
GNU Emacs Reference Card

(for version 19)

Starting Emacs

To enter GNU Emacs 19, just type its name: emacs

To read in a �le to edit, see Files, below.

Leaving Emacs

suspend Emacs (or iconify it under X) C-z

exit Emacs permanently C-x C-c

Files

read a �le into Emacs C-x C-f

save a �le back to disk C-x C-s

save all �les C-x s

insert contents of another �le into this bu�er C-x i

replace this �le with the �le you really want C-x C-v

write bu�er to a speci�ed �le C-x C-w

Getting Help

The Help system is simple. Type C-h and follow the directions.

If you are a �rst-time user, type C-h t for a tutorial.

remove Help window C-x 1

scroll Help window ESC C-v

apropos: show commands matching a string C-h a

show the function a key runs C-h c

describe a function C-h f

get mode-speci�c information C-h m

Error Recovery

abort partially typed or executing command C-g

recover a �le lost by a system crash M-x recover-file

undo an unwanted change C-x u or C-_

restore a bu�er to its original contents M-x revert-buffer

redraw garbaged screen C-l

Incremental Search

search forward C-s

search backward C-r

regular expression search C-M-s

reverse regular expression search C-M-r

select previous search string M-p

select next later search string M-n

exit incremental search RET

undo e�ect of last character DEL

abort current search C-g

Use C-s or C-r again to repeat the search in either direction.

If Emacs is still searching, C-g cancels only the part not done.
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Motion

entity to move over backward forward

character C-b C-f

word M-b M-f

line C-p C-n

go to line beginning (or end) C-a C-e

sentence M-a M-e

paragraph M-{ M-}

page C-x [ C-x ]

sexp C-M-b C-M-f

function C-M-a C-M-e

go to bu�er beginning (or end) M-< M->

scroll to next screen C-v

scroll to previous screen M-v

scroll left C-x <

scroll right C-x >

scroll current line to center of screen C-u C-l

Killing and Deleting

entity to kill backward forward

character (delete, not kill) DEL C-d

word M-DEL M-d

line (to end of) M-0 C-k C-k

sentence C-x DEL M-k

sexp M-- C-M-k C-M-k

kill region C-w

copy region to kill ring M-w

kill through next occurrence of char M-z char

yank back last thing killed C-y

replace last yank with previous kill M-y

Marking

set mark here C-@ or C-SPC

exchange point and mark C-x C-x

set mark arg words away M-@

mark paragraph M-h

mark page C-x C-p

mark sexp C-M-@

mark function C-M-h

mark entire bu�er C-x h

Query Replace

interactively replace a text string M-%

using regular expressions M-x query-replace-regexp

Valid responses in query-replace mode are

replace this one, go on to next SPC

replace this one, don't move ,

skip to next without replacing DEL

replace all remaining matches !

back up to the previous match ^

exit query-replace ESC

enter recursive edit (C-M-c to exit) C-r

Multiple Windows

delete all other windows C-x 1

delete this window C-x 0

split window in two vertically C-x 2

split window in two horizontally C-x 3

scroll other window C-M-v

switch cursor to another window C-x o

shrink window shorter M-x shrink-window

grow window taller C-x ^

shrink window narrower C-x {

grow window wider C-x }

select bu�er in other window C-x 4 b

display bu�er in other window C-x 4 C-o

�nd �le in other window C-x 4 f

�nd �le read-only in other window C-x 4 r

run Dired in other window C-x 4 d

�nd tag in other window C-x 4 .

Formatting

indent current line (mode-dependent) TAB

indent region (mode-dependent) C-M-\

indent sexp (mode-dependent) C-M-q

indent region rigidly arg columns C-x TAB

insert newline after point C-o

move rest of line vertically down C-M-o

delete blank lines around point C-x C-o

join line with previous (with arg, next) M-^

delete all white space around point M-\

put exactly one space at point M-SPC

�ll paragraph M-q

set �ll column C-x f

set pre�x each line starts with C-x .

Case Change

uppercase word M-u

lowercase word M-l

capitalize word M-c

uppercase region C-x C-u

lowercase region C-x C-l

capitalize region M-x capitalize-region

The Minibu�er

The following keys are de�ned in the minibu�er.

complete as much as possible TAB

complete up to one word SPC

complete and execute RET

show possible completions ?

fetch previous minibu�er input M-p

fetch next later minibu�er input M-n

regexp search backward through history M-r

regexp search forward through history M-s

abort command C-g

Type C-x ESC ESC to edit and repeat the last command that

used the minibu�er. The following keys are then de�ned.

previous minibu�er command M-p

next minibu�er command M-n
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Bu�ers

select another bu�er C-x b

list all bu�ers C-x C-b

kill a bu�er C-x k

Transposing

transpose characters C-t

transpose words M-t

transpose lines C-x C-t

transpose sexps C-M-t

Spelling Check

check spelling of current word M-$

check spelling of all words in region M-x ispell-region

check spelling of entire bu�er M-x ispell-buffer

Tags

�nd a tag (a de�nition) M-.

�nd next occurrence of tag C-u M-.

specify a new tags �le M-x visit-tags-table

regexp search on all �les in tags table M-x tags-search

run query-replace on all the �les M-x tags-query-replace

continue last tags search or query-replace M-,

Shells

execute a shell command M-!

run a shell command on the region M-|

�lter region through a shell command C-u M-|

start a shell in window *shell* M-x shell

Rectangles

copy rectangle to register C-x r r

kill rectangle C-x r k

yank rectangle C-x r y

open rectangle, shifting text right C-x r o

blank out rectangle M-x clear-rectangle

pre�x each line with a string M-x string-rectangle

Abbrevs

add global abbrev C-x a g

add mode-local abbrev C-x a l

add global expansion for this abbrev C-x a i g

add mode-local expansion for this abbrev C-x a i l

explicitly expand abbrev C-x a e

expand previous word dynamically M-/

Regular Expressions

any single character except a newline . (dot)

zero or more repeats *

one or more repeats +

zero or one repeat ?

any character in the set [ : : : ]

any character not in the set [^ : : : ]

beginning of line ^

end of line $

quote a special character c \c

alternative (\or") \|

grouping \( : : : \)

nth group \n

beginning of bu�er \`

end of bu�er \'

word break \b

not beginning or end of word \B

beginning of word \<

end of word \>

any word-syntax character \w

any non-word-syntax character \W

character with syntax c \sc

character with syntax not c \Sc

Registers

save region in register C-x r s

insert register contents into bu�er C-x r i

save value of point in register C-x r SPC

jump to point saved in register C-x r j

Info

enter the Info documentation reader C-h i

Moving within a node:

scroll forward SPC

scroll reverse DEL

beginning of node . (dot)

Moving between nodes:

next node n

previous node p

move up u

select menu item by name m

select nth menu item by number (1{5) n

follow cross reference (return with l) f

return to last node you saw l

return to directory node d

go to any node by name g

Other:

run Info tutorial h

list Info commands ?

quit Info q

search nodes for regexp s

Keyboard Macros

start de�ning a keyboard macro C-x (

end keyboard macro de�nition C-x )

execute last-de�ned keyboard macro C-x e

append to last keyboard macro C-u C-x (

name last keyboard macro M-x name-last-kbd-macro

insert Lisp de�nition in bu�er M-x insert-kbd-macro

Commands Dealing with Emacs Lisp

eval sexp before point C-x C-e

eval current defun C-M-x

eval region M-x eval-region

eval entire bu�er M-x eval-current-buffer

read and eval minibu�er M-ESC

re-execute last minibu�er command C-x ESC ESC

read and eval Emacs Lisp �le M-x load-file

load from standard system directory M-x load-library

Simple Customization

Here are some examples of binding global keys in Emacs Lisp.

Note that you cannot say "\M-#"; you must say "\e#".

(global-set-key "\C-cg" 'goto-line)

(global-set-key "\C-x\C-k" 'kill-region)

(global-set-key "\e#" 'query-replace-regexp)

An example of setting a variable in Emacs Lisp:

(setq backup-by-copying-when-linked t)

Writing Commands

(defun command-name (args)

"documentation"

(interactive "template")

body)

An example:

(defun this-line-to-top-of-window (line)

"Reposition line point is on to top of window.

With ARG, put point on line ARG.

Negative counts from bottom."

(interactive "P")

(recenter (if (null line)

0

(prefix-numeric-value line))))

The argument to interactive is a string specifying how to get

the arguments when the function is called interactively. Type

C-h f interactive for more information.
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