Assignment 2

1. We place at random \(n \) points in the interval \((0,1)\) and we denote by random variables \(X \) and \(Y \) the distance from the origin to the first and the last points respectively. Find \(F_X(x) \), \(F_Y(y) \) and \(F_{X,Y}(x,y) \).

2. A random variable \(X \) has the density function

\[
f_X(x) = \begin{cases} \frac{1}{2} \exp \left(-\frac{x}{2}\right) & x \geq 0 \\ 0 & \text{o.w.} \end{cases}
\]

Define events \(A = \{1 < X \leq 3\} \), \(B = \{X \leq 2.5\} \), and \(C = A \cap B \). Find the probabilities of events \(A \), \(B \), and \(C \).

3. Suppose height to the bottom of clouds is a Gaussian R.V. \(X \) for which \(\mu = 4000 \text{m} \), and \(\sigma = 1000 \text{m} \). A person bets that cloud height tomorrow will fall in the set \(A = \{1000 \text{m} < X \leq 3300 \text{m}\} \) while a second person bets that height will be satisfied by \(B = \{2000 \text{m} < X \leq 4200 \text{m}\} \). A third person bets they are both correct. Find the probabilities that each person will win the bet.

4. A random variable \(X \) is known to be Poisson with \(\lambda = 4 \).

 (a) Plot the density and distribution functions for this random variable.

 (b) What is the probability of the events \(\{0 \leq X \leq 5\} \)?

5. A random variable \(X \) has a probability density

\[
f_X(x) = \begin{cases} \frac{\pi}{16} \cos \left(\frac{\pi x}{8}\right) & -4 \leq x \leq 4 \\ 0 & \text{o.w.} \end{cases}
\]

Find: (a) its mean value \(\bar{X} \), (b) its second moment \(\bar{X^2} \), and (c) its variance.

6. A random variable has a probability density

\[
f_X(x) = \begin{cases} \frac{5}{4} (1 - x^4) & 0 < x \leq 1 \\ 0 & \text{o.w.} \end{cases}
\]

Find: (a) \(E[X] \), (b) \(E[4X^2] \), and (c) \(E[X^2] \).
7. Suppose a coin having probability 0.7 of coming up heads is tossed three times. Let X denote the number of heads that appear in the three tosses. Determine the probability mass function of X.

8. If the distribution function of F is given by

$$F(b) = \begin{cases}
0, & b < 0 \\
1/2, & 0 \leq b < 1 \\
3/5, & 1 \leq b < 2 \\
4/5, & 2 \leq b < 3 \\
9/10, & 3 \leq b < 3.5 \\
1, & b \geq 3.5
\end{cases} \tag{4}$$

calculate and sketch the probability mass function of X.

9. On a multiple-choice exam with three possible answers for each of the five questions, what is the probability that a student would get four or more correct answers just by guessing?

10. Let X be a Poisson random variable with parameter λ. Show that $P(X = i)$ increases monotonically and then decreases monotonically as i increases, reaching its maximum when i is the largest integer not exceeding λ. \textbf{Hints}: consider $P(X = i)/P(X = i - 1)$.

11. Let c be a constant. Show that

(a) $\text{Var}(cX) = c^2 \text{Var}(X)$.

(b) $\text{Var}(c + X) = \text{Var}(X)$.

12. Suppose that X takes on each of the values 1, 2, and 3 with probability 1/3. What is the moment generating function? Derive $E[X]$, $E[X^2]$, and $E[X^3]$ by differentiating the moment generating function and then compare the obtained result with a direct derivation of these moments.