
GNU Emacs Reference Card

(for version 19)

Starting Emacs

To enter GNU Emacs 19, just type its name: emacs

To read in a �le to edit, see Files, below.

Leaving Emacs

suspend Emacs (or iconify it under X) C-z

exit Emacs permanently C-x C-c

Files

read a �le into Emacs C-x C-f

save a �le back to disk C-x C-s

save all �les C-x s

insert contents of another �le into this bu�er C-x i

replace this �le with the �le you really want C-x C-v

write bu�er to a speci�ed �le C-x C-w

Getting Help

The Help system is simple. Type C-h and follow the directions.

If you are a �rst-time user, type C-h t for a tutorial.

remove Help window C-x 1

scroll Help window ESC C-v

apropos: show commands matching a string C-h a

show the function a key runs C-h c

describe a function C-h f

get mode-speci�c information C-h m

Error Recovery

abort partially typed or executing command C-g

recover a �le lost by a system crash M-x recover-file

undo an unwanted change C-x u or C-_

restore a bu�er to its original contents M-x revert-buffer

redraw garbaged screen C-l

Incremental Search

search forward C-s

search backward C-r

regular expression search C-M-s

reverse regular expression search C-M-r

select previous search string M-p

select next later search string M-n

exit incremental search RET

undo e�ect of last character DEL

abort current search C-g

Use C-s or C-r again to repeat the search in either direction.

If Emacs is still searching, C-g cancels only the part not done.

c

 1993 Free Software Foundation, Inc. Permissions on back. v2.0

Motion

entity to move over backward forward

character C-b C-f

word M-b M-f

line C-p C-n

go to line beginning (or end) C-a C-e

sentence M-a M-e

paragraph M-{ M-}

page C-x [C-x]

sexp C-M-b C-M-f

function C-M-a C-M-e

go to bu�er beginning (or end) M-< M->

scroll to next screen C-v

scroll to previous screen M-v

scroll left C-x <

scroll right C-x >

scroll current line to center of screen C-u C-l

Killing and Deleting

entity to kill backward forward

character (delete, not kill) DEL C-d

word M-DEL M-d

line (to end of) M-0 C-k C-k

sentence C-x DEL M-k

sexp M-- C-M-k C-M-k

kill region C-w

copy region to kill ring M-w

kill through next occurrence of char M-z char

yank back last thing killed C-y

replace last yank with previous kill M-y

Marking

set mark here C-@ or C-SPC

exchange point and mark C-x C-x

set mark arg words away M-@

mark paragraph M-h

mark page C-x C-p

mark sexp C-M-@

mark function C-M-h

mark entire bu�er C-x h

Query Replace

interactively replace a text string M-%

using regular expressions M-x query-replace-regexp

Valid responses in query-replace mode are

replace this one, go on to next SPC

replace this one, don't move ,

skip to next without replacing DEL

replace all remaining matches !

back up to the previous match ^

exit query-replace ESC

enter recursive edit (C-M-c to exit) C-r

Multiple Windows

delete all other windows C-x 1

delete this window C-x 0

split window in two vertically C-x 2

split window in two horizontally C-x 3

scroll other window C-M-v

switch cursor to another window C-x o

shrink window shorter M-x shrink-window

grow window taller C-x ^

shrink window narrower C-x {

grow window wider C-x }

select bu�er in other window C-x 4 b

display bu�er in other window C-x 4 C-o

�nd �le in other window C-x 4 f

�nd �le read-only in other window C-x 4 r

run Dired in other window C-x 4 d

�nd tag in other window C-x 4 .

Formatting

indent current line (mode-dependent) TAB

indent region (mode-dependent) C-M-\

indent sexp (mode-dependent) C-M-q

indent region rigidly arg columns C-x TAB

insert newline after point C-o

move rest of line vertically down C-M-o

delete blank lines around point C-x C-o

join line with previous (with arg, next) M-^

delete all white space around point M-\

put exactly one space at point M-SPC

�ll paragraph M-q

set �ll column C-x f

set pre�x each line starts with C-x .

Case Change

uppercase word M-u

lowercase word M-l

capitalize word M-c

uppercase region C-x C-u

lowercase region C-x C-l

capitalize region M-x capitalize-region

The Minibu�er

The following keys are de�ned in the minibu�er.

complete as much as possible TAB

complete up to one word SPC

complete and execute RET

show possible completions ?

fetch previous minibu�er input M-p

fetch next later minibu�er input M-n

regexp search backward through history M-r

regexp search forward through history M-s

abort command C-g

Type C-x ESC ESC to edit and repeat the last command that

used the minibu�er. The following keys are then de�ned.

previous minibu�er command M-p

next minibu�er command M-n

GNU Emacs Reference Card

Bu�ers

select another bu�er C-x b

list all bu�ers C-x C-b

kill a bu�er C-x k

Transposing

transpose characters C-t

transpose words M-t

transpose lines C-x C-t

transpose sexps C-M-t

Spelling Check

check spelling of current word M-$

check spelling of all words in region M-x ispell-region

check spelling of entire bu�er M-x ispell-buffer

Tags

�nd a tag (a de�nition) M-.

�nd next occurrence of tag C-u M-.

specify a new tags �le M-x visit-tags-table

regexp search on all �les in tags table M-x tags-search

run query-replace on all the �les M-x tags-query-replace

continue last tags search or query-replace M-,

Shells

execute a shell command M-!

run a shell command on the region M-|

�lter region through a shell command C-u M-|

start a shell in window *shell* M-x shell

Rectangles

copy rectangle to register C-x r r

kill rectangle C-x r k

yank rectangle C-x r y

open rectangle, shifting text right C-x r o

blank out rectangle M-x clear-rectangle

pre�x each line with a string M-x string-rectangle

Abbrevs

add global abbrev C-x a g

add mode-local abbrev C-x a l

add global expansion for this abbrev C-x a i g

add mode-local expansion for this abbrev C-x a i l

explicitly expand abbrev C-x a e

expand previous word dynamically M-/

Regular Expressions

any single character except a newline . (dot)

zero or more repeats *

one or more repeats +

zero or one repeat ?

any character in the set [: : :]

any character not in the set [^ : : :]

beginning of line ^

end of line $

quote a special character c \c

alternative (\or") \|

grouping \(: : : \)

nth group \n

beginning of bu�er \`

end of bu�er \'

word break \b

not beginning or end of word \B

beginning of word \<

end of word \>

any word-syntax character \w

any non-word-syntax character \W

character with syntax c \sc

character with syntax not c \Sc

Registers

save region in register C-x r s

insert register contents into bu�er C-x r i

save value of point in register C-x r SPC

jump to point saved in register C-x r j

Info

enter the Info documentation reader C-h i

Moving within a node:

scroll forward SPC

scroll reverse DEL

beginning of node . (dot)

Moving between nodes:

next node n

previous node p

move up u

select menu item by name m

select nth menu item by number (1{5) n

follow cross reference (return with l) f

return to last node you saw l

return to directory node d

go to any node by name g

Other:

run Info tutorial h

list Info commands ?

quit Info q

search nodes for regexp s

Keyboard Macros

start de�ning a keyboard macro C-x (

end keyboard macro de�nition C-x)

execute last-de�ned keyboard macro C-x e

append to last keyboard macro C-u C-x (

name last keyboard macro M-x name-last-kbd-macro

insert Lisp de�nition in bu�er M-x insert-kbd-macro

Commands Dealing with Emacs Lisp

eval sexp before point C-x C-e

eval current defun C-M-x

eval region M-x eval-region

eval entire bu�er M-x eval-current-buffer

read and eval minibu�er M-ESC

re-execute last minibu�er command C-x ESC ESC

read and eval Emacs Lisp �le M-x load-file

load from standard system directory M-x load-library

Simple Customization

Here are some examples of binding global keys in Emacs Lisp.

Note that you cannot say "\M-#"; you must say "\e#".

(global-set-key "\C-cg" 'goto-line)

(global-set-key "\C-x\C-k" 'kill-region)

(global-set-key "\e#" 'query-replace-regexp)

An example of setting a variable in Emacs Lisp:

(setq backup-by-copying-when-linked t)

Writing Commands

(defun command-name (args)

"documentation"

(interactive "template")

body)

An example:

(defun this-line-to-top-of-window (line)

"Reposition line point is on to top of window.

With ARG, put point on line ARG.

Negative counts from bottom."

(interactive "P")

(recenter (if (null line)

0

(prefix-numeric-value line))))

The argument to interactive is a string specifying how to get

the arguments when the function is called interactively. Type

C-h f interactive for more information.

Copyright

c

 1993 Free Software Foundation, Inc.

designed by Stephen Gildea, May 1993 v2.0

for GNU Emacs version 19 on Unix systems

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

For copies of the GNU Emacs manual, write to the Free Software Foun-

dation, Inc., 675 Massachusetts Ave, Cambridge MA 02139.

