The Automated Defibrillator: A Biomedical Engineering Success Story

Dr. James A. Smith
The Heart

- **A**
 - Aorta
- **VCS**
 - Superior Vena Cava
- **RA**
 - Right Atrium
- **RV**
 - Right Ventricle
- **LV**
 - Left Ventricle
Beating Heart: Video
Step 1: Electrical “Impulse”

- Heart Beats Triggered
 - Right Upper Chamber (Sino-Atrial Node)
 - Pacemaker tissue

- Electrical Impulse
 - Spreads through walls of Atria (top)
 - Causes Atria to contraction
Step 2: Valves Open

- Top chambers contract
 - Pressure keeps valves to lower chambers (ventr.) open
 - Lower chambers fill with blood
Step 3: Tiny Pause

- Electrical impulses build at atrioventricular node
 - Centre of Heart
 - Next wave of impulses leave as one
- Lower chamber continues to fill with blood
Step 4: Impulses Spread

- Impulses move along fibres in dividing wall of lower chamber (vent.)
- Impulses move down to base
- Then spread up along chamber walls
Step 5: Valves Shut & Open

- Contraction of lower chamber walls (vent.)
 - Pressure closes valves to top chambers
 - Opens valves to major blood vessels
 - Blood leaves heart
 - To Lungs (r. vent)
 - To Body (l. vent)
Heart Beating Video: Take 2
Heart Operation Explanation (Take 3)

Diagram of the Heart

http://en.wikipedia.org/wiki/Right_atrium
Cardiac Arrest Statistics

• In Canada, 35,000 to 45,000 people die of sudden cardiac arrest each year.

• For every one minute delay in defibrillation, the survival rate of a cardiac arrest victim decreases by 7 to 10%. After more than 12 minutes of ventricular fibrillation, the survival rate of adults is less than 5%.
Fibrillation, Defibrillation & Tachycardia

• Cardiac Arrhythmia
 – Abnormal activity

• Tachycardia
 – Fast heart rhythm that originates in one of the ventricles of the heart
 – Can lead to Fibrillation

• Fibrillation
 – Quivering with chaotic electrical impulses

• Defibrillation
 – Back to normal

Cardiac arrhythmia: Ventricular Fibrillation (V-Fib)
Automated Ext. Defibrillator: What is it & Why is it needed?

• Automated External Defibrillator
• Automatically diagnoses
 – cardiac arrhythmias of ventricular fibrillation and ventricular tachycardia
• Defibrillation Treatment
 – Electrical therapy
 – Stop arrhythmia,
 – Allowing the heart to reestablish an effective rhythm.
• Treat before ambulance arrives!
 – Increase rate of survival
 – Every second counts!
AED Technological “Game Changers”

• Insightful engineering is key
 – Understand the environment
 – Understand the user / operator
 – Understand the victim
 – Understand theory
 – Understand technology

• Three Main Changes
 1. Waveform
 2. Energy Storage & Delivery
 3. Ease of use
AEDs Around the World

Dulles Airport
(Washington DC, USA)

Telephone cabin
(Zurich, Switzerland)
The Scenario
Heart Attack at the Office

• Your coworker slumps over during a meeting
• You call 9-1-1
• Do you…
 – Wait for the paramedics?
 – Start CPR?
 – Get the AED?
Answer: All three!

• Get the AED!
 – It’s part of CPR
 – Chest compressions help blood flow but rarely restart heart

• Open & listen to instructions
 – Apply electrodes
 – Push button

• AED acts “automagically”!
 – Listens to heart
 – Applies shock when needed
What’s Going on Inside?

• Two main functions
 1. Recognize fibrillation
 2. Deliver 100 kW shock

• Decades of development
 – Reliable
 – Long shelf life
 – Safe
 – Easy to use
History of Electricity in Death & Therapy

- Edison vs. Tesla
 - DC vs. AC
 - Electric Chair
- Kouwenhoven & Knickerbocker (JHU)
 - GE-sponsored research
 - AC linesmen electrocutions
 - Electrocuted stray dogs
 - Noticed AC could sometimes revive dogs

William Kouwenhoven
Saved by a Spoon: First Human Defibrillation

• 1947: Beck (Cleveland)
 – 14-year old patient
 – Direct heart application

• Research Device
 – 110 VAC mains
 – Transformer (isolation)
 – Current limit resistor
 – Two table spoons
 • Wood handles

Early Defibrillator

Spoons!
DC Defibrillation in Europe & Russia

- 1890’s: Prevost & Batelli (Geneva)
 - Single DC Pulse Defib.
 - Capacitor charge
 - No need for AC mains
- Schtern (Russia)
 - Continued practice decades later
 - Arrested & later pardoned by Stalin

Modern Capacitors
More developments in Russia

- WWII: Gurvitch
 - Schtern’s student
 - DC defibrillation
 - Biphasic waveform
 - Big +ve, small -ve

- Lown (American)
 - Gurvitch schematics
 - Idea took off!
“Portable” Defibrillator

• 1965: First
 – 70 kg
 – Ambulance’s battery
 – Gas discharge relay
 – Inductor
 – Large paddles (grip)
Early Defibrillators, cont’d

• 2 operators required
 – Interpret EKG
 – Manipulate wires

• No safeguards
 – Cardiac victim?
 – Fainting spell?
 – Seizure?

• Room for error!
First Advance: Eliminate Bulky Paddles

- Metal-Chloride Gel
 - Better current transfer
 - 150 Ohms to 75 Ohms
- Flexible adhesive patches
 - Only one operator needed
Second Advance: Biphasic Waveforms

- Biphasic
 - Reduces power requirement
 - Reason not clear
 - Cell membrane role
- Smaller capacitors
- No inductor needed

WAVE SCULPTING: From the 1890s, experimenters defibrillated with some success. Naum Gurvitch waveform, however, became the bridge to the modern AED.
Switch to Semiconductors

- Peak voltage reduced
 - 4000 to 2000 V
- Remove Gas Relay
- Transistor-based
 - H-bridge
 - Like speaker & motor circuits
 - Microcontroller
 - Complex control!
Signal Processing

- Brain: Decisions...
 - Check connection
 - 30 kHz check signal
 - Check pulse
 - When to shock?
 - During T-wave
 - 100 ms
Signal Processing, cont’d

- Voltage averaging
 - No ground electrode
- Common-mode Rejection amplifier
- Heartbeat detector
 - Fibrillation is noisy!
 - This is hard!
- Ventricular Fib.?
 - >150 BPM
 - Therefore shock!

Measure heart rate… greater than 150 BPM?
Signal Processing, cont’d

- Atrial Fibrillation
 - Harder to detect
 - 3 measurements
 - Examine EKG derivative
 - Zero derivatives indicate atrial fibrillation

Atrial Fibrillation? Measure 3 times
Simplified User Interface

- User under stress
 - No time for complexity
 - Single button interface
 - Device speaks

- Like a consumer device
The Future

• CPR
 – Weak link
 – Tiring
 – Less Mouth-to-mouth
 – Automated CPR?
References

• IEEE Spectrum Magazine
 – http://www.spectrum.ieee.org/nov08/6921

• Heart & Stroke Foundation
 – http://www.heartandstroke.ns.ca/site/c.inKMIPNIeIG/b.3668095/k.4D70/Automated_External_Defibrillator_AED.htm

• Wikipedia:
 – http://en.wikipedia.org/wiki/Myocardial_infarction

• History
 – “Life in the Balance” By Mickey S. Eisenberg
Further Reading/Viewing

- http://video.google.com/videoplay?docid=5701496219687599581#
- http://www.youtube.com/watch?v=WXwYYsi6z7Q