 
false and a positive edge occurs on input clock, the counter will count up. After the 
first wait() call, the load input will be set to false allowing the counter to count up. 
Successive clocks will allow the counter to keep counting up until the end of the 
while loop is reached. At this point, execution will start at the beginning of the 
while loop and the counter will be loaded with 0. 

Since the count module is a simple design, the stimulus for it is trivial. More com-
plex designs will have more complex stimulus. This style of test bench will support 
more complex stimulus. As mentioned earlier stimulus can also be read from a file. 
This has the added benefit of changing the stimulus without recompiling the design. 

A separate module could be used to check that the counter values were correct, or 
each of the wait statements could have a result checking statement like the follow-
ing:

    wait();         // count up, value = 2
    if (dout != 2) {
      printf("counter failed at value 2");
    }



Modules and Hierarchy

52 SystemC 2.0 User’s Guide



SystemC 2.0 User’s Guide 53

CHAPTER 4 Processes

Processes are the basic unit of execution within SystemC. Processes are called to 
emulate the behavior of the target device or system. Three types of SystemC pro-
cesses are available:

• Methods

• Threads

• Clocked Threads

Each of these processes has unique behavior and are discussed in the next few sec-
tions. 

In a typical programming language, methods are executed sequentially as control is 
transferred from one method to another to perform the desired function. Typical 
programming languages can be used to model sequential behavior of systems very 
easily. However electronic systems are inherently parallel with lots of parallel 
activity constantly taking place. Modeling these parallel activities with a sequential 
language can be difficult. Typical solutions to these problems brought about the 
creation of special Hardware Description Languages such Verilog and VHDL for 
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modeling the hardware part of the system, and linking in C or C++ descriptions for 
the software part of the design. SystemC has the concept of Methods, Threads, and 
Clocked Threads to model the parallel activities of a system. 

Basics 

Some processes behave just like functions, the process is started when called, and 
returns execution back to the calling mechanism when complete. Other processes 
are called only once at the beginning of simulation and are either actively executing 
or suspended waiting for a condition to be true. The condition can be a clock edge 
or a signal expression or combination of both. 

Processes are not hierarchical, so no process will call another process directly. Pro-
cesses can call methods and functions that are not processes. 

Processes have sensitivity lists, i.e. a list of signals that cause the process to be 
invoked, whenever the value of a signal in this list changes. Processes cause other 
processes to execute by assigning new values to signals in the sensitivity list of the 
other process. 

To trigger a process a signal in the sensitivity list of the process must have an event 
occur. The event on the signal is the triggering mechanism to activate the process. 
An event on a signal is a change in the value of the signal. If a signal has a current 
value of 1 and a new assignment updates the value to 0, an event will occur on the 
signal. Any processes sensitive to that signal will recognize that there was an event 
on that signal and invoke the process. 

Method Process

When events (value changes) occur on signals that a process is sensitive to, the pro-
cess executes. A method executes and returns control back to the simulation kernel. 
A simple method is shown below:

// rcv.h

#include "systemc.h"
#include "frame.h"
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SC_MODULE(rcv) {
  sc_in<frame_type> xin;
  sc_out<int>       id;

  void extract_id();

  SC_CTOR(rcv) {
    SC_METHOD(extract_id);
    sensitive(xin);
  }
};

// rcv.cc

#include "rcv.h"
#include "frame.h"

void rcv::extract_id() {
  frame_type frame;

  frame = xin;
  if(frame.type == 1) {
    id = frame.ida;
  } else {
    id = frame.idb;
  }
}

This example shows a module called rcv that has an input named xin and an output 
named id. The module contains a single method named extract_id. The method is 
sensitive to any changes on input xin. When input xin changes, method extract_id is 
invoked. Method extract_id will execute and assign a value to port id. When the 
method terminates, control is returned back to the SystemC scheduler.

When a method process is invoked, it executes until it returns. Users are strongly 
recommended to not write infinite loops within a method process as control will 
never be returned back to the simulator.
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Thread Processes

Thread Process can be suspended and reactivated. The Thread Process can contain 
wait() functions that suspend process execution until an event occurs on one of the 
signals the process is sensitive to. An event will reactivate the thread process from 
the statement the process was last suspended. The process will continue to execute 
until the next wait(). 

The input signals that cause the process to reactivate are specified by the sensitivity 
list. The sensitivity list is specified in the module constructor with the same syntax 
used in the Method Process example. 

A sample Thread Process is shown below:

// traff.h

#include "systemc.h"

SC_MODULE(traff) {

  // input ports
  sc_in<bool>   roadsensor;
  sc_in<bool>   clock;

  // output ports
  sc_out<bool>  NSred;
  sc_out<bool>  NSyellow;
  sc_out<bool>  NSgreen;
  sc_out<bool>  EWred;
  sc_out<bool>  EWyellow;
  sc_out<bool>  EWgreen;

  void control_lights();
  int i;

  // Constructor
  SC_CTOR(traff) {

    SC_THREAD(control_lights);  // Thread Process
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    sensitive << roadsensor;
    sensitive_pos << clock;
  }
};

// traff.cc

#include "traff.h"

void traff::control_lights() {
  NSred = false;
  NSyellow = false;
  NSgreen = true;
  EWred = true;
  EWyellow = false;
  EWgreen = false;

  while (true) {
    while (roadsensor == false)
      wait();                        
    NSgreen = false; // road sensor triggered
    NSyellow = true; // set NS to yellow
    NSred = false;
    for (i=0; i<5; i++)
      wait();    
      
    NSgreen = false;   // yellow interval over
    NSyellow = false;  // set NS to red
    NSred = true;      // set EW to green
    EWgreen = true;
    EWyellow = false;  
    EWred = false;
    for (i= 0; i<50; i++) 
      wait();
                             
    NSgreen = false;   // times up for EW green
    NSyellow = false;  // set EW to yellow
    NSred = true;
    EWgreen = false;
    EWyellow = true;
    EWred = false;
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    for (i=0; i<5; i++)  // times up for EW yellow
      wait();
    NSgreen = true;      // set EW to red
    NSyellow = false;    // set NS to green
    NSred = false;
    EWgreen = false;
    EWyellow = false;
    EWred = true;  
    for (i=0; i<50; i++) // wait one more long 
      wait();            // interval before allowing
                         // a sensor again
  }
}

This module is a simple traffic light controller. There is a main highway running 
North-South that normally has a green light. A highway sensor exists on the East-
West road that crosses the highway. A car on the East-West side road will trigger 
the sensor causing the highway light to go from green to yellow to red, and the side 
road to change from red to green. The model uses two different time delays. The 
green to yellow delay is longer than the yellow to red delay to represent the way 
that a real traffic light works. 

The starting state of the model will wait for an event on the road sensor. When this 
occurs the NS (North-South) lights will change to yellow, and the model will wait 
for the yellow to red delay. After the delay the NS lights are changed to red and the 
EW (East-West) lights are changed to green. The model will now wait for the green 
to yellow delay to allow the cars to have time to cross the highway. After this delay 
is complete the EW lights are changed to yellow and finally to red. The module 
waits one more long delay after the highway light goes back to green so that 
another car will not trip the sensor immediately. 

The module has one SC_THREAD process named control_lights. As can be seen 
from the constructor it is sensitive to the roadsensor, shorttimer, and longtimer 
input ports. In the steady-state condition the process will be waiting for events on 
the roadsensor input. 

The Thread Process is the most general process and can be used to model nearly 
anything. An SC_METHOD process to model this same design would require more 
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typing and be more difficult to understand and maintain. Each change of state in the 
traffic light controller would have to be declared as a state in a state machine. 

Thread processes are implemented as co-routines and with the SystemC class 
library. This implementation is slower than SC_METHOD processes. If simulation 
speed is a current goal of the simulation, limit the SC_THREAD processes as 
needed to maintain the highest simulation speed. 

Clocked Thread Process

Clocked Thread Processes are a special case of a Thread Process. Clocked Thread 
Processes help designers describe their design for better synthesis results. Clocked 
Thread Processes are only triggered on one edge of one clock, which matches the 
way hardware is typically implemented with synthesis tools. Clocked threads can 
be used to create implicit state machines within design descriptions. An implicit 
state machine is one where the states of the system are not explicitly defined. 
Instead the states are described by sets of statements with wait() function calls 
between them. This design creation style is simple and easy to understand. An 
explicit state machine would define the state machine states in a declaration and use 
a case statement to move from state to state.

To illustrate the Clock Thread Process, a bus controller example will be presented. 
The example is a bus controller for a microcontroller application. It is a very simple 
design so that the design can be described easily.

Let’s assume that we have a microcontroller with a 32-bit internal data path but 
only one 8-bit external data path to get data to and from the controller. Every 
address and data transaction will have to be multiplexed out over the 8-bit bus, 8 
bits at a time. This is a perfect application for an implicit state machine and an 
SC_CTHREAD process. 
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A 32-bit address will be passed to the bus controller process. This 32-bit address 
will be multiplexed byte by byte through the 8-bit data bus to form the 32-bit 
address in the memory controller. After the address has been sent the bus controller 
will wait until the ready signal from the memory controller is active and start 
receiving the 32 bits of data from the memory controller. After all of the data is 
received the bus controller will send the data back to the microcontroller on the 32-
bit data bus. Each of these transfers takes 4 cycles of the clock to transfer the 32-bit 
data 8 bits at a time. 

The bus controller will initially wait for the newaddr signal to become active. When 
newaddr becomes active a new address is present on the addr inputs. The start sig-
nal is sent to the memory controller with the first byte of the address on the data8 
bus. Successive bytes are passed on bus8 until all of the bytes have been sent. The 
bus controller will now wait for the ready signal from the memory controller. This 
signal tells the bus controller that the data from the memory controller is ready. 
Now the bus controller will transfer a byte at a time from bus8 to a temporary loca-
tion in the bus controller. Once the entire data value is received the data value is 
transferred to output data and the datardy signal activated. 

The SystemC description of the bus controller is shown below:

// bus.h

#include "systemc.h"

SC_MODULE(bus) {
  sc_in_clk             clock;

Bus
Controller Memory

Controllerdata8

addr

data

start

ready

newaddr

datardy

32

8
32
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  sc_in<bool>           newaddr;
  sc_in<sc_uint<32> >   addr;
  sc_in<bool>           ready;
  sc_out<sc_uint<32> >  data;
  sc_out<bool>          start;
  sc_out<bool>          datardy;
  sc_inout<sc_uint<8> > data8;
  
  sc_uint<32>  tdata;
  sc_uint<32>  taddr;

  void xfer();

  SC_CTOR(bus) {
    SC_CTHREAD(xfer, clock.pos());
    datardy.initialize(true);  // ready to accept
                               // new address
  }
};

// bus.cc

#include "bus.h"

void bus::xfer() {
  while (true) {
    // wait for a new address to appear
    wait_until( newaddr.delayed() == true);

    // got a new address so process it
    taddr = addr.read();
    datardy = false;   // cannot accept new address now
    data8 = taddr.range(7,0);
    start = true;      // new addr for memory controller
    wait();

    // wait 1 clock between data transfers
    data8 = taddr.range(15,8);
    start = false;
    wait();
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    data8 = taddr.range(23,16);
    wait();

    data8 = taddr.range(31,24);
    wait();

    // now wait for ready signal from memory
    // controller
    wait_until(ready.delayed() == true);

    // now transfer memory data to databus
    tdata.range(7,0) = data8.read();
    wait();

    tdata.range(15,8) = data8.read();
    wait();

    tdata.range(23,16) = data8.read();
    wait();

    tdata.range(31,24) = data8.read();
    data = tdata;
    datardy = true;   // data is ready, new addresses ok

  }
}

Notice that the constructor for module bus contains one SC_CTHREAD process. 
The SC_CTHREAD process is different from the SC_THREAD process in a num-
ber of ways. First the SC_CTHREAD process specifies a clock object. When other 
process types are described in a module constructor they only have the name of the 
process specified, but the SC_CTHREAD process has the name of the process and 
the clock that triggers the process. An SC_CTHREAD does not have a separate 
sensitivity list like the other process types. The sensitivity list is just the specified 
clock edge. The SC_CTHREAD process will be activated whenever the specified 
clock edge occurs. In this example the positive edge of the clock is specified so pro-
cess xfer will execute on every positive edge of the clock.

Notice also that the constructor for the module bus uses the initialize() function of 
port datardy to initialize it to true. In case a port is not yet bound, this is the only 
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way to initialize it. A direct assignment to the port or calling the write() function of 
the port will cause an error. The latter two ways of initializing a port only works if 
the port is already bound.

When the process first starts execution will stop at the first wait_until() method. A 
wait_until() function will suspend execution until the expression passed as an argu-
ment is true. Once the newaddr signal has become true the process will assume that 
a new address value exists on port addr. One point to keep in mind is that signals 
assigned new values by an SC_CTHREAD process will be not be available until 
after the next clock edge occurs. 

The addr value will now be placed on output signal data8 one byte at a time. When 
the first value of addr is output the start signal is activated to let the memory con-
troller know that a new address is coming. Once all of the address values have been 
sent the process will now wait for the ready signal to come back from the memory 
controller signaling that the memory data is ready to be read. The SC_CTHREAD 
process will continue to be activated every clock edge, but execution will not con-
tinue until the wait_until() condition becomes true. (See the wait_until() description 
in the next section)

Once the wait_until() condition becomes true the process will continue by reading 
the data values from port data8 into temporary data structure tdata. Once all of the 
data values have been read tdata is transferred to output data and the datardy signal 
is set to true signaling the microcontroller that the data is ready to be read. 

An SC_CTHREAD process can only be triggered by one clock edge. In the exam-
ple above a clock  is passed to the bus module through port clock. Port clock is an 
sc_in_clk port. The pos() or neg() method of this port is passed to the 
SC_CTHREAD constructor to specify the clock edge that triggers the process.

Wait Until

In an SC_CTHREAD process wait_until() methods can be used to control the exe-
cution of the process. The wait_until() method will halt the execution of the process 
until a specific event has occurred. This specific event is specified by the expres-
sion to the wait_until() method. 

An example wait_until() method is shown below:
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wait_until(roadsensor.delayed() == true);

This statement will halt execution of the process until the new value of roadsensor 
is true. The delayed() method is required to get the correct value of the object. A 
compilation error will result if the delayed() method is not present. 

Only a boolean expression is allowed as argument of the wait_until() function and 
only boolean signal objects can be used in the boolean expressions. Boolean signal 
objects include clock type sc_clock, signal type sc_signal<bool>, and port types 
sc_in<bool>, sc_out<bool>, and sc_inout<bool>.

More complex expressions are possible using boolean expressions. For instance the 
statement below is also legal. 

wait_until(clock.delayed() == true && 
           reset.delayed() == false);

Watching

SC_CTHREAD processes, just like SC_THREAD processes, typically have infi-
nite loops that will continuously execute. A designer typically wants some way to 
initialize the behavior of the loop or jump out of the loop when a condition occurs. 
This is accomplished through the use of the watching construct. The watching con-
struct will monitor a specified condition. When this condition occurs control is 
transferred from the current execution point to the beginning of the process, where 
the occurrence of the watched condition can be handled. The watching construct is 
only available for SC_CTHREAD processes.

An example is shown below:

// datagen.h

#include "systemc.h"

SC_MODULE(data_gen) {
  sc_in_clk     clk;
  sc_inout<int> data;
  sc_in<bool>   reset;
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  void gen_data();
 
  SC_CTOR(data_gen){
    SC_CTHREAD(gen_data, clk.pos());
    watching(reset.delayed() == true);
  }
};

// datagen.cc

#include "datagen.h"

void gen_data() {
  if (reset == true) {
    data = 0;
  }
  while (true) {
    data = data + 1;
    wait();

    data = data + 2;
    wait();

    data = data + 4;
    wait();
  }
}

This module is a simple data generator that will generate data output values that 
increase in value whenever a new clock edge is detected. If the designer wants the 
value of data to start again from 0, the watching expression needs to reset the 
design. 

In the constructor of the example is the following statement:

watching(reset.delayed() == true);

This statement specifies that signal reset will be watched for this process. If signal 
reset changes to true then the watching expression will be true and the SystemC 
scheduler will halt execution of the while loop for this process and start the execu-
tion at the first line of the process. 
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The delayed() function is required for the signal in a watching expression in order 
for the description to compile properly. The delayed() function allows the compiler 
to identify signals that are used in watching expressions. A lazy evaluation algo-
rithm is used for these signals which dramatically increases simulation perfor-
mance. 

This behavior allows the designer to reset a design, or jump out of a loop, without 
having to check the reset condition at each wait statement. To enable this behavior 
for a particular process the watching statement must be added to the constructor, 
and the implementation of the method must look like below:

void data_gen::gen_data () {
  // variable declarations

  // watching code
  if (reset == true) {
    data = 0;
  }

  // infinite loop
  while (true) {
    // Normal process function
  }
}

The process will execute the normal process functionality until the watched condi-
tion becomes true. When this happens the loop will be exited and execution of the 
process will start at the beginning. In this example execution would start with the 
statement shown below:

  if (reset == true) {

If reset is true, then data would be set to 0 and execution of the loop would start 
again from the first statement. 

Watching expressions are tested at every active edge of the execution of the pro-
cess. Therefore these signals are tested at the wait() or wait_until() calls in the infi-
nite loop. 
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One unexpected consequence of control exiting the while loop and starting again at 
the beginning of the process is that all of the variables defined locally within the 
process will lose their value. If a variable value is needed to be kept between invo-
cations of the process, declare the variable in the process module, and not local to 
the process.

Multiple watches can be added to a process. The data type of the watched object 
must be of type bool. If multiple watches are added to a process be sure to test 
which watch expression triggered the exit from the loop. Then perform the appro-
priate watch action based on the expression that triggered the exit.

This type of watching is called global watching and cannot be disabled. If you need 
to watch different signals at different times, then use local watching discussed in 
the next section. 

Local Watching

Local watching allows you to specify exactly which section of the process is watch-
ing which signals, and where the event handlers are located. This functionality is 
specified with 4 macros that define the boundaries of each of the areas. A blank 
example is shown below:

W_BEGIN
  // put the watching declarations here
  watching(...);
  watching(...);
W_DO
  // This is where the process functionality goes
  ...
W_ESCAPE
  // This is where the handlers for the watched events
  // go
  if (..) {
    ...
  }
W_END
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The W_BEGIN macro marks the beginning of the local watching block. Between 
the W_BEGIN and W_DO macros are where all of the watching declarations are 
placed. These declarations look the same as the global watching events. Between 
the W_DO macro and the W_ESCAPE macro is where the process functionality is 
placed. This is the code that gets executed as long as none of the watching events 
occur. Between the W_ESCAPE and the W_END macros is where the event han-
dlers reside. The event handlers will check to make sure that the relevant event has 
occurred and then perform the necessary action for that event. The W_END macro 
ends the local watching block. 

There are a few interesting things to note about local watching:

• All of the events in the declaration block have the same priority. If a different 
priority is needed then local watching blocks will need to be nested.

• Local watching only works in SC_CTHREAD processes. 

• The signals in the watching expressions are sampled only on the active edges of 
the process. In an SC_CTHREAD process this means only when the clock that 
the process is sensitive to changes. 

• Globally watched events have higher priority than locally watched events.

To show an example of local watching let’s modify the microcontroller bus exam-
ple from the SC_CTHREAD description on page 60 and allow the bus controller to 
be interrupted during the memory to databus transfer, but not during the databus to 
memory transfer. We will add local watching to the second part of the while loop 
where data is transferred from the memory to the databus. 

The new example is shown below:

// watchbus.cc

#include "bus.h"

void bus::xfer() {
  while (true) {
    // wait for a new address to appear
    wait_until( newaddr.delayed() == true);

    // got a new address so process it
    taddr = addr;
    datardy = false;   // cannot accept new address now
    data8 = taddr.range(7,0);
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    start = true;      // new addr for memory controller
    wait();

    // wait 1 clock between data transfers
    data8 = taddr.range(15,8);
    start = false;
    wait();

    data8 = taddr.range(23,16);
    wait();

    data8 = taddr.range(31,24);
    wait();

    // now wait for ready signal from memory
    // controller
    wait_until(ready.delayed() == true);

    W_BEGIN
      watching(reset.delayed());
      // Active value of reset will trigger watching

    W_DO
    // the rest of this block is as before

    // now transfer memory data to databus
    tdata.range(7,0) = data8.read();
    wait();

    tdata.range(15,8) = data8.read();
    wait();

    tdata.range(23,16) = data8.read();
    wait();

    tdata.range(31,24) = data8.read();
    data = tdata;
    datardy = true;   // data is ready, new addresses ok

    W_ESCAPE
      if (reset) {
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        datardy = false;
      }
    W_END

  }
}

The second half of the model has been altered as shown by the statements in bold. 
Macro W_BEGIN marks the beginning of the watched area. Inside the watched 
area is a watching expression of signal reset. More than one watching expression 
can be put into the declaration area. 

After macro W_DO is the statement area for the process functionality of the mod-
ule. These statements are exactly the same as in the original model. The difference 
is that if signal reset becomes active, execution will be transferred to the handler 
statement area and not to the next statement in the block. 

The W_ESCAPE macro marks the beginning of the handler area. This is the area 
where statement execution will be transferred if one of the watched events becomes 
active. Inside this area we have one handler for the reset event that is being 
watched. If there were more events being watched then a corresponding handler 
would be needed for each event. 

Finally the W_END macro marks the end of the local watching block, any state-
ments outside of this macro will only be subject to global watching not local watch-
ing. 

Triggering Processes with Events

 In order to generate an event and trigger a process, the port the process is sensitive 
to must have an event. An important point to remember when trying to trigger a 
process is that in order to generate an event the input signal must change value. In 
the simplex example from Chapter 2 the retry field was added to the packet struc-
ture so that successive transmissions of the same packet would cause events. The 
retry field was updated on every packet transmission causing the new packet value 
to be different from the old and generating an event.
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CHAPTER 5 Ports and Signals

Ports of a module are the external interface that pass information to and from a 
module, and trigger actions within the module. Signals create connections between 
module ports allowing modules to communicate. 

A port can have three different modes of operation. 

• Input

• Output

• InOut

An input port transfers data into a module. An output port transfers data out from a 
module, and an inout port transfers data both into and out of a module depending on 
module operation. 
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A signal connects the port of one module to the port of another module. The signal 
transfers data from one port to another as if the ports were directly connected. 
When a port is read the value of the signal connected to the port is returned. When a 
port is written the new value will be written to the signal when the process perform-
ing the write operation has finished execution, or has been suspended. This is done 
so that all operations within the process will work with the same value of the signal. 
This is to prevent some processes seeing the old value while other processes see the 
new value during execution. All processes executing during a time step will see the 
old value of the signal. These signal semantics are the same as VHDL signal opera-
tion and Verilog deferred assignment behavior. 

Ports are always bound to a signal except for one special case, when a port is bound 
directly to another port. Ports are always bound to only one signal. That signal may 
be a complex signal such as a structure, but it is still treated as one signal. Signal 
binding occurs during module instantiation. 

When building a hierarchical design structure, modules are instantiated within 
other modules to form the hierarchy of the design. The special case binding men-
tioned earlier occurs when a top level module port is directly bound to a lower level 
module port during instantiation. This is shown in the figure below:

PCI

Fifo

dindata

No signal required



SystemC 2.0 User’s Guide 73

In this example port data of module PCI is directly connected to port din of module 
fifo. For this case no local signal is required. 

Ports and signals also come in different sizes as hinted to earlier. Scalar ports have a 
single dimension. A scalar port can be one of the following types:

C++ built in types

• long

• int

• char

• short

• float

• double

SystemC types

• sc_int<n>

• sc_uint<n>

• sc_bigint<n>

• sc_biguint<n>

• sc_bit

• sc_logic

• sc_bv<n>

• sc_lv<n>

• sc_fixed

• sc_ufixed

• sc_fix

• sc_ufix

• User defined structs

Input, output and inout ports are described using the following syntax as we have 
seen in a number of examples already:
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sc_in<porttype>      // input port of type porttype
sc_out<porttype>     // output port of type porttype
sc_inout<porttype>   // inout port of type porttype

Type porttype can be any of the types mentioned above. Types will be described in 
more detail in Chapter 6, “Data Types,”. 

Reading and Writing Ports and Signals

You can use the read() and write() methods or the assignment operator for reading 
and writing ports and signals. Using the assignment operator makes your code more 
concise and more like HDL code because you read and write directly to the ports.

Use the read() and write() methods explicitly to clarify the exact intent of your 
code, even though your code is slightly more verbose. The read() and write() meth-
ods are called by an implicit conversion defined within the port class.

If you need an implicit type conversion because the type that you are reading or 
writing is different from the port type (for example, if a port is a bool and you are 
reading or writing an int), it is important that you use the read() and write() meth-
ods. C++ automatically applies only one implicit type conversion at any particular 
location, and you need two implicit conversions to read and write a different type 
than the port type.

Array Ports and Signals

For some applications an array of ports might be desirable. For instance computer 
generated design descriptions might use an array of ports for mapping configurable 
sized objects. To declare an array port or signal the same syntax as C++ is used. An 
example is shown below:

sc_in<sc_logic> a[32];  // creates ports a[0] to a[31]
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                        // of type sc_logic

This declaration creates an array of ports named a[0] to a[31] of type sc_logic. Each 
port has to be individually bound to a port, assigned, and read. 

Signal arrays can be created using similar syntax. An example signal array is shown 
below:

sc_signal<sc_logic> i[16]; // creates signals i[0] to
                           // i[15] of type sc_logic

This statement creates an array of signals named i[0] to i[15] of type sc_logic. Each 
signal has to be individually bound to a port, assigned, and read. 

Resolved Logic Vectors

Bus resolution becomes an issue when more than one driver is driving a signal. 
SystemC uses a Resolved Logic Vector signal type to handle this issue. Take a look 
at the example below with three drivers x, y, w, driving signal g.

Module A

Module B

Module C

x = 0

y = Z

w = Z

g = 0
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Modules a, b, and c are driving signal g through ports x, y, and w respectively. Port 
x is driving a 0 value, and ports y and w are driving Z values. The resolution of 
these values will be assigned to signal g. In this example the resolved value will be 
0. Ports y and w have their drivers disabled and are driving Z values. Therefore the 
0 value from port x will “win”.

Another interesting case is shown below:

In this case ports x and y are driving a value while port w is not. However ports x 
and y are driving opposite values. Since values 0 and 1 are the same strength or pri-
ority the final value of signal g cannot be determined and the value assigned will be 
X.

The resolution function used is shown in the table below. 

TABLE 1. Resolution of logic values

0 1 Z X

0 0 X 0 X

1 X 1 1 X

Z 0 1 Z X

X X X X X

Module B

Module C

x = 0

y = 1

w = Z

g = X

Module A
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Resolved Vector Signals

To create a resolved logic vector port use the following syntax:

sc_in_rv<n> x; //input resolved logic vector n bits wide

sc_out_rv<n> y;// output resolved logic vector n 
               //bits wide

sc_inout_rv<n> z;  // inout resolved logic vector n 
                   //bits wide

The only limitation on the size of n is underlying system limitations. Resolved 
Logic Vector ports should only be used where absolutely necessary as extra simula-
tion overhead is added versus standard ports. Typically a standard port with a scalar 
or vector type should be used for better simulation efficiency.

Resolved Vector Signals

Signals are used to interconnect ports. Vector signals can be used to connect vector 
ports. The vector signal types are the same as the vector port types. The currently 
supported vector signal type is sc_signal_rv. This is a resolved vector of sc_logic 
signals. An example is shown below:

sc_signal_rv<n> sig3;  // resolved logic vector signal
                       // n bits wide

Signals of this type can be used to connect to resolved logic vector ports.

NOTE: Do not initialize or write to a resolved (vector) signal outside of a process.  
This will cause undesired behavior.



Ports and Signals

78 SystemC 2.0 User’s Guide

Signal Binding

As mentioned previously each port is bound to a single signal. When reading a port 
the variable assigned the port value must have the same type as the port type. For 
example a port of type sc_logic cannot be read into an int variable or signal. 

When ports are bound to other signals or ports, both types must match. The exam-
ple below shows a port bound to another port (special case) and a port bound to a 
signal. 

// statemach.h

#include "systemc.h"

SC_MODULE(state_machine) {
  sc_in<sc_logic> clock;
  sc_in<sc_logic> en;
  sc_out<sc_logic> dir;
  sc_out<sc_logic> status;
  // ... other module statements
};

// controller.h

#include "statemach.h"

SC_MODULE(controller) {
  sc_in<sc_logic> clk;
  sc_out<sc_logic> count;
  sc_in<sc_logic> status;
  sc_out<sc_logic> load;
  sc_out<sc_logic> clear

  sc_signal<sc_logic> lstat;
  sc_signal<sc_logic> down;

  state_machine *s1;

  SC_CTOR(controller) {
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    // .... other module statements

    s1 = new state_machine ("s1");
    s1->clock(clk);    // special case port to 
                       // port binding
    s1->en(lstat);     // port en bound to signal lstat
    s1->dir(down);     // port dir bound to signal down
    s1->st(status);    // special case port to 
                       // port binding
  }
};

This example shows a controller module with a number of input and output ports. 
The module also includes local signals lstat and down. The controller module 
instantiates module state_machine with an instance label of s1. Below the state 
machine instance are the port binding statements. The first statement:

s1->clock(clk); 

binds port clock of instance s1 to external port clk of the controller. This is an 
example of a special case binding in which a port is bound directly to another port 
instead of a signal. The second port binding is shown below:

s1->en(lstat);

This statement binds port en of s1 to local signal lstat. This is an example of Named 
Mapping as discussed in “Named Connection” on page 43. Positional Mapping is 
discussed in “Positional Connection” on page 42.
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Clocks

Clock objects are special objects in SystemC. They generate timing signals used to 
synchronize events in the simulation. Clocks order events in time so that parallel 
events in hardware are properly modeled by a simulator on a sequential computer. 

A clock object has a number of data members to store clock settings, and methods 
to perform clock actions. To create a clock object use the following syntax:

sc_clock  clock1("clock1", 20, 0.5, 2, true);

This declaration will create a clock object named clock with a period of 20 time 
units, a duty cycle of 50%, the first edge will occur at 2 time units, and the first 
value will be true. All of these arguments have default values except for the clock 
name. The period defaults to 1, the duty cycle to 0.5, the first edge to 0, and the first 
value to true. 

Typically clocks are created at the top level of the design in the testbench and 
passed down through the module hierarchy to the rest of the design. This allows 
areas of the design or the entire design to be synchronized by the same clock. In the 
example below the sc_main routine of a design creates a clock and connects the 
clock to instantiated components within the main module. 

int sc_main(int argc, char*argv[]) {
  sc_signal<int>  val;
  sc_signal<sc_logic> load;
  sc_signal<sc_logic> reset;
  sc_signal<int> result;

  sc_clock  ck1("ck1", 20, 0.5, 0, true);

  filter f1("filter");
  f1.clk(ck1.signal());
  f1.val(val);
  f1.load(load);
  f1.reset(reset);
  f1.out(result);

  // rest of sc_main not shown
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}

In this example the top level routine sc_main instantiates a module called filter and 
declares some local signals that will connect filter with other module instantiations. 
Notice that a clk signal is not declared, instead a clock object is instantiated, its 
parameters are setup, and its signal method is used to provide the clock signal. 
Function ck1.signal() is mapped to the clk port of the filter object. 

In this example the clock is named ck1 and the clock frequency is specified as 20 
time units. Every 20 time units the clock will make a complete transition from true 
to false and back to true as shown by the following figure.

FIGURE 2. Clock Waveform:

The duty cycle of the clock is the ratio of the high time to the entire clock period. In 
this example the duty cycle is specified as 0.5. This means that the clock will be 
true for 10 time units and false for 10 time units. If the duty cycle were specified as 
0.25 then the clock would be true for 5 time units and false for 15 time units. 

The next parameter of the clock object is the start time of the first edge. This is a 
time offset from 0 of the first edge, expressed in time units. In this example the 
specified value is 2 time units. The last argument is the starting value of the clock 
object. The clock object will toggle the clock signal at appropriate times, but this 
value is used to specify the first value of the clock. Based on the parameters speci-
fied the clock object will produce a clock signal as shown in Figure 2 below:

20

clock
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FIGURE 3. Offset Clock Waveform

When binding the clock to a port the designer must use the clock signal generated 
by the clock object to map to a port. This done by using the signal method of the 
clock object. Notice that the clk port of filter is mapped to ck1.signal(). This is the 
clock signal generated by the clock object. 

For SC_CTHREAD processes the clock object is directly mapped to the clock input 
of the process and the signal() method is not required. 

0 2 12 22 32 42 52

clock



SystemC 2.0 User’s Guide 83

CHAPTER 6 Data Types

SystemC provides the designer the ability to use any and all C++ data types as well 
as unique SystemC data types to model systems. 

C++ data types are discussed in C++ books, so they will not be discussed here. The 
SystemC data types include the following:

• sc_bit – 2 value single bit type

• sc_logic – 4 value single bit type

• sc_int – 1 to 64 bit signed integer type

• sc_uint – 1 to 64 bit unsigned integer type

• sc_bigint – arbitrary sized signed integer type

• sc_biguint – arbitrary sized unsigned integer type

• sc_bv – arbitrary sized 2 value vector type

• sc_lv – arbitrary sized 4 value vector type

• sc_fixed - templated signed fixed point type

• sc_ufixed - templated unsigned fixed point type

• sc_fix - untemplated signed fixed point type
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• sc_ufix - untemplated unsigned fixed point type

Each of these types will be discussed in more detail in the next sections. The fixed 
point types are described in more detail in the next chapter. 

Type sc_bit

Type sc_bit is a two valued data type representing a single bit. A variable of type 
sc_bit can have the value ’0’(false) or ’1’(true) only. This type is useful for model-
ing parts of the design where Z (hi impedance) or X (unknown) values are not 
needed.

There are a number of logical and comparison operators that work with sc_bit 
including:

For those not familiar with the special assignment operators of C/C++ here is how 
these work. In a typical language the designer might write:

a = a & b;
a = a | b

In C++ this can also be written as:

a &= b
a |= b

Values are assigned using the character literals ’1’ and ’0’. When performing bool-
ean operations type sc_bit objects can be mixed with the C/C++ bool type. Objects 
of type sc_bit are good for representing single bits of a design where logical opera-

TABLE 2. sc_bit Operators

Bitwise &(and) |(or) ^(xor) ~(not)

Assignment = &= |= ^=

Equality == !=
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tions will be performed. To declare an object of type sc_bit use the following syn-
tax. 

sc_bit s;

Type sc_logic

A more general single bit type is sc_logic. This type has 4 values, ’0’(false), 
’1’(true), ’X’ (unknown), and ’Z’ (hi impedance or floating). This type can be used 
to model designs with multi driver busses, X propagation, startup values, and float-
ing busses. Type sc_logic has the most common values used in VHDL and Verilog 
simulations at the RTL level. 

Type sc_logic has a number of logical, comparison, and assignment operators that 
can be used with objects of this type. These include the following:

These operators are implemented such that operands of type sc_logic can be mixed 
with operands of type sc_bit. One of the operands must be type sc_logic, the other 
operands can be sc_logic or sc_bit. 

Values are assigned to sc_logic objects using the character literals shown below:

• ’0’ – 0 or false value

• ’1’ – 1 or true value

TABLE 3. sc_logic Operators

Bitwise &(and) |(or) ^(xor) ~(not)

Assignment = &= |= ^=

Equality == !=
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• ’X’ – unknown or indeterminate value

• ’Z’ – hi impedance or floating value

An example assignment is shown below:

sc_logic x;  // object declaration

x = ’1’;    // assign a 1 value
x = ’Z’;    // assign a Z value

The comparison operators == and != are implemented so that a designer can com-
pare two sc_logic objects, an sc_logic object and an sc_bit object, or an sc_logic 
object and one of the character literal values. The following comparisons are imple-
mented:

sc_bit x;
sc_logic y,z;

x == y;    // sc_bit and sc_logic
y != z;    // sc_logic and sc_logic
y == ’1’   // sc_logic and character literal

The assignment operator allows assigning a character literal value or another 
sc_logic object to an sc_logic object. Additionally an sc_bit can be converted to an 
sc_logic through the assignment. The following assignments are conversions. 

sc_bit x;
sc_logic y;

x = y;  // sc_logic to sc_bit
y = x;  // sc_bit to sc_logic

The first assignment will convert an sc_logic type to an sc_bit type. Since an sc_bit 
object has 2 values while an sc_logic type has 4 values, the values ’Z’ and ’X’ can-
not be converted to an sc_bit. If the value of the sc_logic object is ’Z’ or ’X’ when 
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assignment occurs, the result of the assignment is undefined and a runtime warning 
is issued. 

Fixed Precision Unsigned and Signed Integers

Some systems need arithmetic operations on fixed size arithmetic operands. The 
Signed and Unsigned Fixed Precision Integer types provide this functionality in 
SystemC. The C++ int type is machine dependent, but usually 32 bits. If the 
designer were only going to use 32 bit arithmetic operations then this type would 
work. However the SystemC integer type provides integers from 1 to 64 bits in 
signed and unsigned forms. 

The underlying implementation of the fixed precision type is a 64 bit integer. All 
operations are performed with a 64 bit integer and then converted to the appropriate 
result size through truncation. If the designer multiplies two 44 bit integers the 
maximum result size is 64 bits, so only 64 bits are retained. If the result is now 
assigned to a 44 bit result, 20 bits are removed. If more precision is needed use 
Arbitrary Precision Integers described in the next section. The fastest simulation 
speed will be obtained by using the built-in C++ data types int, long, etc. However 
these types only work for a fixed data size of 8, 16 or 32 bits. The second fastest 
simulation speed can be obtained by using the Fixed Precision Integers. The slow-
est simulation time will come from using the Arbitrary Precision Integers. So 
whenever possible use the Fixed Precision Integers over Arbitrary Precision Inte-
gers for the fastest simulation speed. 

Type sc_int<n> is a Fixed Precision Signed Integer, while type sc_uint<n> is a 
Fixed Precision Unsigned Integer. The signed type is represented using a 2’s com-
plement notation. The underlying operations use 64 bits, but the result size is deter-
mined at object declaration. For instance the following declaration declares a 64 bit 
unsigned integer and a 48 bit unsigned integer. 
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sc_int<64>  x;
sc_uint<48>  y;

Integer types have a very rich set of operators that work with them as shown by the 
list below:

Bitwise operators work on operands bit by bit. The not(~) operator will invert all 
bits, and the shift operators will shift left(<<) or right(>>) an operand by the speci-
fied number of bits. An example is shown below:

sc_int<16> x, y, z;

z = x & y;   // perform and operation on x and y bit
             // by bit
z = x >> 4;  // assign x shifted right by 4 bits to z

With the addition of arithmetic operators for SystemC Integer types, new assign-
ment operators are also available. For instance the += operator will allow a more 
terse description of the following statement:

x = x + y;   // traditional way

TABLE 4. Fixed Precision Integer Operators

Bitwise ~ & | ^ >> <<

Arithmetic + - * / %

Assignment = += -= *= /= %= &= |= ^=

Equality == !=

Relational < <= > >=

Autoincrement ++

Autodecrement --

Bit Select [x]

Part Select range()

Concatenation (,)
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Fixed Precision Unsigned and Signed Integers

x += y;   // terse method

To select one bit of an integer use the bit select operator as shown below:

sc_logic mybit;
sc_uint<8> myint;

mybit = myint[7];

To select more than one bit use the range method as shown below:

sc_uint<4> myrange;
sc_uint<32> myint;

myrange = myint.range(7,4);

Finally the concatenation operator can be used to make a larger value from one or 
more smaller values. An example is shown below:

sc_uint<4> inta;
sc_uint<4> intb;
sc_uint<8> intc;

intc = (inta, intb);

Operands inta, and intb are concatenated together to form an 8 bit integer and then 
assigned to integer intc.

The auto increment and auto decrement operators are another method of making the 
description more concise and terse. The auto increment operator will increment the 
operand it is attached to, and the auto decrement operator will decrement the oper-
and. For instance instead of writing:

a = a + 1;
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The auto increment operator will allow:

a++;

Variable of type sc_uint (unsigned) can be converted to type sc_int (signed) with 
the = (assignment) operator. In the same way variables of type sc_int can be con-
verted to sc_uint. When the = operator is used any extra bits are removed and sign 
bits are added and extended as necessary. An example is shown below:

sc_uint<8> uint1, uint2;
sc_int<16> int1, int2;

uint1 = int2;  // convert int to uint
int1 = uint2;  // convert uint to int

In the first statement an integer is converted to an unsigned integer. The absolute 
value of int2 will be assigned to uint1. If int2 is a negative value only the magnitude 
will be assigned to uint1. Since int2 is 16 bits while uint1 is 8 bits uint2 will be con-
verted to a 64 bit unsigned number and then truncated to 8 bits before assignment to 
uint1.

In the second statement uint2 is assigned to int1. First uint2 will be converted to a 
64 bit signed value then truncated and assigned to int1. 

Type sc_int and sc_uint can be used with C++ integer types without restriction. 
C++ integer types can be freely mixed with SystemC types. 

Speed Issues

As previously mentioned when SystemC integers are used 64 bits of precision are 
used. However if no more than 32 bits are ever needed simulation speed can be 
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Arbitrary Precision Signed and Unsigned Integer Types

increased by using 32 bits for the underlying precision. This is accomplished by 
compiling with a special compiler flag, -D_32BIT_. This compile flag will limit the 
size of the underlying arithmetic precision to 32 bits instead of 64. 

Arbitrary Precision Signed and Unsigned Integer 
Types

There are cases in HDL based design where operands need to be larger than 64 bits. 
For these types of designs sc_int and sc_uint will not work. For these cases use type 
sc_biguint (arbitrary size unsigned integer) or sc_bigint (arbitrary sized signed inte-
ger). These types allow the designer to work on integers of any size, limited only by 
underlying system limitations. Arithmetic and other operators also use arbitrary 
precision when performing operations. Of course this extra functionality comes at a 
price. These types execute more slowly than their fixed precision counterparts and 
therefore should only be used when necessary. While sc_bigint and sc_biguint will 
work with any operand sizes, they should only be used on operands larger than 64 
bits or for operations where more than 64 bits of precision are required. 

Type sc_bigint is a 2’s complement signed integer of any size. Type sc_biguint is an 
unsigned integer of any size. When using arbitrary precision integers the precision 
used for the calculations depends on the sizes of the operands used. Look at the 
example below:

sc_biguint<128> b1;
sc_biguint<64>  b2;
sc_biguint<150> b3;

b3 = b1*b2;

In this example b1, a 128 bit integer is multiplied by b2, a 64 bit integer. The result 
will be a 192 bit integer. However since b3 is only 150 bits wide 42 bits will be 
removed from the result before assignment to b3. 

For performance reasons a variable named MAX_NBITS is defined in 
sc_constants.h. This constant specifies the maximum number of bits to be used for 
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an arbitrary precision integer operation. Defining this variable provides a 2-3X per-
formance increase. The default value is 512, but can be changed if larger operands 
are required. 

The same operators used for Fixed Precision Integers are also available for Arbi-
trary Precision Integers. These operators are shown in the table below:

These operators use arbitrary precision for the underlying operations, unlike the 
fixed precision types. The real difference between the two types is the underlying 
precision and the slower simulation speed. Arbitrary Precision Integer types can 
have much greater precision but may simulate much slower so their use should be 
limited to only where needed. 

Types sc_biguint, sc_bigint, sc_int, sc_uint, and C++ integer types can all be mixed 
together in expressions. Also the = operator can be used to convert from one type to 
another. 

TABLE 5. Arbitrary Precision Integer Operators

Bitwise ~ & | ^ >> <<

Arithmetic + - * / %

Assignment = += -= *= /= %= &= |= ^=

Equality == !=

Relational < <= > >=

Autoincrement ++

Autodecrement --

Bit Select [x]

Part Select range()
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Arbitrary Length Bit Vector

Arbitrary Length Bit Vector

SystemC also contains a 2 valued arbitrary length vector to be used for large 
bit_vector manipulation. If the designer does not need tristate capability and no 
arithmetic operations are to be performed directly on the data, then sc_bv is the 
ideal type for the object. The sc_bv type will simulate faster than the sc_lv type yet 
still allow data manipulations on very large vectors. Type sc_biguint could also be 
used for these operations but type sc_biguint is optimized for arithmetic operations, 
not bit manipulation operations and type sc_bv will simulate faster. 

The sc_bv type introduces some new operators that perform bit reduction. These 
operators take the entire set of bits of the operand and generate a single bit result. 
For instance to find out if databus is all 0’s the following operation could be per-
formed:

sc_bv<64> databus;
sc_logic result;

result = databus.or_reduce();

If databus contains 1 or more 1 values the result of the reduction will be 1. If no 1 
values are present the result of the reduction will be 0 indicating that databus is all 
0’s.

Bit selection, part selection and concatenation all work with sc_bv objects. Remem-
ber these operators work on both sides of an assignment operator and in expres-
sions. The following expressions are legal. 

sc_bv<16> data16;
sc_bv<32> data32;

data32.range(15,0) = data16;  
data16 = (data32.range(7,0), data32.range(23,16)); 
(data16.range(3,0),data16.range(15,12)) = 
data32.range(7,0);
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In the first example a range of a large sc_bv object is assigned a smaller sc_bv 
object. In the second example a small sc_bv object is assigned the concatenation of 
two fields from a larger sc_bv object. In the final example a concatenated range of a 
smaller sc_bv object is assigned a range from a large sc_bv object. 

The operations supported by sc_bv are shown in the table below:

A single bit can be selected from an sc_bv object using the bit selection operator []. 
An example is shown below:

sc_bit y;
sc_bv<8> x;

y = x[6];

More than one bit can be selected using part selection. Part selection uses the range 
function to specify the range of bits to select. An example is shown below:

sc_bv<16> x;
sc_bv<8>  y;

y = x.range(0,7);

Notice that sc_bv types cannot have arithmetic performed directly on them. To per-
form arithmetic functions first assign sc_bv objects to the appropriate SystemC 
integer. Perform the arithmetic operation on the integer type. If the application war-

TABLE 6. Arbitrary Length Bit Vector Operators

Bitwise ~ & | ^ << >>

Assignment = &= |= ^=

Equality == !=

Bit Selection [x]

Part Selection range()

Concatenation (,)

Reduction and_reduce() or_reduce() xor_reduce()
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Arbitrary Length Logic Vector

rants then copy the results of the arithmetic operations back to the sc_bv type. The 
= operator is overloaded to allow assignment of a sc_bv type to a SystemC integer 
and vice versa. 

The = operator will convert sc_bv objects to sc_lv objects and vice versa. Strings of 
’0’ and ’1’ characters can be assigned to type sc_bv objects. For instance to set a 16 
bit sc_bv to all 1’s you can use the following statement:

sc_bv<16> val;
val = "1111111111111111";

Only the characters ’0’ and ’1’ can be used in assignments to sc_bv objects.

Arbitrary Length Logic Vector

Different data types are used to model the types of data used in a typical design. 
Types sc_logic and sc_bit work well for modeling single bits accurately. Types 
sc_int, sc_uint, sc_bigint, and sc_biguint work well for modeling parts of the 
design where arithmetic operations can occur, but no tristate busses. However for 
parts of the design that need to be modeled with tristate capabilities yet contain 
items that are wider than 1 bit, SystemC contains a type called sc_lv<n>. This type 
represents an arbitrary length vector value where each bit can have one of four val-
ues. These values are exactly the same as the four values of type sc_logic. Type 
sc_lv<n> is really just a variable sized array of sc_logic objects. 

To declare a signal of type sc_lv<n> use the following syntax:

sc_signal<sc_lv<64> > databus; // extra space is 
                               // required

This declaration describes a 64 bit wide signal called databus in which each of the 
bits of the signal can have the value ’0’, ’1’, ’X’, and ’Z’. This signal can be driven 
by a number of sources to model a tristate bus. 

It is very important to note that the extra space after the first > is required to allow 
the declaration to compile. 
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The operations that can be performed on an sc_lv object are exactly the same as 
those for an sc_bv object. The only difference is the speed of the simulation. The 
design implemented with sc_bv will simulate much faster than the design imple-
mented with sc_lv. 

Notice that sc_lv types cannot have arithmetic performed directly on them. To per-
form arithmetic functions first assign sc_lv objects to the appropriate SystemC inte-
ger. Perform the arithmetic operation on the integer type. If the application warrants 
then copy the results of the arithmetic operations back to the sc_lv type. The = 
operator is overloaded to allow assignment of a sc_lv type to a SystemC integer and 
vice versa. 

To convert an sc_lv type to an arithmetic type use the = operator. This is shown 
below:

sc_uint<16> uint16;
sc_int<16> int16;
sc_lv<16> lv16;

lv16= uint16;  // convert uint to lv
int16 = lv16;  // convert lv to int

The first statement converts an unsigned integer to a logic vector 16 bits wide. The 
second statement converts a logic vector to a 16 bit signed integer. Any X’s or Z’s 
in the logic vector will produce a runtime warning and the results will be undefined. 

A common function needed to properly model a tristate bus is the ability to turn off 
all drivers to the bus. To perform this step assign a string of ’Z’ values to the sc_lv 
object. This is shown below:

sc_lv<16> bus1;

if (enable) {
  bus1 = in1
} else {
  bus1 = "ZZZZZZZZZZZZZZZZ";
}
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Logic Vector Speed Issues

This assignment will assign a Z value to all 16 locations of bus1. The character 
string has to be at least as long as the logic vector object. The character string can 
contain any combination of the four values, ’0’, ’1’, ’X’, and ’Z’. So another legal 
string for bus1 would be the following:

bus1 = "01XZ01XZ01XZ01XZ";

To print a human readable character string of the value from an sc_lv object use the 
to_string() method as shown: 

sc_lv<32> bus2;

cout << "bus = " << bus2.to_string();

Logic Vector Speed Issues

The bit vector type will always simulate faster than the logic vector type. When cre-
ating a design try to use the bit vector types over the logic vector types as much as 
possible. The logic vector type will be needed to model the cases where the reset 
behavior of the design is important or the vector will be used in a tristate environ-
ment. For all other cases the bit vector type should be used to create the fastest sim-
ulation. 

User Defined Type Issues

Comparison Operator

For scalar types the built-in comparison operators are used to determine whether or 
not a value changed, which generate an event. For user defined types such as 
packet_type used in the simplex example in Chapter 2 the designer needs to provide 
the == operator. Looking back at packet.h we see the following:
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  inline bool operator == (const packet_type& rhs) const
 {

    return (rhs.info == info && rhs.seq == seq &&
 rhs.retry == retry);

 }

This method defines the fields that are to be compared and how the comparison is 
made. An event occurs if the comparison result indicates that the previous packet 
and new packet are different. 

Tracing a User Defined Type

Notice that the packet.h file from Chapter 2 also traces the signals of user defined 
type packet_type. Because this type has a number of fields, you need to specify 
tracing of each field to see the contents of the packet. This process is not automatic. 
You can define a special user trace method that is called when an object of this type 
is traced. This user method can be defined in the user defined type. 

Looking back at files packet.h and packet.cc from Chapter 2, we can see that the 
user defined type packet_type has an sc_trace method defined in packet.h. This 
method defines how to trace an object of type packet_type. The declaration of the 
method, the argument types, and the return value in the packet.h file is shown 
below:

 extern
void sc_trace(sc_trace_file *tf, const packet_type& v, 
const sc_string& NAME);

Notice that the second argument is of type packet_type, which makes this method 
unique. File packet.cc contains the implementation of the sc_trace method as 
shown below:

  void sc_trace(sc_trace_file *tf, const packet_type& v,
   const sc_string& NAME) {

  sc_trace(tf,v.info, NAME + ".info");
  sc_trace(tf,v.seq, NAME + ".seq");
  sc_trace(tf,v.retry, NAME + ".retry");

  }
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User Defined Type Issues

The implementation of the trace method has a trace for each field of the struct. This 
method is called by the designer to perform a trace on a signal of type packet_type, 
and is automatically created by the compiler. Each call to the trace method will per-
form a trace on all of the fields of the user defined type. 
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CHAPTER 7 Fixed Point Types

When designers model at a high level, floating point numbers are useful to model 
arithmetic operations. Floating point numbers can handle a very large range of val-
ues and are easily scaled. In hardware floating point data types are typically con-
verted or built as fixed point data types to minimize the amount of hardware needed 
to implement the functionality. To model the behavior of fixed point hardware 
designers need bit accurate fixed point data types. Fixed point types are also used to 
develop DSP software. 

SystemC contains signed and unsigned fixed point data types that can be used to 
accurately model hardware. The SystemC fixed point data types are accurate to the 
bit level and support a number of features that allow a high level of modeling. 
These features include modeling quantization and overflow behavior at a high 
level. 

There are 4 basic types used to model fixed point types in SystemC. These are:

• sc_fixed

• sc_ufixed

• sc_fix

• sc_ufix
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Types sc_fixed and sc_ufixed uses static arguments to specify the functionality of 
the type while types sc_fix and sc_ufix can use argument types that are nonstatic. 
Static arguments must be known at compile time, while nonstatic arguments can be 
variables. Types sc_fix and sc_ufix can use variables to determine word length, 
integer word length, etc. while types sc_fixed and sc_ufixed are setup at compile 
time and do not change. 

Types sc_fixed and sc_fix specify a signed fixed point data type. Types sc_ufixed 
and sc_ufix specify an unsigned fixed point data type. 

An object of a fixed point type is declared with the following syntax:

• sc_fixed<wl, iwl, q_mode, o_mode, n_bits> x;

• sc_ufixed<wl, iwl, q_mode, o_mode, n_bits> y;

• sc_fix x(list of options);

• sc_ufix y(list of options);

The arguments to sc_fixed and sc_ufixed are used as follows:

wl - Total word length, used for fixed point representation. Equivalent to the total 
number of bits used in the type. 

iwl - Integer word length - specifies the number of bits that are to the left of the 
binary point (.) in a fixed point number. 

q_mode - quantization mode, this parameter determines the behavior of the fixed 
point type when the result of an operation generates more precision in the least sig-
nificant bits than is available as specified by the word length and integer word 
length parameters. 

o_mode - overflow mode, this parameter determines the behavior of the fixed point 
most significant bits when an operation generates more precision in the most signif-
icant bits than is available. 

n_bits - number of saturated bits, this parameter is only used for overflow mode and 
specifies how many bits will be saturated if a saturation behavior is specified and an 
overflow occurs. 

x,y - object name, name of the fixed point object being declared. 
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Word Length and Integer Word Length

The designer can configure the fixed point data type to perform a number of differ-
ent types of operations. The designer will pass different values of the parameters 
shown above. These parameter values will be used during the construction of the 
fixed point type to create the desired data type. These types can be the basis for 
adders, subtractors, multipliers, accumulators, FFTs, etc. All of these devices can be 
built with bit accurate results

A simple fixed point declaration is shown below:

sc_fixed<8,4,SC_RND,SC_SAT> val;

Word Length and Integer Word Length

Two of the arguments specified to the fixed point data type were word length (wl) 
and integer word length (iwl). Word length must be greater than 0. Integer word 
length can be positive or negative, and larger than the word length. For instance if 
the word length is specified as 5 bits but the integer word length is 7 then two 
zeroes will be added to the end of the object. This is shown below:

If the integer word length is a negative value then sign bits after the binary point 
will be extended. For instance if wl = 5 and iwl = -2 then two sign bits will be added 
to the object as shown below:

xxxxx00.
word length = 5

integer word length = 7
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More typical cases will not add bits. For instance if wl = 5 and iwl = 3 then the fol-
lowing will result:

More examples of wordlength, integer wordlength combinations are shown in the 
table below:

(*) x is an arbitrary binary digit, 0 or 1. s is a sign extended digit, 0 or 1.

Index wl iwl
Internal
representation (*)

Range
signed

Range
unsigned

1 5 7 xxxxx00. [-64,60] [0,124]

2 5 5   xxxxx. [-16,15] [0,31]

3 5 3     xxx.xx [-4,3.75] [0,7.75]

4 5 1       x.xxxx [-1,0.9375] [0,1.9375]

5 5 0        .xxxxx [-0.5,0.46875] [0,0.96875]

6 5 -2        .ssxxxxx [-0.125,0.109375] [0,0.234375]

7 1 -1        .sx [-0.25,0] [0,0.25]

.ssxxxxx
word length = 5

integer word length = -2

xxx.xx
word length = 5

integer word length = 3
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Quantization Modes

Quantization Modes

As mentioned previously quantization effects are used to determine what happens 
to the LSBs of a fixed point type when more bits of precision are required than are 
available. For instance if the result of a multiplication operation generates more 
LSB precision than can be represented by the result type, quantization will occur. 
After quantization the result is a function of the deleted bits and remaining bits of 
the original fixed point number. 

The quantization modes available are shown by the table below:

Operations performed on fixed point data types are done using arbitrary precision. 
After the operation is complete the resulting operand is cast to fit the fixed point 
data type object. The casting operation will apply the quantization behavior of the 
target object to the new value and assign the new value to the target object. For 
instance in the example below the new value is calculated with 12 bits of precision, 
and 4 bits right of the binary point. When writing to the second fixed point object 
with only 2 bits to the right of the binary point, 2 bits will have to be removed. How 
these bits are removed is a function of the quantization mode. 

xxxxxxxx.xxxx   // 12 bits, 4 right of binary point
xxxxxxxx.xx     // 10 bits, 2 right of binary point

The next sections are going to describe each of the quantization modes in more 
detail. 

Quantization Mode Name

Rounding to plus infinity SC_RND

Rounding to zero SC_RND_ZERO

Rounding to minus infinity SC_RND_MIN_INF

Rounding to infinity SC_RND_INF

Convergent rounding SC_RND_CONV

Truncation SC_TRN

Truncation to zero SC_TRN_ZERO
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SC_RND

The SC_RND mode will round the value to the closest representable number. This 
is accomplished by adding the MSB of the removed bits to the remaining bits. The 
effect is to round towards plus infinity. A graph showing the effect of this rounding 
is shown below:

The x axis is the result of the previous arithmetic operation and the y axis is the 
value after quantization. 

The diagonal line shows the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be rounded to the y value of the line. The graph is given in terms of 
q, which is the smallest quantization unit of the target object. 

SC_RND Examples

The first example will show the SC_RND quantization mode with a positive num-
ber. Two objects x and y are declared as sc_fixed types. A value is assigned to x. 
Then y is assigned the value x. However the value of x is outside the range of repre-
sentation for y so quantization will occur. 

3q

2q

q

q 2q 3q

y

x
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SC_RND

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND> y;

x = 1.25;
y = x;  // quantization will occur here

01.01  (1.25)  // representation of x value
01.1   (1.5)   // quantized y value

Value 1.25 is outside the range that can be exactly represented by the result fixed 
point type, sc_fixed<3,2,SC_RND>. Therefore quantization will occur.

When the MSB of the deleted bits is added to the remaining bits the result will be 
1.5.

Here is another example using the same types, but a negative value. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND> y;

x = -1.25;
y = x;  // quantization will occur here

10.11  (-1.25)  // representation of x value
11.0   (-1)     // quantized y value

Again -1.25 is outside the representable range for the result type so quantization 
occurs. The MSB of the deleted bits is added to the remaining bits causing the 
result to be -1. 

The last example shows the result with unsigned types. 

sc_ufixed<16,8> x;
sc_ufixed<12,8,SC_RND> y;

x = 38.30859375;
y = x;  // quantization will occur here

00100110.01001111  (38.30859375) // x value
00100110.0101      (38.3125)     // quantized y value

The MSB of the deleted bits is added to the remaining bits to return the result. 
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SC_RND_ZERO

This quantization mode will perform an SC_RND operation if the two nearest rep-
resentable numbers are not an equal distance apart. Otherwise rounding to zero will 
be performed. For positive numbers this means that the redundant bits are simply 
deleted. For negative numbers the MSB of the deleted bits is added to the remain-
ing bits. A graph showing this effect is shown below:

The diagonal line represents the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be converted to the value of the y axis. 

SC_RND_ZERO Examples

Two exampes are shown below. The first shows quantization of a positive number 
and the second the quantization of a negative number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_ZERO> y;

x = 1.25;

3q

2q

q

q 2q 3q

y

x
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SC_RND_ZERO

y = x;   // quantization occurs here

01.01  (1.25)  // value of x after assignment
01.0   (1)     // quantized value of y

Value 1.25 is outside the representation range of sc_fixed<3,2,SC_RND_ZERO> 
so quantization will be performed. Since this is a positive number the redundant 
bits are simply deleted. The next example shows the same types with a negative 
number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_ZERO> y;

x = 1.25;
y = x;   // quantization occurs here

10.11   (-1.25)  // value of x after assignment
11.0    (-1)     // quantized value of y

Value -1.25 is outside the representation range of the result type so quantization 
will occur. Since this value is a negative number the MSB of the deleted bits will be 
added to the remaining bits. Value -1.25 will be rounded to -1. 

The last example shows an unsigned value. 

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_ZERO> y;

x = 38.28125;
y = x;  // quantization occurs here

000100110.01001   (38.28125) // x value after assign
000100110.0100    (38.25)    // quantized y value

The last example is a positive number by default so the redundant bits are deleted. 
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SC_RND_MIN_INF

This quantization mode will also perform a check to see if the nearest 2 represent-
able numbers are equal distance apart. If not the SC_RND quantization is per-
formed. Otherwise this mode will round towards minus infinity by eliminating the 
redundant bits of the LSB of the number. A graph showing this effect is shown 
below:

The diagonal line represents the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be converted to the value of the y axis. 

SC_RND_MIN_INF Examples

The next two examples show the result of the SC_RND_MIN_INF quantization 
mode with a positive and a negative number signed number. The third example 
shows an unsigned number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_MIN_INF> y;
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SC_RND_MIN_INF

x = 1.25;
y = x;   // quantization occurs here

01.01  (1.25) // value of x after assignment
01.0   (1)    // value of y after quantization

Value 1.25 is outside the representable range of the result type so quantization will 
occur. For positive numbers the redundant bits are simply deleted resulting in the 
value 1. The next example uses the same types but a negative number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_MIN_INF> y;

x = -1.25;
y = x;   // quantization occurs here

10.11  (-1.25)  // value of x after assignment
10.1   (-1.5)   // value of y after quantization

Value -1.25 is outside the representable range for the result type, so quantization 
occurs. The result number is rounded towards minus infinity by removing the 
redundant bits. This produces the result -1.5.

The last example uses an unsigned number. 

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_ZERO> y;

x = 38.28125;
y = x;  // quantization occurs here

000100110.01001  (38.28125) // x after assign
000100110.0100   (38.25)    // y after quantization

For unsigned types the redundant bits are simply deleted. 



Fixed Point Types

112 SystemC 2.0 User’s Guide

SC_RND_INF

This quantization mode also checks to see that the two nearest representable num-
bers are equal distance apart. If not, SC_RND quantization mode is applied. Other-
wise the number is rounded towards plus infinity if positive or minus infinity if 
negative. For positive numbers the MSB of the deleted bits is added to the remain-
ing bits. For negative numbers the redundant bits are deleted. 

A graph showing this behavior is shown below:

The diagonal line represents the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be converted to the value of the y axis. 

SC_RND_INF Examples

Three examples will be shown. The first two use signed numbers and the last one 
an unsigned number. The first example shows quantization of a positive number 
and the second quantization of a negative number. 
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SC_RND_INF

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_INF> y;

x = 1.25;
y = x;   // quantization occurs here

01.01   (1.25)  // value of x after assignment
01.1    (1.5)   // value of y after quantization

Value 1.25 is outside the representable range for the result type so quantization will 
occur. Since this is a positive number the MSB of the deleted bits is added to the 
remaining bits resulting in the value 1.5. 

Here’s the same quantization mode with a negative number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_INF> y;

x = -1.25;
y = x;   // quantization occurs here

10.11   (-1.25)  // value of x after assignment
10.1    (-1.5)   // value of y after quantization

Value -1.25 is outside the representable range for the result type so quantization 
will occur. Since this is a negative number the redundant bits will be deleted return-
ing the value -1.5. 

The last example shows the SC_RND_INF quantization mode with an unsigned 
number. 

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_ZERO> y;

x = 38.28125;
y = x;  // quantization occurs here

000100110.01001  (38.28125) // x after assignment
000100110.0101   (38.3125)  // y after quantization

For unsigned values the MSB of the deleted bits is added to the remaining bits. 
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SC_RND_CONV

This quantization mode will check to see if the two closest representable numbers 
are equal distance apart. If not the SC_RND quantization mode is applied. Other-
wise this mode checks the LSB of the remaining bits. If the LSB is 1 this mode will 
round towards plus infinity. If the LSB is 0 this mode will round towards minus 
infinity. 

This behavior is shown by the graph below:

The diagonal line represents the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be converted to the value of the y axis. 

SC_RND_CONV Examples

Four examples will be shown. The first two use signed numbers and the last two 
unsigned numbers. The first example shows quantization of a positive number and 
the second quantization of a negative number. 

sc_fixed<4,2> x;
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SC_RND_CONV

sc_fixed<3,2,SC_RND_CONV> y;

x = .75;
y = x;   // quantization occurs here

00.11   (.75)   // value of x after assignment
01.0    (1)     // value of y after quantization

Value .75 is outside the representable range for the result type so quantization will 
occur. The redundant bits are removed and the result is rounded towards plus infin-
ity because the LSB of the remaining bits is 1. 

The next example uses the same types and a negative number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_CONV> y;

x = -1.25;
y = x;   // quantization occurs here

10.11  (-1.25)   // value of x after assignment
11.0   (-1)      // value of y after quantization

Value -1.25 is outside the representable range for the result type so quantization 
will be performed. The LSB of the remaining bits is 1 so the result is rounded 
towards plus infinity. 

The final examples shows the same quantization mode with an unsigned type. 

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_CONV> y;

x = 38.28125;
y = x;  // quantization occurs here

000100110.01001  (38.28125)  // LSB 0
000100110.0100   (38.25)     // minus infinity

Here is an unsigned type with a different LSB value. 
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sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_CONV> y;

x = 38.34375;
y = x;  // quantization occurs here

000100110.01011  (38.34375)  // LSB 1
000100110.0110   (38.375)    // plus infinity
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SC_TRN

SC_TRN

This quantization mode is the default for fixed point types and will be used if no 
other value is specified. The result is always rounded towards minus infinity. The 
redundant bits are always deleted no matter whether the number is positive or nega-
tive. The result value is the first representable number lower than the original value. 

This is shown by the graph below:

The diagonal line represents the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be converted to the value of the y axis. 

SC_TRN Examples

The first two examples use an arithmetic precision of sc_fixed<4,2> with a result 
value of sc_fixed<3,2,SC_TRN>. Notice that the specification of SC_TRN is not 
required, as it is the default, but makes it quite clear which quantization mode is 
being used. The first example shows a positive number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_TRN> y;
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x = 1.25;
y = x;   // quantization occurs here

01.01  (1.25)  // value of x after assignment
01.0   (1)     // value of y after quantization

Value 1.25 is outside the representable range for the result type so quantization will 
be performed. The quantization simply truncates the redundant bits before assign-
ment. In this case the LSB is removed to create the necessary result. The next 
example uses a negative number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_TRN> y;

x = -1.25;
y = x;   // quantization occurs here

10.11  (-1.25)  // value of x after assignment
10.1   (-1.5)   // value of y after quantization

Value -1.25 is outside the representable range for the result type so quantization 
will occur. The LSB is simply removed creating the value -1.5. 

The next example shows the same quantization mode with an unsigned value. 

sc_ufixed<16,8> x;
sc_ufixed<12,8,SC_TRN> y;

x = 38.30859375;
y = x;  // quantization occurs here

00100110.01001111  (38.30859375)
00100110.0100      (38.25)

The 4 LSBs are simply removed to create the new value. 
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SC_TRN_ZERO

SC_TRN_ZERO

For positive numbers this quantization mode is exactly the same as SC_TRN. For 
negative numbers the result is rounded towards zero. The result is the first repre-
sentable number lower in absolute value than the starting value. This is accom-
plished by deleting the redundant bits on the right side and adding the sign bit to the 
LSBs of the remaining bits. However this only occurs if at least one of the deleted 
bits is nonzero. 

A graph showing this quantization mode is shown below:

The diagonal line represents the ideal number representation given infinite bits. The 
small horizontal lines show the effect of the rounding. Any value within the range 
of the line will be converted to the value of the y axis. 
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SC_TRN_ZERO Examples

Two examples will be shown. The first one uses a signed number and the last one 
an unsigned number. The first example shows quantization of a negative number 
and the second quantization of an unsigned number. 

sc_fixed<4,2> x;
sc_fixed<3,2,SC_TRN_ZERO> y;

x = -1.25;
y = x;   // quantization occurs here

10.11  (-1.25)  // value of x after assignment
11.0   (-1)     // value of y after quantization

Value -1.25 is outside the range of values of the result type so quantization will be 
performed. The LSB of the starting value is removed and the sign bit added to the 
LSBs. This occurs because the starting number was negative. If the starting value 
had been positive the result would have been a truncation of the redundant bits. 

Here is another example using an unsigned type. 

sc_ufixed<15,8> x;
sc_ufixed<12,8,SC_TRN_ZERO> y;

x = 38.30859375;
y = x;  // quantization occurs here

00100110.0100111  (38.30859375)
00100110.0100     (38.25)

This quantization mode for unsigned works the same as truncation because there 
are no negative values with unsigned numbers. 
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Overflow Modes

Overflow Modes

In this section we will examine what happens when the result of an operation gener-
ates more bits on the MSB side of a number than are available for representation. 
Overflow occurs when the result of an operation is too large or too small for the 
available bit range. Overflow modes within the fixed point types of SystemC give 
the designer high level control over the result of an overflow condition. 

Overflow modes are specified by the o_mode and n_bits parameters to a fixed point 
type. The supported overflow modes are listed in the table shown below:

MIN and MAX

Throughout the discussion of overflow modes we will be using the terms MIN and 
MAX. MIN is the smallest negative number that can be represented and MAX is 
the largest positive number that can be represented with the available bit width. 

The next few sections will discuss each of the overflow modes and their effect on 
the result of a cast operation. 

Overflow Mode Name

Saturation SC_SAT

Saturation to zero SC_SAT_ZERO

Symmetrical saturation SC_SAT_SYM

Wrap-around) SC_WRAP

Sign magnitude wrap-around SC_WRAP_SM
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SC_SAT

This overflow mode will convert the specified value to MAX for an overflow or 
MIN for an underflow condition. The maximum and minimum values will be deter-
mined from the number of bits available. Value MAX will then be assigned to the 
result value for a positive overflow and MIN for a negative overflow condition. 

A graph showing the behavior for a 3 bit type is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the original 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
MIN = -4 for a 3 bit type. 

SC_SAT Examples

Assume that the arithmetic precision is sc_fixed<4,4> and the result is 
sc_fixed<3,3,SC_TRN,SC_SAT>. Then the example below will behave as shown.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT> y;
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SC_SAT

x = 6;
y = x;  // overflow handling occurs here

0110  (6)  // value of x after assignment
 011  (3)  // value of y after overflow handling

An overflow condition exists because 6 is outside the representation range for a 
signed 3 bit type. Therefore the value MAX (3) is assigned to the result. Below is 
the same types using a negative value. 

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT> y;

x = -5;
y = x;  // overflow handling occurs here

1011  (-5)  // value of x after assignment
 100  (-4)  // value of y after overflow handling

Value -5 is outside the range for a 3 bit signed type. The value MIN (-4) is assigned 
to the result. 

For unsigned types the MAX value is always assigned as shown below:

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_SAT> y;

x = 14;
y = x;  // overflow processing occurs here

01110  (14)  // value of x after assignment
  111  (7)   // value of y after overflow handling

Value 14 is outside the range of 3 bits unsigned, so MAX (7) is assigned to the 
result. 
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SC_SAT_ZERO

This overflow mode will set the result to 0 for any input value that is outside the 
representable range of the fixed point type. If the result value is greater than MAX 
or smaller than MIN the result will be 0. 

This is shown in the graph below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the original 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
MIN = -4 for a 3 bit type. Any value above MAX or below MIN is set to 0.

SC_SAT-ZERO Examples

For these examples the arithmetic precision used is sc_fixed<4,4> and the result 
type is sc_fixed<3,3,SC_TRN,SC_SAT_ZERO>. 

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT_ZERO> y;
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SC_SAT_ZERO

x = 6;
y = x;  // overflow handling occurs here

0110  (6)  // value of x after assignment
 000  (0)  // value of y after overflow handling

Value 6 is outside the representable range for the 3 bit result type specified so over-
flow processing will occur and return the value 0. Here is an example of a negative 
value. 

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT_ZERO> y;

x = -5;
y = x;  // overflow handling occurs here

1011  (-5)  // value of x after assignment
 000  (0)   // value of y after overflow handling

Value -5 is outside the representable range for the 3 bit type specified so the return 
value will be saturated to 0. This last example uses an unsigned type. 

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_SAT_ZERO> y;

x = 14;
y = x;  // overflow processing occurs here

01110  (14)  // value of x after assignment
  000  (0)   // value of y after overflow handling

Value 14 is outside the range of 3 bits unsigned so overflow processing will occur 
and return the value 0. 
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SC_SAT_SYM

In twos-complement notation one more negative value than positive value can be 
represented. When using SC_SAT overflow mode the absolute value of MIN is one 
more than MAX. Sometimes it is desirable to have the MIN and MAX value sym-
metrical around zero. The SC_SAT_SYM overflow mode will perform this func-
tion as required. Positive overflow will generate MAX and negative overflow will 
generate -MAX for signed numbers. 

A graph showing this behavior is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the original 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
MIN = -4 for a 3 bit type. An value above MAX is set to MAX for positive num-
bers. For negative numbers any value smaller than -MAX is set to -MAX. 

SC_SAT_SYM Examples

For the next two examples arithmetic precision is specified as sc_fixed<4,4> and 
the result precision is sc_fixed<3,3,SC_TRN,SC_SAT_SYM>. 
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SC_SAT_SYM

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT_SYM> y;

x = 6;
y = x;  // overflow handling occurs here

0110  (6)  // value of x after assignment
 011  (3)  // value of y after overflow handling

Value 6 is outside the range of values for a 3 bit signed value so the result is satu-
rated to MAX (3). Here is a negative number example. 

1011  (-5)
 101  (-3)

Value -5 is outside the representable range for 3 bits so overflow processing will 
occur. The overflow mode will return -MAX (-3) as the result. 

Here is an example using an unsigned type. 

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_SAT_SYM> y;

x = 14;
y = x;  // overflow processing occurs here

01110  (14)  // value of x after assignment
  111  (7)   // value of y after overflow handling

Value 14 is outside the range for a 3 bit unsigned type so overflow mode will return 
MAX (7) as the result. 
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SC_WRAP

With the wrap overflow modes the value of an arithmetic operand will wrap around 
from MAX to MIN as MAX is reached. The unsigned case is similar to the way a 
counter would work in hardware. When the MAX value is reached the counter 
would wrap around to 0 again. 

There are two different cases within the SC_WRAP overflow mode. The first is 
with the n_bits parameter set to 0 or having a default value of 0. The second is 
when the n_bits parameter is a nonzero value. 

SC_WRAP, n_bits = 0

The first case is the default overflow mode. With this overflow mode any MSB bits 
outside the range of the target type are deleted. The graph below shows the behav-
ior of this overflow mode. 

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
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SC_WRAP, n_bits = 0

MIN = -4 for a 3 bit type. Notice that as the input value approaches the MAX value 
the next value is the MIN value. Also the next value smaller than MIN is MAX. 

SC_WRAP, n_bits = 0 Examples

The next two examples assume the original value is a signed 4 bit type and the 
result is a signed 3 bit type. Here is a positive number example. 

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP> y;

x = 4;
y = x;  // overflow handling occurs here

0100  (4)
 100  (-4)

Value 4 is outside the representable range for 3 bits. The MSB is deleted resulting 
in the value -4. Here is a negative value example. 

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP> y;

x = -5;
y = x;  // overflow handling occurs here

1011  (-5)
 011  (3)

Again -5 is outside the representable range for a 3 bit number, so the MSB is 
deleted resulting in the positive value 3. 

Here is an unsigned type example. 

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_WRAP> y;

x = 27;
y = x;  // overflow processing occurs here

11011  (27)
  011  (3)
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The two MSBs are deleted to fit the result into a 3 bit value. 

SC_WRAP, n_bits > 0

When n_bits is greater than 0 the designer is specifying that n_bit MSB bits are to 
be saturated or set to 1. The sign bit is retained so that positive numbers remain pos-
itive and negative numbers remain negative. The bits that are not saturated are sim-
ply copied from the original value to the result value. 

A graph showing this behavior for 3 bits with n_bits = 1 is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
MIN = -4 for a 3 bit type. Values outside the positive representable range remain 
positive. Values outside the negative representable range remain negative. Notice 
that positive numbers wrap around to 0 while negative values wrap around to -1. 
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SC_WRAP, n_bits > 0

SC_WRAP, n_bits>0 Examples

The original type for the next 2 examples is a signed 4 bit type. The result type is a 
signed 3 bit type. Parameter n_bits is set to 1 which will saturate 1 MSB bit.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP,1> y;

x = 5;
y = x;  // overflow handling occurs here

0101  (5)  // value of x after assignment
 001  (1)  // value of y after overflow handling

Value 5 is outside the representable range of 3 bits. Overflow will occur and the 
result wrapped to 1, still a positive number. The next example shows a negative 
number. 

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP,1> y;

x = -5;
y = x;  // overflow handling occurs here

1011  (-5)  // value of x after assignment
 111  (-1)  // vlaue of y after overflow handling

Value -5 is outside the range for 3 bits so overflow will occur. The sign bit will be 
retained and one bit saturated so the result will be -1. 

The next example uses an unsigned type. This time n_bits is specified as 3. 

sc_ufixed<7,7> x;
sc_ufixed<5,5,SC_TRN,SC_WRAP,3> y;

x = 50;
y = x;  // overflow processing occurs here

0110010  (50) // value of x after assignment
  11110  (30) // value of y after overflow handling

The 3 MSB bits are saturated to 1 as specified by n_bits. The other bits are copied 
starting from the LSB side of the starting value to the result value. 
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SC_WRAP_SM

The SC_WRAP_SM overflow mode uses sign magnitude wrapping. This overflow 
mode behaves in two different styles depending on the value of parameter n_bits. 
When n_bits is 0 no bits are saturated. With n_bits greater than 0, n_bits MSB bits 
are saturated to 1. 

SC_WRAP_SM, n_bits = 0

This mode will first delete any MSB bits that are outside the result word length. 
The sign bit of the result is set to the value of the least significant deleted bit. If the 
most significant remaining bit is different from the original MSB then all the 
remaining bits are inverted. If the MSBs are the same the other bits are copied from 
the original value to the result value. A graph showing the result of this overflow 
mode is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
MIN = -4 for a 3 bit type. As the value of x increases, the value of y increases to 
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SC_WRAP_SM, n_bits = 0

MAX and then slowly starts to decrease until MIN is reached. The result is a saw-
tooth like waveform. 

SC_WRAP_SM, n_bits = 0 Examples

For the next few examples the starting value is a four bit representation of the value 
4. If the target for this value is a 3 bit signed type the value 4 will overflow the type 
and overflow processing will occur. Here is the starting value:

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP_SM> y;

x = 4;
y = x;  // overflow processing occurs here

0100  (4)

First the MSB is deleted to produce a 3 bit result. 

 100  (-4)

Next the new sign bit is calculated. The new sign bit is the least significant bit of 
the deleted bits. For this example only 1 bit was deleted and its value is 0. Therefore 
the new sign bit is 0. Now the sign bit of the new value (1) is compared with the 
calculated sign bit (0). If these bits are different, then the rest of the bits will be 
inverted. for this example the sign bits are different and the other bits will be 
inverted as shown below:

 011  (3)

The sign magnitude wrap values with n_bits equal to 0 for 3 bit numbers are shown 
by the table below:

Original 
value in 
Decimal

Result 
value in 
Binary

8 111

7 000

6 001

5 010
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This table shows what happens when the original values in the left cell of the table 
are converted to result values in the table cells on the right.Notice that the original 
values are listed in decimal to show greater range. 

SC_WRAP_SM, n_bits > 0

The second overflow behavior within the SC_WRAP_SM overflow mode is the 
case when n_bits is greater than 0. A sign magnitude wrap will still be performed 
but now n_bits MSB bits will be saturated. In fact the first n_bits MSB bits on the 
MSB side of the result number will are saturated to MAX for positive numbers and 
to MIN for negative numbers. This means that all of the bits except for the sign bit 
will be saturated to a 1 for positive numbers and all of the bits will be saturated to 1 
for negative numbers. Positive number remain positive and negative numbers 
remain negative. 

When n_bits is equal to 1, one bit to the right of the sign bit is saturated and the 
remaining bits are copied. These remaining bits are xor-ed with the original and 
new value of the sign bit of the result number. If n_bits is greater than 1, the unsat-

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

-7 110

Original 
value in 
Decimal

Result 
value in 
Binary
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urated bits are xor-ed with the original value of the least significant saturated bit 
and the inverse value of the original sign bit. 

SC_WRAP_SM, n_bits = 3 Examples

For this example the original number is a 9 bit number and the result will be 5 bits. 
Parameter n_bits is equal to 3. This will cause the first 3 MSBs of the new value to 
be saturated to MAX or MIN. Here’s the starting value. 

sc_ufixed<9,9> x;
sc_ufixed<5,5,SC_TRN,SC_WRAP_SM,3> y;
x = 234;
y = x;  // overflow processing occurs here

011101010  (234)

This value is first truncated to 5 bits. 

    01010  (10)

The original sign bit (0) is copied to the MSB of the new value. Next bits 4, 3, and 
2 are converted to MAX because n_bits is equal to 3. The sign bit is not saturated to 
1, because the sign does not change in this mode. 

    01110  (14)

The original value of the bit at position 2 (starting with 0 at right) was 0. The 
remaining bits at the LSB side (10) are xor-ed with this value and the inverse value 
of the original sign bit (01). The final result is shown below. 

    01101  (13)

SC_WRAP_SM, n_bits = 1

This overflow mode behaves similarly to the mode where n_bits equals 0 except 
that positive numbers stay positive and negative number stay negative. The first bit 
on the MSB side of the new value will receive the sign bit of the original value. The 
other bits are copied and xor-ed with the original and the new value of the result 
sign bit. This behavior is shown in the graph below:
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The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting 
value and the Y axis is the result. From this graph we can see that MAX = 3 and 
MIN = -4 for a 3 bit type. Notice that while the graph looks somewhat like a saw-
tooth waveform, positive numbers do not dip below 0 and negative numbers do not 
cross -1. 

SC_WRAP_SM, n_bits = 1 Example

This example will cast a 5 bit representation of the number 12 to a 3 bit number 
using the SC_WRAP_SM overflow mode with n_bits equal to 1. Here’s the origi-
nal value. 

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_WRAP_SM,1> y;

x = 12;
y = x;  // overflow processing occurs here

01100  (12)
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SC_WRAP_SM, n_bits = 1

This value is first truncated to 3 bits. 

  100  (4)

The original sign bit is copied to the MSB position. 

  000  (0)

The two remaining LSB bits are xor-ed with the original sign bit (1) and the new 
sign bit (0). 

  011  (3)

This algorithm can be applied to any number that cannot be exactly represented by 
3 bits. 

The table below summarizes the overflow behavior for 3 bits. 

Original 
value in 
Decimal

Result 
value in 
Binary

9 001

8 000

7 000

6 001

5 010

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101
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-7 110

-8 111

-9 111

Original 
value in 
Decimal

Result 
value in 
Binary
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Fast Fixed Point Types

Fast Fixed Point Types

The standard fixed point types described previously use arbitrary precision in cal-
culations. This adds extra overhead that in most cases might not be needed. Sys-
temC provides limited precision fixed point types to speed simulation when limited 
precision is all that’s required. 

With standard fixed point types the mantissa can be virtually any size. With limited 
precision fixed point types the mantissa is limited to 53 bits. Limited precision 
fixed point types are implemented with double precision floating point values. The 
range of representation of limited precision fixed point types is limited by the size 
of the double precision floating point value representation. 

The 4 limited precision fixed point types are listed below:

• sc_fixed_fast

• sc_ufixed_fast

• sc_fix_fast

• sc_ufix_fast

The limited precision types have exactly the same interface as the arbitrary preci-
sion fixed point types. The same parameter names, types, and order are used to 
form both kinds of fixed point types. Also limited precision and arbitrary precision 
types can be mixed freely. 

To get bit-true behavior for a design follow these guidelines:

• Make sure that the result of any operation with fast fixed point types does not 
generate a word length greater than 53 bits. 

• When adding or subtracting two operands the result word length will be 1 more 
than the maximum aligned word length. 

• When multiplying two operands the resulting bit length will be the sum of the 
word length of each operand. 

Limited precision fixed point types should be used whenever possible to achieve 
the best simulation performance. Apply the guidelines from above to make sure 
that the limited precision types will be appropriate for your design. 
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Simple Examples

Here are some simple examples to show how the fixed point types will be used. The 
first example is a simple adder with floating point inputs and output types. 

// fxpadder.h

#include "systemc.h"

float adder(float a, float b)
{
  sc_fixed_fast<4,2,SC_RND,SC_WRAP> Inputa = a;
  sc_fixed_fast<6,3,SC_RND,SC_WRAP> Inputb = b;

  sc_fixed_fast<7,4,SC_RND,SC_WRAP> Output;

  Output = (Inputa + Inputb);
  return (Output);
}

This example is a simple adder with two floating point input argument and 1 float-
ing point output return value. The declarations of Inputa and Inputb declare fixed 
point input types and conversions from floating point types. The declaration of Out-
put specifies a fast fixed point type whose bit width is one greater than the biggest 
input operand. The assignment to variable Output performs the add operation and 
the return statement will assign the new result to the function output value. When 
the assignment is performed the fast fixed point type is converted back to a float. 

This example allows the designer to easily change the bit widths, overflow modes, 
and quantization modes to get the desired adder behavior. The designer can simu-
late the behavior before implementation to see if the adder is functionally what is 
needed for the end product. 

Type sc_fxtype_params

Type sc_fxtype_params is used to configure the parameters of types sc_fix_fast, 
sc_ufix_fast, sc_fix, and sc_ufix. Remember these types do not need to have their 
parameters determined at compile time as do types sc_fixed, sc_ufixed, 
sc_fixed_fast, and sc_ufixed_fast. Therefore to set the parameters for these types 



SystemC 2.0 User’s Guide 141

Type sc_fxtype_params

declare an object of type sc_fxtype_params, initialize the parameter values as 
desired, and pass the sc_fxtype_params object as an argument to the sc_fix_fast, 
etc. declarations. 

The sc_fxtype_params object has the same arguments passed to an object of type 
sc_fixed_fast. These include:

• wl - word length

• iwl - integer word length

• q_mode - quantization mode

• o_mode - overflow mode

• n_bits - saturated bits

These arguments are exactly as described in the last few sections. For instance a 
sc_fxtype_params object could be created as follows:

sc_fxtype_params small_add_params(8, 4, SC_RND, 
SC_SAT); 

This creates an object called small_add_params that contains the following param-
eter values:

• wl = 8

• iwl = 4

• q_mode = SC_RND

• o_mode = SC_SAT

• n_bits = 0 (default)

Any combination of arguments are allowed, but the order cannot be changed. A 
variable of type sc_fxtype_params can be initialized by another variable of type 
sc_fxtype_params. One variable of type sc_fxtype_params can also be assigned to 
another. 

Individual argument values can be read and written using methods with the same 
name as the arguments shown above. Here’s an example:

sc_fxtype_params small_add_params(8, 4, SC_RND, 
SC_SAT);

x = small_add_params.wl();  // x = 8
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small_add_params.iwl() = 4; // sets iwl to 4

The first statement will create a sc_fxtype_params object with wl = 8, iwl = 4, 
q_mode = SC_RND, and o_mode = SC_SAT. The second statement will read the 
value of wl, and the third statement will set the value of iwl. 

Type sc_fxtype_context

Type sc_fxtype_context is used to configure the default behavior of fixed point 
types. This type will set the default values for parameters to declaration of types 
sc_fix_fast, sc_ufix_fast, sc_fix, and sc_ufix. This type allows the designer to cre-
ate a set of default parameter values and define when these values are used. 

When a new sc_fxtype_context object is created the values specified as arguments 
become the new default values. The old default values are stored. When the new 
context goes out of scope the old default values are restored. 

An example using both the sc_fxtype_params and sc_fxtype_context is shown 
below:

// fxpadder2.h
#include "systemc.h"

sc_fxtype_params myparams(SC_RND, SC_SAT);
sc_fxtype_context mycontext(myparams);

sc_fix_fast adder(sc_fix_fast a, sc_fix_fast b)
{
  sc_fix_fast Output(a.wl() + 1, a.iwl() + 1);
  // specify output wl and iwl to be one larger
  // than wl and iwl of a

  Output = a + b;
  return(Output);
}

This example uses the sc_fix_fast type in an adder. The first two declarations setup 
the quantization mode and overflow mode used in the description. The first state-
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Type sc_fxtype_context

ment will declare an sc_fxtype_params object (myparams) to specify the fixed 
point default parameter values. Notice that the wl and iwl parameters were not 
specified so the current default parameter values will be used.

The second statement creates a new sc_fxtype_context object and initializes the 
context with the default values of the sc_fxtype_params object created earlier. This 
context will now be active for all fixed point objects created in the scope of this 
declaration. 

The declaration of adder specifies two input parameters and the output as 
sc_fix_fast types. When these types are declared they will pick up the overflow 
mode and quantization mode setup in context mycontext by default. 

The declaration of Output specifies that the word length and integer word length 
will be one longer than the word length and integer word length of input a. Notice 
the use of methods wl() and iwl() to return the current values. 

The last two statements will add a and b, assign the result to Output, and return the 
result. If any quantization or overflow handling is needed it will be performed when 
the assignment to Output takes place. The last statement assigns Output to the 
return value of the function. If needed more quantization and overflow handling 
could also occur when this statement executes. 

Complex Context Example

Contexts have the ability to be turned on and off. This can be very useful when 
using a number of different default values throughout your design. To declare a 
context but don’t use it right away use the SC_LATER argument. This is shown 
below:

sc_fxtype_params param1(12,3); 
// not specified arguments are coming from 
// the actual context.

sc_fxtype_params param2(32,3,SC_RND,SC_SAT);
sc_fxtype_params param3(16,16,SC_TRN,SC_SAT_ZERO);
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First three sets of sc_fxtype_params objects have been created to hold the different 
values for the different contexts. 

{
  .............
  sc_fxtype_context c_1(param1,SC_LATER);  
  /* only declaration of a context */
  sc_fxtype_context c_2(param2);           
  /* declaration of a context and the
     parameter specified in param2 are
     the new default one */
  sc_fxtype_context c_3(param3, SC_LATER);
  /* only declaration of a context */

Next three contexts are created using each of the parameter sets created. The 
SC_LATER argument for parameter sets param1 and param3 mean that these 
parameter sets will not be currently active. These sets can be activated later by 
using a begin() method on variables c_1 and c_3. This will be shown below:

  sc_fix a;     
  // is equivalent to sc_fix(32,3,SC_RND,SC_SAT) a;
  // because param2 is the default parameter set
  c_1.begin();  
  // parameters specified in param1 are from now 
  // on the new default ones. This is because param1 has 
  // only word length and integer word length 
  // speciifed, the quantization and overflow 
  // modes are the built-in ones (SC_TRN, SC_WRAP)

  sc_fix b;     
  // is equivalent to sc_fix(12,3,SC_TRN, SC_WRAP) b;
  // because parameter set 1 is now active

  c_3.begin();  
  // This will activate parameter set param3 making
  // the default

  sc_fix c;     
  // This declaration will use parameter set param3
  // just activated so this declaration is equivalent 
  // to sc_fix(16,16,SC_TRN,SC_SAT_ZERO) c;
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  sc_fixed<13,5> zz; 
  // This declaration is equivalent to sc_fixed<13,5,
  // SC_TRN, SC_WRAP> zz. The context has no influence
  // for fixed point types sc_fixed and sc_ufixed, the
  // built-in defaults are always used.

  c_3.end();    
  // This will turn off the c_3 context so paramter set
  // param3 is no longer valid. Parameter set param1 
  // will now be activated again.

  sc_fix d;     
  // Parameter set param1 is used so this declaration is
  // equivalent to sc_fix(12,3,SC_TRN, SC_WRAP) d;

  c_1.end();  
  // This statement will turn off the c_1 context so 
  // parameter set param2 will be active again. 

  sc_fix e;   
  // Parameter set param2 is used so this declaration is
  // equivalent to sc_fix(32,3,SC_RND,SC_SAT) e;

  c_2.end();  
  // This statement will turn off the c_2 context so
  // the built-in default values will now be used.

  sc_fix f;     
  // This declaration uses the built-in default values
  // so this declaration is equivalent to
  // sc_fix(32,32,SC_TRN, SC_WRAP) f;
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Operators

There are a number of operators defined for fixed point types, as shown in the table 
below:

All of the normal arithmetic and equality operators are supported including an 
arithmetic shift left (<<) and arithmetic shift right (>>). The difference between the 
arithmetic shifts and the standard bit shifts are that the arithmetic shifts preserve the 
sign bit. 

A small set of bitwise operators are defined for fixed point types. These operators 
are defined to work exclusively on signed or unsigned operands. No mixing of 
signed and unsigned operands is allowed. Also no mixing with any other type is 
allowed. 

For the ~(not) operator the return type is the type of the operand. The bits in the 
two’s complement mantissa are inverted to get the mantissa of the result. For binary 
operators the type of the result is the maximum aligned type (the longest width) of 
the two operands. The two operands are aligned by the binary point. The maximum 
word length and maximum fractional word length are taken. Both operands are 
converted to this type before performing the bitwise and, or, or xor operation. 

Bit Selection

As with other types that have already been discussed, bit selection is performed 
with []. The return type of this operation is type sc_fxnum_bitref which behaves 
like sc_bit. Bit selection can be used for reading and writing a single bit of a fixed 
point type. 

Operator class  Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational < <= > >=

Assignment = *= /= += -= <<= >>= &= ^= |=
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Part Selection

Part Selection

Part selection is performed with the range() method as with other types. The return 
type of the part selection is sc_fxnum_subref which behaves like sc_bv. Part selec-
tion can be performed on both sides of an assignment statement allowing both read-
ing and writing of a part. 

Type Casting

Type casting is very important for fixed point types. Type casting is performed dur-
ing initialization (if required) and assignment. Type casting will first use quantiza-
tion to reduce then number of bits of the LSB side of the operand. Next overflow 
handling is performed to reduce the number of bits at the MSB side of the operand. 
Sign extension and zero fill are used in cases where the operand is not reduced but 
extended. 

Type casting can be configured to be on or off. The default value of the cast switch 
is obtained from the current sc_fxtype_context object in use. Casting can be turned 
on or off through an argument during declaration, or by modifying or creating a 
new context. Here’s an example:

sc_ufixed<16,16> d(SC_OFF);

This declaration specifies d as an unsigned 16 bit fixed point type in which casting 
is turned off. Values for the cast switch are SC_OFF and SC_ON. The default value 
is SC_ON. 

Turning casting off will turn off fixed point handling of the operand. The operand 
will be treated as a large float value. The bit accurate behavior of the operand will 
not be available when casting is turned off. 

Useful State Information

There are some useful methods to query the state of a fixed point object. These 
methods return a boolean value depending on the value of a fixed point object. The 
following methods are supported:
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• is_neg() - returns true if object has a negative value, otherwise returns false. 

• is_zero() - returns true if object is zero value, otherwise returns false. 

• overflow_flag() - returns true if last write to this object caused overflow to 
occur. Returns false if no overflow.

• quantization_flag() - returns true if last write to this object caused quantization 
to occur. Returns false if no quantization.

To use one of the methods append the method name to the variable name with a "." 
as shown below: 

if (myvariable.is_zero()) { // do something

In this example if myvariable is 0 the if statement will be true. 

Converting Fixed Point Types to Strings

The value of a fixed point type can be converted to a character string with the 
to_string() method. This method takes two arguments. The first argument specifies 
the number representation of the result and the second specifies fixed or scientific 
format. The number representation argument is specified by one of the arguments 
from the table below:

Value Description Prefix

SC_DEC decimal, sign magnitude

SC_BIN binary, two’s complement 0b

SC_BIN_US binary, unsigned 0bus

SC_BIN_SM binary, sign magnitude 0bsm

SC_OCT octal, two’s complement 0o

SC_OCT_US octal, unsigned 0ous

SC_OCT_SM octal, sign magnitude 0osm

SC_HEX hexadecimal, two’s complement 0x

SC_HEX_US hexadecimal, unsigned 0xus
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To specify how a number is represented use the following syntax:

varname.to_string(number representation, format);

Both arguments are optional. The default number representation is SC_DEC. The 
second argument (format) can be SC_F for fixed notation and SC_E for scientific 
notation. The default is SC_F for types sc_fixed, sc_ufixed, sc_fix and sc_ufix and 
the corresponding fast versions.  

Arrays of Fixed Point Types

When declaring a single fixed point object, each object can receive constructor 
arguments. For arrays of fixed point types, this is not the case. For arrays the 
default constructor will be used for each element. The constructor arguments are 
passed through the current context in use.

For sc_fix, sc_ufix and the corresponding fast types setup a context before the array 
declaration as shown below:

sc_fxtype_context c1(16, 1, SC_RND_CONV, SC_SAT_SYM);
sc_fix a[10];

This will create an array of 10 fixed point types that are 16 bits long, have 1 integer 
point, use SC_RND_CONV for quantization, and SC_SAT_SYM for overflow. 

For sc_fixed, sc_ufixed and the corresponding fast types the arguments are passed 
as previously described. This is shown below:

sc_fixed<32,32> a[10];
sc_ufixed_fast<16,1,SC_RND_CONV,SC_SAT_SYM> b[4];

The first statement creates an array of 10 signed fixed point types 32 bits long with 
32 bits left of the binary point. The second statement creates an array of 4 unsigned 
fixed point types 16 bits long, 1 bit to the left of the binary point, that uses the 
SC_RND_CONV quantization mode and the SC_SAT_SYM overflow mode. 

SC_HEX_SM hexadecimal, sign magnitude 0xsm

SC_CSD canonical signed digit 0csd
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For the sc_fixed and sc_ufixed types and the corresponding fast types the cast 
switch must be setup properly in the context as it cannot be passed as an argument. 

Larger Example

This example is a 17 coefficient FIR filter. This function takes one argument named 
Input of type sc_fixed<4,2,SC_RND, SC_WRAP> and returns a value of type 
sc_fixed<32,3,SC_RND,SC_WRAP>. The input value and the last 16 input values 
are successively multiplied by the 17 input coefficents. The input value is then 
stored in the state array to be used as one of the 16 values in the next calculation. As 
a new value is received the values in the state array are shifted to make room for the 
new value. 

#include "systemc.h"

sc_fixed<32,3,SC_RND,SC_WRAP>
fir_fx(sc_fixed<4,2,SC_RND,SC_WRAP> Input)
{
  const int NumberOfCoefficients = 17;
  static sc_fixed<4,2,SC_RND,SC_WRAP> 
                state[NumberOfCoefficients-1];

  static sc_fixed<32,0,SC_RND,SC_WRAP> 
                coeff[NumberOfCoefficients] = {
        1.05162989348173e-02,
        3.84160084649920e-03,
       -1.86606831848621e-02,
       -3.90706136822701e-02,
       -2.64619290828705e-02,
        3.91649864614010e-02,
        1.44576489925385e-01,
        2.5e-01,
        2.84146755933762e-01,
        2.43584483861923e-01,
        1.44576489925385e-01,
        3.91649864614010e-02,
       -2.64619290828705e-02,
       -3.90706136822701e-02,
       -1.86606831848621e-02,
        3.84160084649920e-03,

1.05162989348173e-02};
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  sc_fixed<32,3,SC_RND,SC_WRAP> Output;
  sc_fixed<4,2,SC_RND,SC_WRAP> * pstate;
  sc_fixed<32,0,SC_RND,SC_WRAP> * pcoeff;
  sc_fixed<32,3,SC_RND,SC_WRAP> sum;
  int i;

   /* FIR filter output */
  pcoeff = &coeff[0];
  pstate = &state[0];
  sum = ((*pcoeff++ ) * (Input));
  for (i = 0;i < (NumberOfCoefficients - 1);i++)
   {
      sum = (sum + ((*pcoeff++ ) * (*pstate++ )));
   }
  Output = sum;
   /* shift state */
  pstate = &state[(NumberOfCoefficients - 2)];
  pcoeff = (pstate - 1);
  for  (i = 0; i < (NumberOfCoefficients - 2); i++)
   {
      *pstate--  = *pcoeff-- ;
   }
  *pstate = Input;
  return(Output);
} 



Fixed Point Types

152 SystemC 2.0 User’s Guide



SystemC 2.0 User’s Guide 153

CHAPTER 8 Simulation and 
Debugging Using 
SystemC

After you write a system description in SystemC, you typically want to simulate it 
as the next step in the design flow. This chapter describes the simulation control 
facilities provided by SystemC to start and stop a simulation, query the current 
time, and understand the order in which various processes are executed. 

Writing a system description in SystemC gives you the advantage of using standard 
C++ development tools for compiling and debugging. This chapter describes the 
additional facilities that can help you debug SystemC programs. 

Advanced Topic: SystemC Scheduler

NOTE: This section is outdated. For up-to-date information, please refer to Section 
5.3 in the Functional Specification for SystemC 2.0 document.

SystemC simulation is cycle-based: processes are executed and signals are updated 
at clock transitions. The SystemC library includes a cycle-based scheduler that han-
dles all events on signals, and it schedules processes when the appropriate events 
happen at their inputs. SystemC simulation follows the evaluate-update paradigm 
where all processes that are ready to be executed are executed, and only then are 
their output signals updated. 
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The scheduler in SystemC executes the following steps during simulation.

1. All clock signals that change their value at the current time are assigned their 
new values.

2. All SC_METHOD/SC_THREAD processes with inputs that have changed are 
executed. The entire body of SC_METHOD function processes are executed, 
while SC_THREAD processes are executed until the next wait() statement sus-
pends execution of the process. SC_METHOD/SC_THREAD processes are not 
executed in a fixed order.

3. All SC_CTHREAD processes that are triggered have their outputs updated, and 
they are saved in a queue to be executed later in step 5. All outputs of 
SC_METHOD/SC_THREAD processes that were executed in step 1 are also 
updated. 

4. Steps 2 and 3 are repeated until no signal changes its value.

5. All SC_CTHREAD processes that were triggered and queued in step 3 are exe-
cuted. There is no fixed execution order of these processes. Their outputs are 
updated at the next active edge (when step 3 is executed), and therefore are 
saved internally.

6. Simulation time is advanced to the next clock edge and the scheduler goes back 
to step 1.

If processes communicate using signals, the process execution order should not 
affect the simulation results. However, if global variables and pointers are used, 
process execution order affects the simulation results. Note that these simulation 
semantics are similar to Verilog simulation semantics with deferred signal assign-
ments and VHDL simulation semantics. 

Simulation Control

You can only start simulation after you instantiate and properly connect all modules 
and signals. In SystemC, simulation starts by calling sc_start() from the top level, 
namely the sc_main() routine. The sc_start() function takes a variable of type dou-
ble as an argument and simulates the system for as many default time units as the 
value of the variable. If you want the simulation to continue indefinitely, provide a 
negative value for the argument to this function. This routine generates all the clock 
signals at the appropriate times and calls the SystemC scheduler. 
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Simulation can be stopped anytime (from within any process) by calling sc_stop(). 
The function does not take arguments.

You can determine the current time during simulation by calling 
sc_simulation_time(). This function returns the current simulation time in a vari-
able of type double. 

To aid in debugging during simulation, variables, ports, and signal values can be 
read and printed. The printed value of a port or a signal is the current value of the 
port or signal, not a value just written to it.

Advanced Simulation Control Techniques

You have the option to use a different method to generate clocks and control simu-
lation than using sc_start(). To do that, you have to first call sc_initialize() to initial-
ize the SystemC scheduler. Then you can set signals to values by writing to them, 
and calling the routine sc_cycle() to simulate the result of setting the signals. This 
function takes a variable of type double as an argument. It calls the SystemC sched-
uler, simulates until the current effects of the signal writes are propagated through-
out the system. It then advances simulation time by the amount given as the 
argument to the function. For example, if the default time unit is 1 ns, sc_cycle(10) 
advances the simulation time by 10 ns.

For examples, assume you have defined a clock as:

sc_clock clk(“my clock”, 20, 0.5);

You can simulate the generation of clocks for 200 default time units by calling

sc_start(200);

On the other hand, you can generate the clock yourself by doing the following:

sc_signal<bool> clock;

sc_initialize();
for (int i = 0; i <= 200; i++)

clock = 1;
sc_cycle(10);
clock = 0; 
sc_cycle(10);

}
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Using this capability, you can inject events asynchronously with respect to the 
clock into the system, as shown in the following drawing.

FIGURE 4. Signal Asynchronous to Clock

To implement this, you can write the following in sc_main():

sc_initialize();
// Let the clock run for 10 cycles
for (int i = 0; i <= 200; i++)

clock = 1;
sc_cycle(10);
clock = 0; 
sc_cycle(10);

}

// Inject asynchronous reset
clock = 1;
sc_cycle(5);
reset = 1;
sc_cycle(5);
clock = 0;
sc_cycle(10);
clock = 1;
sc_cycle(5);
reset = 0;

clock

reset
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sc_cycle(5);
clock = 0;
sc_cycle(10);

// Now let the clock run indefinitely
for (;;)

clock = 1;
sc_cycle(10);
clock = 0; 
sc_cycle(10);

}

Note that sc_cycle() can only be called from the top level similar to sc_start(). 

Tracing Waveforms

SystemC provides functions that let you create a VCD (Value Change Dump), 
ASCII WIF (Waveform Intermediate Format), or ISDB (Integrated Signal Data 
Base) file that contains the values of variables and signals as they change during 
simulation. The waveforms defined in these files can be viewed using standard 
waveform viewers that support the VCD, WIF, or ISDB formats.

In generating waveforms, note the following: 

• Only variables that are in scope during the entire simulation can be traced. This 
means all signals and data members of modules can be traced. Variables local to 
a function cannot be traced. 

• Variables and signals of scalar, array and aggregate types can be traced. 

• Different types of trace files can be created during the same simulation run. 

• A signal or variable can be traced any number of times in different trace for-
mats. 

Creating the Trace File 

The first step in tracing waveforms is creating the trace file. The trace file is usually 
created at the top level after all modules and signals have been instantiated. For 
tracing waveforms using the VCD format, the trace file is created by calling the 
sc_create_vcd_trace_file() function with the name of the file as an argument. This 
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function returns a pointer to a data structure that is used during tracing. For exam-
ple, 

sc_trace_file * my_trace_file;
my_trace_file = sc_create_vcd_trace_file(“my_trace”); 

creates the VCD file named my_trace.vcd (the .vcd extension is automatically 
added). A pointer to the trace file data structure is returned. You need to store this 
pointer so it can be used in calls to the tracing routines. 

To create a WIF file, the sc_create_wif_trace_file() function needs to be called. For 
example, 

sc_trace_file *trace_file;
my_trace_file = sc_create_wif_file(“my_trace”);

creates the WIF file named my_trace.awif (the .awif extension is automatically 
added). Similarly, an ISDB trace file can be created.

At the end of simulation the trace files need to be closed or errors can result. Close 
the trace files with one of the following functions. 

  sc_close_isdb_trace_file(my_trace_file); 
  sc_close_wif_trace_file(my_trace_file);
  sc_close_vcd_trace_file(my_trace_file); 

Call the function appropriate to the type of file that was created. Call this function 
just before the return statement in your sc_main routine.

Tracing Scalar Variable and Signals

SystemC provides tracing functions for scalar variables and signals. All tracing 
functions have the following in common:

• The function is named sc_trace(). 

• Their first argument is a pointer to the trace file data structure sc_trace_file. 

• Their second argument is a reference or a pointer to a variable being traced. 

• Their third argument is a reference to a string. 

For example, the following illustrates how a signal of type int and a variable of type 
float are traced.



SystemC 2.0 User’s Guide 159

Tracing Waveforms

sc_signal<int> a;
float b;

sc_trace(trace_file, a, “MyA”);
sc_trace(trace_file, b, “B”);

In this example, trace_file is a pointer of type sc_trace_file, that was created earlier. 
“MyA” is the name of the int variable as it would appear in the waveform viewer, 
and “B” is the name of the float variable.

The trace function registers (creates a list of) the signals and variables to be traced. 
The actual tracing happens during simulation and is handled by the SystemC sched-
uler. Note that calls to the sc_trace() functions are made only after the processes 
and signals are instantiated and after the trace file is opened. 

Tracing Variables and Signals of Aggregate Type 

The trace functions defined in SystemC can accept signals or variables of scalar 
types only. To trace variables of aggregate type, you need to define special trace 
functions for variables of these types using the basic trace functions that are provide 
in SystemC. 

For example, consider the structure 

struct bus { 
unsigned address; 
bool read_write; 
unsigned data; 

};

You need to define a trace function for this structure as follows: 

void sc_trace(sc_trace_file *tf, const bus& v, const 
sc_string& NAME) 
{ 

sc_trace(tf, v.address, NAME + “.address”); 
sc_trace(tf, v.read_write, NAME + “.rw”); 
sc_trace(tf, v.data, NAME + “.data”); 

} 
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When called, this trace function traces the data structure by tracing individual fields 
of the structure. Note that each individual field of the structure is given a unique 
name by appending the field name to the structure name. 

Tracing Variable and Signal Arrays 

To trace a variable or signal array, you need to define a specialized trace function 
using the basic data or signal trace functions SystemC provides. For example, the 
trace function for arrays of type sc_signal<int> are 

void sc_trace(sc_trace_file *tf, sc_signal<int> *v,   
const sc_string& NAME, int len)
{ 

char stbuf[20]; 
for (int i = 0; i< len; i++) { 

sprintf(stbuf, “[%d]”, i); 
sc_trace(tf, v[i], NAME + stbuf); 

} 
}

This trace function has one additional argument, which is the length of the array to 
be traced. 

SystemC has predefined trace functions for all SystemC defined vector types 
(sc_int<>, sc_uinit<>, sc_biginit<>, sc_bigunit<>, sc_lv<>, 
and so forth).

Debugging SystemC

Because each thread or clocked-thread process generates a new thread of execution, 
debugging the simulation can be more difficult than with a typical linearly executed 
C++ program. The execution threads in the simulation means the simulation pro-
ceeds in a nonlinear fashion. It may be difficult to determine the code that will be 
executed next. 

You may want to debug only your code, not the SystemC class libraries. The easiest 
way to debug a design is to place a breakpoint at the beginning of a process that you 
are interested in debugging. When the simulation stops at one of these breakpoints, 
simulation will halt and you can debug the appropriate process as required. 
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Appendix A VHDL Designer’s Guide

This section will focus on helping VHDL designers learn how to write different 
types of models in SystemC. This section will present several complete models in 
SystemC and VHDL so that the VHDL designer can compare and contrast these 
models and learn how to write better SystemC models. 

DFF Examples

D flip flops are one of the basic building blocks of RTL design. Here are a few 
examples of some VHDL D flip flops and the corresponding SystemC models for 
comparison.

Synchronous D Flip Flop

Here is the VHDL Model for a standard RTL D flip flop. 

library ieee;
use ieee.std_logic_1164.all;
entity dff is
  port(clock : in std_logic;
       din   : in std_logic;
       dout  : out std_logic);
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end dff;

architecture rtl of dff is
begin
  process
  begin
    wait until clock’event and clock = ‘1’;
    dout <= din;
  end process;
end rtl;

Here is a corresponding SystemC model:

SystemC Implementation

// dff.h

#include "systemc.h"

SC_MODULE(dff)
{
  sc_in<bool>  din;
  sc_in<bool>  clock;
  sc_out<bool> dout;

  void doit()
  {
    dout = din;
  };

  SC_CTOR(dff)
  {
    SC_METHOD(doit);
    sensitive_pos << clock;
  }
};
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D Flip Flop with Asynchronous Reset

One of the most common flip flops used in designs is the Dff with asynchronous 
reset. These flip flops help the designer get a design to start at a known state easily. 
By providing an active reset signal at design power up the designer can reset the 
flip flops of the design to a known state. 

Here is the VHDL for a D flip flop with an asynchronous reset input. 

library ieee;
use ieee.std_logic_1164.all;
entity dffa is
  port( clock : in std_logic;
        reset : in std_logic;
        din   : in std_logic;
        dout  : out std_logic);
end dffa;

architecture rtl of dffa is
begin
  process(reset, clock)
  begin
    if reset = ‘1’ then
      dout <= ‘0’;
    elsif clock’event and clock = ‘1’ then
      dout <= din;
    end if;
  end process;
end rtl;

The SystemC model looks similar to the normal D flip flop discussed in the last 
section, but now has the reset signal in the process sensitivity list. Positive edges on 
the clock input or changes in value of the reset signal will cause process do_ffa to 
activate. 

The process first checks the value of reset. If reset is equal to 1 the flip flop output 
is set to 0. If reset is not active the process will look for a positive edge on input 
clock. This is accomplished by using the event() method on the clock input port. 
This method works just like the ‘event method in VHDL. It will be true if an event 
has just occurred on input clock. 
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Here is the corresponding SystemC implementation. 

// dffa.h

#include "systemc.h"

SC_MODULE(dffa)
{
  sc_in<bool>  clock;
  sc_in<bool>  reset;
  sc_in<bool>  din;
  sc_out<bool> dout;

  void do_ffa()
  {
    if (reset) {
      dout = false;
    } else if (clock.event()) {
      dout = din;  
    }
  };

  SC_CTOR(dffa)
  {
    SC_METHOD(do_ffa);
    sensitive(reset);
    sensitive_pos(clock);
  }
};

Shifter

The next few examples add more complexity. This module implements a very basic 
8 bit shifter block. the shifter can be loaded with a new value by placing a value on 
input din, setting input load to 1, and causing a positive edge to occur on input clk. 
The shifter will shift the data left or right depending on the value of input LR. If LR 
equals 0 the shifter will shift its contents right by 1 bit. If LR equals 1 the shifter 
will shift its contents left by 1 bit. 
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Here is the VHDL description: 

library ieee;
use ieee.std_logic_1164.all;
entity shift is
  port( din   : in std_logic_vector(7 downto 0);
        clk   : in std_logic;
        load  : in std_logic;
        LR    : in std_logic;
        dout  : inout std_logic_vector(7 downto 0));
end shift;

architecture rtl of shift is
  signal shiftval : std_logic_vector(7 downto 0);
begin
  nxt: process(load, LR, din, dout)
  begin
    if load = ‘1’ then
      shiftval <= din;

    elsif LR = ‘0’ then
      shiftval(6 downto 0) <= dout(7 downto 1);
      shiftval(7) <= ‘0’;

    elsif LR = ‘1’ then
      shiftval(7 downto 1) <= dout(6 downto 0);
      shiftval(0) <= ‘0’;

    end if;
  end process;
end rtl;

SystemC Implementation

The SystemC implementation of the shifter uses process shifty to perform the shift-
ing and loading operations. This process is an SC_METHOD process sensitive only 
to the positive edge of input clk. A designer could use an SC_CTHREAD process 
for this example and the behavior would be the same. However and 
SC_CTHREAD process is less efficient and the simulation will run slower. 
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Whenever the clock has a positive edge process shifty will activate and check the 
value of input load. If load is 1 the current value of din is assigned to shiftval, the 
local value of the shifter at all times. Local value shiftval is needed because the 
value of output ports cannot be read. Notice that at the end of the process shiftval is 
assigned to dout. 

If load is not active the process will check the value of input LR and perform the 
appropriate action based on the value of LR. To perform the actual shifting opera-
tion notice that process shifty uses the range() method. 

Here is the SystemC implementation: 

// shift.h

#include “systemc.h”

SC_MODULE(shift)
{
  sc_in<sc_bv<8> >  din;
  sc_in<bool>       clk;
  sc_in<bool>       load;
  sc_in<bool>       LR;
  sc_out<sc_bv<8> > dout;

  sc_bv<8> shiftval;

  void shifty();

  SC_CTOR(shift)
  {
    SC_METHOD(shifty);
    sensitive_pos (clk);
  }
};

// shift.cc

#include “shift.h”

void shift::shifty()
{



SystemC 2.0 User’s Guide 169

Counter

  if (load) {
    shiftval = din;
  } else if (!LR) {
    shiftval.range(6,0) = shiftval.range(7,1);
    shiftval[7] = ‘0’;
  } else if (LR) {
    shiftval.range(7,1) = shiftval.range(6,0);
    shiftval[0] = ‘0’;
  }
  dout = shiftval;
}

Counter

The next example is an 8 bit counter. This counter can be set to a value by setting 
the value of input load to 1 and placing the value to load on input din. The counter 
can be cleared by setting input clear to a 1. Below is the VHDL implementation. 

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity counter is
  port( clock : in std_logic;
        load  : in std_logic;
        clear : in std_logic;
        din   : in std_logic_vector(7 downto 0);
        dout  : inout std_logic_vector(7 downto 0));
end counter;

architecture rtl of counter is
  signal countval : std_logic_vector(7 downto 0);
begin
  process(load, clear, din, dout)
  begin
    if clear = ‘1’ then
      countval <= “00000000”;

    elsif load = ‘1’ then
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      countval <= din;

    else
      countval <= dout + “00000001”;
    end if;

  end process;

  process 
  begin
    wait until clock’event and clock = ‘1’;
    dout <= countval;
  end process;

end rtl;

SystemC Implementation

Here is the SystemC implementation of the counter. Input ports clock, load, and 
clear are of type bool. Ports din and dout are 8 bit vector ports. Internally an int 
named countval is used to hold the value of the counter. When clear is a 1 countval 
is set to 0. When load is a 1 countval is set to the value on port din. Notice the 
read() method used when the port is read. This method is used because an implicit 
type conversion is happening when din is assigned to countval. This method helps 
SystemC determine the type of the port easier so that the correct conversion func-
tion can be called. 

// counter.h

#include "systemc.h"

SC_MODULE(counter)
{
  sc_in<bool>        clock;
  sc_in<bool>        load;
  sc_in<bool>        clear;
  sc_in<sc_int<8> >  din;
  sc_out<sc_int<8> > dout;

  int countval;
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  void onetwothree();

  SC_CTOR(counter)
  {
    SC_METHOD(onetwothree);
    sensitive_pos (clock);
  }
};

// counter.cc

#include "counter.h"

void counter::onetwothree()
{
  if (clear) {
    countval = 0;
  } else if (load) {
    countval = din.read(); // use read when a type 
                           // conversion is happening
                           // from an input port
  } else {
    countval++;
  }
  dout = countval;
}

State Machine

The next example is a state machine. This example represents a state machine 
within a voicemail controller. The state machine will start in the main state and then 
transition to a send state or review state depending on user inputs. From the review 
or send states the user can go to other states such as repeat, erase, record, etc. Out-
put signals play, recrd, erase, save and address are triggered as each of these states 
are entered thereby controlling the voicemail system. 
Here is the VHDL implementation:
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package vm_pack is
  type t_vm_state is (main_st, review_st, repeat_st,
                      save_st, erase_st, send_st,
                      address_st, record_st,
                      begin_rec_st, message_st);
  type t_key is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, 
                 ‘7’, ‘8’, ‘9’, ‘*’, ‘#’);
end vm_pack;

use work.vm_pack.all;
library ieee;
use ieee.std_logic_1164.all;
entity stmach is
  port( clk : in std_logic;
        key : in t_key;
        play, recrd, erase, save,
        address : out std_logic);
end stmach;

architecture rtl of stmach is
  signal next_state, current_state : t_vm_state;
begin
  process(current_state, key)
  begin

  play <= ‘0’;
  save <= ‘0’;
  erase <= ‘0’;
  recrd <= ‘0’;
  address <= ‘0’;

  case current_state is
    when main_st =>
        if key = ‘1’ then
          next_state <= review_st;
        elsif key = ‘2’ then
          next_state <= send_st;
        else
          next_state <= main_st;
        end if;
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      when review_st =>
        if key = ‘1’ then
          next_state <= repeat_st;
        elsif key = ‘2’ then
          next_state <= save_st;
        elsif key = ‘3’ then 
          next_state <= erase_st;
        elsif key = ‘#’ then
          next_state <= main_st;
        else
          next_state <= review_st;
        end if;

      when repeat_st =>
        play <= ‘1’;
        next_state <= review_st;

      when save_st =>
        save <= ‘1’;
        next_state <= review_st;

      when erase_st =>
        erase <= ‘1’;
        next_state <= review_st;

      when send_st =>
        next_state <= address_st;

      when address_st =>
        address <= ‘1’;
        if key = ‘#’ then 
          next_state <= record_st;
        else
          next_state <= address_st;
        end if;

      when record_st =>
        if key = ‘5’ then
          next_state <= begin_rec_st;
        else
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          next_state <= record_st;
        end if;

      when begin_rec_st =>
        recrd <= ‘1’;
        next_state <= message_st;

      when message_st =>
        recrd <= ‘1’;
        if key = ‘#’ then
          next_state <= send_st;
        else
          next_state <= message_st;
        end if;
    end case;
  end process;

  process
  begin
    wait until clk’event and clk = ‘1’;
    current_state <= next_state;
  end process;

end rtl;

SystemC State Machine

The SystemC implementation uses two enum types to represent the state of the state 
machine and the state of the key values passed to the state machine. The state 
machine implementation consists of two SC_METHOD processes. SC_METHOD 
processes are by far the most efficient processes and should be used where possible. 
Process getnextst calculates the new state of the state machine based on the current 
state and the input values. Process setstate copies the calculated next_state to the 
current_state every positive clock edge on input clk.

// stmach.h

#include “systemc.h”
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enum vm_state {
  main_st, review_st, repeat_st, save_st,
  erase_st, send_st, address_st,
  record_st, begin_rec_st, message_st
};

SC_MODULE(stmach)
{
  sc_in<bool>      clk;
  sc_in<char>      key;
  sc_out<sc_logic> play;
  sc_out<sc_logic> recrd;
  sc_out<sc_logic> erase;
  sc_out<sc_logic> save;
  sc_out<sc_logic> address;

  sc_signal<vm_state> next_state;
  sc_signal<vm_state> current_state;

  void getnextst();
  void setstate();

  SC_CTOR(stmach)
  {
    SC_METHOD(getnextst);
    sensitive << key << current_state;
    SC_METHOD(setstate);
    sensitive_pos (clk);
  }
};

// stmach.cc

#include “stmach.h”

void stmach::getnextst()
{
  play = SC_LOGIC_0;
  recrd = SC_LOGIC_0;
  erase = SC_LOGIC_0;
  save = SC_LOGIC_0;
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  address = SC_LOGIC_0;

  switch (current_state) {

    case main_st:
      if (key == ‘1’) {
        next_state = review_st;
      } else {
        if (key == ‘2’) {
          next_state = send_st;
        } else {
          next_state = main_st;
        }
      }
      break;

    case review_st:
      if (key == ‘1’) {
        next_state = repeat_st;
      } else {
        if (key == ‘2’) {
          next_state = save_st;
        } else {
          if (key == ‘3’) {
            next_state = erase_st;
          } else {
            if (key == ‘#’) {
              next_state = main_st;
            } else {
              next_state = review_st;
            }
          }
        }
      }
      break;

    case repeat_st:
      play = SC_LOGIC_1;
      next_state = review_st;
      break;
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    case save_st:
      save = SC_LOGIC_1;
      next_state = review_st;
      break;

    case erase_st:
      erase = SC_LOGIC_1;
      next_state = review_st;
      break;

    case send_st:
      next_state = address_st;
      break;

    case address_st:
      address = SC_LOGIC_1;
      if (key == ‘#’) {
        next_state = record_st;
      } else {
        next_state = address_st;
      }
      break;

    case record_st:
      if (key == ‘5’) {
        next_state = begin_rec_st;
      } else {
        next_state = record_st;
      }
      break;

    case begin_rec_st:
      recrd = SC_LOGIC_1;
      next_state = message_st;
      break;

    case message_st:
      recrd = SC_LOGIC_1;
      if (key == ‘#’) {
        next_state = send_st;
      } else {
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        next_state = message_st;
      }
      break;

  } // end switch
} // end method

void stmach::setstate()
{
  current_state = next_state;
}

Memory

The last module is a very simple memory model. The memory device has an enable 
port to activate the device, and a readwr port to determine whether or not the device 
is being written to or read from. The memory module has a single data inout bus 
that either delivers the addressed item, or accepts data to write to a location.When 
the enable input is 0, the output of the ram device will be all ‘Z’ (hi impedance) and 
no read or write operations can be performed. To read a location set enable to ‘1’, 
readwr to ‘0’, and apply the appropriate address. To write a location set enable to 
‘1’, readwr to ‘1’, addr to the appropriate location to write, and data to the data 
value to write. 

The model is implemented in VHDL with a single process so that a variable can be 
used to store the memory data. Notice that the SystemC implementation uses two 
processes, one for read and one for write. 

Here is the VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity ram is
  port(enable : in std_logic;
       readwr : in std_logic;
       addr   : in std_logic_vector(7 downto 0);
       data   : inout std_logic_vector(15 downto 0)
      );
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end ram;

architecture rtl of ram is
begin
  process(addr, enable, readwr)
    subtype data16 is std_logic_vector(15 downto 0);
    type ramtype is array(0 to 255) of data16;
    variable ramdata : ramtype;
  begin
    if (enable = ‘1’) then 
      if readwr = ‘0’ then
        data <= ramdata(conv_integer(addr));
      elsif readwr = ‘1’ then
        ramdata(conv_integer(addr)) := data;
      end if;
    else
      data <= “ZZZZZZZZZZZZZZZZ”;
    end if;
  end process;
end rtl;

SystemC Implementation

The SystemC implementation has similar port types to the VHDL model, but opti-
mized for SystemC. Notice that addr is an sc_int of 8 bits. This is the most efficient 
implementation for object of less than 64 bits. Also notice that port data is an 
sc_inout_rv type. The port needs to be inout, and needs the ability to tristate the 
output. A resolved vector type will allow the output to tristate and still be able to 
connect to tristate busses. 

The ram module contains two SC_METHOD processes. One for reading the ram 
and one for writing the ram. Notice that the process that writes the ram also has to 
be sensitive to changes on input port data so that the proper value gets written into 
the ram. 

// ram.h

#include “systemc.h”

SC_MODULE(ram)
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{
  sc_in<sc_int<8> > addr;
  sc_in<bool>       enable;
  sc_in<bool>       readwr;
  sc_inout_rv<16>   data;

  void read_data();
  void write_data();

  sc_lv<16> ram_data[256];

  SC_CTOR(ram)
  {
    SC_METHOD(read_data);
    sensitive << addr << enable << readwr;
    SC_METHOD(write_data);
    sensitive << addr << enable << readwr << data;
  }
};

// ram.cc

#include “ram.h”

void ram::read_data()
{
  if (enable && ! readwr ) {
    data = ram_data[addr.read()];
  } else {
    data = “ZZZZZZZZZZZZZZZZ”;
  }
}

void ram::write_data()
{
  if (enable && readwr) {
    ram_data[addr.read()] = data;
  }
}
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Appendix B Verilog Designers’ Guide

This section is for Verilog designers wanting to learn how to write good SystemC 
models. This section will present a number of Verilog models and then the SystemC 
models for the same design. The Verilog designer can then compare and contrast 
the models to get a better understanding of how to write SystemC models. 

DFF Examples

D flip flops are one of the basic building blocks of RTL design. Here are a few 
examples of some Verilog D flip flops and the corresponding SystemC models for 
comparison.

Synchronous D Flip Flop

Here is the Verilog model for a standard RTL D flip flop

module dff(din, clock, dout);
input din;
input clock;
output dout;

reg dout;
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always @(posedge clock)
  dout <= din;

endmodule

SystemC Implementation

// dff.h

#include "systemc.h"

SC_MODULE(dff)
{
  sc_in<bool>  din;
  sc_in<bool>  clock;
  sc_out<bool> dout;

  void doit()
  {
    dout = din;
  };

  SC_CTOR(dff)
  {
    SC_METHOD(doit);
    sensitive_pos << clock;
  }
};

Asynchronous Reset D Flip Flop

D Flip Flop with Asynchronous Reset

One of the most common flip flops used in designs is the Dff with asynchronous 
reset. These flip flops help the designer get a design to start at a known state easily. 
By providing an active reset signal at design power up the designer can reset the 
flip flops of the design to a known state. 
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Asynchronous Reset D Flip Flop

Here is the Verilog description for a D flip flop with an asynchronous reset input. 

module dffa(clock, reset, din, dout);
input clock, reset, din;
output dout;

reg dout;

always @(posedge clock or reset)
begin
  if (reset) 
    dout <= 1’b0;
  else
    dout = din;
end
endmodule

SystemC Implementation

The SystemC model looks similar to the normal D flip flop discussed in the last 
section, but now has the reset signal in the process sensitivity list. Positive edges on 
the clock input or changes in value of the reset signal will cause process do_ffa to 
activate. 

The process first checks the value of reset. If reset is equal to 1 the flip flop output 
is set to 0. If reset is not active the process will look for a positive edge on input 
clock. This is accomplished by using the event() method on the clock input port. 
This method works just like the ‘event method in VHDL. It will be true if an event 
has just occurred on input clock. 

Here is the corresponding SystemC implementation. 

// dffa.h

#include "systemc.h"

SC_MODULE(dffa)
{
  sc_in<bool>  clock;
  sc_in<bool>  reset;
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  sc_in<bool>  din;
  sc_out<bool> dout;

  void do_ffa()
  {
    if (reset) {
      dout = false;
    } else if (clock.event()) {
      dout = din; 
    }
  };

  SC_CTOR(dffa)
  {
    SC_METHOD(do_ffa);
    sensitive(reset);
    sensitive_pos(clock);
  }
};

Shifter

The next few examples add more complexity. This module implements a very basic 
8 bit shifter block. the shifter can be loaded with a new value by placing a value on 
input din, setting input load to 1, and causing a positive edge to occur on input clk. 
The shifter will shift the data left or right depending on the value of input LR. If LR 
equals 0 the shifter will shift its contents right by 1 bit. If LR equals 1 the shifter 
will shift its contents left by 1 bit. 

Here is the Verilog description: 

module shift(din, clk, load, LR, dout);
input [0:7] din;
input clk, load, LR;
output [0:7] dout;

wire [0:7] dout;
reg [0:7] shiftval;
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assign dout = shiftval;
always @(posedge clk)
begin
  if (load)
    shiftval = din;
  else if (LR) 
    begin
      shiftval[0:6] = shiftval[1:7];
      shiftval[7] = 1’b0; 
    end
  else if (!LR)
    begin
      shiftval[1:7] = shiftval[0:6];
      shiftval[0] = 1’b0;
    end
end
endmodule

SystemC Implementation

The SystemC implementation of the shifter uses process shifty to perform the shift-
ing and loading operations. This process is an SC_METHOD process sensitive only 
to the positive edge of input clk. A designer could use an SC_CTHREAD process 
for this example and the behavior would be the same. However and 
SC_CTHREAD process is less efficient and the simulation will run slower. 

Whenever the clock has a positive edge process shifty will activate and check the 
value of input load. If load is 1 the current value of din is assigned to shiftval, the 
local value of the shifter at all times. Local value shiftval is needed because the 
value of output ports cannot be read. Notice that at the end of the process shiftval is 
assigned to dout. 

If load is not active the process will check the value of input LR and perform the 
appropriate action based on the value of LR. To perform the actual shifting opera-
tion notice that process shifty uses the range() method. 

Here is the SystemC implementation: 

// shift.h
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#include “systemc.h”

SC_MODULE(shift)
{
  sc_in<sc_bv<8> >  din;
  sc_in<bool>       clk;
  sc_in<bool>       load;
  sc_in<bool>       LR;
  sc_out<sc_bv<8> > dout;

  sc_bv<8> shiftval;

  void shifty();

  SC_CTOR(shift)
  {
    SC_METHOD(shifty);
    sensitive_pos (clk);
  }
};

// shift.cc

#include “shift.h”

void shift::shifty()
{
  if (load) {
    shiftval = din;
  } else if (LR) {
    shiftval.range(0,6) = shiftval.range(1,7);
    shiftval[7] = ‘0’;
  } else if (!LR) {
    shiftval.range(1,7) = shiftval.range(0,6);
    shiftval[0] = ‘0’;
  }
  dout = shiftval;
}
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Counter

The next example is an 8 bit counter. This counter can be set to a value by setting 
the value of input load to 1 and placing the value to load on input din. The counter 
can be cleared by setting input clear to a 1. Below is the Verilog implementation. 

module counter(clock, load, clear, din, dout);
input clock, load, clear;
input [0:7] din;
output [0:7] dout;

wire [0:7] dout;
reg [0:7] countval;

assign dout = countval;

always @(posedge clock)
begin
  if (clear) 
    countval = 0;
  else if (load) 
    countval = din;
  else 
    countval = countval + 1;
end
endmodule

SystemC Implementation

Here is the SystemC implementation of the counter. Input ports clock, load, and 
clear are of type bool. Ports din and dout are 8 bit vector ports. Internally an int 
named countval is used to hold the value of the counter. When clear is a 1 countval 
is set to 0. When load is a 1 countval is set to the value on port din. Notice the 
read() method used when the port is read. This method is used because an implicit 
type conversion is happening when din is assigned to countval. This method helps 
SystemC determine the type of the port easier so that the correct conversion func-
tion can be called. 

// counter.h
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#include "systemc.h"

SC_MODULE(counter)
{
  sc_in<bool>        clock;
  sc_in<bool>        load;
  sc_in<bool>        clear;
  sc_in<sc_int<8> >  din;
  sc_out<sc_int<8> > dout;

  int countval;

  void onetwothree();

  SC_CTOR(counter)
  {
    SC_METHOD(onetwothree);
    sensitive_pos (clock);
  }
};

// counter.cc

#include "counter.h"

void counter::onetwothree()
{
  if (clear) {
    countval = 0;
  } else if (load) {
    countval = din.read(); // use read when a type 
                           // conversion is happening
                           // from an input port
  } else {
    countval++;
  }
  dout = countval;
}
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State Machine

The next example is a state machine. This example represents a state machine 
within a voicemail controller. The state machine will start in the main state and then 
transition to a send state or review state depending on user inputs. From the review 
or send states the user can go to other states such as repeat, erase, record, etc. Out-
put signals play, recrd, erase, save and address are triggered as each of these states 
are entered thereby controlling the voicemail system. 

Here is the Verilog implementation:

// def.v
parameter main_st      = 4’b0000,
          review_st    = 4’b0001,
          repeat_st    = 4’b0010,
          save_st      = 4’b0011,
          erase_st     = 4’b0100,
          send_st      = 4’b0101,
          address_st   = 4’b0110,
          record_st    = 4’b0111,
          begin_rec_st = 4’b1000,
          message_st   = 4’b1001;

parameter zero   = 4’b0000,
          one    = 4’b0001,
          two    = 4’b0010,
          three  = 4’b0011,
          four   = 4’b0100,
          five   = 4’b0101,
          six    = 4’b0110,
          seven  = 4’b0111,
          eight  = 4’b1000,
          nine   = 4’b1001,
          star   = 4’b1010,
          pound  = 4’b1011;  

// statemach.v
module stmach(clk, key, play, recrd, erase, save, 
              address);

‘include “def.v”
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input clk;
input [0:3] key;
output play, recrd, erase, save, address;

reg [0:3] next_state;
reg [0:3] current_state;
reg play, recrd, erase, save, address;

always @(posedge clk)
  current_state = next_state;

always @(key or current_state)
begin
  play = 1’b0;
  recrd = 1’b0;
  erase = 1’b0;
  save = 1’b0;
  address = 1’b0;

  case (current_state)
    main_st : begin
     if (key == one) 
        next_state = review_st;
      else if (key == two) 
          next_state = send_st;
        else 
          next_state = main_st;
    end
    review_st:begin
      if (key == one) 
        next_state = repeat_st;
      else if (key == two) 
           next_state = save_st;
         else if (key == three) 
             next_state = erase_st;
           else if (key == pound) 
               next_state = main_st;
             else 
               next_state = review_st;
    end
    repeat_st: begin
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      play = 1’b1;
      next_state = review_st;
    end
    save_st:begin
      save = 1’b1;
      next_state = review_st;
    end
    erase_st:begin
      erase = 1’b1;
      next_state = review_st;
    end
    send_st:begin
      next_state = address_st;
    end
    address_st:begin
      address = 1’b1;
      if (key == pound) 
        next_state = record_st;
      else 
        next_state = address_st;
    end
    record_st: begin
      if (key == five) 
        next_state = begin_rec_st;
      else 
        next_state = record_st;
    end
    begin_rec_st: begin
      recrd = 1’b1;
      next_state = message_st;
    end
    message_st: begin
      recrd = 1’b1;
      if (key == pound) 
        next_state = send_st;
      else 
        next_state = message_st;
      end
    endcase
  end
endmodule
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SystemC State Machine

The SystemC implementation uses two enum types to represent the state of the state 
machine and the state of the key values passed to the state machine. The state 
machine implementation consists of two SC_METHOD processes. SC_METHOD 
processes are by far the most efficient processes and should be used where possible. 
Process getnextst calculates the new state of the state machine based on the current 
state and the input values. Process setstate copies the calculated next_state to the 
current_state every positive clock edge on input clk.

// stmach.h

#include “systemc.h”

enum vm_state {
  main_st, review_st, repeat_st, save_st,
  erase_st, send_st, address_st,
  record_st, begin_rec_st, message_st
};

SC_MODULE(stmach)
{
  sc_in<bool>      clk;
  sc_in<char>      key;
  sc_out<sc_logic> play;
  sc_out<sc_logic> recrd;
  sc_out<sc_logic> erase;
  sc_out<sc_logic> save;
  sc_out<sc_logic> address;

  sc_signal<vm_state> next_state;
  sc_signal<vm_state> current_state;

  void getnextst();
  void setstate();

  SC_CTOR(stmach)
  {
    SC_METHOD(getnextst);
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    sensitive << key << current_state;
    SC_METHOD(setstate);
    sensitive_pos (clk);
  }
};

// stmach.cc

#include “stmach.h”

void stmach::getnextst()
{
  play = SC_LOGIC_0;
  recrd = SC_LOGIC_0;
  erase = SC_LOGIC_0;
  save = SC_LOGIC_0;
  address = SC_LOGIC_0;

  switch (current_state) {

    case main_st:
      if (key == ‘1’) {
        next_state = review_st;
      } else {
        if (key == ‘2’) {
          next_state = send_st;
        } else {
          next_state = main_st;
        }
      }
      break;

    case review_st:
      if (key == ‘1’) {
        next_state = repeat_st;
      } else {
        if (key == ‘2’) {
          next_state = save_st;
        } else {
          if (key == ‘3’) {
            next_state = erase_st;
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          } else {
            if (key == ‘#’) {
              next_state = main_st;
            } else {
              next_state = review_st;
            }
          }
        }
      }
      break;

    case repeat_st:
      play = SC_LOGIC_1;
      next_state = review_st;
      break;

    case save_st:
      save = SC_LOGIC_1;
      next_state = review_st;
      break;

    case erase_st:
      erase = SC_LOGIC_1;
      next_state = review_st;
      break;

    case send_st:
      next_state = address_st;
      break;

    case address_st:
      address = SC_LOGIC_1;
      if (key == ‘#’) {
        next_state = record_st;
      } else {
        next_state = address_st;
      }
      break;

    case record_st:
      if (key == ‘5’) {
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        next_state = begin_rec_st;
      } else {
        next_state = record_st;
      }
      break;

    case begin_rec_st:
      recrd = SC_LOGIC_1;
      next_state = message_st;
      break;

    case message_st:
      recrd = SC_LOGIC_1;
      if (key == ‘#’) {
        next_state = send_st;
      } else {
        next_state = message_st;
      }
      break;

  } // end switch
} // end method

void stmach::setstate()
{
  current_state = next_state;
}

Memory

The last module is a very simple memory model. The memory device has an enable 
port to activate the device, and a readwr port to determine whether or not the device 
is being written to or read from. The memory module has a single data inout bus 
that either delivers the addressed item, or accepts data to write to a location.When 
the enable input is 0, the output of the ram device will be all ‘Z’ (hi impedance) and 
no read or write operations can be performed. To read a location set enable to ‘1’, 
readwr to ‘0’, and apply the appropriate address. To write a location set enable to 
‘1’, readwr to ‘1’, addr to the appropriate location to write, and data to the data 
value to write. 



196 SystemC 2.0 User’s Guide

Here is the Verilog model:

module ram(addr, enable, readwr, data);
input [0:7] addr;
input enable, readwr;
inout [0:15] data;

reg [0:15] ram_data [0:255];

assign data = (enable & !readwr) ? 
     ramdata[addr] : 16’bz;

always @(addr or enable or readwr or data)
begin
  if (enable & readwr)
    ramdata[addr] = data;
end
endmodule

SystemC Implementation

The SystemC implementation has similar port types to the VHDL model, but opti-
mized for SystemC. Notice that addr is an sc_int of 8 bits. This is the most efficient 
implementation for object of less than 64 bits. Also notice that port data is an 
sc_inout_rv type. The port needs to be inout, and needs the ability to tristate the 
output. A resolved vector type will allow the output to tristate and still be able to 
connect to tristate busses. 

The ram module contains two SC_METHOD processes. One for reading the ram 
and one for writing the ram. Notice that the process that writes the ram also has to 
be sensitive to changes on input port data so that the proper value gets written into 
the ram. 

// ram.h

#include “systemc.h”

SC_MODULE(ram)
{
  sc_in<sc_int<8> > addr;
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  sc_in<bool>       enable;
  sc_in<bool>       readwr;
  sc_inout_rv<16>   data;

  void read_data();
  void write_data();

  sc_lv<16> ram_data[256];

  SC_CTOR(ram)
  {
    SC_METHOD(read_data);
    sensitive << addr << enable << readwr;
    SC_METHOD(write_data);
    sensitive << addr << enable << readwr << data;
  }
};

// ram.cc

#include “ram.h”

void ram::read_data()
{
  if (enable && !readwr) {
    data = ram_data[addr.read()];
  } else {
    data = “ZZZZZZZZZZZZZZZZ”;
  }
}

void ram::write_data()
{
  if (enable && readwr) {
    ram_data[addr.read()] = data;
  }
}
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